JP2014058931A - Cooling device for power generation source - Google Patents

Cooling device for power generation source Download PDF

Info

Publication number
JP2014058931A
JP2014058931A JP2012205296A JP2012205296A JP2014058931A JP 2014058931 A JP2014058931 A JP 2014058931A JP 2012205296 A JP2012205296 A JP 2012205296A JP 2012205296 A JP2012205296 A JP 2012205296A JP 2014058931 A JP2014058931 A JP 2014058931A
Authority
JP
Japan
Prior art keywords
coolant
liquid
cooling
buffer tank
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012205296A
Other languages
Japanese (ja)
Other versions
JP5949371B2 (en
Inventor
Masayoshi Ohashi
正芳 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2012205296A priority Critical patent/JP5949371B2/en
Publication of JP2014058931A publication Critical patent/JP2014058931A/en
Application granted granted Critical
Publication of JP5949371B2 publication Critical patent/JP5949371B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Fuel Cell (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cooling device for a power generation source capable of detecting the shortage of a circulation amount of a cooling liquid without delay while lowering cost by eliminating a liquid level sensor.SOLUTION: A cooling device for a power generation source includes: a buffer tank 3 which stores a cooling liquid for cooling a power generation source comprising a gas engine generator 2 or a fuel cell; a cooling liquid circuit 4 which is arranged being in contact with the power generation source, which is formed by containing the buffer tank 3 and in which the cooling liquid flows; a circulation pump 5 which circulates the cooling liquid; a rotational speed sensor 55 which detects a rotation number N of the circulation pump 5; liquid temperature sensors 61 and 62 which detect temperatures T1 and T2 of the cooling liquid; and a monitoring control part 7 which monitors the rotation number N of the circulation pump and the temperatures T1 and T2 of the cooling liquid. The buffer tank 3 has a liquid outlet 31 from which the cooling liquid flows out to the cooling liquid circuit 4 at a liquid level position L2 of the time when the cooling liquid leaks to the limit of an allowable leakage amount. The monitoring control part 7 detects the shortage of a circulation amount of the cooling liquid on the basis of abnormality of at least one of the rotation number N of the circulation pump 5 and the temperatures T1 and T2 of the cooling liquid.

Description

本発明は、バッファタンクを備えて冷却液を循環させることによりガスエンジン発電機または燃料電池を冷却する冷却装置に関する。   The present invention relates to a cooling device that includes a buffer tank and cools a gas engine generator or a fuel cell by circulating a coolant.

近年、電源の多様化が提唱され、各種の分散型発電装置の開発及び普及が促進されている。分散型発電装置は、当初はオフィスや集合住宅などへの適用が多かったが、ガスエンジン発電機や燃料電池などについては小形小容量化が実現されて、一般家庭へも適用されるようになってきている。この種の分散型発電装置は、電気出力だけでなく熱出力も利用できるコージェネレーションシステムとして使用される場合が多い。この場合、発電源を冷却しながら熱出力を利用する用途として、冷却液回路、循環ポンプ、及び液々熱交換器を備えて冷却液を循環させる構造の冷却装置が一般的に採用されている。さらに、電気負荷に対して熱負荷が相対的に小さいときに余剰の熱を蓄積する蓄熱機能、及び冷却液の温度上昇を抑制するバッファ機能を具備するために、冷却液の液量を多くしてバッファタンクに貯留することが行われている。   In recent years, the diversification of power sources has been proposed, and the development and popularization of various types of distributed generators have been promoted. Initially, distributed generators were often applied to offices and apartment buildings. However, gas engine generators and fuel cells have been reduced in size and capacity, and are now also applied to ordinary households. It is coming. This type of distributed generator is often used as a cogeneration system that can use not only electrical output but also heat output. In this case, a cooling device having a cooling circuit, a circulation pump, and a liquid heat exchanger that circulates the cooling liquid is generally employed as an application that uses the heat output while cooling the power generation source. . Furthermore, in order to have a heat storage function for accumulating surplus heat when the heat load is relatively small with respect to the electrical load and a buffer function for suppressing the temperature rise of the coolant, the amount of the coolant is increased. It is stored in the buffer tank.

特許文献1に開示された燃料電池システムは、コージェネレーションシステムとして使用できる分散型発電装置の一技術例である。この燃料電池システムは、燃料電池で発生した熱を外部へ取り出すための第1熱媒体(冷却液)と、第1熱媒体搬送手段(循環ポンプ)と、温度検知器(液温センサ)とを備え、第1熱媒体搬送手段は温度検知器よりも低い位置に構成し、温度検知器が検知する第1熱媒体の温度異常で運転を停止する。この構成によれば、第1熱媒体が次第に減少した場合に、まず温度検知器が第1熱媒体で満たされなくなって温度異常が発生するので、第1熱媒体搬送手段が第1熱媒体を搬送しなくなる以前に運転を停止でき、第1熱媒体の減少を判定する水位検知器を省略できる、と記載されている。   The fuel cell system disclosed in Patent Document 1 is a technical example of a distributed power generator that can be used as a cogeneration system. This fuel cell system includes a first heat medium (cooling liquid) for extracting heat generated in the fuel cell to the outside, a first heat medium conveying means (circulation pump), and a temperature detector (liquid temperature sensor). The first heat medium conveying means is configured at a position lower than the temperature detector, and stops operation when the temperature of the first heat medium detected by the temperature detector is abnormal. According to this configuration, when the first heat medium is gradually reduced, the temperature detector is not filled with the first heat medium and a temperature abnormality occurs. Therefore, the first heat medium transporting unit removes the first heat medium. It is described that the operation can be stopped before the conveyance stops and the water level detector for determining the decrease in the first heat medium can be omitted.

特開2010−287361号公報JP 2010-287361 A

ところで、特許文献1では、水位検知器(液面センサ)を省略することでコストを低減できる点は好ましいが、温度検知器の温度異常の判定が遅れてシステム停止に手間取るおそれがある。詳述すると、第1熱媒体搬送手段は、第1熱媒体が徐々に減少しても、媒体入口が第1熱媒体で満たされている間は正常な搬送(ポンプの吐出)を行うので、流路の途中の温度検知器まで第1熱媒体が圧送される。したがって、温度検知器ですぐに温度異常は発生しない。温度異常が実際に発生するのは、第1熱媒体に空気が混入しながら循環するようになってからであり、第1熱媒体が相当量減少してその液面が第1熱媒体搬送手段まで低下した後である。したがって、水位検知器を備える構成と比較して、運転を停止するタイミングが遅れる。   By the way, in patent document 1, although the point which can reduce cost by omitting a water level detector (liquid level sensor) is preferable, there exists a possibility that determination of the temperature abnormality of a temperature detector may be overdue, and it may take time for a system stop. More specifically, the first heat medium conveying means performs normal conveyance (pump discharge) while the medium inlet is filled with the first heat medium even if the first heat medium gradually decreases. The first heat medium is pumped to the temperature detector in the middle of the flow path. Therefore, temperature abnormality does not occur immediately in the temperature detector. The temperature abnormality actually occurs after the air is mixed in the first heat medium and circulates. The first heat medium is reduced by a considerable amount, and the liquid level is the first heat medium conveying means. It is after dropping. Therefore, the timing for stopping the operation is delayed as compared with the configuration including the water level detector.

このように、コスト低減を志向して液面センサを省略したときに冷却液の循環量不足の検出が遅れる問題点は、燃料電池に限定されるものではなく、類似の冷却構造を有するガスエンジン発電機にも共通する。   As described above, when the liquid level sensor is omitted in order to reduce the cost, the problem that the detection of the insufficient circulation amount of the coolant is delayed is not limited to the fuel cell, but a gas engine having a similar cooling structure. The same applies to generators.

本発明は上記背景技術の問題点に鑑みてなされたものであり、液面センサを省略してコストを低廉化しつつ、冷却液の循環量不足を遅滞なく検出できる発電源の冷却装置を提供することを解決すべき課題とする。   The present invention has been made in view of the above-mentioned problems of the background art, and provides a cooling device for a power generation source that can detect a lack of circulation amount of a cooling liquid without delay while reducing the cost by omitting a liquid level sensor. This is a problem to be solved.

本発明の発電源の冷却装置は、ガスエンジン発電機または燃料電池からなる発電源を冷却するための冷却液を貯留するバッファタンクと、前記発電源に接して配設されるとともに前記バッファタンクを含んで形成され前記冷却液が流れる冷却液回路と、前記冷却液回路内で前記冷却液を循環させる循環ポンプと、前記循環ポンプの回転数を検出する回転数センサと、前記冷却液回路の途中に設けられて前記冷却液の温度を検出する液温センサと、前記循環ポンプの回転数及び前記冷却液の温度を監視する監視制御部とを備え、前記バッファタンクは、前記冷却液が許容漏洩量の限度まで漏洩したときの液面位置に、前記冷却液が前記冷却液回路に流出する液出口を有し、前記監視制御部は、前記循環ポンプの回転数及び前記冷却液の温度の少なくとも一方の異常に基づいて、前記冷却液の不足を検出する。   The cooling device for a power generation source according to the present invention includes a buffer tank for storing a coolant for cooling a power generation source composed of a gas engine generator or a fuel cell, a buffer tank disposed in contact with the power generation source, and the buffer tank. A coolant circuit through which the coolant flows, a circulation pump that circulates the coolant in the coolant circuit, a rotation speed sensor that detects the number of rotations of the circulation pump, and a middle of the coolant circuit A liquid temperature sensor that detects the temperature of the coolant, and a monitoring controller that monitors the number of revolutions of the circulation pump and the temperature of the coolant, and the buffer tank allows the coolant to leak A liquid outlet through which the cooling liquid flows into the cooling liquid circuit at a liquid level when leaking to the limit of the amount; and the monitoring control unit is configured to reduce the number of rotations of the circulation pump and the temperature of the cooling liquid. Based at one of the abnormally Kutomo, it detects the shortage of the cooling liquid.

さらに、前記バッファタンク、前記冷却液回路、及び前記循環ポンプから漏洩した冷却液を受け止めて外部への漏出を防止する漏出防止パンをさらに備え、前記冷却液の許容漏洩量は、前記漏出防止パンの容積に基づいて定められていることが好ましい。   Furthermore, it further includes a leak prevention pan that receives the coolant leaked from the buffer tank, the coolant circuit, and the circulation pump to prevent leakage to the outside, and the allowable leak amount of the coolant is equal to the leak prevention pan. It is preferable that it is determined based on the volume.

また、前記冷却液の許容漏洩量は、前記冷却液が前記バッファタンク内で中間高さよりも高い液面位置を維持するように定められていてもよい。   In addition, the allowable leakage amount of the cooling liquid may be determined so that the cooling liquid maintains a liquid surface position higher than an intermediate height in the buffer tank.

さらに、前記バッファタンクは、前記液出口よりも低い位置に、前記冷却液が前記冷却液回路から流入する液入口を有することが好ましい。   Furthermore, it is preferable that the buffer tank has a liquid inlet through which the cooling liquid flows from the cooling liquid circuit at a position lower than the liquid outlet.

さらに、前記冷却液回路は、前記バッファタンクを経由しないで前記冷却液を循環させるバイパス回路と、前記冷却液が前記バッファタンクと前記バイパス回路とに分流する比率を制御する制御弁とを有していてもよい。   Furthermore, the coolant circuit has a bypass circuit that circulates the coolant without passing through the buffer tank, and a control valve that controls a ratio at which the coolant is divided into the buffer tank and the bypass circuit. It may be.

また、前記発電源は電気出力及び熱出力を得るコージェネレーションシステムに使用されており、前記冷却液回路は前記熱出力を得る回路であってもよい。   The power generation source may be used in a cogeneration system that obtains an electrical output and a heat output, and the coolant circuit may be a circuit that obtains the heat output.

本発明の発電源の冷却装置では、冷却液が許容漏洩量の限度まで漏洩すると、バッファタンク内の冷却液の液面が液出口まで低下し、冷却液に空気が混入して循環されるようになる。このため、循環ポンプの負荷が変化して回転数に異常が生じ、また、発電源を冷却する性能が変化して冷却液の温度に異常が生じる。したがって、監視制御部は、循環ポンプの回転数及び冷却液の温度の少なくとも一方の異常に基づいて冷却液の循環量不足を検出できる。つまり、液面センサを省略してコストを低廉化しても、冷却液が許容漏洩量の限度まで漏洩したときに、冷却液の循環量不足を遅滞なく検出でき、迅速に異常時処置を実施できる。   In the cooling device for a power generation source according to the present invention, when the coolant leaks to the limit of the allowable leakage amount, the liquid level of the coolant in the buffer tank is lowered to the liquid outlet, and air is mixed into the coolant and circulated. become. For this reason, the load of the circulation pump is changed to cause an abnormality in the rotational speed, and the performance for cooling the power generation source is changed to cause an abnormality in the temperature of the coolant. Therefore, the monitoring control unit can detect the shortage of the circulating amount of the coolant based on at least one of the abnormality of the rotational speed of the circulation pump and the temperature of the coolant. In other words, even if the liquid level sensor is omitted and the cost is reduced, when the coolant leaks to the limit of the allowable leakage amount, it is possible to detect an insufficient circulation amount of the coolant without delay, and to quickly take measures for abnormal situations. .

さらに、漏出防止パンを備える態様では、冷却液の許容漏洩量が漏出防止パンの容積に基づいて定められるので、漏洩した冷却液が外部に漏出し始める以前に確実に冷却液の循環量不足を検出できる。   Furthermore, in the aspect provided with the leakage prevention pan, the allowable leakage amount of the cooling liquid is determined based on the volume of the leakage prevention pan, so that it is ensured that the amount of cooling liquid circulation is insufficient before the leaked cooling liquid starts to leak outside. It can be detected.

また、冷却液の許容漏洩量がバッファタンク内の中間高さよりも高い液面位置を維持するように定められている態様では、バッファタンクの半分以上まで冷却液が残っている漏洩の軽微な段階で、確実に冷却液の循環量不足を検出できる。   Further, in an aspect in which the allowable leakage amount of the cooling liquid is set to maintain a liquid surface position higher than the intermediate height in the buffer tank, a minor stage of leakage in which the cooling liquid remains up to more than half of the buffer tank. Thus, it is possible to reliably detect an insufficient circulation amount of the coolant.

さらに、バッファタンクの液出口よりも低い位置に液入口を有する態様では、発電源を冷却した相対的に温かい冷却液がバッファタンクの下部に流入し、密度差により相対的に冷たい冷却液と混ざり合う。したがって、バッファタンク内部の冷却液の温度分布を均一化して適正温度に保つことが容易になり、相対的に温かい冷却液が発電源に循環されて冷却性能が低下するおそれを解消できる。仮に、液入口が高いと、相対的に温かい冷却液がバッファタンクの上部に流入し滞留して上下温度差が大きくなり、温かい冷却液が発電源に循環されて十分な冷却効果が発生しなくなるおそれがある。   Furthermore, in the aspect having the liquid inlet at a position lower than the liquid outlet of the buffer tank, the relatively warm coolant that has cooled the power generation source flows into the lower portion of the buffer tank and is mixed with the relatively cool coolant due to the density difference. Fit. Therefore, it becomes easy to make the temperature distribution of the coolant inside the buffer tank uniform and keep it at an appropriate temperature, and it is possible to eliminate the possibility that the relatively warm coolant is circulated to the power generation source and the cooling performance is lowered. If the liquid inlet is high, the relatively warm coolant flows into and stays in the upper part of the buffer tank, increasing the temperature difference between the top and bottom, and the warm coolant is circulated to the power generation source to prevent a sufficient cooling effect. There is a fear.

さらに、冷却液回路がバイパス回路及び制御弁を有する態様では、発電源の始動時の暖機運転を効率化できる。例えば、発電源を長く停止すると、バッファタンク内及び冷却液回路内の冷却液は低い温度になっている。この場合、次の始動時には、バッファタンク内を含む全部の冷却液を循環させるのでなく、バイパス回路を用いて冷却液回路内の一部の冷却液のみを循環させる。これにより、冷却液を適正温度まで迅速に上昇させることができ、暖機運転を短時間で終了できる。   Furthermore, in the aspect in which the coolant circuit has the bypass circuit and the control valve, the warm-up operation at the time of starting the power generation source can be made efficient. For example, when the power generation source is stopped for a long time, the coolant in the buffer tank and the coolant circuit is at a low temperature. In this case, at the next start-up, not all the coolant including the inside of the buffer tank is circulated, but only a part of the coolant in the coolant circuit is circulated using the bypass circuit. Thereby, the coolant can be quickly raised to an appropriate temperature, and the warm-up operation can be completed in a short time.

また、発電源がコージェネレーションシステムに使用される態様では、例えば熱交換器を用いて冷却液回路から熱出力を得ることができる。この場合、一般的な冷却装置と異なって冷却液の液温が低いほど良いとは言えず、熱出力の利用の観点から冷却液を適正温度に保つことが好ましい。したがって、前述したバッファタンクの液出口よりも低い位置に液入口を有する態様や、前述した冷却液回路がバイパス回路及び制御弁を有する態様をコージェネレーションシステムに適用することで、熱出力を効率的に利用できる。   Further, in the aspect in which the power generation source is used in the cogeneration system, for example, a heat output can be obtained from the coolant circuit using a heat exchanger. In this case, unlike a general cooling device, it cannot be said that the lower the liquid temperature of the cooling liquid, the better. From the viewpoint of utilization of heat output, it is preferable to keep the cooling liquid at an appropriate temperature. Therefore, the heat output can be efficiently achieved by applying the aspect having the liquid inlet at a position lower than the liquid outlet of the buffer tank described above or the aspect in which the above-described cooling liquid circuit has the bypass circuit and the control valve to the cogeneration system. Available to:

本発明の実施形態の発電源の冷却装置を模式的に説明する全体構成図である。1 is an overall configuration diagram schematically illustrating a cooling device for a power generation source according to an embodiment of the present invention. 監視制御部の監視制御フローを説明するフローチャートの図である。It is a figure of the flowchart explaining the monitoring control flow of a monitoring control part. 実施形態の発電源の冷却装置において、冷却液の流れを示す図である。It is a figure which shows the flow of a cooling fluid in the cooling device of the power generation source of embodiment. 実施形態の発電源の冷却装置において、冷却液が許容漏洩量の限度まで漏洩したときの動作を説明する図である。It is a figure explaining operation | movement when a cooling fluid leaks to the limit of the allowable leakage amount in the cooling device of the power generation source of embodiment. 参考形態の発電源の冷却装置を模式的に説明する全体構成図である。It is a whole block diagram which illustrates typically the cooling device of the power generation source of a reference form.

本発明を実施するための実施形態を、図1〜図4を参考にして説明する。図1は、本発明の実施形態の発電源の冷却装置1を模式的に説明する全体構成図である。冷却装置1は、冷却液を循環させて発電源であるガスエンジン発電機2を冷却する装置であり、コージェネレーションシステムとして使用される。冷却装置1は、バッファタンク3、冷却液回路4、循環ポンプ5、回転数センサ55、エンジン入口液温センサ61、エンジン出口液温センサ62、及び監視制御部7などで構成されている。   An embodiment for carrying out the present invention will be described with reference to FIGS. FIG. 1 is an overall configuration diagram schematically illustrating a power generation cooling device 1 according to an embodiment of the present invention. The cooling device 1 is a device that circulates coolant and cools the gas engine generator 2 that is a power generation source, and is used as a cogeneration system. The cooling device 1 includes a buffer tank 3, a coolant circuit 4, a circulation pump 5, a rotation speed sensor 55, an engine inlet liquid temperature sensor 61, an engine outlet liquid temperature sensor 62, a monitoring control unit 7, and the like.

バッファタンク3は、ガスエンジン発電機2を冷却するための冷却液を貯留するタンクである。バッファタンク3は、冷却液が流出する液出口31、及び冷却液が流入する液入口32を有している。冷却液には、例えば、JIS規格に規定される不凍液の一種であるロングライフクーラント(記号LLC)を用いることができる。ロングライフクーラントは、水にエチレングリコールを溶解させて氷結点を下げたものであり、冬季の寒冷地で周囲温度がー30℃まで低下しても凍結しない。これに限定されず、他の種類の冷却液を用いてもよい。   The buffer tank 3 is a tank that stores a coolant for cooling the gas engine generator 2. The buffer tank 3 has a liquid outlet 31 through which the cooling liquid flows out and a liquid inlet 32 through which the cooling liquid flows. As the coolant, for example, a long life coolant (symbol LLC) which is a kind of antifreeze liquid defined in JIS standards can be used. Long-life coolant is obtained by dissolving ethylene glycol in water to lower the freezing point, and does not freeze even when the ambient temperature drops to -30 ° C in cold regions in winter. However, the present invention is not limited to this, and other types of coolant may be used.

バッファタンク3は、電気負荷に対して熱負荷が相対的に小さいときに、コ−ジェネレーションシステムの熱出力を一時的に蓄積する蓄熱機能を有している。別の見方をすれば、余剰の熱で冷却液が温度上昇することを抑制するバッファ機能を有している。所望する蓄熱機能及びバッファ機能を実現するために、バッファタンク3に貯留する冷却液の液量が適正に設定される。   The buffer tank 3 has a heat storage function for temporarily storing the heat output of the co-generation system when the heat load is relatively small with respect to the electric load. From another viewpoint, it has a buffer function that suppresses the temperature rise of the coolant due to excess heat. In order to realize the desired heat storage function and buffer function, the amount of the coolant stored in the buffer tank 3 is set appropriately.

冷却液回路4は、ガスエンジン発電機2に接して配設されるとともに、バッファタンク3を含んで形成され、冷却液が流れる周回路である。冷却液回路4は、バッファタンク3の液出口31からガスエンジン発電機2に接するまでの往路部41、ガスエンジン発電機2の高温部に接して冷却効果を発揮する冷却作用部42(破線示)、及びガスエンジン発電機2から離れてバッファタンク3の液入口32に戻るまでの復路部43を含んで形成される。冷却作用部42は、冷却ジャケットなどと呼称される部位であり、その構造は特に限定されない。   The coolant circuit 4 is a peripheral circuit that is disposed in contact with the gas engine generator 2 and includes the buffer tank 3 and flows through the coolant. The coolant circuit 4 includes an outward path portion 41 from the liquid outlet 31 of the buffer tank 3 until it contacts the gas engine generator 2, and a cooling operation portion 42 that contacts the high temperature portion of the gas engine generator 2 and exhibits a cooling effect (shown by broken lines). ), And a return path 43 extending from the gas engine generator 2 to the liquid inlet 32 of the buffer tank 3. The cooling action part 42 is a part called a cooling jacket or the like, and its structure is not particularly limited.

循環ポンプ5は、冷却液回路4の往路部41の途中に設けられている。循環ポンプ5の吸込口51はバッファタンク3の液出口31に連通され、吐出口52は冷却作用部42の入口に連通されている。循環ポンプ5には、駆動モータによって回転駆動される一般的なものを用いることができる。循環ポンプ5の回転数Nは、負荷の軽重に依存して変化する。例えば、冷却液回路4の一部が何らかの原因により変形して流路断面積が減少すると、負荷が重くなって回転数Nが減少する。また例えば、冷却液に空気が混入すると、負荷が軽くなって回転数Nが増加する。   The circulation pump 5 is provided in the middle of the forward path portion 41 of the coolant circuit 4. The suction port 51 of the circulation pump 5 is communicated with the liquid outlet 31 of the buffer tank 3, and the discharge port 52 is communicated with the inlet of the cooling action unit 42. As the circulation pump 5, a general pump that is rotationally driven by a drive motor can be used. The rotational speed N of the circulation pump 5 varies depending on the load weight. For example, when a part of the coolant circuit 4 is deformed for some reason and the flow passage cross-sectional area is reduced, the load becomes heavy and the rotational speed N is reduced. Further, for example, when air is mixed into the coolant, the load is reduced and the rotational speed N is increased.

回転数センサ55は、循環ポンプ5の回転数Nを検出するセンサである。回転数センサ55は、例えば、回転部に磁石を取り付けて固定部から磁界の変化を検出する方式のセンサとすることができる。回転数センサ55は、検出した回転数Nの信号を監視制御部7に伝送する。   The rotation speed sensor 55 is a sensor that detects the rotation speed N of the circulation pump 5. The rotation speed sensor 55 can be, for example, a sensor of a type in which a magnet is attached to the rotating part and a change in the magnetic field is detected from the fixed part. The rotation speed sensor 55 transmits a signal of the detected rotation speed N to the monitoring controller 7.

エンジン入口液温センサ61は、冷却液回路4の往路部41と冷却作用部42との接続点に配設されている。エンジン入口液温センサ61は、冷却作用部42に流入する直前の冷却液の相対的に低い液温、すなわちエンジン入口液温T1を検出し、その信号を監視制御部7に伝送する。一方、エンジン出口液温センサ62は、冷却液回路4の冷却作用部42と復路部43との接続点に配設されている。エンジン出口液温センサ62は、冷却作用部42から流出した直後の冷却液の相対的に高い液温、すなわちエンジン出口液温T2を検出し、その信号を監視制御部7に伝送する。   The engine inlet liquid temperature sensor 61 is disposed at a connection point between the forward path portion 41 and the cooling action portion 42 of the coolant circuit 4. The engine inlet liquid temperature sensor 61 detects a relatively low liquid temperature of the coolant immediately before flowing into the cooling operation section 42, that is, the engine inlet liquid temperature T 1, and transmits the signal to the monitoring control section 7. On the other hand, the engine outlet liquid temperature sensor 62 is disposed at a connection point between the cooling action section 42 and the return path section 43 of the coolant circuit 4. The engine outlet liquid temperature sensor 62 detects a relatively high liquid temperature of the coolant immediately after flowing out of the cooling operation section 42, that is, the engine outlet liquid temperature T 2, and transmits the signal to the monitoring control section 7.

また、冷却液回路4の復路部43には、制御弁44および液々熱交換器45が設けられている。制御弁44は、内部を流れる冷却液の液温に応じて、バッファタンク3とバイパス回路46とに分流する比率を自動的に制御する三方弁である。制御弁44の流入ポート441は、冷却作用部42の出口に連通されている。制御弁44の低温時流出ポート442は、バイパス回路46を用いて循環ポンプ5の吸込口51に連通されている。制御弁44の高温時流出ポート443は、液々熱交換器45の一次側配管451を経由してバッファタンク3の液入口32に連通されている。   In addition, a control valve 44 and a liquid heat exchanger 45 are provided in the return path 43 of the coolant circuit 4. The control valve 44 is a three-way valve that automatically controls the ratio of the flow divided to the buffer tank 3 and the bypass circuit 46 in accordance with the temperature of the coolant flowing through the inside. The inflow port 441 of the control valve 44 is in communication with the outlet of the cooling operation unit 42. The low temperature outflow port 442 of the control valve 44 communicates with the suction port 51 of the circulation pump 5 using the bypass circuit 46. The high temperature outflow port 443 of the control valve 44 communicates with the liquid inlet 32 of the buffer tank 3 via the primary side pipe 451 of the liquid heat exchanger 45.

制御弁44の内部を流れる冷却液が所定の低温値以下であると、低温時流出ポート442が開き、高温時流出ポート443が閉じる。このとき、冷却液は、流入ポート441から低温時流出ポート442へと流れる。所定の低温値として60℃を例示でき、これに限定されない。冷却液が所定の高温値以上であると、低温時流出ポート442が閉じ、高温時流出ポート443が開く。このとき、冷却液は、流入ポート441から高温時流出ポート443へと流れる。   When the coolant flowing inside the control valve 44 is below a predetermined low temperature value, the low temperature outflow port 442 is opened and the high temperature outflow port 443 is closed. At this time, the coolant flows from the inflow port 441 to the low temperature outflow port 442. 60 degreeC can be illustrated as a predetermined | prescribed low temperature value, It is not limited to this. When the coolant is equal to or higher than a predetermined high temperature value, the low temperature outflow port 442 is closed and the high temperature outflow port 443 is opened. At this time, the coolant flows from the inflow port 441 to the high temperature outflow port 443.

また、冷却液が所定の低温値と高温値の間であると、低温時流出ポート442及び高温時流出ポート443の両方が液温に依存した開度で開き、流出の分流比が自動的に制御される。すなわち、冷却液が所定の低温値に近いと、低温時流出ポート442の分流比が大で、高温時流出ポート443の分流比が小となる。そして、冷却液の液温が所定の低温値から高温値まで増加するにつれて、低温時流出ポート442の分流比が徐々に減少し、高温時流出ポート443の分流比が徐々に増加する。   Further, when the coolant is between a predetermined low temperature value and a high temperature value, both the low temperature outflow port 442 and the high temperature outflow port 443 open at an opening degree depending on the liquid temperature, and the outflow diversion ratio is automatically set. Be controlled. That is, when the coolant is close to a predetermined low temperature value, the diversion ratio of the low temperature outflow port 442 is large and the diversion ratio of the high temperature outflow port 443 is small. As the coolant temperature increases from a predetermined low temperature value to a high temperature value, the diversion ratio of the low temperature outflow port 442 gradually decreases, and the diversion ratio of the high temperature outflow port 443 gradually increases.

液々熱交換器45は、コ−ジェネレーションシステムとして、ガスエンジン発電機2の熱出力を外部で利用可能とする部位である。液々熱交換器45は、一次側配管451及び二次側配管452で構成され、一次側配管451内の冷却液から二次側配管452内の熱移送媒体へと熱が移動する。二次側の熱移送媒体は、一次側の冷却液と同じロングライフクーラントでもよいし、異なる流体でもよい。一次側配管451の一端は制御弁44の高温時流出ポート443に連通され、他端はバッファタンク3の液入口32に連通されている。二次側配管452は図略の熱負荷に連通されており、熱出力を利用するための周回路が形成されている。   The liquid-liquid heat exchanger 45 is a part that makes the heat output of the gas engine generator 2 available outside as a co-generation system. The liquid-liquid heat exchanger 45 includes a primary side pipe 451 and a secondary side pipe 452, and heat is transferred from the coolant in the primary side pipe 451 to the heat transfer medium in the secondary side pipe 452. The secondary side heat transfer medium may be the same long life coolant as the primary side coolant or a different fluid. One end of the primary side pipe 451 communicates with the high temperature outflow port 443 of the control valve 44, and the other end communicates with the liquid inlet 32 of the buffer tank 3. The secondary side pipe 452 communicates with a heat load (not shown), and a peripheral circuit for using the heat output is formed.

実施形態の発電源の冷却装置1は、図1に示されるように、漏出防止パン8をさらに備えている。漏出防止パン8は、バッファタンク3、冷却液回路4、及び循環ポンプ5の下方に拡がって配設されており、これら3、4、5から漏洩した冷却液を受け止めて外部への漏出を防止する。冷却液の許容漏洩量は、漏出防止パン8の容積に基づいて定められている。つまり、漏出防止パン8の容積から或る程度のマージンを差し引いて冷却液の許容漏洩量が定められている。   As shown in FIG. 1, the cooling device 1 for the power generation source according to the embodiment further includes a leakage prevention pan 8. The leakage prevention pan 8 is disposed below the buffer tank 3, the coolant circuit 4, and the circulation pump 5, and receives the coolant leaked from these 3, 4 and 5 to prevent leakage to the outside. To do. The allowable leakage amount of the coolant is determined based on the volume of the leakage prevention pan 8. That is, the allowable leakage amount of the coolant is determined by subtracting a certain margin from the volume of the leakage prevention pan 8.

ここで、図1には、冷却液が漏洩していない正常時のバッファタンク3内の冷却液の液面位置L1が示されている。そして、バッファタンク3は、冷却液が許容漏洩量の限度まで漏洩したときの液面位置L2に液出口31を有している。液面位置L2は、バッファタンク3内で中間高さよりも高く、約70%の高さ位置に定められている。つまり、冷却液の許容漏洩量は、冷却液がバッファタンク3内で中間高さよりも高い液面位置を維持するように定められている。   Here, FIG. 1 shows the liquid level position L1 of the coolant in the buffer tank 3 at the normal time when the coolant is not leaking. The buffer tank 3 has a liquid outlet 31 at the liquid surface position L2 when the coolant leaks to the limit of the allowable leakage amount. The liquid level position L2 is higher than the intermediate height in the buffer tank 3, and is set at a height position of about 70%. That is, the allowable leakage amount of the cooling liquid is determined so that the cooling liquid maintains a liquid surface position higher than the intermediate height in the buffer tank 3.

一方、バッファタンク3は、液出口31より大幅に低く底部に近い位置に液入口32を有している。一般的な冷却装置では液出口はバッファタンクの下部に設けられ、液入口はバッファタンクの上部に設けられる場合が多く、本実施形態では液出口31と液入口32との上下関係が逆になっている。   On the other hand, the buffer tank 3 has a liquid inlet 32 at a position substantially lower than the liquid outlet 31 and close to the bottom. In general cooling devices, the liquid outlet is provided at the lower part of the buffer tank and the liquid inlet is often provided at the upper part of the buffer tank. In this embodiment, the vertical relationship between the liquid outlet 31 and the liquid inlet 32 is reversed. ing.

監視制御部7は、循環ポンプ5の回転数N、エンジン入口液温T1、及びエンジンエンジン出口液温T2を監視する。監視制御部7には、例えば、マイコンを内蔵してソフトウェアで作動する電子制御装置を用いることができる。図2は、監視制御部7の監視制御フローを説明するフローチャートの図である。   The monitoring control unit 7 monitors the rotational speed N of the circulation pump 5, the engine inlet liquid temperature T1, and the engine engine outlet liquid temperature T2. As the monitoring control unit 7, for example, an electronic control device that incorporates a microcomputer and operates by software can be used. FIG. 2 is a flowchart illustrating the monitoring control flow of the monitoring control unit 7.

図2のステップS1で、ガスエンジン発電機2が運転を開始すると、循環ポンプ5が作動する。ステップS2で、監視制御部7は、エンジン入口液温センサ61からエンジン入口液温T1の信号を受け取り、エンジン出口液温センサ62からエンジン出口液温T2の信号を受け取る。次に、ステップS3で、冷却液の温度異常が発生しているか否かを判定する。   When the gas engine generator 2 starts operation in step S1 of FIG. 2, the circulation pump 5 operates. In step S <b> 2, the monitoring controller 7 receives the signal of the engine inlet liquid temperature T <b> 1 from the engine inlet liquid temperature sensor 61 and the signal of the engine outlet liquid temperature T <b> 2 from the engine outlet liquid temperature sensor 62. Next, in step S3, it is determined whether or not a temperature abnormality of the coolant has occurred.

具体的には、エンジン出口液温T2からエンジン入口液温T1を減算して上下温度差ΔTを求め(ΔT=T2−T1)、上下温度差ΔTが許容温度差以下のときに正常と判定し、上下温度差ΔTが許容温度差を越えたときに温度異常と判定する。許容温度差として30℃を例示でき、これに限定されない。上下温度差ΔTの増加は、冷却作用部42内を流れる冷却液の循環量の減少によって引き起こされる。このような温度異常が発生する原因としては、冷却液への空気の混入、循環ポンプ5の故障、冷却液回路4の狭窄変形などが考えられる。   More specifically, the engine inlet fluid temperature T1 is subtracted from the engine outlet fluid temperature T2 to obtain the vertical temperature difference ΔT (ΔT = T2−T1). When the vertical temperature difference ΔT is equal to or less than the allowable temperature difference, it is determined to be normal. When the vertical temperature difference ΔT exceeds the allowable temperature difference, it is determined that the temperature is abnormal. An example of the allowable temperature difference is 30 ° C., but is not limited thereto. The increase in the vertical temperature difference ΔT is caused by a decrease in the circulation amount of the coolant flowing through the cooling operation unit 42. Possible causes of such temperature abnormalities include air in the coolant, failure of the circulation pump 5, and constriction deformation of the coolant circuit 4.

また、監視制御部7は、エンジン入口液温T1及びエンジン出口液温T2が許容上限温度以下のときに正常と判定し、少なくとも一方(通常はエンジン出口液温T2)が許容上限温度を越えたときに蓄熱限界状態と判定する。許容上限温度として90℃を例示でき、これに限定されない。蓄熱限界状態は、電気負荷に対して熱負荷が相対的に小さいときに、余剰の熱で冷却液の平均液温が徐々に上昇して発生する。蓄熱限界状態は異常状態とは言えないが、ガスエンジン発電機2の運転を継続すべきでない。   Further, the monitoring control unit 7 determines that the engine inlet liquid temperature T1 and the engine outlet liquid temperature T2 are equal to or lower than the allowable upper limit temperature, and at least one (usually the engine outlet liquid temperature T2) exceeds the allowable upper limit temperature. Sometimes it is determined that the heat storage limit is reached. 90 degreeC can be illustrated as an allowable upper limit temperature, It is not limited to this. The heat storage limit state occurs when the average liquid temperature of the cooling liquid gradually rises due to excess heat when the heat load is relatively small with respect to the electric load. Although the heat storage limit state is not an abnormal state, the operation of the gas engine generator 2 should not be continued.

ステップS3で、正常のときステップS4に進み、温度異常及び蓄熱限界状態のときステップS6に進む。ステップS4で、監視制御部7は、回転数センサ55から回転数Nの信号を受け取る。次に、ステップS5で、循環ポンプ5の回転数異常が発生しているか否かを判定する。具体的には、回転数Nが規定回転数の所定誤差範囲内に収まっているときに正常と判定してステップS2に戻り、回転数Nが所定誤差範囲を逸脱しているときに回転数異常と判定してステップS6に進む。   In step S3, when normal, the process proceeds to step S4, and when the temperature is abnormal and the heat storage limit state, the process proceeds to step S6. In step S <b> 4, the monitoring controller 7 receives a signal of the rotational speed N from the rotational speed sensor 55. Next, in step S5, it is determined whether an abnormality in the rotational speed of the circulation pump 5 has occurred. Specifically, when the rotational speed N is within a predetermined error range of the specified rotational speed, it is determined as normal and the process returns to step S2, and when the rotational speed N deviates from the predetermined error range, the rotational speed is abnormal. And the process proceeds to step S6.

ステップS2に戻った以降は、冷却液の温度異常および循環ポンプ5の回転数異常の監視を繰り返して行う。温度異常及び蓄熱限界状態や回転数異常でステップS6に進んだときには、異常時処置としてガスエンジン発電機2を停止する。また、ガスエンジン発電機2が自冷発電容量を有する場合は、異常時処置として電気出力を自冷発電容量以下まで低下させるようにしてもよい。その他にも、異常時処置として一般的な異常表示や異常通報などを行うようにしてもよい。   After returning to step S2, monitoring of the temperature abnormality of the coolant and the rotation speed abnormality of the circulation pump 5 is repeated. When the process proceeds to step S6 due to temperature abnormality, heat storage limit state, or rotation speed abnormality, the gas engine generator 2 is stopped as an abnormality measure. Moreover, when the gas engine generator 2 has a self-cooling power generation capacity, the electrical output may be lowered to a self-cooling power generation capacity or less as a measure for an abnormality. In addition, a general abnormality display or abnormality notification may be performed as a measure for an abnormality.

次に、上述のように構成された実施形態の発電源の冷却装置1の動作、作用について説明する。図3は、実施形態の発電源の冷却装置1での冷却液の流れを示す図である。図3において、太い破線のループは制御弁44で冷却液が所定の低温値以下であるときの流れを示し、太い矢印は制御弁44で冷却液が所定の高温値以上であるときの流れを示している。   Next, the operation and action of the cooling device 1 of the power generation source according to the embodiment configured as described above will be described. Drawing 3 is a figure showing the flow of the cooling fluid in cooling device 1 of the generating power source of an embodiment. In FIG. 3, a thick broken line loop indicates a flow when the coolant is below a predetermined low temperature value at the control valve 44, and a thick arrow indicates a flow when the coolant is above a predetermined high temperature value at the control valve 44. Show.

ガスエンジン発電機2が運転して循環ポンプ5が作動しているとき、冷却液の流れは、制御弁44により自動的に制御される。運転開始直後などには、制御弁44で冷却液が所定の低温値以下となっており、冷却液の流れは太い破線のループで示される。すなわち、循環ポンプ5の吐出口52から吐出された冷却液は、エンジン入口液温センサ61を通過して冷却作用部42に入り、ガスエンジン発電機2を冷却して液温が上昇する。液温が上昇した冷却液は、冷却作用部42を出てエンジン出口液温センサ62を通過し、制御弁44の流入ポート441から低温時流出ポート442を経由し、バイパス回路46から循環ポンプ5の吸入口51へと循環する。   When the gas engine generator 2 is operated and the circulation pump 5 is operating, the flow of the coolant is automatically controlled by the control valve 44. Immediately after the start of operation, etc., the coolant is below a predetermined low temperature value at the control valve 44, and the flow of the coolant is indicated by a thick dashed loop. That is, the cooling liquid discharged from the discharge port 52 of the circulation pump 5 passes through the engine inlet liquid temperature sensor 61 and enters the cooling operation unit 42 to cool the gas engine generator 2 and the liquid temperature rises. The coolant whose liquid temperature has risen exits the cooling action section 42 and passes through the engine outlet liquid temperature sensor 62, passes from the inflow port 441 of the control valve 44 through the low temperature outflow port 442, and then from the bypass circuit 46 to the circulation pump 5. Circulates to the suction port 51.

このように、運転開始直後などで冷却液が低温のときには、冷却液回路4内の一部の冷却液のみを循環させるので、冷却液の液温は迅速に上昇する。制御弁44で冷却液が所定の低温値を超えると、制御弁44に流入した冷却液の一部が高温時流出ポート443から流出するようになる。つまり、冷却液は、バイパス回路46と液々熱交換器45及びバッファタンク3とに分流する。これにより、液々熱交換器45で熱出力を外部の熱負荷に供給できるようになる。   Thus, when the coolant is at a low temperature, such as immediately after the start of operation, only a part of the coolant in the coolant circuit 4 is circulated, so that the coolant temperature rises quickly. When the coolant exceeds a predetermined low temperature value at the control valve 44, a part of the coolant flowing into the control valve 44 flows out from the high temperature outflow port 443. That is, the coolant is divided into the bypass circuit 46, the liquid heat exchanger 45 and the buffer tank 3. As a result, the liquid heat exchanger 45 can supply heat output to an external heat load.

さらに、制御弁44で冷却液が所定の高温値を超えると、低温時流出ポート442が完全に閉じ、太い矢印で示されるように冷却液が流れる。すなわち、冷却液は、循環ポンプ5の吐出口52からエンジン入口液温センサ61、冷却作用部42、及びエンジン出口液温センサ62を通過して制御弁44の流入ポート441に達する。さらに、冷却液は、制御弁44の高温時流出ポート443から流出して、液々熱交換器45の一次側配管451を通過し、液入口32からバッファタンク3に流入する。   Further, when the coolant exceeds a predetermined high temperature value by the control valve 44, the low temperature outflow port 442 is completely closed, and the coolant flows as indicated by a thick arrow. That is, the coolant passes from the discharge port 52 of the circulation pump 5 through the engine inlet liquid temperature sensor 61, the cooling operation unit 42, and the engine outlet liquid temperature sensor 62 and reaches the inflow port 441 of the control valve 44. Further, the coolant flows out from the high temperature outflow port 443 of the control valve 44, passes through the primary side pipe 451 of the liquid heat exchanger 45, and flows into the buffer tank 3 from the liquid inlet 32.

ここで、バッファタンク3の底部に近い位置に流入した冷却液は、貯留されていた冷却液と比較して相対的に温度が高く密度が小さいので、バッファタンク3内を上昇しながら貯留されていた冷却液と混ざり合う。これにより、バッファタンク3内の冷却液の液温が概ね均一化される。一方、循環ポンプ5の吸入口51の吸入圧により、冷却液がバッファタンク3の液出口31から流出して循環ポンプ5へと循環される。   Here, the coolant that has flowed into a position near the bottom of the buffer tank 3 has a relatively high temperature and a low density as compared with the stored coolant, and is thus stored while rising in the buffer tank 3. Mix with the coolant. Thereby, the liquid temperature of the cooling liquid in the buffer tank 3 is made substantially uniform. On the other hand, the coolant flows out from the liquid outlet 31 of the buffer tank 3 and is circulated to the circulation pump 5 by the suction pressure of the suction port 51 of the circulation pump 5.

なお、ガスエンジン発電機2の停止時にも、熱出力を利用することができるようになっている。すなわち、ガスエンジン発電機2が停止していても、バッファタンク3内の冷却液に十分な蓄熱が既に行われていて液温が制御弁44の所定の高温値を超えている場合に、循環ポンプ5は作動できるようになっている。これにより、冷却液は太い矢印で示されるように循環し、液々熱交換器45で熱出力を外部の熱負荷に供給できる。   The heat output can be used even when the gas engine generator 2 is stopped. In other words, even when the gas engine generator 2 is stopped, if the heat stored in the coolant in the buffer tank 3 has already been sufficiently stored and the liquid temperature exceeds the predetermined high temperature value of the control valve 44, the circulation is performed. The pump 5 can be operated. As a result, the coolant circulates as indicated by the thick arrows, and the heat output from the liquid heat exchanger 45 can be supplied to an external heat load.

次に、冷却液が漏洩した場合の動作について説明する。図4は、実施形態の発電源の冷却装置1において、冷却液が許容漏洩量の限度まで漏洩したときの動作を説明する図である。何らかの原因によりバッファタンク3、冷却液回路4、及び循環ポンプ5から冷却液が漏洩すると、漏出防止パン8に受け止められて外部への漏出が防止される。そして、漏洩量が許容漏洩量の限度に達したとき、図4に示されるように、バッファタンク3内の冷却液の液面位置L2がちょうど液出口31に一致する。   Next, the operation when the coolant leaks will be described. FIG. 4 is a diagram illustrating an operation when the coolant leaks to the limit of the allowable leakage amount in the cooling device 1 of the power generation source according to the embodiment. If the coolant leaks from the buffer tank 3, the coolant circuit 4, and the circulation pump 5 for some reason, the coolant is received by the leakage prevention pan 8 to prevent leakage to the outside. When the leakage amount reaches the limit of the allowable leakage amount, the liquid level position L2 of the cooling liquid in the buffer tank 3 exactly matches the liquid outlet 31 as shown in FIG.

このため、液出口31から流出して循環ポンプ5へ向かう冷却液に空気が混入するようになる。これにより、循環ポンプ5では、負荷が軽くなって回転数Nが増加する。また、冷却作用部42を流れる冷却液の実際の循環量が減少して、上下温度差ΔTが増加する。したがって、監視制御部7は冷却液の循環量不足を検出できる。   For this reason, air comes to be mixed into the coolant that flows out from the liquid outlet 31 and travels toward the circulation pump 5. Thereby, in the circulation pump 5, a load becomes light and the rotation speed N increases. Further, the actual circulation amount of the coolant flowing through the cooling operation unit 42 is decreased, and the vertical temperature difference ΔT is increased. Therefore, the monitoring controller 7 can detect a shortage of the coolant circulation amount.

さらに、漏洩が継続してバッファタンク3内の冷却液の液面位置L3が液出口31よりもわずかでも低下したときには、空気のみが冷却液回路4を循環するようになる。したがって、循環ポンプ5の回転数Nの異常、及び上下温度差ΔTの異常は顕著なものとなり、監視制御部7は冷却液の循環量不足を一層確実に検出できる。   Further, when the leakage continues and the liquid level L3 of the coolant in the buffer tank 3 is slightly lower than the liquid outlet 31, only air circulates through the coolant circuit 4. Therefore, the abnormality in the rotational speed N of the circulation pump 5 and the abnormality in the upper and lower temperature difference ΔT become prominent, and the monitoring controller 7 can more reliably detect the insufficient circulation amount of the coolant.

次に、実施形態の発電源の冷却装置1の効果について、参考形態と比較しながら説明する。図5は、参考形態の発電源の冷却装置9を模式的に説明する全体構成図である。参考形態の冷却装置9を構成する各部位は実施形態に略一致しており、バッファタンク3Aの液出口31A及び液入口32Aの高さ位置が異なっている。すなわち、液出口31Aはバッファタンク3Aの下部に設けられ、液入口32Aはバッファタンク3Aの上部に設けられている。   Next, the effect of the cooling device 1 of the power generation source of the embodiment will be described in comparison with the reference embodiment. FIG. 5 is an overall configuration diagram schematically illustrating a cooling device 9 for a power generation source according to a reference embodiment. Each part which comprises the cooling device 9 of a reference form substantially corresponds to embodiment, and the height position of liquid outlet 31A and liquid inlet 32A of buffer tank 3A differs. That is, the liquid outlet 31A is provided in the lower part of the buffer tank 3A, and the liquid inlet 32A is provided in the upper part of the buffer tank 3A.

参考形態において、監視制御部7Aが循環ポンプ5の回転数N及び上下温度差ΔTを監視する場合、バッファタンク3A内の冷却液の殆どが漏洩して液面位置L4が下部の液出口31Aに低下するまで循環量不足を検出できない。したがって、迅速な異常検出を行うためには、バッファタンク3A内に例えば光反射検出方式の液面センサ33を設けて、液面位置の信号を監視制御部7Aに伝送する必要がある。   In the reference mode, when the monitoring controller 7A monitors the rotational speed N and the vertical temperature difference ΔT of the circulation pump 5, most of the cooling liquid in the buffer tank 3A leaks and the liquid surface position L4 enters the lower liquid outlet 31A. It is not possible to detect a shortage of circulation until it decreases. Therefore, in order to perform rapid abnormality detection, it is necessary to provide a liquid level sensor 33 of, for example, a light reflection detection method in the buffer tank 3A and transmit a signal of the liquid level position to the monitoring control unit 7A.

これに対して実施形態では、液面センサ33を省略してコストを低廉化しても、冷却液が許容漏洩量の限度まで漏洩した時点、すなわちバッファタンク3の中間高さよりも高い液面位置L2(約70%の高さ位置)で回転数Nの異常及び上下温度差ΔTの異常が発生する。したがって、監視制御部7は、冷却液の循環量不足を遅滞なく検出でき、迅速に異常時処置を実施できる。   On the other hand, in the embodiment, even if the liquid level sensor 33 is omitted and the cost is reduced, the liquid level position L2 higher than the intermediate height of the buffer tank 3 when the coolant leaks to the limit of the allowable leakage amount. An abnormality in the rotational speed N and an abnormality in the vertical temperature difference ΔT occur at (about 70% height position). Therefore, the monitoring control unit 7 can detect an insufficient circulation amount of the coolant without delay, and can quickly carry out an abnormality treatment.

さらに、冷却液の許容漏洩量が漏出防止パン8の容積に基づいて定められるので、漏洩した冷却液が外部に漏出し始める以前に確実に冷却液の循環量不足を検出できる。また、バッファタンク3の約70%の高さ位置まで冷却液が残っている漏洩の軽微な段階で、確実に冷却液の循環量不足を検出できる。   Furthermore, since the allowable leakage amount of the coolant is determined based on the volume of the leakage prevention pan 8, it is possible to reliably detect the insufficient circulation amount of the coolant before the leaked coolant begins to leak outside. Further, it is possible to reliably detect an insufficient circulation amount of the coolant at a slight stage of leakage where the coolant remains up to a height position of about 70% of the buffer tank 3.

さらに、バッファタンク3の液出口31よりも低い位置に液入口32を有するので、バッファタンク3内部の冷却液を均一化して適正温度に保つことが容易になり、冷却性能が低下するおそれを解消できる。また、バイパス回路46及び制御弁44を有するので、ガスエンジン発電機2の始動時の暖機運転を効率化できる。   Furthermore, since the liquid inlet 32 is provided at a position lower than the liquid outlet 31 of the buffer tank 3, it becomes easy to make the cooling liquid inside the buffer tank 3 uniform and maintain an appropriate temperature, thereby eliminating the possibility that the cooling performance will deteriorate. it can. Moreover, since the bypass circuit 46 and the control valve 44 are provided, the warm-up operation at the start of the gas engine generator 2 can be made efficient.

また、ガスエンジン発電機2はコージェネレーションシステムに使用されるので、液々熱交換器45を用いて冷却液回路4から熱出力を得ることができる。加えて、冷却液を適正温度に保つことが容易になっており、熱出力を効率的に利用できる。   Further, since the gas engine generator 2 is used in a cogeneration system, a heat output can be obtained from the coolant circuit 4 using the liquid-liquid heat exchanger 45. In addition, it is easy to maintain the coolant at an appropriate temperature, and the heat output can be used efficiently.

なお、実施形態の発電源としてのガスエンジン発電機2を燃料電池に置き換えることも可能である。また、漏出防止パン8は必要でなく、冷却液回路4内の制御弁44およびバイパス回路46を省略してもよい。さらに、冷却液が許容漏洩量の限度まで漏洩したときのバッファタンク3の液面位置L2を約70%の高さ位置としているのは一例であって、適宜変更できる。本発明は、その他にも様々な応用や変形が可能である。   In addition, it is also possible to replace the gas engine generator 2 as a power generation source of the embodiment with a fuel cell. Further, the leakage prevention pan 8 is not necessary, and the control valve 44 and the bypass circuit 46 in the coolant circuit 4 may be omitted. Further, the liquid surface position L2 of the buffer tank 3 when the coolant leaks to the limit of the allowable leakage amount is an example of a height position of about 70%, and can be changed as appropriate. Various other applications and modifications are possible for the present invention.

1:発電源の冷却装置
2:ガスエンジン発電機(発電源)
3、3A:バッファタンク
31、31A:液出口 32、32A:液入口 33:液面センサ
4:冷却液回路 41:往路部 42:冷却作用部 43:復路部
44:制御弁 45:液々熱交換器 46:バイパス回路
5:循環ポンプ 55:回転数センサ
61:エンジン入口液温センサ 62:エンジン出口液温センサ
7:監視制御部
8:漏出防止パン
T1:エンジン入口液温 T2:エンジン出口液温
N:循環ポンプの回転数
1: Cooling device for power generation 2: Gas engine generator (power generation)
3, 3A: Buffer tank 31, 31A: Liquid outlet 32, 32A: Liquid inlet 33: Liquid level sensor 4: Cooling liquid circuit 41: Outward path part 42: Cooling action part 43: Return path part 44: Control valve 45: Liquid heat Exchanger 46: Bypass circuit 5: Circulation pump 55: Speed sensor 61: Engine inlet liquid temperature sensor 62: Engine outlet liquid temperature sensor 7: Monitoring control unit 8: Leakage prevention pan T1: Engine inlet liquid temperature T2: Engine outlet liquid Temperature N: Number of rotations of circulation pump

Claims (6)

ガスエンジン発電機または燃料電池からなる発電源を冷却するための冷却液を貯留するバッファタンクと、前記発電源に接して配設されるとともに前記バッファタンクを含んで形成され前記冷却液が流れる冷却液回路と、前記冷却液回路内で前記冷却液を循環させる循環ポンプと、前記循環ポンプの回転数を検出する回転数センサと、前記冷却液回路の途中に設けられて前記冷却液の温度を検出する液温センサと、前記循環ポンプの回転数及び前記冷却液の温度を監視する監視制御部とを備え、
前記バッファタンクは、前記冷却液が許容漏洩量の限度まで漏洩したときの液面位置に、前記冷却液が前記冷却液回路に流出する液出口を有し、
前記監視制御部は、前記循環ポンプの回転数及び前記冷却液の温度の少なくとも一方の異常に基づいて、前記冷却液の循環量不足を検出する発電源の冷却装置。
A buffer tank for storing a coolant for cooling a power generation source composed of a gas engine generator or a fuel cell, and a cooling fluid which is disposed in contact with the power generation source and includes the buffer tank and through which the coolant flows. A liquid circuit, a circulation pump for circulating the cooling liquid in the cooling liquid circuit, a rotation speed sensor for detecting the rotation speed of the circulation pump, and a temperature of the cooling liquid provided in the middle of the cooling liquid circuit A liquid temperature sensor to detect, and a monitoring control unit for monitoring the number of rotations of the circulation pump and the temperature of the cooling liquid,
The buffer tank has a liquid outlet through which the cooling liquid flows into the cooling liquid circuit at a liquid surface position when the cooling liquid leaks to a limit of an allowable leakage amount,
The monitoring control unit is a cooling device for a power generation source that detects an insufficient circulation amount of the coolant based on an abnormality in at least one of the number of rotations of the circulation pump and the temperature of the coolant.
前記バッファタンク、前記冷却液回路、及び前記循環ポンプから漏洩した冷却液を受け止めて外部への漏出を防止する漏出防止パンをさらに備え、
前記冷却液の許容漏洩量は、前記漏出防止パンの容積に基づいて定められている請求項1に記載の発電源の冷却装置。
A leak prevention pan that receives the coolant leaked from the buffer tank, the coolant circuit, and the circulation pump to prevent leakage to the outside;
The cooling device for a power generation source according to claim 1, wherein an allowable leakage amount of the coolant is determined based on a volume of the leakage prevention pan.
前記冷却液の許容漏洩量は、前記冷却液が前記バッファタンク内で中間高さよりも高い液面位置を維持するように定められている請求項1または2に記載の発電源の冷却装置。   3. The cooling device for a power generation source according to claim 1, wherein the allowable leakage amount of the cooling liquid is determined so that the cooling liquid maintains a liquid surface position higher than an intermediate height in the buffer tank. 前記バッファタンクは、前記液出口よりも低い位置に、前記冷却液が前記冷却液回路から流入する液入口を有する請求項1〜3のいずれか一項に記載の発電源の冷却装置。   The said buffer tank is a cooling device of the power generation source as described in any one of Claims 1-3 which has the liquid inlet in which the said coolant flows in from the said coolant circuit in the position lower than the said liquid outlet. 前記冷却液回路は、前記バッファタンクを経由しないで前記冷却液を循環させるバイパス回路と、前記冷却液が前記バッファタンクと前記バイパス回路とに分流する比率を制御する制御弁とを有する請求項1〜4のいずれか一項に記載の発電源の冷却装置。   2. The coolant circuit includes a bypass circuit that circulates the coolant without passing through the buffer tank, and a control valve that controls a ratio at which the coolant is divided into the buffer tank and the bypass circuit. The cooling device of the power generation source as described in any one of -4. 前記発電源は電気出力及び熱出力を得るコージェネレーションシステムに使用されており、前記冷却液回路は前記熱出力を得る回路である請求項1〜5のいずれか一項に記載の発電源の冷却装置。   The cooling of the power generation source according to any one of claims 1 to 5, wherein the power generation source is used in a cogeneration system for obtaining an electrical output and a heat output, and the coolant circuit is a circuit for obtaining the heat output. apparatus.
JP2012205296A 2012-09-19 2012-09-19 Power generator cooling device Expired - Fee Related JP5949371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012205296A JP5949371B2 (en) 2012-09-19 2012-09-19 Power generator cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012205296A JP5949371B2 (en) 2012-09-19 2012-09-19 Power generator cooling device

Publications (2)

Publication Number Publication Date
JP2014058931A true JP2014058931A (en) 2014-04-03
JP5949371B2 JP5949371B2 (en) 2016-07-06

Family

ID=50615610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012205296A Expired - Fee Related JP5949371B2 (en) 2012-09-19 2012-09-19 Power generator cooling device

Country Status (1)

Country Link
JP (1) JP5949371B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015222047A (en) * 2014-05-23 2015-12-10 トヨタ自動車株式会社 Engine cooling device
US20170350303A1 (en) * 2016-06-01 2017-12-07 GM Global Technology Operations LLC Engine cooling systems and methods
CN107732339A (en) * 2017-10-27 2018-02-23 吉利汽车研究院(宁波)有限公司 Detecting system and its detection method, vehicle for power cell of vehicle bag
KR101846625B1 (en) 2015-10-23 2018-04-09 현대자동차주식회사 System and method for diagnosing state of cooling water
JP2018088389A (en) * 2016-11-21 2018-06-07 トヨタ自動車株式会社 Fuel cell system
CN108397276A (en) * 2018-02-28 2018-08-14 安徽江淮汽车集团股份有限公司 A kind of engine expansion water tank
JP2018181654A (en) * 2017-04-14 2018-11-15 トヨタ自動車株式会社 Fuel cell cooling system
KR20190046106A (en) * 2017-10-25 2019-05-07 두산중공업 주식회사 Apparatus for cooling working fluid and Power generation plant using the same
US10476090B2 (en) 2016-11-21 2019-11-12 Toyota Jidosha Kabushiki Kaisha Fuel cell system
CN111720201A (en) * 2020-07-23 2020-09-29 中船动力有限公司 Cooling water supply system of diesel generator
CN114251170A (en) * 2020-09-21 2022-03-29 现代自动车株式会社 Method for preventing engine overheating based on coolant temperature and engine system thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6389889B1 (en) * 1999-05-19 2002-05-21 Curtis A. Ford Methods of and apparatus for identifying faults in internal combustion engine cooling systems
JP2004349247A (en) * 2003-04-30 2004-12-09 Honda Motor Co Ltd Cooling device of fuel cell
JP2006261015A (en) * 2005-03-18 2006-09-28 Nissan Motor Co Ltd Fuel cell system
JP2008057340A (en) * 2006-08-29 2008-03-13 Toyota Motor Corp Exhaust gas heat recovering device of internal combustion engine
JP2010287361A (en) * 2009-06-10 2010-12-24 Panasonic Corp Fuel cell system
JP2013096300A (en) * 2011-10-31 2013-05-20 Denso Corp Intake air cooling apparatus for internal combustion engine and water leakage detection method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6389889B1 (en) * 1999-05-19 2002-05-21 Curtis A. Ford Methods of and apparatus for identifying faults in internal combustion engine cooling systems
JP2004349247A (en) * 2003-04-30 2004-12-09 Honda Motor Co Ltd Cooling device of fuel cell
JP2006261015A (en) * 2005-03-18 2006-09-28 Nissan Motor Co Ltd Fuel cell system
JP2008057340A (en) * 2006-08-29 2008-03-13 Toyota Motor Corp Exhaust gas heat recovering device of internal combustion engine
JP2010287361A (en) * 2009-06-10 2010-12-24 Panasonic Corp Fuel cell system
JP2013096300A (en) * 2011-10-31 2013-05-20 Denso Corp Intake air cooling apparatus for internal combustion engine and water leakage detection method thereof

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015222047A (en) * 2014-05-23 2015-12-10 トヨタ自動車株式会社 Engine cooling device
KR101846625B1 (en) 2015-10-23 2018-04-09 현대자동차주식회사 System and method for diagnosing state of cooling water
US20170350303A1 (en) * 2016-06-01 2017-12-07 GM Global Technology Operations LLC Engine cooling systems and methods
DE102017111976B4 (en) 2016-06-01 2021-10-07 GM Global Technology Operations LLC ENGINE COOLANT SYSTEM FOR DETECTING A COOLANT LEAK BY EVALUATING THE ELECTRICAL SIGNALS OF A COOLANT PUMP
US10054030B2 (en) * 2016-06-01 2018-08-21 GM Global Technology Operations LLC Engine cooling systems and methods
JP2018088389A (en) * 2016-11-21 2018-06-07 トヨタ自動車株式会社 Fuel cell system
US10476090B2 (en) 2016-11-21 2019-11-12 Toyota Jidosha Kabushiki Kaisha Fuel cell system
JP2018181654A (en) * 2017-04-14 2018-11-15 トヨタ自動車株式会社 Fuel cell cooling system
KR20190046106A (en) * 2017-10-25 2019-05-07 두산중공업 주식회사 Apparatus for cooling working fluid and Power generation plant using the same
KR101984403B1 (en) * 2017-10-25 2019-09-03 두산중공업 주식회사 Apparatus for cooling working fluid and Power generation plant using the same
CN107732339B (en) * 2017-10-27 2020-04-24 吉利汽车研究院(宁波)有限公司 Detection system for vehicle power battery pack, detection method thereof and vehicle
CN107732339A (en) * 2017-10-27 2018-02-23 吉利汽车研究院(宁波)有限公司 Detecting system and its detection method, vehicle for power cell of vehicle bag
CN108397276A (en) * 2018-02-28 2018-08-14 安徽江淮汽车集团股份有限公司 A kind of engine expansion water tank
CN111720201A (en) * 2020-07-23 2020-09-29 中船动力有限公司 Cooling water supply system of diesel generator
CN111720201B (en) * 2020-07-23 2023-09-01 中船动力有限公司 Cooling water supply system of diesel generator
CN114251170A (en) * 2020-09-21 2022-03-29 现代自动车株式会社 Method for preventing engine overheating based on coolant temperature and engine system thereof
CN114251170B (en) * 2020-09-21 2024-03-26 现代自动车株式会社 Method for preventing engine from overheating based on temperature of cooling liquid and engine system thereof

Also Published As

Publication number Publication date
JP5949371B2 (en) 2016-07-06

Similar Documents

Publication Publication Date Title
JP5949371B2 (en) Power generator cooling device
US10571077B2 (en) Cooled-hydrogen supply station and a cooling apparatus for hydrogen
US11462757B2 (en) Fuel cell system
JPWO2010073951A1 (en) Control method and control device for marine exhaust heat recovery system
JP6766639B2 (en) Fuel cell cooling system
JP5704398B2 (en) Heat recovery device, cogeneration system, and pipe misconnection detection method
JP2013155911A (en) Heat source unit control system
JP2008057340A (en) Exhaust gas heat recovering device of internal combustion engine
JP2015085699A (en) Method for adjusting temperature of refrigerant liquid for cooling engine of hybrid vehicle
JP2003109637A (en) Fuel cell cooling device and control method of the same
JP4707338B2 (en) Fuel cell system
JP2002216817A (en) Conductivity control device for fuel cell cooling liquid
KR101233875B1 (en) Method for preventing local overheating in a fuel cell arrangement and fuel cell system having such a fuel cell arrangement
JP2018137176A (en) Fuel cell vehicle
JP4833707B2 (en) Waste heat recovery device
US20220221045A1 (en) Vehicle
US3935488A (en) Method of operating a fluid-cooled hydropower generator
KR100990034B1 (en) Method for controlling of drain down-type closed loop solar energy system having waiting condition
CN210296515U (en) Quick cooling device for low-temperature test of fuel cell
JP6071388B2 (en) Cooling control device for fuel cell system
KR102259498B1 (en) Apparatus for cooling control of container ship
CN219179765U (en) Temperature control heat dissipation system of spatial light modulator
JP2011000922A (en) Fuel tank temperature control system of fuel cell mounted vehicle
JP2011257130A (en) Apparatus for recovering exhaust heat
KR100989994B1 (en) Drain down-type closed loop solar energy system and controlling method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160523

R151 Written notification of patent or utility model registration

Ref document number: 5949371

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees