JP2014058720A - Manufacturing method for sliding member - Google Patents

Manufacturing method for sliding member Download PDF

Info

Publication number
JP2014058720A
JP2014058720A JP2012204727A JP2012204727A JP2014058720A JP 2014058720 A JP2014058720 A JP 2014058720A JP 2012204727 A JP2012204727 A JP 2012204727A JP 2012204727 A JP2012204727 A JP 2012204727A JP 2014058720 A JP2014058720 A JP 2014058720A
Authority
JP
Japan
Prior art keywords
amorphous carbon
laser
sliding member
sliding
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012204727A
Other languages
Japanese (ja)
Other versions
JP5950401B2 (en
Inventor
Takatoshi Arayoshi
隆利 新吉
Yoshio Fuwa
良雄 不破
Yoshiro Iwai
善郎 岩井
Tomoki Honda
知己 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Fukui NUC
Toyota Motor Corp
Original Assignee
University of Fukui NUC
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Fukui NUC, Toyota Motor Corp filed Critical University of Fukui NUC
Priority to JP2012204727A priority Critical patent/JP5950401B2/en
Publication of JP2014058720A publication Critical patent/JP2014058720A/en
Application granted granted Critical
Publication of JP5950401B2 publication Critical patent/JP5950401B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method for a sliding member for improving wear resistance and for lowering friction by irradiating laser pulses to the surface of amorphous carbon film.SOLUTION: In a manufacturing method for a sliding member, in which pulse laser is irradiated to amorphous carbon film covering a sliding surface for modifying the amorphous carbon film, the pulse laser is irradiated, of which output power is controlled such that the surface of the amorphous carbon irradiated by the pulse laser does not have surface having periodicity, and the concentration of carbon gradually decreases with distance from the inside of to the surface of the amorphous carbon film.

Description

本発明は、軸受、ピストンといった機械部品の摺動面に用いられるに好適な摺動部材の製造方法に関する。   The present invention relates to a method for manufacturing a sliding member suitable for use on a sliding surface of a mechanical part such as a bearing or a piston.

従来から、自動車において、エンジン、トランスミッションなど様々な機器に摺動部材が用いられており、これらの摺動部材の摺動抵抗を低減してエネルギー損失を減らし、地球環境の保護のための今後の燃費規制に対応すべく、様々な研究開発が進められている。たとえば、このような研究開発の1つに、摺動部材の耐摩耗性を向上させると共に低摩擦特性を得るために、その摺動面にコーティングを行う技術があるが、近年、このコーティング材料として、非晶質炭素被膜が注目されている。   Conventionally, sliding members have been used in various devices such as engines and transmissions in automobiles. The sliding resistance of these sliding members is reduced to reduce energy loss, and the future for protecting the global environment. Various research and development are underway to meet fuel efficiency regulations. For example, as one of such research and development, there is a technique for coating the sliding surface in order to improve the wear resistance of the sliding member and obtain low friction characteristics. Amorphous carbon coatings are attracting attention.

非晶質炭素被膜は、ダイヤモンドの炭素構造及びグラファイトの炭素構造が混在した構造となっており、ダイヤモンドの如き耐摩耗性を有するとともに、グラファイトの如き固体潤滑性を有する。   The amorphous carbon film has a structure in which the carbon structure of diamond and the carbon structure of graphite are mixed, and has an abrasion resistance like diamond and a solid lubricity like graphite.

例えば、非晶質炭素被膜の内部から摺動面にいくに従い硬度が低くなるように、摺動面に形成された非晶質炭素被膜にパルスレーザを照射する摺動部材の製造方法が提案されている(たとえば引用文献1参照)。   For example, a method of manufacturing a sliding member that irradiates a pulsed laser to an amorphous carbon coating formed on a sliding surface is proposed so that the hardness decreases as it goes from the inside of the amorphous carbon coating to the sliding surface. (See, for example, cited document 1).

特開2011−168845号公報JP2011-168845A

しかしながら、特許文献1の如く、非晶質炭素被膜の表面にパルスレーザを照射することにより、非晶質炭素被膜の表層は、改質されてグラファイト化されることになるが、発明者らの後述する実験によれば、特許文献1に示す方法で、パルスレーザを照射した場合には、非晶質炭素被膜の炭素の一部が除去されて、非晶質炭素被膜の摺動面が周期性を有した表面になってしまうことがある。この結果、周期性を有した表面は、上述した如くグラファイト化しているので、その表面は摩耗し易く、摺動時間の経過に伴い摩擦係数も高くなる傾向にある。   However, as disclosed in Patent Document 1, by irradiating the surface of the amorphous carbon coating with a pulse laser, the surface layer of the amorphous carbon coating is modified and graphitized. According to the experiment described later, when the pulse laser is irradiated by the method shown in Patent Document 1, a part of the carbon of the amorphous carbon coating is removed, and the sliding surface of the amorphous carbon coating is periodic. It may become a surface with the property. As a result, since the surface having periodicity is graphitized as described above, the surface is easily worn, and the friction coefficient tends to increase as the sliding time elapses.

本発明はこのような点を鑑みて成されたものであり、その目的とするところは、非晶質炭素被膜の表面にパルスレーザを照射することにより、耐摩耗性を高めつつ低摩擦化を図ることができる摺動部材の製造方法を提供することを目的とするものである。   The present invention has been made in view of these points, and the object is to irradiate the surface of the amorphous carbon coating with a pulsed laser to reduce friction while improving wear resistance. An object of the present invention is to provide a method of manufacturing a sliding member that can be achieved.

前記課題を鑑みて本発明に係る摺動部材の製造方法は、摺動面に被覆された非晶質炭素被膜にパルスレーザを照射して、前記非晶質炭素被膜を改質する摺動部材の製造方法であって、前記非晶質炭素被膜の表面が周期性を有した表面とならず、かつ、前記非晶質炭素被膜の内部から表面に進むにしたがって炭素密度が傾斜的に低くなるような出力に調整したパルスレーザを、前記非晶質炭素被膜の表面に照射することを特徴とする。   In view of the above problems, a manufacturing method of a sliding member according to the present invention is a sliding member that modifies the amorphous carbon coating by irradiating the amorphous carbon coating coated on the sliding surface with a pulse laser. The surface of the amorphous carbon coating does not become a periodic surface, and the carbon density is gradually lowered as it advances from the inside of the amorphous carbon coating to the surface. The pulsed laser adjusted to such an output is irradiated on the surface of the amorphous carbon film.

本発明によれば、パルスレーザを非晶質炭素被膜に照射することにより、その摺動面は、グラファイト化することにより、内部の非晶質炭素被膜よりも低密度となるので、摺動部材の摩擦係数を低減することができる。さらに、摺動部材の摺動面は周期性を有しないので、周期性を有するものに比べて、耐摩耗性を向上させることができる。   According to the present invention, when the amorphous carbon coating is irradiated with the pulse laser, the sliding surface is graphitized to have a lower density than the amorphous carbon coating inside, so that the sliding member The friction coefficient can be reduced. Furthermore, since the sliding surface of the sliding member does not have periodicity, wear resistance can be improved as compared with that having periodicity.

さらに、好ましい態様としては、前記パルスレーザとしてフェムト秒レーザを用い、0.04J/cm〜0.09J/cmのフルーエンスで照射する。このような範囲のフルーエンスで、パルスレーザを照射することにより、非晶質炭素被膜の表面が周期性を有した表面とならず、かつ、前記非晶質炭素被膜の内部から表面に進むにしたがって炭素密度が傾斜的に低くなるような摺動部材を容易に製造することができる。 Furthermore, as a preferable aspect, a femtosecond laser is used as the pulse laser, and irradiation is performed with a fluence of 0.04 J / cm 2 to 0.09 J / cm 2 . By irradiating a pulsed laser with a fluence in such a range, the surface of the amorphous carbon film does not become a periodic surface, and as it advances from the inside of the amorphous carbon film to the surface It is possible to easily manufacture a sliding member whose carbon density is gradually lowered.

すなわち、フルーエンスが、0.04J/cm未満の場合には、摺動面のグラファイト化(炭素の低密度化)が十分に促進されず、摺動部材の低摩擦を期待することができず、0.09J/cmを越えた場合には、摺動面が周期的な摺動面となり、非晶質炭素被膜の摩耗が促進され易くなる。 That is, when the fluence is less than 0.04 J / cm 2 , graphitization of the sliding surface (carbon density reduction) is not sufficiently promoted, and low friction of the sliding member cannot be expected. If it exceeds 0.09 J / cm 2 , the sliding surface becomes a periodic sliding surface, and the wear of the amorphous carbon coating is easily promoted.

ここで、「パルスレーザ」とは、出力光強度が時間的に変化して一定の持続時間だけ発振するレーザのことであるが、本明細書では、特にパルス幅が10−9秒〜10−15のレーザをパルスレーザと称する。そして、「フルーエンス」(fluence)とは、レーザの1パルス当りの出力エネルギーを照射断面積で割って求めたエネルギー密度(J/cm)である。一般に、レーザを材料表面に照射することで材料表面が蒸散する現象が生じるエネルギー密度の最小値(アブレーション閾値)近傍の低いフルーエンスの範囲で、パルスレーザを照射すれば熱影響がほとんど生じないことが知られている。 Here, the "pulsed laser" is output light intensity is that of the laser oscillating by a predetermined duration changes with time, in the present specification, in particular a pulse width of 10 -9 seconds to 10 - The 15 lasers are called pulse lasers. “Fluence” is the energy density (J / cm 2 ) obtained by dividing the output energy per pulse of the laser by the irradiation cross section. Generally, if a laser beam is irradiated in a low fluence range near the minimum value of energy density (ablation threshold) where the material surface evaporates when the laser beam is irradiated on the material surface, thermal effects may hardly occur. Are known.

本発明によれば、非晶質炭素被膜の表面にパルスレーザを照射することにより、耐摩耗性を高めつつ低摩擦化を図ることができる。   According to the present invention, by irradiating the surface of the amorphous carbon film with a pulse laser, it is possible to reduce friction while improving wear resistance.

本発明の摺動部材の製造方法を実施するための製造装置に関する概略構成図である。It is a schematic block diagram regarding the manufacturing apparatus for enforcing the manufacturing method of the sliding member of this invention. 平板状の摺動部材表面に対するパルスレーザの照射動作を示す説明図である。It is explanatory drawing which shows the irradiation operation | movement of the pulse laser with respect to a flat sliding member surface. 図3(a)は、実施例2のフルーエンス0.06J/cmでパルスレーザを照射した摺動部材の表面を顕微鏡で観察したときの写真図、(b)は、実施例3のフルーエンス0.08J/cmでパルスレーザを照射した摺動部材の表面を顕微鏡で観察したときの写真図、(c)は、比較例4のフルーエンス0.16J/cmでパルスレーザを照射した摺動部材の表面を顕微鏡で観察したときの写真図。FIG. 3A is a photograph showing the surface of the sliding member irradiated with a pulsed laser at a fluence of 0.06 J / cm 2 in Example 2 under a microscope, and FIG. A photograph when the surface of a sliding member irradiated with a pulse laser at 0.08 J / cm 2 is observed with a microscope, (c) is a slide irradiated with a pulse laser at a fluence of 0.16 J / cm 2 in Comparative Example 4 The photograph figure when the surface of a member is observed with a microscope. 実施例1〜3および比較例1〜3に係る摺動部材の摩擦・摩耗試験の結果を示した図。The figure which showed the result of the friction and abrasion test of the sliding member which concerns on Examples 1-3 and Comparative Examples 1-3. 密度測定試験の原理を説明するための図。The figure for demonstrating the principle of a density measurement test.

以下、本発明に係る実施形態について詳しく説明する。   Hereinafter, embodiments according to the present invention will be described in detail.

まず、摺動部材の基材を準備する。摺動部材の基材は、摺動時において非晶質炭素被膜との密着性を確保することができるような材質および表面硬さであれば、金属、セラミック又は樹脂など特に限定されるものではなく、この摺動部材と摺動する他方の摺動部材も、この非晶質炭素被膜に対して極端に表面硬さが低く、摺動時に摩耗し易いものでなければ、その材質は特に限定されるものではない。   First, a base material for the sliding member is prepared. The base material of the sliding member is not particularly limited as long as it is a material and surface hardness that can ensure adhesion to the amorphous carbon coating during sliding, such as metal, ceramic, or resin. The material of the other sliding member that slides with this sliding member is not particularly limited as long as the surface hardness is extremely low with respect to the amorphous carbon coating and is not easily worn when sliding. Is not to be done.

次に、摺動部材の摺動面に非晶質炭素被膜が被覆されるように、プラズマPVD法、スパッタリング法、真空蒸着法、非平衡マグネトロンスパッタリング法など物理気相成長法、または、プラズマCVD法又はアークイオンプレーティング法などの化学気相成長法を利用して、非晶質炭素被膜を成膜する。なお、非晶質炭素被膜が摺動部材の摺動面に形成できるのであれば、特にその成膜方法は、限定されるものではない。   Next, a physical vapor deposition method such as a plasma PVD method, a sputtering method, a vacuum deposition method, a non-equilibrium magnetron sputtering method, or plasma CVD so that an amorphous carbon film is coated on the sliding surface of the sliding member. An amorphous carbon film is formed by using a chemical vapor deposition method such as a method or an arc ion plating method. As long as the amorphous carbon film can be formed on the sliding surface of the sliding member, the film forming method is not particularly limited.

また、この非晶質炭素被膜中に、Si、Ti、Cr、Fe、W、Bなどの添加元素を含有させてもよく、このような元素を添加することにより、被膜の表面硬さを調整することもできる。   In addition, the amorphous carbon film may contain additional elements such as Si, Ti, Cr, Fe, W, and B, and the surface hardness of the film is adjusted by adding such elements. You can also

摺動部材の摺動面に形成される非晶質炭素被膜の膜厚は、3μm〜30μmが好ましい。3μmより薄いと摩耗により非晶質炭素被膜が除去されるおそれがあり、30μmより厚いと非晶質炭素被膜が内部圧縮応力の影響を受け易い。   The film thickness of the amorphous carbon film formed on the sliding surface of the sliding member is preferably 3 μm to 30 μm. If the thickness is less than 3 μm, the amorphous carbon film may be removed due to wear, and if the thickness is more than 30 μm, the amorphous carbon film is easily affected by internal compressive stress.

次に、摺動面に被覆された非晶質炭素被膜にパルスレーザを照射する。具体的には、図1に示す製造装置を用いて、パルスレーザを照射する。製造装置は、パルスレーザシステム1、シャッタ2、レーザ制御ユニット3、反射ミラー4及び5、凹面反射鏡6、3軸ステージ7を少なくとも備えている。凹面反射鏡6による集光以外に、石英等からなるレンズを用いてレーザを集光させてもよい。   Next, the amorphous carbon coating coated on the sliding surface is irradiated with a pulse laser. Specifically, pulse laser irradiation is performed using the manufacturing apparatus shown in FIG. The manufacturing apparatus includes at least a pulse laser system 1, a shutter 2, a laser control unit 3, reflecting mirrors 4 and 5, a concave reflecting mirror 6, and a three-axis stage 7. In addition to condensing by the concave reflecting mirror 6, the laser may be condensed using a lens made of quartz or the like.

パルスレーザシステム1は、フェムト秒レーザを発振する公知のパルスレーザシステムが用いられる。なお、フェムト秒レーザ以外のパルスレーザを使用することもできる。すなわち、非晶質炭素被膜が熱的、機械的な影響により変質しない範囲で局所的に高密度のエネルギーを加えることが可能であれば改質層を形成することができることから、非晶質炭素被膜の状態(層厚、基材の材料等の外部環境)によっては、例えばピコ秒(10−9秒〜10−12秒)レーザやナノ秒(10−6秒〜10−9秒)レーザといったパルスレーザを発振するパルスレーザシステムを使用してもよい。 As the pulse laser system 1, a known pulse laser system that oscillates a femtosecond laser is used. A pulse laser other than a femtosecond laser can also be used. In other words, a modified layer can be formed if high density energy can be applied locally within a range where the amorphous carbon film does not change due to thermal and mechanical influences. Depending on the state of the coating (layer thickness, external environment such as base material), for example, picosecond (10 −9 to 10 −12 seconds) laser or nanosecond (10 −6 to 10 −9 seconds) laser A pulse laser system that oscillates a pulse laser may be used.

フェムト秒レーザシステム1から発振されたレーザパルスは、シャッタ2を通過してレーザ制御ユニット3に入射される。レーザ制御ユニット3では、レーザパルスの波長を変換するとともに偏光制御を行う。偏光制御では、直線偏光(縦方向・横方向)及び円偏光を必要に応じて行う。直線偏光にすると、細長い溝部が周期的に形成された微細構造となり、円偏光にすると、粒状突起部が周期的に形成された微細構造となる。   The laser pulse oscillated from the femtosecond laser system 1 passes through the shutter 2 and enters the laser control unit 3. The laser control unit 3 converts the wavelength of the laser pulse and performs polarization control. In the polarization control, linearly polarized light (longitudinal / lateral direction) and circularly polarized light are performed as necessary. When linearly polarized light is used, a fine structure in which elongated grooves are periodically formed is formed. When circularly polarized light is formed, a fine structure in which granular protrusions are periodically formed is obtained.

レーザ制御ユニット3から出射されたレーザパルスは、反射ミラー4及び5により反射されて凹面反射鏡(放物鏡)6に入射して集光されるようになる。そして、集光されたレーザパルスは、3軸ステージ7の試料台に設置された摺動部材Mの非晶質炭素被膜の表面(摺動面)に照射される。   The laser pulse emitted from the laser control unit 3 is reflected by the reflecting mirrors 4 and 5, enters the concave reflecting mirror (parabolic mirror) 6, and is condensed. Then, the condensed laser pulse is irradiated on the surface (sliding surface) of the amorphous carbon film of the sliding member M installed on the sample stage of the triaxial stage 7.

3軸ステージ7は、試料台を取り付けたZ軸ステージ及びZ軸ステージを取り付けたXY軸ステージを備えており、制御装置8からの制御信号に基づいてXY軸ステージ及びZ軸ステージを移動させて摺動部材Mの非晶質炭素被膜の表面(摺動面)の照射位置を移動させるようにする。   The 3-axis stage 7 includes a Z-axis stage to which a sample stage is attached and an XY-axis stage to which the Z-axis stage is attached. The XY-axis stage and the Z-axis stage are moved based on a control signal from the control device 8. The irradiation position of the surface (sliding surface) of the amorphous carbon coating of the sliding member M is moved.

本実施形態では、摺動部材Mを移動させてレーザパルスを照射するようにしているが、レーザパルスの発振及び光学系を含む装置側を移動させるようにしてもよく、また両方を移動させて摺動部材M表面の照射位置を位置決めするようにしてもよい。   In this embodiment, the sliding member M is moved to irradiate the laser pulse. However, the laser pulse oscillation and the apparatus side including the optical system may be moved, or both may be moved. The irradiation position on the surface of the sliding member M may be positioned.

図2は、平板状の摺動部材M表面に対するパルスレーザの照射動作を示す説明図である。この例では、主走査方向をZ軸にとり、副走査方向をX軸にとっている。照射位置を1つの円で示しており、円内が照射領域となっている。主走査方向に照射する場合には、Z軸方向に所定の速度でZ軸ステージを移動させて行う。その際に主走査方向Z1に照射スポットが重なり合いながら(具体的には、隣接する円の中心と円周の一部が一致するように重なり合いながら)帯状に摺動部材M表面が照射されるようにする。   FIG. 2 is an explanatory view showing the pulse laser irradiation operation on the surface of the flat sliding member M. FIG. In this example, the main scanning direction is taken as the Z axis, and the sub scanning direction is taken as the X axis. The irradiation position is shown by one circle, and the inside of the circle is the irradiation area. When irradiating in the main scanning direction, the Z-axis stage is moved at a predetermined speed in the Z-axis direction. At this time, the surface of the sliding member M is irradiated in a band shape while the irradiation spots overlap in the main scanning direction Z1 (specifically, the overlapping circles overlap with each other so that the center of the adjacent circle coincides with a part of the circumference). To.

主走査方向Z1について照射した後、XY軸ステージにより摺動部材MをX軸方向にずらす。その際に主走査方向Z1の照射領域と重なり合うように副走査方向に位置決めする。この例では照射領域を示す円の半径分だけ副走査方向にずらすようにしており、そのため、次の主走査方向Z2の照射領域と主走査方向Z1の照射領域が重なり合うように位置決めされる。そして、主走査方向Z2に主走査方向Z1と同様に所定の速度で照射位置を移動させながら照射動作が行われる。以後、副走査方向にずらしながら主走査方向に照射動作を繰り返すことで、基板T表面には満遍なく複数回の照射動作が行われるようになる。   After irradiation in the main scanning direction Z1, the sliding member M is shifted in the X-axis direction by the XY-axis stage. At that time, positioning is performed in the sub-scanning direction so as to overlap the irradiation region in the main scanning direction Z1. In this example, the irradiation area is shifted in the sub-scanning direction by the radius of the circle indicating the irradiation area. Therefore, the next irradiation area in the main scanning direction Z2 and the irradiation area in the main scanning direction Z1 are positioned so as to overlap each other. Then, the irradiation operation is performed while moving the irradiation position at a predetermined speed in the main scanning direction Z2 as in the main scanning direction Z1. Thereafter, the irradiation operation is repeated in the main scanning direction while shifting in the sub-scanning direction, so that the irradiation operation is performed a plurality of times uniformly on the surface of the substrate T.

レーザパルスの照射スポットの中心部と周辺部では、照射エネルギーに差が生じることから、適宜照射スポットの重なり合う部分を調整して照射領域全体の照射エネルギーがほぼ均一になるように設定する。この際に、パルスレーザにより前記非晶質炭素被膜の表面が周期性を有した表面とならず(非晶質炭素被膜の一部がパルスレーザにより除去されないよう)、かつ、前記非晶質炭素被膜の内部から表面に進むにしたがって炭素密度が傾斜的に低くなるような出力に調整したパルスレーザを、前記非晶質炭素被膜の表面に照射する。   Since there is a difference in irradiation energy between the central portion and the peripheral portion of the irradiation spot of the laser pulse, the overlapping portion of the irradiation spots is adjusted as appropriate so that the irradiation energy of the entire irradiation region is substantially uniform. At this time, the surface of the amorphous carbon film does not become a periodic surface by a pulse laser (so that part of the amorphous carbon film is not removed by the pulse laser), and the amorphous carbon film The surface of the amorphous carbon coating is irradiated with a pulsed laser adjusted to an output in which the carbon density decreases in a gradient as it goes from the inside of the coating to the surface.

より具体的には、本実施形態では、従来知られたパルスレーザによる照射とは異なり、パルスレーザとしてフェムト秒レーザを用い、0.04J/cm〜0.09J/cmのフルーエンスで照射する。すなわち、発明者らの実験によれば、フェムト秒レーザを発振する公知のパルスレーザシステムを用いた場合、このような範囲でパルスレーザを照射することにより、非晶質炭素被膜の一部がパルスレーザにより除去されないため、非晶質炭素被膜の表面が周期性を有した表面とならず、かつ、非晶質炭素被膜の内部から表面に進むにしたがって炭素密度が傾斜的に低くなることがわかった。すなわち、フルーエンスが、0.04J/cm未満の場合には、摺動面のグラファイト化(炭素の低密度化)が十分に促進されず、摺動部材の低摩擦を期待することができず、0.09J/cmを越えた場合には、パルスレーザにより非晶質炭素被膜の一部が除去されることにより摺動面が周期的な摺動面となり、非晶質炭素被膜の摩耗が促進され易くなる。 More specifically, in this embodiment, unlike the conventionally known pulse laser irradiation, a femtosecond laser is used as the pulse laser, and irradiation is performed with a fluence of 0.04 J / cm 2 to 0.09 J / cm 2. . That is, according to experiments by the inventors, when a known pulse laser system that oscillates a femtosecond laser is used, a part of the amorphous carbon film is pulsed by irradiating the pulse laser in such a range. Since it is not removed by the laser, the surface of the amorphous carbon film does not become a periodic surface, and the carbon density decreases gradually as it moves from the inside of the amorphous carbon film to the surface. It was. That is, when the fluence is less than 0.04 J / cm 2 , graphitization of the sliding surface (carbon density reduction) is not sufficiently promoted, and low friction of the sliding member cannot be expected. When 0.09 J / cm 2 is exceeded, a part of the amorphous carbon film is removed by the pulse laser, and the sliding surface becomes a periodic sliding surface. Is easily promoted.

以下の本発明を実施例に基づいて説明する。
[実施例1〜4]
以下に示すようにして、実施例1〜4に係る摺動部材を製造した。平板状(50×50×10mm)のシリコンブロックからなる基材の表面に公知のプラズマCVD装置により摺動部材の摺動面に非晶質炭素被膜を82nmの厚さで被覆した。なお、本実施形態では、このような膜厚の非晶質炭素被膜を成膜したが、これは、以下に示す比較例1〜4の非晶質炭素被膜も同様である。
The following invention will be described based on examples.
[Examples 1 to 4]
The sliding member which concerns on Examples 1-4 was manufactured as shown below. The surface of the base material made of a flat (50 × 50 × 10 mm) silicon block was coated with an amorphous carbon film with a thickness of 82 nm on the sliding surface of the sliding member by a known plasma CVD apparatus. In this embodiment, the amorphous carbon film having such a film thickness is formed. The same applies to the amorphous carbon films of Comparative Examples 1 to 4 shown below.

非晶質炭素被膜を形成した摺動部材を用いて、図1に示す製造装置により直線偏光されたレーザパルスを照射して表面加工を行った。フェムト秒レーザシステムとして、サイバーレーザー社製IFRITを用い、波長800nm、パルス幅180fs、パルスエネルギー最大1.0mJ、周波数1.0kHzのレーザパルスを直線偏光制御し、焦点距離f=2000mmの放物鏡で集光し、150mW〜410mWのレーザ出力で大気中の摺動部材の非晶質炭素被膜の表面に垂直に照射した。レーザパルスのスポット面積は2.497μmであった。レーザパルスのフルーエンスをアブレーション閾値近傍の0.04J/cm〜0.09J/cmに設定し(具体的には、実施例1〜4の順に、0.04J/cm、0.06J/cm、0.08J/cm、0.09J/cm)、毎秒1000パルスでレーザパルスを照射しながらステージ移動速度を8mm/sに調整することで照射動作を調整した。そして、副走査方向のずらし量を60μmに設定した。なお、レーザパルスの各フルーエンスは、レーザ出力を変えることで調整した。 Using a sliding member on which an amorphous carbon film was formed, surface processing was performed by irradiating linearly polarized laser pulses with the manufacturing apparatus shown in FIG. As a femtosecond laser system, IBRIT made by Cyber Laser Co., Ltd. is used, and a laser pulse with a wavelength of 800 nm, a pulse width of 180 fs, a pulse energy maximum of 1.0 mJ, and a frequency of 1.0 kHz is linearly polarized, The light was collected and irradiated perpendicularly to the surface of the amorphous carbon film of the sliding member in the atmosphere with a laser output of 150 mW to 410 mW. The spot area of the laser pulse was 2.497 μm 2 . To set the fluence of the laser pulse to 0.04J / cm 2 ~0.09J / cm 2 in the vicinity of the ablation threshold (specifically, in the order of Examples 1~4, 0.04J / cm 2, 0.06J / cm 2, 0.08J / cm 2, 0.09J / cm 2), the stage moving speed while irradiating the laser pulse was adjusted irradiating operation by adjusting the 8 mm / s at 1000 pulses per second. The shift amount in the sub-scanning direction was set to 60 μm. Each fluence of the laser pulse was adjusted by changing the laser output.

[比較例1〜4]
実施例1と同じようにして、摺動部材を作製した。実施例1と相違する点は、比較例1は、非晶質炭素被膜の表面にパルスレーザを照射していない摺動部材、比較例2〜4は、パルスレーザとしてフェムト秒レーザを用い、順に0.02J/cm、0.10J/cm、0.16J/cmのフルーエンスで照射した摺動部材を作製した点である。
[Comparative Examples 1-4]
A sliding member was produced in the same manner as in Example 1. The difference from Example 1 is that Comparative Example 1 is a sliding member in which the surface of the amorphous carbon film is not irradiated with a pulse laser, and Comparative Examples 2 to 4 use femtosecond lasers as pulse lasers in order. 0.02J / cm 2, 0.10J / cm 2, in that to produce a sliding member was irradiated with fluence 0.16J / cm 2.

<表面観察>
実施例2、3、比較例4に係る摺動部材の非晶質炭素被膜の表面を顕微鏡で観察した。図3(a)は、実施例2のフルーエンス0.06J/cmでパルスレーザを照射した摺動部材の表面を顕微鏡で観察したときの写真図、(b)は、実施例3のフルーエンス0.08J/cmでパルスレーザを照射した摺動部材の表面を顕微鏡で観察したときの写真図、(c)は、比較例4のフルーエンス0.16J/cmでパルスレーザを照射した摺動部材の表面を顕微鏡で観察したときの写真図である。
<Surface observation>
The surfaces of the amorphous carbon coatings of the sliding members according to Examples 2 and 3 and Comparative Example 4 were observed with a microscope. FIG. 3A is a photograph showing the surface of the sliding member irradiated with a pulsed laser at a fluence of 0.06 J / cm 2 in Example 2 under a microscope, and FIG. A photograph when the surface of a sliding member irradiated with a pulse laser at 0.08 J / cm 2 is observed with a microscope, (c) is a slide irradiated with a pulse laser at a fluence of 0.16 J / cm 2 in Comparative Example 4 It is a photograph figure when the surface of a member is observed with a microscope.

[結果1]
実施例2および3に係る摺動部材は、全て、非晶質炭素被膜の表面(摺動面)が周期性を有した表面とはなっていなかった。一方、パルスレーザとしてフェムト秒レーザを用い、フルーエンス0.16J/cmのもの(比較例4)は、非晶質炭素被膜の表面(摺動面)が周期構造となり、その周期構造は、偏光方向Eに対して直角方向に形成されていた。
[Result 1]
In all of the sliding members according to Examples 2 and 3, the surface (sliding surface) of the amorphous carbon coating was not a surface having periodicity. On the other hand, when a femtosecond laser is used as the pulse laser and the fluence is 0.16 J / cm 2 (Comparative Example 4), the surface (sliding surface) of the amorphous carbon film has a periodic structure, and the periodic structure is polarized light. It was formed in a direction perpendicular to the direction E.

<摩擦・摩耗試験>
リング・オン・プレート試験装置を用いて非晶質炭素被膜の摺動試験を行った。実施例1〜3および比較例1〜4に係る摺動部材(直径45mm)のプレート試験片として用いた。リング外径25.6mm、内径20mm、高さ18mmの材質FC230からなるリング試験片を製作した。プレート試験片の摺動面(非晶質炭素被膜が被覆された表面)と、リング試験片の端面とを接触させ、60℃±1に加温した、粘度14.8mm2/sのパラフィン系鉱油(添加剤なし)を潤滑油として供給しながら、周速度2m/秒、面圧を4.4MPa、滑り距離10.000mmの摩擦・摩耗試験を行い、摩擦係数を測定した。この結果を図4に示す。なお、図3にも、摩擦係数の結果を合わせて示した。
<Friction and wear test>
A sliding test of the amorphous carbon coating was performed using a ring-on-plate test apparatus. It used as a plate test piece of the sliding member (diameter 45mm) which concerns on Examples 1-3 and Comparative Examples 1-4. A ring test piece made of material FC230 having an outer diameter of 25.6 mm, an inner diameter of 20 mm, and a height of 18 mm was manufactured. A paraffinic system having a viscosity of 14.8 mm 2 / s, in which the sliding surface of the plate test piece (the surface coated with the amorphous carbon coating) and the end face of the ring test piece were brought into contact with each other and heated to 60 ° C. ± 1. While supplying mineral oil (without additives) as a lubricating oil, a friction / wear test was conducted at a peripheral speed of 2 m / sec, a surface pressure of 4.4 MPa, and a sliding distance of 10.000 mm, and a friction coefficient was measured. The result is shown in FIG. FIG. 3 also shows the result of the friction coefficient.

[結果2]
実施例1〜3に係る摺動部材の摩擦係数は、比較例1、2に係る摺動部材(フルーエンス0J/cm(レーザパルスを照射していない)、0.02J/cm)の摩擦係数よりも、低い結果となった。この結果から、フルーエンスが、0.04J/cm以下では、非晶質炭素被膜の表面の改質(グラファイト化)が十分でなかったと考えられる。さらに、比較例3に係る摺動部材(フルーエンス0.10J/cm)の摩擦係数は低かったが、摺動面を観察すると、実施例1に係る摺動部材に比べて摩耗量が大きかった。さらに、比較例4に係る摺動部材(フルーエンス0.16J/cm)の摺動面を観察すると、実施例1に係る摺動部材に比べて摩耗量が大きく、摩擦係数も大きくなった。このような結果、比較例3に係る摺動部材(フルーエンス0.09J/cmを越えたパルスレーザを照射した場合)の表面は、周期的な構造の摺動面となっているため、非晶質炭素被膜の摩耗が促進され易くなったと考えられる。
[Result 2]
The friction coefficient of the sliding member according to Examples 1 to 3 is the friction of the sliding member according to Comparative Examples 1 and 2 (fluency 0 J / cm 2 (not irradiated with laser pulse), 0.02 J / cm 2 ). The result was lower than the coefficient. From this result, it is considered that when the fluence was 0.04 J / cm 2 or less, the surface modification (graphitization) of the amorphous carbon coating was not sufficient. Further, although the friction coefficient of the sliding member according to Comparative Example 3 (Fluence 0.10 J / cm 2 ) was low, the amount of wear was larger than that of the sliding member according to Example 1 when the sliding surface was observed. . Further, when the sliding surface of the sliding member according to Comparative Example 4 (Fluence 0.16 J / cm 2 ) was observed, the amount of wear was larger than that of the sliding member according to Example 1, and the friction coefficient was also increased. As a result, since the surface of the sliding member according to Comparative Example 3 (when irradiated with a pulse laser exceeding fluence 0.09 J / cm 2 ) is a sliding surface having a periodic structure, It is considered that the wear of the crystalline carbon film is easily promoted.

このような結果、パルスレーザとしてフェムト秒レーザを用い、0.04J/cm〜0.09J/cmのフルーエンスで照射することにより、非晶質炭素被膜の表面が周期性を有した表面とならず、かつ、非晶質炭素被膜の内部から表面に進むにしたがって炭素密度が傾斜的に低くなり、耐摩耗性を高めつつ低摩擦化を図ることができる摺動部材を得ることができると考えられる。 As a result, by using a femtosecond laser as a pulse laser and irradiating with a fluence of 0.04 J / cm 2 to 0.09 J / cm 2 , the surface of the amorphous carbon film has a periodicity. In addition, the carbon density is gradually lowered as it advances from the inside of the amorphous carbon coating to the surface, and a sliding member that can achieve low friction while improving wear resistance can be obtained. Conceivable.

<密度測定試験>
実施例2に係る摺動部材(フルーエンス0.06J/cm)と、比較例1に係る摺動部材(レーザパルスを照射していない)ものに対して、中性子反射法により、炭素の原子数密度を測定した。具体的には、図5および表1に示す条件で、中性子ビーム源のビームを、離間して配置されたスリット1、2を介して摺動部材の摺動面(非晶質炭素被膜が形成された表面)に照射し、得られた散乱ベクトルから散乱長密度Nbを求めた。なお、散乱長密度Nbは、原子数密度N(個数/cm)に比例する値であり、Nと核散乱振幅b(cm)の積で与えられる。核散乱振幅bは、元素固有の値(既知)であるため、解析からNbが求まっている場合、原子数密度が算出できることになる。この結果を、表2に示す。
<Density measurement test>
For the sliding member according to Example 2 (Fluence 0.06 J / cm 2 ) and the sliding member according to Comparative Example 1 (without laser pulse irradiation), the number of carbon atoms was determined by neutron reflection method. Density was measured. Specifically, under the conditions shown in FIG. 5 and Table 1, the beam of the neutron beam source is made to slide on the sliding surface of the sliding member (the amorphous carbon film is formed through the slits 1 and 2 that are spaced apart. The scattering length density Nb was determined from the obtained scattering vector. The scattering length density Nb is a value proportional to the atomic number density N (number / cm 3 ), and is given by the product of N and the nuclear scattering amplitude b (cm). Since the nuclear scattering amplitude b is an element-specific value (known), the atomic number density can be calculated when Nb is obtained from the analysis. The results are shown in Table 2.

Figure 2014058720
Figure 2014058720

Figure 2014058720
Figure 2014058720

[結果3]
表2に示すように、実施例2の摺動部材の如くパルスレーザを照射した場合には、非晶質炭素被膜の内部から表面に進むにしたがって炭素密度が傾斜的に低くなっていることが確認できた。さらに、実施例2に係る非晶質炭素被膜は、パルスレーザを照射することにより、膜厚(体積)が増加していることがわかった。これらの結果から、摺動面に被覆された非晶質炭素被膜にパルスレーザを照射することにより、摺動面に近づくにしたがって非晶質炭素材料のグラファイト化が促進されたと考えられる。
[Result 3]
As shown in Table 2, when the pulse laser is irradiated as in the sliding member of Example 2, the carbon density is gradually lowered as it advances from the inside of the amorphous carbon coating to the surface. It could be confirmed. Furthermore, it was found that the film thickness (volume) of the amorphous carbon film according to Example 2 was increased by irradiating a pulse laser. From these results, it is considered that the amorphous carbon film coated on the sliding surface was irradiated with a pulsed laser, whereby the graphitization of the amorphous carbon material was promoted as the sliding surface was approached.

<ラマン測定試験>
実施例2に係る摺動部材(フルーエンス0.06J/cm)と、実施例3に係る摺動部材(フルーエンス0.08J/cm)と、比較例4に係る摺動部材(フルーエンス0.16J/cm)に対して、ラマン分光測定装置(日製エレクトロニクス株式会社製LABRAM、レーザースポット径2μm)を用いて、ラマン強度比を測定した。なお、これらの摺動部材に対しては、パルスレーザを照射前、上述した摩擦・摩耗試験(摺動試験)後においても、ラマン散乱ピーク強の強度比(ID/IG)(以下「ラマン強度比」という)を測定した。
<Raman measurement test>
The sliding member according to Example 2 (Fluence 0.06 J / cm 2 ), the sliding member according to Example 3 (Fluence 0.08 J / cm 2 ), and the sliding member according to Comparative Example 4 (Fluence 0. 16 J / cm 2 ), the Raman intensity ratio was measured using a Raman spectroscopic measurement device (manufactured by Nihon Electronics Co., Ltd., LABRAM, laser spot diameter 2 μm). For these sliding members, the intensity ratio (ID / IG) of Raman scattering peak intensity (hereinafter referred to as “Raman intensity”) is also applied before the pulse laser irradiation and after the above-described friction / wear test (sliding test). Ratio ").

[結果4]
表3に示すように、いずれの場合にも、パルスレーザを照射後には、ラマン強度比が増加しており、パルスレーザを照射することにより、非晶質炭素被膜の表層がグラファイト化していることがわかる。そして、ラマン分光測定において、sp結合に基づいて1355cm−1に現れるラマン散乱ピーク強度(ID)及びsp結合に基づいて1590cm−1に現れるラマン散乱ピーク強度(IG)の強度比(ID/IG)を、照射処理前後と、摺動試験後で比較した場合、実施例2、3は変化がない(摩耗無し)に対して、比較例4は、摺動後に構造が変化する(摩擦しやすい)ことがわかる。
[Result 4]
As shown in Table 3, in any case, the Raman intensity ratio increased after irradiation with the pulse laser, and the surface layer of the amorphous carbon film was graphitized by irradiation with the pulse laser. I understand. In the Raman spectroscopic measurement, the intensity ratio of the Raman scattering peak intensity (ID) appearing at 1355 cm −1 based on the sp 2 bond and the Raman scattering peak intensity (IG) appearing at 1590 cm −1 based on the sp 3 bond (ID / IG) before and after the irradiation treatment and after the sliding test, Examples 2 and 3 have no change (no wear), whereas Comparative Example 4 has a structure that changes after sliding (friction). It is easy to understand.

Figure 2014058720
Figure 2014058720

M 摺動部材
1 パルスレーザシステム
2 シャッタ
3 レーザ制御ユニット
4 反射ミラー
5 反射ミラー
6 凹面反射鏡
7 3軸ステージ
8 制御装置
M Sliding member 1 Pulse laser system 2 Shutter 3 Laser control unit 4 Reflecting mirror 5 Reflecting mirror 6 Concave reflecting mirror 7 Triaxial stage 8 Controller

Claims (2)

摺動面に被覆された非晶質炭素被膜にパルスレーザを照射して、前記非晶質炭素被膜を改質する摺動部材の製造方法であって、
前記非晶質炭素被膜の表面が周期性を有した表面とならず、かつ、前記非晶質炭素被膜の内部から表面に進むにしたがって炭素密度が傾斜的に低くなるような出力に調整したパルスレーザを、前記非晶質炭素被膜の表面に照射することを特徴とする摺動部材の製造方法。
A method for producing a sliding member for modifying an amorphous carbon coating by irradiating an amorphous carbon coating coated on a sliding surface with a pulse laser,
The pulse adjusted to an output in which the surface of the amorphous carbon coating does not become a periodic surface and the carbon density is gradually lowered as it advances from the inside of the amorphous carbon coating to the surface. A method for producing a sliding member, wherein the surface of the amorphous carbon coating is irradiated with a laser.
前記パルスレーザとしてフェムト秒レーザを用い、0.04J/cm〜0.09J/cmのフルーエンスで照射することを特徴とする請求項1に記載の摺動部材の製造方法。 The method for manufacturing a sliding member according to claim 1, wherein a femtosecond laser is used as the pulse laser, and irradiation is performed with a fluence of 0.04 J / cm 2 to 0.09 J / cm 2 .
JP2012204727A 2012-09-18 2012-09-18 Manufacturing method of sliding member Expired - Fee Related JP5950401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012204727A JP5950401B2 (en) 2012-09-18 2012-09-18 Manufacturing method of sliding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012204727A JP5950401B2 (en) 2012-09-18 2012-09-18 Manufacturing method of sliding member

Publications (2)

Publication Number Publication Date
JP2014058720A true JP2014058720A (en) 2014-04-03
JP5950401B2 JP5950401B2 (en) 2016-07-13

Family

ID=50615440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012204727A Expired - Fee Related JP5950401B2 (en) 2012-09-18 2012-09-18 Manufacturing method of sliding member

Country Status (1)

Country Link
JP (1) JP5950401B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019015309A (en) * 2017-07-04 2019-01-31 イーグル工業株式会社 mechanical seal
CN110709531A (en) * 2017-06-07 2020-01-17 舍弗勒技术股份两合公司 Method for producing a sliding surface
CN114351088A (en) * 2022-01-06 2022-04-15 中国矿业大学 Solid self-lubricating coating and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220176684A1 (en) 2019-03-08 2022-06-09 Teijin Limited Polymer member/inorganic base composite, production method therefor, and polymer member therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003268531A (en) * 2002-03-08 2003-09-25 Mitsubishi Heavy Ind Ltd Carbon film and manufacturing method therefor
JP2010215950A (en) * 2009-03-16 2010-09-30 Toyota Motor Corp Sliding member and method for manufacturing the same
JP2011168845A (en) * 2010-02-19 2011-09-01 Japan Science & Technology Agency Sliding material and surface machining method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003268531A (en) * 2002-03-08 2003-09-25 Mitsubishi Heavy Ind Ltd Carbon film and manufacturing method therefor
JP2010215950A (en) * 2009-03-16 2010-09-30 Toyota Motor Corp Sliding member and method for manufacturing the same
JP2011168845A (en) * 2010-02-19 2011-09-01 Japan Science & Technology Agency Sliding material and surface machining method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6016002392; Naoki Yasumaru et al.: 'Frictional properties of diamond-like carbon, glassy carbon and nitrides with femtosecond-laser-indu' Diamond & Related Materials 20 (2011), 542-545 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110709531A (en) * 2017-06-07 2020-01-17 舍弗勒技术股份两合公司 Method for producing a sliding surface
JP2020516774A (en) * 2017-06-07 2020-06-11 シェフラー テクノロジーズ アー・ゲー ウント コー. カー・ゲーSchaeffler Technologies AG & Co. KG Method for making a sliding surface
US11198932B2 (en) 2017-06-07 2021-12-14 Schaeffler Technologies AG & Co. KG Method for producing a sliding surface
JP2019015309A (en) * 2017-07-04 2019-01-31 イーグル工業株式会社 mechanical seal
CN114351088A (en) * 2022-01-06 2022-04-15 中国矿业大学 Solid self-lubricating coating and preparation method thereof
CN114351088B (en) * 2022-01-06 2022-12-27 中国矿业大学 Solid self-lubricating coating and preparation method thereof

Also Published As

Publication number Publication date
JP5950401B2 (en) 2016-07-13

Similar Documents

Publication Publication Date Title
Bonse et al. Laser-induced periodic surface structures—A scientific evergreen
Lei et al. Ultrafast laser applications in manufacturing processes: A state-of-the-art review
JP2007162045A (en) Sliding material and its production method
JP5950401B2 (en) Manufacturing method of sliding member
Takayama et al. Mechanisms of micro-groove formation on single-crystal diamond by a nanosecond pulsed laser
Xie et al. Femtosecond laser modification of silicon carbide substrates and its influence on CMP process
JP4263865B2 (en) Fine processing method using ultra-short pulse laser and processed product
JP2011168845A (en) Sliding material and surface machining method thereof
Pfeiffer et al. Ripple formation in various metals and super-hard tetrahedral amorphous carbon films in consequence of femtosecond laser irradiation
KR20030045082A (en) Deposition of thin films by laser ablation
WO2008069099A1 (en) Light condensing optical system, laser processing method and apparatus, and method of manufacturing fragile material
Windholz et al. Nanosecond pulsed excimer laser machining of chemical vapour deposited diamond and highly oriented pyrolytic graphite: Part I An experimental investigation
JP2006212646A (en) Method for preparing periodic structure
Wu et al. Laser machining micro-structures on diamond surface with a sub-nanosecond pulsed laser
Lasagni et al. Direct fabrication of periodic structures on surfaces: laser interference patterning as new scalable industrial tool
GB2550694A (en) Master disc for manufacturing microflow channel, transfer product, and method for producing master disc for manufacturing microflow channel
US20080124486A1 (en) Method For Enhancing Adhesion Of Thin Film
Häfner et al. Effect of picosecond laser based modifications of amorphous carbon coatings on lubricant-free tribological systems
Singh et al. Influence of laser surface texturing on the wettability and antibacterial properties of metallic, ceramic, and polymeric surfaces
Bharatish et al. Influence of femtosecond laser parameters and environment on surface texture characteristics of metals and non-metals–state of the art
Cunha et al. Ultrafast laser surface texturing of titanium alloys
Pan et al. High-efficiency machining of silicon carbide Fresnel micro-structure based on improved laser scanning contour ablation method with continuously variable feedrate
Wang et al. Microstructure and chemical bond evolution of diamond-like carbon films machined by femtosecond laser
Lisiecki Comparison of Titanium Metal Matrix Composite surface layers produced during laser gas nitriding of Ti6Al4V alloy by different types of lasers
JP2001235609A (en) Nonmetal particle precipitation glass and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160603

R151 Written notification of patent or utility model registration

Ref document number: 5950401

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees