JP2014058659A - Hose or storage container for high pressure gas - Google Patents

Hose or storage container for high pressure gas Download PDF

Info

Publication number
JP2014058659A
JP2014058659A JP2013162999A JP2013162999A JP2014058659A JP 2014058659 A JP2014058659 A JP 2014058659A JP 2013162999 A JP2013162999 A JP 2013162999A JP 2013162999 A JP2013162999 A JP 2013162999A JP 2014058659 A JP2014058659 A JP 2014058659A
Authority
JP
Japan
Prior art keywords
group
hose
storage container
resin
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013162999A
Other languages
Japanese (ja)
Other versions
JP6192418B2 (en
Inventor
Mitsuo Shibuya
光夫 渋谷
Taiji Kanda
泰治 神田
Yasuhiro Hirano
泰広 平野
Akiyoshi Inakuma
章誠 稲熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Synthetic Chemical Industry Co Ltd
Original Assignee
Nippon Synthetic Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Synthetic Chemical Industry Co Ltd filed Critical Nippon Synthetic Chemical Industry Co Ltd
Priority to JP2013162999A priority Critical patent/JP6192418B2/en
Publication of JP2014058659A publication Critical patent/JP2014058659A/en
Application granted granted Critical
Publication of JP6192418B2 publication Critical patent/JP6192418B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • Y02E60/321

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hose or a storage container for a high pressure gas, having high barrier property to a gas (especially a hydrogen gas), durability capable of maintaining excellent gas barrier property for a long time.SOLUTION: A hose or a storage container for a high pressure gas has at least one layer consisting of (A) a side-chain 1,2-diol-containing ethylene-vinyl ester-based copolymer saponified product and (B) a resin composition containing a fluorine resin having a polar functional group which reacts with a hydroxyl group or forms a hydrogen bond. A gas barrier layer containing the resin composition has high gas barrier property without causing a blister against a small molecule gas such as hydrogen under high pressure as wettability of an interface between the (A) component and the (B) component is good, and further is excellent in flexibility, and has excellent durability against changes accompanied with supply and stop of the high pressure gas.

Description

本発明は、高圧ガス移送用ホース又は高圧ガス用貯蔵容器に関し、特に自動車用の燃料電池等へ水素ガスを供給するホース又は高圧水素ガスの貯蔵容器として好適な高圧ガス用ホース又は貯蔵容器に関する。   The present invention relates to a high-pressure gas transfer hose or a high-pressure gas storage container, and more particularly to a high-pressure gas hose or a storage container suitable as a hose for supplying hydrogen gas to an automobile fuel cell or the like or a high-pressure hydrogen gas storage container.

水素ガスステーション等で燃料電池へ水素ガスを供給する水素ガス供給用ホースとしては、従来、SUS316L等の金属パイプが主に検討されていた。しかし、金属パイプは柔軟性がなく、取り扱い性が低いことや、SUS316Lが非常に高コストであること、また他の金属では水素脆化が発生する等の問題があるため、近年、ゴム製や樹脂製のホースの開発が進められている。ゴム製や樹脂製ホースを用いる場合、水素ガスが漏れ出ないように、且つ耐久性確保のために、一般に、ガスバリア層、補強層などを積層した多層構造のホースが用いられている。   Conventionally, metal pipes such as SUS316L have been mainly studied as a hydrogen gas supply hose for supplying hydrogen gas to a fuel cell at a hydrogen gas station or the like. However, metal pipes are not flexible and have low handling properties, SUS316L is very expensive, and other metals have problems such as hydrogen embrittlement. Development of resin hoses is underway. When a rubber or resin hose is used, a hose having a multilayer structure in which a gas barrier layer, a reinforcing layer, etc. are laminated is generally used so that hydrogen gas does not leak out and ensures durability.

ここで、ガスバリア層としては、例えば、特開2007−15279号公報(特許文献1)、特開2009−19717号公報(特許文献2)では、エチレン−ビニルアルコール共重合体(以下、「EVOH樹脂」と称することがある)層が用いられている。尚、ホースとしては、内面層に、耐水性を有するオレフィン系樹脂、ポリエチレンテレフタレート系樹脂を使用し、外面層には、水分透過によるEVOH樹脂のバリア性能への影響を防止するために、ナイロン系樹脂(特許文献1)又は絶縁性を有するゴム(特許文献2)を用いることが提案されている。さらに、有機繊維又は金属線の編組み又はスパイラル層からなる補強層を有することも提案されている。   Here, as the gas barrier layer, for example, in Japanese Unexamined Patent Application Publication No. 2007-15279 (Patent Document 1) and Japanese Unexamined Patent Application Publication No. 2009-19717 (Patent Document 2), an ethylene-vinyl alcohol copolymer (hereinafter referred to as “EVOH resin”) is used. Layer) may be used. For the hose, water-resistant olefin resin or polyethylene terephthalate resin is used for the inner surface layer, and the outer surface layer is made of nylon to prevent the influence of moisture permeation on the barrier performance of the EVOH resin. It has been proposed to use a resin (Patent Document 1) or an insulating rubber (Patent Document 2). Furthermore, it has also been proposed to have a reinforcing layer consisting of a braid or spiral layer of organic fibers or metal wires.

また、特開2006−168358号公報(特許文献3)では、水素ガスの他、酸素、二酸化炭素等のガス移送用チューブとして、エチレン−テトラフルオロエチレン、ポリ塩化ビニリデン等のフッ素系ポリマーからなる内層、EVOH樹脂からなる中間層、ポリアミドからなる外層を含む多層チューブが開示されている。特許文献3には、中間層と内層、中間層と外層の接着のために、接着層を含むことが好ましく、接着層には変性ポリアミドを用いることが開示されている。   Japanese Patent Laid-Open No. 2006-168358 (Patent Document 3) discloses an inner layer made of a fluorine-based polymer such as ethylene-tetrafluoroethylene and polyvinylidene chloride as a tube for transferring gas such as oxygen and carbon dioxide in addition to hydrogen gas. A multilayer tube including an intermediate layer made of EVOH resin and an outer layer made of polyamide is disclosed. Patent Document 3 discloses that an adhesive layer is preferably included for adhesion between the intermediate layer and the inner layer, and the intermediate layer and the outer layer, and that modified polyamide is used for the adhesive layer.

また、液化プロパンガスの供給設備用の高圧ホースについては、特開2007−218338号公報(特許文献4)に、ポリアミド樹脂からなるガスバリア層を使用し、補強層として、有機繊維又は金属ワイヤのスパイラル層を使用し、ホース自体に柔軟性を与えるために、内面に加硫ゴム層を用いた高圧ホースが開示されている。   As for a high-pressure hose for a liquefied propane gas supply facility, a gas barrier layer made of polyamide resin is used in Japanese Patent Application Laid-Open No. 2007-218338 (Patent Document 4), and a spiral of organic fiber or metal wire is used as a reinforcing layer. A high-pressure hose using a vulcanized rubber layer on the inner surface is disclosed in order to use the layer and give the hose itself flexibility.

さらに、特開2010−31993号公報(特許文献5)には、内面層に90℃における乾燥水素ガスのガス透過係数が1×10-8cc・cm/cm2・sec・cmHg以下である熱可塑性樹脂を使用し、補強層としてポリパラフェニレンベンズビスオキサゾール(PBO)繊維を編み組させたブレード構造を用いたものが提案されている。ここで、ガスバリア層として用いられる上記熱可塑性樹脂の具体例としては、ナイロン、ポリアセタール、EVOH樹脂が挙げられ(段落番号0011)、実施例ではナイロンが用いられている。補強層を、PBO繊維で形成することにより、水素脆化を回避するとともに、70〜80MPa程度の使用内圧に耐えることができると説明されている(段落番号0021)。 Furthermore, JP 2010-31993 (Patent Document 5) discloses that the inner layer has a gas permeability coefficient of dry hydrogen gas at 90 ° C. of 1 × 10 −8 cc · cm / cm 2 · sec · cmHg or less. A material using a blade structure in which a plastic resin is used and a polyparaphenylene benzbisoxazole (PBO) fiber is braided as a reinforcing layer has been proposed. Here, specific examples of the thermoplastic resin used as the gas barrier layer include nylon, polyacetal, and EVOH resin (paragraph number 0011). In the examples, nylon is used. It is described that by forming the reinforcing layer with PBO fibers, hydrogen embrittlement can be avoided and an internal pressure of about 70 to 80 MPa can be withstood (paragraph number 0021).

また、水素ガス燃料の貯蔵容器についても、従来、金属材料が使用されていたが、近年、軽量化のために樹脂ライナーが使用されるようになってきている。例えば、特開2005−68300号公報(特許文献6)には、水素ガスバリア性と低温での耐衝撃性を両立させることができ、単層構造の成形を可能にできる水素ガス貯蔵容器のライナーとして、エチレン−酢酸ビニル共重合体ケン化物80〜40重量%と、酸変性エチレン−α−オレフィン共重合体ゴム及び/又は酸変性熱可塑性エラストマー20〜60重量%とを含む樹脂組成物を用いることが提案されている。   Also, metal materials have been conventionally used for hydrogen gas fuel storage containers, but in recent years, resin liners have been used for weight reduction. For example, Japanese Patent Application Laid-Open No. 2005-68300 (Patent Document 6) discloses a hydrogen gas storage container liner that can achieve both hydrogen gas barrier properties and impact resistance at low temperatures and can be molded into a single layer structure. And a resin composition containing 80 to 40% by weight of a saponified ethylene-vinyl acetate copolymer and 20 to 60% by weight of an acid-modified ethylene-α-olefin copolymer rubber and / or an acid-modified thermoplastic elastomer. Has been proposed.

特開2007−15279号公報JP 2007-15279 A 特開2009−19717号公報JP 2009-19717 A 特開2006−168358号公報JP 2006-168358 A 特開2007−218338号公報JP 2007-218338 A 特開2010−31993号公報JP 2010-31993 A 特開2005−68300号公報JP 2005-68300 A

以上のように、ガスバリア層を中間層とし、内層、外層、補強層などを工夫した多層構造にすることで、柔軟性を付与するとともに、ガスバリア層を保護している。しかしながら、水素は酸素、二酸化炭素等の他のガスよりも分子サイズが小さいために、樹脂層に溶解・浸透し易い。   As described above, the gas barrier layer is used as an intermediate layer, and a multilayer structure in which the inner layer, the outer layer, the reinforcing layer, etc. are devised, provides flexibility and protects the gas barrier layer. However, since hydrogen has a smaller molecular size than other gases such as oxygen and carbon dioxide, it easily dissolves and penetrates into the resin layer.

また、近年、車載用燃料電池への水素ガス供給に用いられる水素ガス貯蔵容器のコンパクト化が進められており、ホースについては、現在のガソリン車並みの走行距離が可能な水素ガス量を、前記のようなコンパクト化した水素ガス貯蔵容器へ一回で速やかに充填することが求められる。そこで、高圧(35〜90MPa)の水素ガスを移送するホース、高圧水素ガスを貯蔵する貯蔵容器の実用化にあたっては、水素ガスバリア性、低水素溶解性、水素脆性に対する耐久性の更なる向上が求められている。   In recent years, hydrogen gas storage containers used for supplying hydrogen gas to vehicle-mounted fuel cells have been made more compact, and for the hose, the amount of hydrogen gas that can travel the same distance as a current gasoline vehicle is It is required to quickly fill the compacted hydrogen gas storage container as described above once. Therefore, in practical use of a hose for transferring high-pressure (35 to 90 MPa) hydrogen gas and a storage container for storing high-pressure hydrogen gas, further improvement in durability against hydrogen gas barrier properties, low hydrogen solubility, and hydrogen embrittlement is required. It has been.

しかしながら、上記特許文献のいずれも高圧水素ガスに対する透過性、耐久性に対する評価はされておらず、上記実用化のための要求を満足するものではない。   However, none of the above patent documents has been evaluated for permeability to high-pressure hydrogen gas and durability, and does not satisfy the above-mentioned requirements for practical use.

本発明は、このような事情に鑑みてなされたものであり、その目的とするところは、高度なガスバリア性、特に水素についても高度なバリア性を有し、長期間にわたって優れたガスバリア性を保持できる耐久性を有する高圧ガス用ホース又は貯蔵容器を提供することにある。   The present invention has been made in view of such circumstances, and the object of the present invention is to have a high gas barrier property, particularly a high barrier property for hydrogen, and to maintain an excellent gas barrier property over a long period of time. An object of the present invention is to provide a high-pressure gas hose or storage container having durability that can be achieved.

本発明者らは、先行技術で提案されているように、ポリアミド樹脂、EVOH樹脂をガスバリア層として用いた多層構造体について、高圧水素ガスに対するガスバリア性、耐久性について検討したところ、内部のガス圧の変化が多層構造のホース又は貯蔵容器の水素ガスバリア性に大きく影響を及ぼしていることを見出した。特に、高圧水素ガス供給用ホースでは、ホース内で高圧から常圧に戻される際(脱圧時)に、樹脂層中に溶解した水素ガスが膨張して、内部破壊に伴う膨れ(ブリスタ)や亀裂が発生する場合もあることがわかり、高圧水素ガスの供給、脱圧の繰り返しに対する耐久性は、初期の水素ガスバリア性が優れているだけでは、不十分であることが判明した。また、水素ガスは、酸素ガスや二酸化炭素よりも分子サイズが小さいことから、水素ガスバリア性については、酸素ガス等の他のガスバリア性、耐久性と同じ挙動を示さない場合もあることが判明した。   As proposed in the prior art, the present inventors have examined the gas barrier property against high-pressure hydrogen gas and the durability of a multilayer structure using a polyamide resin and EVOH resin as a gas barrier layer. It has been found that this change greatly affects the hydrogen gas barrier properties of the multi-layered hose or storage container. In particular, in a high-pressure hydrogen gas supply hose, when the pressure is returned from high pressure to normal pressure in the hose (at the time of depressurization), the hydrogen gas dissolved in the resin layer expands, causing blistering or blistering due to internal destruction. It has been found that cracks may occur, and it has been found that the durability against repeated supply and depressurization of high-pressure hydrogen gas is insufficient if only the initial hydrogen gas barrier property is excellent. In addition, since hydrogen gas has a smaller molecular size than oxygen gas or carbon dioxide, it has been found that hydrogen gas barrier properties may not show the same behavior as other gas barrier properties such as oxygen gas and durability. .

そこで、本発明者らは、EVOH樹脂のガスバリア性、特に水素ガスに対するバリア性の耐久性の向上、水素溶解性低減、柔軟性付与を目的として、他の樹脂とアロイ化について種々検討を重ね、本発明に到達した。   Therefore, the inventors repeated various studies on alloying with other resins for the purpose of improving the durability of the gas barrier property of EVOH resin, in particular, the barrier property against hydrogen gas, reducing hydrogen solubility, and imparting flexibility. The present invention has been reached.

すなわち、本発明の高圧ガス用ホース又は貯蔵容器は、(A)下記一般式(1)で表わされる1,2−ジオール構造単位を含有するエチレン−ビニルエステル系共重合体ケン化物、及び(B)水酸基と反応又は水素結合を形成する極性官能基を有するフッ素樹脂を含有する樹脂組成物からなる層を少なくとも1層有する高圧ガス用ホース又は貯蔵容器である。   That is, the high-pressure gas hose or storage container of the present invention comprises (A) a saponified ethylene-vinyl ester copolymer containing a 1,2-diol structural unit represented by the following general formula (1), and (B ) A hose or storage container for high pressure gas having at least one layer made of a resin composition containing a fluororesin having a polar functional group that reacts with a hydroxyl group or forms a hydrogen bond.

式中、R〜R3はそれぞれ独立して水素原子又は有機基を表し、Xは単結合又は結合鎖を示し、R4〜Rはそれぞれ独立して水素原子又は有機基を示す。 In the formula, R 1 to R 3 each independently represents a hydrogen atom or an organic group, X represents a single bond or a bond chain, and R 4 to R 6 each independently represents a hydrogen atom or an organic group.

上記本発明の高圧ガス用ホース又は貯蔵容器は、分子量10未満の高圧ガス用ホース又は貯蔵容器として、特に好適である。   The high-pressure gas hose or storage container of the present invention is particularly suitable as a high-pressure gas hose or storage container having a molecular weight of less than 10.

本発明の高圧ガス用ホース又は貯蔵容器は、ガスバリア性及び柔軟性に優れたガスバリア層を有しているので、高圧ガス、特に水素ガスのような小分子のガスであっても、供給、脱圧の繰り返し使用に対する耐久性を有する。   The hose or storage container for high-pressure gas of the present invention has a gas barrier layer with excellent gas barrier properties and flexibility, so that even a high-pressure gas, particularly a small molecule gas such as hydrogen gas, can be supplied and removed. Durable against repeated use of pressure.

実施例で使用した水素透過度測定装置の構成を説明するための模式図である。It is a schematic diagram for demonstrating the structure of the hydrogen permeability measuring apparatus used in the Example. 実施例で使用した試験片の構成を示す図である。It is a figure which shows the structure of the test piece used in the Example. 実施例で、高圧水素曝露試験に用いた装置の構成を示す模式図である。In an Example, it is a schematic diagram which shows the structure of the apparatus used for the high pressure hydrogen exposure test. 高圧水素ガス曝露−脱圧サイクル試験の圧力パターンを示す図である。It is a figure which shows the pressure pattern of a high pressure hydrogen gas exposure-depressurization cycle test. 多層ホースの高圧水素暴露−脱圧サイクル試験を説明するための図である。It is a figure for demonstrating the high pressure hydrogen exposure-decompression cycle test of a multilayer hose. 樹脂組成物No.3のフィルムの走査電子顕微鏡写真(10000倍)である。Resin composition No. 3 is a scanning electron micrograph (10000 times) of film No. 3.

以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、これらの内容に特定されるものではない。
はじめに本発明の高圧ガス用ホース又は貯蔵容器のガスバリア層の原料となる樹脂組成物について説明する。
The description of the constituent requirements described below is an example (representative example) of an embodiment of the present invention, and is not limited to these contents.
First, the resin composition as a raw material for the gas barrier layer of the high-pressure gas hose or storage container of the present invention will be described.

<ガスバリア層用樹脂組成物>
本発明のホース又は貯蔵容器のガスバリア層は、(A)特定構造を有するエチレン−ビニルエステル系共重合体ケン化物(以下、「側鎖1,2−ジオール含有EVOH系樹脂」という)、及び(B)水酸基と反応又は水素結合を形成可能な極性官能基を有するフッ素樹脂(以下、「極性官能基含有フッ素樹脂(B)」と称する)を含有する樹脂組成物により構成される。以下、各成分について説明する。
<Resin composition for gas barrier layer>
The gas barrier layer of the hose or storage container of the present invention comprises (A) an ethylene-vinyl ester copolymer saponified product having a specific structure (hereinafter referred to as “side chain 1,2-diol-containing EVOH resin”), and ( B) It is comprised by the resin composition containing the fluororesin which has a polar functional group which can form a reaction or a hydrogen bond with a hydroxyl group (henceforth "polar functional group containing fluororesin (B)"). Hereinafter, each component will be described.

〔(A)側鎖1,2−ジオール含有EVOH系樹脂〕
上記(A)特定構造を有するエチレン−ビニルエステル系共重合体ケン化物とは、下記(1)式で示される側鎖1,2−ジオール構造単位を有するエチレン−ビニルエステル系共重合体ケン化物(以下、「側鎖1,2−ジオール含有EVOH系樹脂」という)である。かかる樹脂は、必要に応じてその他の共重合モノマーに由来する構造単位を含有してもよい。
[(A) Side-chain 1,2-diol-containing EVOH resin]
The saponified ethylene-vinyl ester copolymer having the specific structure (A) is a saponified ethylene-vinyl ester copolymer having a side chain 1,2-diol structural unit represented by the following formula (1): (Hereinafter referred to as “side chain 1,2-diol-containing EVOH resin”). Such a resin may contain a structural unit derived from another copolymerization monomer as required.

側鎖1,2−ジオール含有EVOH系樹脂は、側鎖1,2−ジオール構造単位を有しない通常のEVOH系樹脂(以下、側鎖1,2−ジオール含有EVOH系樹脂と区別する場合には、「未変性EVOH系樹脂」と称することがある)と比べて、外部環境の変化に伴う結晶化度の変化もなく、ガスバリア性に優れている。側鎖1,2−ジオール部分は、ポリマー主鎖で構成されるラメラ結晶に組み込まれず、非晶部分となっているために結晶性が低下することで、ガスバリア性は、対応する未変性EVOH系樹脂よりも低下すると予想されるが、本発明者らの研究により、水素のような小さい分子のガスバリア性については、側鎖1,2−ジオール含有EVOH系樹脂の方が未変性EVOH系樹脂よりも優れる傾向にあるという、予想外の結果が見出された。このような予想に反する結果は、非晶部分において、側鎖1,2−ジオール同士が水素結合により緻密なネットワークを形成し、フリーボリューム(自由体積空孔サイズ)を小さくすることができるため、水素ガスのようにサイズが小さいガス分子の透過性、侵入を防止できるためではないかと考えられる。さらに、後述するように、側鎖1,2−ジオール含有EVOH系樹脂は、1級水酸基を有していることから、B成分の極性官能基と反応又は水素結合を形成することが可能であり、反応型相溶化を経由して、A成分とB成分の界面の濡れ性を強固にして、かかる点からも耐高圧水素性(ブリスタ発生の抑制)と柔軟性を両立できると考えられる。   The side chain 1,2-diol-containing EVOH resin is different from a normal EVOH resin having no side chain 1,2-diol structural unit (hereinafter referred to as a side chain 1,2-diol-containing EVOH resin). , Which is sometimes referred to as “unmodified EVOH-based resin”), and there is no change in crystallinity accompanying a change in the external environment, and the gas barrier property is excellent. The side-chain 1,2-diol portion is not incorporated into the lamellar crystal composed of the polymer main chain, and is a non-crystalline portion, so that the crystallinity is lowered, and the gas barrier property is the corresponding unmodified EVOH system. Although it is expected to be lower than that of the resin, according to the study by the present inventors, the side-chain 1,2-diol-containing EVOH-based resin is better than the unmodified EVOH-based resin for the gas barrier properties of small molecules such as hydrogen. Unexpected results have been found that tend to be better. The result contrary to such an expectation is that, in the amorphous part, the side chains 1,2-diol can form a dense network by hydrogen bonding, and the free volume (free volume pore size) can be reduced. This may be because the permeability and penetration of gas molecules as small as hydrogen gas can be prevented. Furthermore, as will be described later, the side chain 1,2-diol-containing EVOH-based resin has a primary hydroxyl group, and therefore can react with the polar functional group of the B component or form a hydrogen bond. It is considered that the wettability of the interface between the A component and the B component is strengthened through reactive compatibilization, and from this point, it is possible to achieve both high-pressure hydrogen resistance (suppression of blister generation) and flexibility.

はじめに、(A)側鎖1,2−ジオール含有EVOH系樹脂を構成する構造単位について説明する。
(A)側鎖1,2−ジオール含有EVOH系樹脂は、a)側鎖1,2−ジオール構造単位と称する、下記式(1)で表される単位;b)ビニルエステル系モノマーに由来するビニルアルコール構造単位;c)エチレン構造単位;d)必要に応じて共重合される共重合モノマー単位(必須共重合モノマーとしてのエチレンと区別して、エチレン構造単位以外の共重合モノマーに由来する構造単位を「他の共重合モノマー単位」と称する)を含有する。以下、これらの構造単位について、順に説明する。
First, (A) the structural unit constituting the side chain 1,2-diol-containing EVOH resin will be described.
The (A) side chain 1,2-diol-containing EVOH resin is derived from a) a unit represented by the following formula (1) called a side chain 1,2-diol structural unit; b) a vinyl ester monomer. Vinyl alcohol structural unit; c) ethylene structural unit; d) copolymerized monomer unit copolymerized as necessary (differentiated from ethylene as an essential copolymerizable monomer, a structural unit derived from a copolymerized monomer other than an ethylene structural unit) Are referred to as "other copolymerizable monomer units"). Hereinafter, these structural units will be described in order.

a)側鎖1,2−ジオール構造単位
a) Side chain 1,2-diol structural unit

上記一般式(1)において、R1〜R3はそれぞれ独立して水素原子又は有機基を示し、Xは単結合又は結合鎖を示し、R4〜R6はそれぞれ独立して水素原子又は有機基を示す。 In the general formula (1), R 1 to R 3 each independently represent a hydrogen atom or an organic group, X represents a single bond or a bond chain, and R 4 to R 6 each independently represent a hydrogen atom or an organic group. Indicates a group.

〜Rは、すべて水素原子であることが望ましいが、樹脂特性を大幅に損なわない程度の量であれば有機基であってもよい。該有機基としては特に限定しないが、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基等の炭素数1〜4のアルキル基が好ましく、必要に応じてハロゲン基、水酸基、エステル基、カルボン酸基、スルホン酸基等の置換基を有していてもよい。R1〜R3としては好ましくは炭素数1〜4のアルキル基、特に好ましくは水素原子である。R4〜R6としては、好ましくは炭素数1〜4のアルキル基、特に好ましくは水素原子である。 R 1 to R 6 are preferably all hydrogen atoms, but may be organic groups as long as the resin properties are not significantly impaired. Although it does not specifically limit as this organic group, For example, C1-C4 alkyl groups, such as a methyl group, an ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, are preferable, You may have substituents, such as a halogen group, a hydroxyl group, an ester group, a carboxylic acid group, and a sulfonic acid group, as needed. R 1 to R 3 are preferably an alkyl group having 1 to 4 carbon atoms, particularly preferably a hydrogen atom. R 4 to R 6 are preferably an alkyl group having 1 to 4 carbon atoms, particularly preferably a hydrogen atom.

上記一般式(1)中、Xは単結合又は結合鎖であり、結晶性の向上や非晶部におけるフリーボリューム(自由体積空孔サイズ)低減の点から単結合であることが好ましい。上記結合鎖としては、特に限定しないが、アルキレン、アルケニレン、アルキニレン、フェニレン、ナフチレン等の炭化水素(これらの炭化水素は、フッ素、塩素、臭素等のハロゲン等で置換されていてもよい)の他、−O−、−(CHO)m−、−(OCH)m−、−(CHO)nCH−等のエーテル結合部位を含む構造単位;−CO−、−COCO−、−CO(CH)mCO−、−CO(C)CO−等のカルボニル基を含む構造単位;−S−、−CS−、−SO−、−SO−等の硫黄原子を含む構造単位;−NR−、−CONR−、−NRCO−、−CSNR−、−NRCS−、−NRNR−等の窒素原子を含む構造単位;−HPO−等のリン原子を含む構造などのヘテロ原子を含む構造単位;−Si(OR)−、−OSi(OR)−、−OSi(OR)O−等の珪素原子を含む構造単位;−Ti(OR)−、−OTi(OR)−、−OTi(OR)O−等のチタン原子を含む構造単位;−Al(OR)−、−OAl(OR)−、−OAl(OR)O−等のアルミニウム原子等の金属原子を含む構造単位などが挙げられる。これらの構造単位中、Rは各々独立して任意の置換基であり、水素原子、アルキル基であることが好ましい。またmは自然数であり、通常1〜30、好ましくは1〜15、特に好ましくは1〜10である。これらのうち、製造時あるいは使用時の安定性の点から、炭素数1〜10の炭化水素鎖が好ましく、さらには炭素数1〜6の炭化水素鎖、特に炭素数1の炭化水素鎖が好ましい。 In the general formula (1), X is a single bond or a bond chain, and is preferably a single bond from the viewpoint of improving the crystallinity and reducing the free volume (free volume pore size) in the amorphous part. The bonding chain is not particularly limited, but other hydrocarbons such as alkylene, alkenylene, alkynylene, phenylene, naphthylene (these hydrocarbons may be substituted with halogen such as fluorine, chlorine, bromine, etc.) , —O—, — (CH 2 O) m—, — (OCH 2 ) m—, — (CH 2 O) nCH 2 — and other structural units containing an ether bond site; —CO—, —COCO—, — A structural unit containing a carbonyl group such as CO (CH 2 ) m CO—, —CO (C 6 H 4 ) CO—; a structure containing a sulfur atom such as —S—, —CS—, —SO—, —SO 2 —, etc. A unit; a structural unit containing a nitrogen atom such as —NR—, —CONR—, —NRCO—, —CSNR—, —NRCS—, —NRNR— or the like; a heteroatom such as a structure containing a phosphorus atom such as —HPO 4 —; Containing structural unit; -Si ( OR) 2 -, - OSi ( OR) 2 -, - OSi ( structural unit containing a silicon atom of the OR) 2 O-like; -Ti (OR) 2 -, - OTi (OR) 2 -, - OTi (OR ) Structural units containing titanium atoms such as 2 O—; structural units containing metal atoms such as aluminum atoms such as —Al (OR) —, —OAl (OR) —, —OAl (OR) O— and the like. . In these structural units, each R is independently an arbitrary substituent, and is preferably a hydrogen atom or an alkyl group. M is a natural number, and is usually 1-30, preferably 1-15, particularly preferably 1-10. Among these, from the viewpoint of stability during production or use, a hydrocarbon chain having 1 to 10 carbon atoms is preferable, and a hydrocarbon chain having 1 to 6 carbon atoms, particularly a hydrocarbon chain having 1 carbon atom is preferable. .

上記一般式(1)で表される1,2−ジオール構造単位における最も好ましい構造は、R1〜R3及びR4〜R6がすべて水素原子であり、Xが単結合である、下記構造式(1a)で示される構造単位である。 The most preferable structure in the 1,2-diol structural unit represented by the above general formula (1) is the following structure in which R 1 to R 3 and R 4 to R 6 are all hydrogen atoms and X is a single bond. This is a structural unit represented by the formula (1a).

このような側鎖1,2−ジオール構造単位は、特に限定しないが、(i)ビニルエステル系モノマーと下記一般式(2)で示される化合物との共重合体をケン化する方法、(ii)ビニルエステル系モノマーと下記一般式(3)で示されるビニルエチレンカーボネートとの共重合体をケン化及び脱炭酸する方法、(iii)ビニルエステル系モノマーと下記一般式(4)で示される2,2−ジアルキル−4−ビニル−1,3−ジオキソランとの共重合体をケン化及び脱ケタール化する方法などにより生成される。
かかる共重合の際に、必要に応じて、共重合モノマーを系内に共存させることにより、共重合モノマーを共重合させることが可能である。
Such a side chain 1,2-diol structural unit is not particularly limited, but (i) a method of saponifying a copolymer of a vinyl ester monomer and a compound represented by the following general formula (2), (ii) ) A method of saponifying and decarboxylating a copolymer of a vinyl ester monomer and a vinyl ethylene carbonate represented by the following general formula (3), (iii) a vinyl ester monomer and 2 represented by the following general formula (4) , 2-dialkyl-4-vinyl-1,3-dioxolane is produced by a method of saponification and deketalization.
In the case of such copolymerization, the copolymerization monomer can be copolymerized by allowing the copolymerization monomer to coexist in the system as necessary.

(2)(3)(4)式中、R〜Rは、いずれも(1)式の場合と同様である。R及びRは、それぞれ独立して水素またはR−CO−(式中、Rは、炭素数1〜4のアルキル基である)。R10及びR11は、それぞれ独立して水素原子又は有機基である。
(i)、(ii)、及び(iii)の方法については、例えば、特開2004−359965、特開2006−096815等に記載の公知の方法を採用できる。
(2) In the formulas (3) and (4), R 1 to R 6 are the same as those in the formula (1). R 7 and R 8 are each independently hydrogen or R 9 —CO— (wherein R 9 is an alkyl group having 1 to 4 carbon atoms). R 10 and R 11 are each independently a hydrogen atom or an organic group.
For the methods (i), (ii), and (iii), for example, known methods described in JP-A-2004-359965, JP-A-2006-096815, and the like can be employed.

なかでも、共重合反応性及び工業的な取扱いにおいて優れるという点で(i)の方法が好ましく、特にR〜Rが水素、Xが単結合、R、RがR−CO−であり、Rがアルキル基である3,4−ジアシロキシ−1−ブテンが好ましく、その中でも特にRがメチル基である3,4−ジアセトキシ−1−ブテンが好ましく用いられる。 Among them, the method in terms of excellent in copolymerization reactivity and industrial handling (i) are preferred, R 1 to R 6 are hydrogens, X a single bond, R 7, R 8 is R 9 -CO- 3,4-diasiloxy-1-butene in which R 9 is an alkyl group is preferred, and among these, 3,4-diacetoxy-1-butene in which R 9 is a methyl group is particularly preferred.

エチレンの共重合は、エチレンガス加圧下においてビニルエステル系モノマーと重合することにより行われる。重合は、公知の任意の重合法、例えば、溶液重合、懸濁重合、エマルジョン重合などにより行うことができる。   The copolymerization of ethylene is performed by polymerizing with a vinyl ester monomer under pressure of ethylene gas. The polymerization can be carried out by any known polymerization method such as solution polymerization, suspension polymerization, emulsion polymerization and the like.

得られた共重合体のケン化についても、従来より公知のケン化方法を採用することができる。すなわち共重合体をアルコール又は水/アルコール溶媒に溶解させた状態で、アルカリ触媒又は酸触媒を用いて行うことができる。前記アルカリ触媒としては、水酸化カリウム、水酸化ナトリウム、ナトリウムメチラート、ナトリウムエチラート、カリウムメチラート、リチウムメチラート等のアルカリ金属の水酸化物やアルコラートを用いることができる。   For saponification of the obtained copolymer, conventionally known saponification methods can be employed. That is, it can be carried out using an alkali catalyst or an acid catalyst in a state where the copolymer is dissolved in alcohol or water / alcohol solvent. Examples of the alkali catalyst include alkali metal hydroxides and alcoholates such as potassium hydroxide, sodium hydroxide, sodium methylate, sodium ethylate, potassium methylate, and lithium methylate.

(A)側鎖1,2−ジオール含有EVOH系樹脂中の側鎖1,2−ジオール構造単位の含有量は、通常0.1〜30モル%、好ましくは0.5〜10モル%、より好ましくは1〜5モル%、殊に好ましくは2〜5モル%である。側鎖1,2−ジオール構造単位の含有率が高くなりすぎると、非晶部分のフリーボリュームが小さくなり、水素溶解性を低減させるという点では好ましいが、側鎖1,2−ジオール含有EVOH系樹脂の生産性が低下したり、重合度アップが困難な傾向がある。一方、側鎖1,2−ジオール含有率が低すぎると、水素透過係数が増大する傾向にあり、ひいては水素ガスバリア性が低下し、該樹脂に対する水素溶解量が増大する。
なお、側鎖1、2−ジオール構造単位の含有量は、H−NMRの測定結果より算出することができる。
(A) The content of the side chain 1,2-diol structural unit in the side chain 1,2-diol-containing EVOH resin is usually 0.1 to 30 mol%, preferably 0.5 to 10 mol%, Preferably it is 1-5 mol%, Most preferably, it is 2-5 mol%. When the content of the side chain 1,2-diol structural unit becomes too high, the free volume of the amorphous portion is reduced, which is preferable in terms of reducing hydrogen solubility, but the side chain 1,2-diol-containing EVOH system is preferred. There is a tendency that the productivity of the resin is lowered and the degree of polymerization is difficult to increase. On the other hand, if the content of the side chain 1,2-diol is too low, the hydrogen permeation coefficient tends to increase, and consequently the hydrogen gas barrier property decreases, and the amount of hydrogen dissolved in the resin increases.
The content of the side chain 1,2-diol structural unit can be calculated from the measurement result of 1 H-NMR.

b)ビニルアルコール構造単位
ビニルアルコール構造単位は、通常、ビニルエステル系重合体又は共重合体を構成するビニルビニルエステル系モノマーに由来する構造単位がケン化されることにより生成される。したがって、ケン化度が100モル%未満の場合には、(A)側鎖1,2−ジオール含有EVOH系樹脂は、ビニルエステル構造単位も含有する。
b) Vinyl alcohol structural unit A vinyl alcohol structural unit is normally produced | generated by saponifying the structural unit derived from the vinyl vinyl ester monomer which comprises a vinyl ester polymer or a copolymer. Therefore, when the degree of saponification is less than 100 mol%, (A) the side chain 1,2-diol-containing EVOH-based resin also contains a vinyl ester structural unit.

上記ビニルエステル系モノマーとしては、市場入手性や製造時の不純物処理効率がよい点から、代表的には酢酸ビニルが用いられる。このほか、例えば具体的には、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、酪酸ビニル、イソ酪酸ビニル、ピバリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、バーサチック酸ビニル等の脂肪族ビニルエステル、安息香酸ビニル等の芳香族ビニルエステル等を用いることができ、通常、炭素数3〜20、好ましくは炭素数4〜10、特に好ましくは炭素数4〜7の脂肪族ビニルエステルが挙げられる。これらは通常単独で用いるが、必要に応じて複数種を同時に用いてもよい。   As the vinyl ester monomer, vinyl acetate is typically used from the viewpoint of market availability and good impurity treatment efficiency during production. In addition, for example, vinyl formate, vinyl acetate, vinyl propionate, vinyl valelate, vinyl butyrate, vinyl isobutyrate, vinyl pivalate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl versatate, etc. Aliphatic vinyl esters, aromatic vinyl esters such as vinyl benzoate, and the like. Usually, aliphatic vinyl esters having 3 to 20 carbon atoms, preferably 4 to 10 carbon atoms, and particularly preferably 4 to 7 carbon atoms. Examples include esters. These are usually used alone, but a plurality of them may be used simultaneously as necessary.

c)エチレン構造単位
側鎖1,2−ジオール含有EVOH系樹脂におけるエチレン構造単位の含有率は、ISO14663に基づいて測定したエチレン構造単位の含有量として通常20〜60モル%であり、好ましくは25〜50モル%、さらに好ましくは28〜48モル%である。エチレン構造単位の含有率が低すぎると、吸湿性が高くなるため、高湿度条件下でのガスバリア性が低下したり、溶融成形加工性が低下して成形品であるホース、貯蔵容器のライナー層の外観が低下する傾向にある。逆にエチレン構造単位の含有率が高くなりすぎると、必然的にポリマー鎖中に含まれるOH基の割合が低下しすぎるため、ガスバリア性が低下する傾向にある。
c) Ethylene structural unit The content of the ethylene structural unit in the EVOH resin containing a side chain 1,2-diol is usually 20 to 60 mol% as the content of the ethylene structural unit measured based on ISO14663, preferably 25 It is -50 mol%, More preferably, it is 28-48 mol%. If the content of the ethylene structural unit is too low, the hygroscopicity is increased, so that the gas barrier property under high humidity conditions is lowered, or the melt molding processability is lowered and the hose that is a molded product, the liner layer of the storage container There is a tendency for the appearance of to deteriorate. On the other hand, when the content of the ethylene structural unit is too high, the ratio of OH groups contained in the polymer chain is inevitably reduced, so that the gas barrier property tends to be lowered.

d)共重合モノマー単位
A成分である側鎖1,2−ジオール含有EVOH系樹脂は、a)側鎖1,2−ジオール構造単位、b)ビニルアルコール構造単位、c)エチレン構造単位の他、所望により、その他の共重合モノマーに由来する構造単位を含んでもよい。
d) Copolymerized monomer unit The side chain 1,2-diol-containing EVOH-based resin as component A is composed of a) side chain 1,2-diol structural unit, b) vinyl alcohol structural unit, c) ethylene structural unit, If desired, structural units derived from other copolymerization monomers may be included.

側鎖1,2−ジオール含有EVOH系樹脂の合成に用いられ得る他の共重合モノマーとしては、例えば具体的には、プロピレン、1−ブテン、イソブテン等のオレフィン類、アクリル酸、メタクリル酸、クロトン酸、(無水)フタル酸、(無水)マレイン酸、(無水)イタコン酸等の不飽和酸類あるいはその塩あるいは炭素数1〜18のモノまたはジアルキルエステル類、アクリルアミド、炭素数1〜18のN−アルキルアクリルアミド、N,N−ジメチルアクリルアミド、2−アクリルアミドプロパンスルホン酸あるいはその塩、アクリルアミドプロピルジメチルアミンあるいはその酸塩あるいはその4級塩等のアクリルアミド類、メタアクリルアミド、炭素数1〜18のN−アルキルメタクリルアミド、N,N−ジメチルメタクリルアミド、2−メタクリルアミドプロパンスルホン酸あるいはその塩、メタクリルアミドプロピルジメチルアミンあるいはその酸塩あるいはその4級塩等のメタクリルアミド類、N−ビニルピロリドン、N−ビニルホルムアミド、N−ビニルアセトアミド等のN−ビニルアミド類、アクリルニトリル、メタクリルニトリル等のシアン化ビニル類、炭素数1〜18のアルキルビニルエーテル、ヒドロキシアルキルビニルエーテル、アルコキシアルキルビニルエーテル等のビニルエーテル類、塩化ビニル、塩化ビニリデン、フッ化ビニル、フッ化ビニリデン、臭化ビニル等のハロゲン化ビニル化合物類、トリメトキシビニルシラン等のビニルシラン類、酢酸アリル、塩化アリル等のハロゲン化アリル化合物類、アリルアルコール、ジメトキシアリルアルコール等のアリルアルコール類、トリメチル−(3−アクリルアミド−3−ジメチルプロピル)−アンモニウムクロリド、アクリルアミド−2−メチルプロパンスルホン酸、ビニルトリメトキシシラン、ビニルトリエトキシシランなどのシリル基含有モノマー類等が挙げられる。これらのモノマーは、単独でまたは2種以上を同時に用いてもよい。   Examples of other copolymerizable monomers that can be used for the synthesis of the side chain 1,2-diol-containing EVOH resin include, for example, olefins such as propylene, 1-butene, and isobutene, acrylic acid, methacrylic acid, and croton. Acids, (anhydrous) phthalic acid, (anhydrous) maleic acid, (anhydrous) unsaturated acids such as itaconic acid or salts thereof, mono- or dialkyl esters having 1 to 18 carbon atoms, acrylamide, N- to 1-18 carbon atoms Alkylacrylamide, N, N-dimethylacrylamide, 2-acrylamidepropanesulfonic acid or its salt, acrylamide such as acrylamidopropyldimethylamine or its acid salt or its quaternary salt, methacrylamide, N-alkyl having 1 to 18 carbon atoms Methacrylamide, N, N-dimethylmethacrylamide 2-methacrylamide propanesulfonic acid or its salt, methacrylamide such as methacrylamide propyldimethylamine or its acid salt or quaternary salt thereof, N-vinylamide such as N-vinylpyrrolidone, N-vinylformamide, N-vinylacetamide , Vinyl cyanides such as acrylonitrile and methacrylonitrile, vinyl ethers such as alkyl vinyl ether having 1 to 18 carbon atoms, hydroxyalkyl vinyl ether, alkoxyalkyl vinyl ether, vinyl chloride, vinylidene chloride, vinyl fluoride, vinylidene fluoride, odor Halogenated vinyl compounds such as vinyl halide, vinylsilanes such as trimethoxyvinylsilane, allyl halide compounds such as allyl acetate and allyl chloride, allyl alcohol, dimethoxyallyl alcohol Silyl group-containing monomers such as trimethyl- (3-acrylamide-3-dimethylpropyl) -ammonium chloride, acrylamide-2-methylpropanesulfonic acid, vinyltrimethoxysilane, vinyltriethoxysilane, etc. Can be mentioned. These monomers may be used alone or in combination of two or more.

側鎖1,2−ジオール含有EVOH系樹脂について、エチレン以外の他の共重合モノマーの含有率は、EVOH系樹脂としての特性を損なわない観点から、通常5モル%以下である。   About the side chain 1,2-diol containing EVOH type resin, the content rate of copolymerization monomers other than ethylene is normally 5 mol% or less from a viewpoint which does not impair the characteristic as EVOH type resin.

側鎖1,2−ジオール含有EVOH系樹脂におけるビニルエステル部分のケン化度は、JIS K6726に準じて測定(水/メタノール溶媒に均一に溶解した溶液で測定)した値で、通常80〜100モル%、好ましくは90〜100モル%、より好ましくは98〜100モル%である。ケン化度が低くなりすぎると、OH基の含有量が少なくなることを意味し、水素ガスバリア性が低下する傾向にある。   The degree of saponification of the vinyl ester moiety in the side chain 1,2-diol-containing EVOH resin is a value measured according to JIS K6726 (measured with a solution uniformly dissolved in water / methanol solvent) and is usually 80 to 100 mol. %, Preferably 90 to 100 mol%, more preferably 98 to 100 mol%. If the degree of saponification is too low, it means that the content of OH groups is reduced, and the hydrogen gas barrier property tends to be lowered.

側鎖1,2−ジオール含有EVOH系樹脂における重合度は、通常250〜1000である。EVOH系樹脂の重合度は、通常メルトフローレートにて示すことができる。側鎖1,2−ジオール含有EVOH系樹脂のメルトフローレート(MFRと略すことがある)は220℃、荷重2160gにおいて、通常1〜30g/10分であり、好ましくは2〜15g/10分、特に好ましくは3〜10g/10分である。MFRが小さすぎる場合、成形時に押出機内が高トルク状態となって溶融成型性が低下する傾向があり、逆に大きすぎると得られるガスバリア層の厚み精度が低下する傾向がある。   The degree of polymerization in the side chain 1,2-diol-containing EVOH resin is usually 250 to 1000. The degree of polymerization of the EVOH-based resin can usually be indicated by a melt flow rate. The melt flow rate (sometimes abbreviated as MFR) of the side chain 1,2-diol-containing EVOH resin is usually 1 to 30 g / 10 min at 220 ° C. and a load of 2160 g, preferably 2 to 15 g / 10 min. Most preferably, it is 3-10 g / 10min. If the MFR is too small, the inside of the extruder tends to be in a high torque state at the time of molding, and the melt moldability tends to decrease. Conversely, if it is too large, the thickness accuracy of the obtained gas barrier layer tends to decrease.

以上のような構成を有する側鎖1、2−ジオール含有EVOH系樹脂の融点は、示差走査熱量計(昇温速度:10℃/分)で測定した値で通常100〜220℃であり、好ましくは130〜200℃であり、特に好ましくは140〜190℃である。側鎖1,2−ジオール含有EVOH系樹脂は、未変性EVOH系樹脂の融点よりも低い傾向にあり、延伸性に優れる傾向にある。   The melting point of the side chain 1,2-diol-containing EVOH resin having the above-described configuration is usually 100 to 220 ° C. as measured by a differential scanning calorimeter (temperature increase rate: 10 ° C./min), preferably Is 130 to 200 ° C, particularly preferably 140 to 190 ° C. The side chain 1,2-diol-containing EVOH-based resin tends to be lower than the melting point of the unmodified EVOH-based resin and tends to be excellent in stretchability.

本発明で使用する樹脂組成物に用いられる側鎖1,2−ジオール含有EVOH系樹脂としては、1種類だけでなく、ケン化度が異なるもの、分子量が異なるもの、他の共重合モノマーの種類が異なっているもの、エチレン構造単位の含有率が異なるものなど、2種類以上の側鎖1,2−ジオール含有EVOH系樹脂を組み合わせて用いてもよい。   The side chain 1,2-diol-containing EVOH resin used in the resin composition used in the present invention is not only one type, but also those having different saponification degrees, those having different molecular weights, and other types of copolymerization monomers Two or more kinds of side chain 1,2-diol-containing EVOH-based resins such as those having different valences and those having different ethylene structural unit contents may be used in combination.

異なる2種以上の側鎖1,2−ジオール含有EVOH系樹脂をブレンドして用いる場合、そのブレンド物の製造方法は特に限定しない。例えばケン化前のビニルエステル系共重合体の各ペーストを混合後ケン化する方法;ケン化後の側鎖1,2−ジオール含有EVOH系樹脂をアルコールまたは水とアルコールの混合溶媒に溶解させた溶液を混合する方法;側鎖1,2−ジオール含有EVOH系樹脂のそれぞれのペレットまたは粉体を混合した後、溶融混練する方法などが挙げられる。   When blending and using two or more different side chain 1,2-diol-containing EVOH resins, the method for producing the blend is not particularly limited. For example, a method in which each paste of vinyl ester copolymer before saponification is mixed and then saponified; a saponified side chain 1,2-diol-containing EVOH resin is dissolved in alcohol or a mixed solvent of water and alcohol. The method of mixing a solution; The method of melt-kneading after mixing each pellet or powder of EVOH type resin containing a side chain 1, 2-diol is mentioned.

〔(B)極性官能基含有フッ素樹脂〕
本発明に用いられる極性官能基含有フッ素樹脂とは、フッ素樹脂に、水酸基と反応又は水素結合を形成可能な極性官能基が導入されたフッ素系重合体をいう。
[(B) Polar functional group-containing fluororesin]
The polar functional group-containing fluororesin used in the present invention refers to a fluoropolymer in which a polar functional group capable of reacting with a hydroxyl group or forming a hydrogen bond is introduced into the fluororesin.

前記極性官能基としては、好ましくはカルボニル含有基又は水酸基であり、より好ましくはカルボニル含有基である。   The polar functional group is preferably a carbonyl-containing group or a hydroxyl group, and more preferably a carbonyl-containing group.

前記カルボニル含有基としては、カーボネート基、ハロホルミル基、アルデヒド基(ホルミル基を含む)、ケトン基、カルボキシル基、アルコキシカルボニル基、カルボン酸無水物基、及びイソシアナト基からなる群より選択される少なくとも1種であることが好ましく、より好ましくは、カーボネート基、フルオロホルミル基、クロロホルミル基、カルボキシル基、メトキシカルボニル基、エトキシカルボニル基、カルボン酸無水物基であり、さらに好ましくはカルボン酸無水物基である。   The carbonyl-containing group is at least one selected from the group consisting of carbonate groups, haloformyl groups, aldehyde groups (including formyl groups), ketone groups, carboxyl groups, alkoxycarbonyl groups, carboxylic anhydride groups, and isocyanato groups. It is preferably a seed, more preferably a carbonate group, a fluoroformyl group, a chloroformyl group, a carboxyl group, a methoxycarbonyl group, an ethoxycarbonyl group, or a carboxylic acid anhydride group, and even more preferably a carboxylic acid anhydride group. is there.

このような極性官能基含有フッ素樹脂は、上記極性官能基が、側鎖1,2−ジオール含有EVOH系樹脂の水酸基と反応又は水素結合を形成することができるので、両者の界面で化学的結合が形成されたり、側鎖1,2−ジオール含有EVOH系樹脂の一部と極性官能基含有フッ素樹脂とがブロックポリマーを生成し、生成したブロックコポリマーが相溶化剤として働くことにより、側鎖1,2−ジオール含有EVOH系樹脂の一部と極性官能基含有フッ素樹脂との界面を強固なものとすることができる。   In such a polar functional group-containing fluororesin, the polar functional group can react or form a hydrogen bond with the hydroxyl group of the side chain 1,2-diol-containing EVOH-based resin. Side chain 1,2-diol-containing EVOH-based resin and a polar functional group-containing fluororesin generate a block polymer, and the generated block copolymer acts as a compatibilizing agent. , The interface between a part of the 2-diol-containing EVOH resin and the polar functional group-containing fluororesin can be strengthened.

さらに、極性官能基含有フッ素樹脂は、極性官能基を有しないフッ素樹脂と同様に、水素ガス70MPa環境下での水素溶解度が低いという特徴を有している。このことは、側鎖1,2−ジオール含有EVOH系樹脂と極性官能基含有フッ素樹脂の混合系において、側鎖1,2−ジオール含有EVOH系樹脂の低水素溶解性を損なわずに済むことを期待できる。   Furthermore, the polar functional group-containing fluororesin is characterized by low hydrogen solubility in a hydrogen gas 70 MPa environment, like a fluororesin having no polar functional group. This means that the low hydrogen solubility of the side chain 1,2-diol-containing EVOH resin can be maintained in the mixed system of the side chain 1,2-diol-containing EVOH resin and the polar functional group-containing fluororesin. I can expect.

極性官能基含有フッ素樹脂を構成するフッ素樹脂は、構成モノマーとして、少なくとも、テトラフルオロエチレンを含むフッ素系共重合体であることが好ましい。フッ素系共重合体には、ヘキサフルオロプロピレン、フッ化ビニリデン、パーフルオロ(アルキルビニルエーテル)、CH2=CX(CF2)nY(X、Yはそれぞれ独立にフッ素原子又は水素原子であり、nは2〜10である)で表わされるモノマー(以下、当該モノマーを「FAE」と称する)等の他のフッ素含有ビニルモノマーの他、エチレン、プロピレンなどのオレフィン系ビニルモノマー、ビニルエーテル類、ビニルエステル類、他のハロゲン含有ビニルモノマーが共重合されていてもよい。 The fluororesin constituting the polar functional group-containing fluororesin is preferably a fluorocopolymer containing at least tetrafluoroethylene as a constituent monomer. The fluorine-based copolymer includes hexafluoropropylene, vinylidene fluoride, perfluoro (alkyl vinyl ether), CH 2 ═CX (CF 2 ) n Y (X and Y are each independently a fluorine atom or a hydrogen atom, n Is an olefinic vinyl monomer such as ethylene and propylene, vinyl ethers and vinyl esters, in addition to other fluorine-containing vinyl monomers such as monomers represented by the formula (hereinafter referred to as “FAE”) Other halogen-containing vinyl monomers may be copolymerized.

前記FAEにおいて、式中のnは2〜8が好ましく、2〜6がより好ましく、2,4,6が特に好ましい。nが2未満であると樹脂組成物の成形体の耐熱性や耐ストレスクラックが低下する傾向にある。nが10を超えると、重合反応性が不十分になる場合がある。なかでも、nが2〜8の範囲にあると、FAEの重合反応性が良好である。さらには、耐熱性及び耐ストレスクラック性に優れた成形体が得られやすくなる。FAEは1種又は2種以上を用いることができる。このようなFAEの好ましい具体例としては、CH2=CH(CF2)2F、CH2=CH(CF2)4F、CH2=CH(CF2)6F、CH2=CF(CF2)3H等が挙げられる。FAEとしては、CH2=CH−Rf(Rfは炭素数2〜6のペルフルオロアルキル基)が最も好ましい。 In the FAE, n in the formula is preferably 2 to 8, more preferably 2 to 6, and particularly preferably 2, 4, 6. When n is less than 2, the heat resistance and stress crack resistance of the molded article of the resin composition tend to decrease. When n exceeds 10, polymerization reactivity may become insufficient. Especially, when n is in the range of 2 to 8, the polymerization reactivity of FAE is good. Furthermore, it becomes easy to obtain a molded body excellent in heat resistance and stress crack resistance. 1 type (s) or 2 or more types can be used for FAE. Preferable specific examples of such FAE include CH 2 ═CH (CF 2 ) 2 F, CH 2 ═CH (CF 2 ) 4 F, CH 2 ═CH (CF 2 ) 6 F, CH 2 ═CF (CF 2) 3 H and the like. As FAE, CH 2 ═CH—Rf (Rf is a C 2-6 perfluoroalkyl group) is most preferred.

上記フッ素樹脂の具体例としては、テトラフルオロエチレン/ペルフルオロ(アルキルビニルエーテル)系共重合体、テトラフルオロエチレン/ヘキサフルオロプロピレン系共重合体、テトラフルオロエチレン/ペルフルオロ(アルキルビニルエーテル)/ヘキサフルオロプロピレン系共重合体、エチレン/テトラフルオロエチレン系共重合体、エチレン/クロロトリフルオロエチレン系共重合体、エチレン/テトラフルオロエチレン/ヘキサフルオロプロピレン系共重合体、エチレン/テトラフルオロエチレン/CH2=CH−Rf(Rfは炭素数2〜6のペルフルオロアルキル基)系共重合体、エチレン/テトラフルオロエチレン/ヘキサフルオロプロピレン/CH2=CH−Rf(Rfは炭素数2〜6のペルフルオロアルキル基)系共重合体などが挙げられる。 Specific examples of the fluororesin include tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer, tetrafluoroethylene / hexafluoropropylene copolymer, tetrafluoroethylene / perfluoro (alkyl vinyl ether) / hexafluoropropylene copolymer. Polymer, ethylene / tetrafluoroethylene copolymer, ethylene / chlorotrifluoroethylene copolymer, ethylene / tetrafluoroethylene / hexafluoropropylene copolymer, ethylene / tetrafluoroethylene / CH 2 = CH—Rf (Rf is a perfluoroalkyl group having 2 to 6 carbon atoms) copolymer, ethylene / tetrafluoroethylene / hexafluoropropylene / CH 2 = CH-Rf ( Rf is a perfluoroalkyl group having 2 to 6 carbon atoms) based copolymer Coalescence and the like.

これらのうち、エチレンを構成モノマーとして含有するフッ素系共重合体が好ましく、エチレン/テトラフルオロエチレン系共重合体、エチレン/テトラフルオロエチレン/ヘキサフルオロプロピレン系共重合体、エチレン/テトラフルオロエチレン/CH2=CH−Rf(Rfは炭素数2〜6のペルフルオロアルキル基)系共重合体、及びエチレン/テトラフルオロエチレン/ヘキサフルオロプロピレン/CH2=CH−Rf(Rfは炭素数2〜6のペルフルオロアルキル基)系共重合体からなる群より選択される一種であることが好ましい。より好ましくはエチレン/テトラフルオロエチレン/ヘキサフルオロプロピレン系共重合体、エチレン/テトラフルオロエチレン系共重合体(以下、エチレンを「E」、テトラフルオロエチレンを「TFE」、ヘキサフルオロプロピレンを「HFP」と表し、エチレン/テトラフルオロエチレンをE/TFE系共重合体、エチレン/テトラフルオロエチレン/ヘキサフルオロプロピレン系共重合体を「E/TFE/HFP系共重合体」と表わすことがある。)である。 Of these, fluorine-based copolymers containing ethylene as a constituent monomer are preferred, such as ethylene / tetrafluoroethylene copolymers, ethylene / tetrafluoroethylene / hexafluoropropylene copolymers, ethylene / tetrafluoroethylene / CH. 2 = CH—Rf (Rf is a C 2-6 perfluoroalkyl group) copolymer, and ethylene / tetrafluoroethylene / hexafluoropropylene / CH 2 ═CH—Rf (Rf is C 2-6 perfluoro) An alkyl group) type copolymer is preferably selected from the group consisting of copolymers. More preferably, an ethylene / tetrafluoroethylene / hexafluoropropylene copolymer, an ethylene / tetrafluoroethylene copolymer (hereinafter, “E” for ethylene, “TFE” for tetrafluoroethylene, and “HFP” for hexafluoropropylene) Ethylene / tetrafluoroethylene may be referred to as an E / TFE copolymer, and ethylene / tetrafluoroethylene / hexafluoropropylene copolymer may be referred to as an “E / TFE / HFP copolymer”. is there.

また、耐ストレスクラック性を改善したり、若しくはフッ素樹脂の生産性を良好に保つために、E/TFE系共重合体やE/TFE/HFP系共重合体に、CH2=CH−Rf(Rfは炭素数2〜6のペルフルオロアルキル基を示す。)なるコモノマーを共重合することも好ましい。なお、当該CH2=CH−RfにおけるRfの炭素数は4が最も好ましい。 In addition, in order to improve stress crack resistance or keep the productivity of the fluororesin good, E 2 / TFE copolymer or E / TFE / HFP copolymer is added to CH 2 ═CH—Rf ( It is also preferable to copolymerize a comonomer in which Rf represents a C 2-6 perfluoroalkyl group. The number of carbon atoms in Rf in said CH 2 = CH-Rf 4 is most preferred.

上記のようなフッ素樹脂に、極性官能基を導入する方法としては、TFEやHFP等のフッ素含有ビニルモノマーを重合してフッ素樹脂を製造する際に、フッ素含有ビニルモノマーと極性官能基を有するビニルモノマーとを共重合させる方法;極性官能基を有する重合開始剤又は連鎖移動剤の存在下でフッ素含有ビニルモノマーを重合することにより、重合体末端に極性官能基を導入する方法;極性官能基を有するビニルモノマーとフッ素樹脂とを混錬した後、放射線照射する方法;極性官能基を有するビニルモノマー、フッ素樹脂及びラジカル開始剤を混錬した後、溶融押出しすることにより当該極性官能基を有するコモノマーをフッ素樹脂にグラフト重合する方法等が挙げられる。このうち好ましくは、特開2004−238405号に記載のように、フッ素含有ビニルモノマーと、極性官能基を有するコモノマー、例えば無水イタコン酸や無水シトラコン酸とを共重合させる方法である。   As a method for introducing a polar functional group into the fluororesin as described above, when a fluororesin is produced by polymerizing a fluorine-containing vinyl monomer such as TFE or HFP, a vinyl having a fluorofunctional vinyl monomer and a polar functional group is used. A method of copolymerizing with a monomer; a method of introducing a polar functional group into a polymer terminal by polymerizing a fluorine-containing vinyl monomer in the presence of a polymerization initiator having a polar functional group or a chain transfer agent; A method of kneading a vinyl monomer and a fluororesin having radiation, and then irradiating with radiation; kneading a vinyl monomer having a polar functional group, a fluororesin, and a radical initiator, and then melt-extruding the comonomer having the polar functional group And the like, and the like. Among these, as described in JP-A No. 2004-238405, a method of copolymerizing a fluorine-containing vinyl monomer and a comonomer having a polar functional group such as itaconic anhydride or citraconic anhydride is preferable.

前記極性官能基を有するビニルモノマーとしては、例えば、無水マレイン酸、無水イタコン酸、無水シトラコン酸、5−ノルボルネンー2,3−ジカルボン酸無水物(ビシクロ[2.2.1]ヘプト−2−エン−5,6−ジカルボン酸無水物ともいう)等のカルボン酸無水物基を与えるモノマー;アクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸、シトラコン酸、クロトン酸、ビシクロ[2.2.1]ヘプト−2−エン−5,6−ジカルボン酸、CF2=CFOCF2CF2CF2COOH、CF2=CFOCF2CF(CF3)OCF2CF2COOH、CH2=CHCF2CF2CF2COOH等のカルボキシル基を与えるモノマー、及びそれらのメチルエステル、エチルエステル等のアルキルエステル、アルカリ金属塩、アンモニウム塩等を用いることができる。 Examples of the vinyl monomer having a polar functional group include maleic anhydride, itaconic anhydride, citraconic anhydride, 5-norbornene-2,3-dicarboxylic anhydride (bicyclo [2.2.1] hept-2-ene Monomers giving carboxylic acid anhydride groups such as -5,6-dicarboxylic acid anhydride; acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, crotonic acid, bicyclo [2.2. 1] hept-2-ene-5,6-dicarboxylic acid, CF 2 = CFOCF 2 CF 2 CF 2 COOH, CF 2 = CFOCF 2 CF (CF 3) OCF 2 CF 2 COOH, CH 2 = CHCF 2 CF 2 CF monomers giving carboxyl group, such as 2 COOH, and methyl esters thereof, alkyl esters such as ethyl esters, alkali metal salts Ammonium salt, or the like can be used.

また、前記極性官能基を有する重合開始剤としては、例えば、パーオキシカーボネート基を有するパーオキシド、パーオキシエステルを有するパーオキシドを用いることができ、中でも、パーオキシカーボネート基を有するパーオキシドがより好ましく用いられる。パーオキシカーボネート基を有するパーオキシドとしては、ジイソプロピルパーオキシカーボネート、ジ−n−プロピルパーオキシジカーボネート、t−ブチルパーオキシイソプロピルカーボネート、ビス(4−t−ブチルシクロヘキシル)パーオキシジカーボネート、ジ−2−エチルヘキシルパーオキシジカーボネート等が好ましく用いられる。
また、極性官能基を有する連鎖移動剤としては、例えば、メタノール、エタノール、プロパノール、ブタノール等のアルコール、無水酢酸等のカルボン酸、チオグリコール酸、チオグリコール等が挙げられる。
Moreover, as the polymerization initiator having the polar functional group, for example, a peroxide having a peroxycarbonate group or a peroxide having a peroxyester can be used, and among them, a peroxide having a peroxycarbonate group is more preferably used. . Examples of the peroxide having a peroxycarbonate group include diisopropyl peroxycarbonate, di-n-propyl peroxydicarbonate, t-butyl peroxyisopropyl carbonate, bis (4-t-butylcyclohexyl) peroxydicarbonate, and di-2. -Ethylhexyl peroxydicarbonate is preferably used.
Examples of the chain transfer agent having a polar functional group include alcohols such as methanol, ethanol, propanol, and butanol, carboxylic acids such as acetic anhydride, thioglycolic acid, and thioglycol.

B成分(極性官能基含有フッ素樹脂)における極性官能基の含有率((極性官能基のモル数/フッ素樹脂構成モノマーのモル数)×100)は、好ましくは0.01〜10モル%、より好ましくは0.05〜5モル%、最も好ましくは0.1〜3モル%である。官能基の量が少なすぎると、A成分である側鎖1,2−ジオール含有ビニルアルコール系樹脂との親和性が低下しすぎて、B成分の微分散が達成されにくくなり、結果として、均質な樹脂組成物が得られにくくなる。すなわち、B成分が微小な島となる海島構造が形成されにくくなり、その結果、耐屈曲疲労性の改善が不十分となるだけでなく、ボイドや凝集物が発生し、側鎖1,2−ジオール含有EVOH系樹脂本来の利点であるガスバリア性や溶融成形性が低下する原因ともなる。   The content of the polar functional group in the component B (polar functional group-containing fluororesin) ((number of moles of polar functional group / number of moles of fluororesin constituent monomer) × 100) is preferably 0.01 to 10 mol%. Preferably it is 0.05-5 mol%, Most preferably, it is 0.1-3 mol%. If the amount of the functional group is too small, the affinity with the side chain 1,2-diol-containing vinyl alcohol resin that is the A component will be too low, and it will be difficult to achieve fine dispersion of the B component. It becomes difficult to obtain a simple resin composition. That is, it is difficult to form a sea-island structure in which the B component is a small island, and as a result, not only the improvement in bending fatigue resistance is insufficient, but voids and aggregates are generated, and side chains 1,2- The gas barrier property and melt moldability, which are the inherent advantages of the diol-containing EVOH resin, may also be reduced.

本発明で使用する極性官能基含有フッ素樹脂は、融点が120〜240℃であることが好ましく、より好ましくは150〜210℃、さらに好ましくは170〜190℃である。樹脂組成物の主成分であるA成分の融点よりも高くなりすぎると、組成物を製造する際に溶融温度を250〜290℃の高温まで上げる必要があり、その結果、側鎖1,2−ジオール含有EVOH系樹脂の劣化や色調悪化を引き起こし、好ましくない。通常、極性官能基の含有率が上記範囲内にある極性官能基含有フッ素樹脂では、融点が上記範囲となる。   The polar functional group-containing fluororesin used in the present invention preferably has a melting point of 120 to 240 ° C, more preferably 150 to 210 ° C, and further preferably 170 to 190 ° C. If the melting point of the component A, which is the main component of the resin composition, is too high, it is necessary to raise the melting temperature to a high temperature of 250 to 290 ° C. when producing the composition. It causes deterioration and color tone deterioration of the diol-containing EVOH resin, which is not preferable. Usually, in the polar functional group-containing fluororesin having a polar functional group content in the above range, the melting point is in the above range.

(B)成分に使用するフッ素樹脂の容量流速(以下「Q値」という。)は、0.1〜1000mm3/秒で、好ましくは、1〜500mm3/秒、さらに好ましくは、2〜200mm3/秒である。Q値は、フッ素樹脂を溶融成形する場合に問題となる樹脂の溶融流動性を表す指標であり、分子量の目安となる。すなわち、Q値が大きいと分子量が低く、小さいと分子量が高いことを示す。ここで、Q値は、島津製作所社製フローテスタを用いて、当該フッ素樹脂の融点より50℃高い温度において、荷重7kg下に直径2.1mm、長さ8mmのオリフィス中に押出すときの樹脂の押出し速度である。Q値が小さすぎると当該フッ素樹脂の押出し成形が困難となり、大きすぎると樹脂の機械的強度が低下する。 (B) volume flow rate of the fluorine resin used in component (hereinafter referred to as "Q value".) Is a 0.1~1000mm 3 / sec, preferably, 1 to 500 mm 3 / sec, more preferably, 2~200Mm 3 / sec. The Q value is an index representing the melt fluidity of a resin that becomes a problem when a fluororesin is melt-molded, and is a measure of the molecular weight. That is, a large Q value indicates a low molecular weight, and a small Q value indicates a high molecular weight. Here, the Q value is a resin when extruded into an orifice having a diameter of 2.1 mm and a length of 8 mm under a load of 7 kg at a temperature 50 ° C. higher than the melting point of the fluororesin using a flow tester manufactured by Shimadzu Corporation. Extrusion speed of If the Q value is too small, extrusion molding of the fluororesin becomes difficult, and if it is too large, the mechanical strength of the resin decreases.

以上のような極性官能基含有フッ素樹脂(B)の製造方法については特に制限はなく、通常、フッ素含有ビニルモノマー、その他のコモノマーを反応器に装入し、一般に用いられているラジカル重合開始剤、連鎖移動剤を用いて共重合させる方法が採用できる。重合方法の例としては、公知の方法である塊状重合;重合媒体としてフッ化炭化水素、塩化炭化水素、フッ化塩化炭化水素、アルコール、炭化水素等の有機溶媒を使用する溶液重合;重合媒体として水性媒体及び必要に応じて適当な有機溶剤を使用する懸濁重合;重合媒体として水性媒体及び乳化剤を使用する乳化重合が挙げられるが、溶液重合が最も好ましい。重合は、一槽ないし多槽式の撹拌型重合装置、管型重合装置等を使用し、回分式又は連続式操作として実施することができる。   There is no restriction | limiting in particular about the manufacturing method of the above polar functional group containing fluororesins (B), Usually, the radical polymerization initiator generally charged by charging a fluorine-containing vinyl monomer and other comonomers into a reactor is used. A method of copolymerization using a chain transfer agent can be employed. Examples of polymerization methods include bulk polymerization, which is a known method; solution polymerization using an organic solvent such as fluorinated hydrocarbon, chlorinated hydrocarbon, fluorinated chlorohydrocarbon, alcohol, and hydrocarbon as the polymerization medium; Suspension polymerization using an aqueous medium and, if necessary, an appropriate organic solvent; emulsion polymerization using an aqueous medium and an emulsifier as the polymerization medium may be mentioned, with solution polymerization being most preferred. The polymerization can be carried out as a batch operation or a continuous operation using a one-tank or multi-tank stirring polymerization apparatus, a tube polymerization apparatus, or the like.

ラジカル重合開始剤としては、半減期が10時間である温度が0〜100℃である開始剤が好ましく、20〜90℃である開始剤がより好ましい。例えば、アゾビスイソブチロニトリル等のアゾ化合物;ジイソプロピルペルオキシジカーボネート等のペルオキシジカーボネート;tert−ブチルペルオキシピバレート、tert−ブチルペルオキシイソブチレート、tert−ブチルペルオキシアセテート等のペルオキシエステル;イソブチリルペルオキシド、オクタノイルペルオキシド、ベンゾイルペルオキシド、ラウロイルペルオキシド等の非フッ素系ジアシルペルオキシド;(Z(CF2)pCOO)2(ここで、Zは水素原子、フッ素原子又は塩素原子であり、pは1〜10の整数である。)等の含フッ素ジアシルペルオキシド;過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等の無機過酸化物等が挙げられる。 The radical polymerization initiator is preferably an initiator having a half-life of 10 hours and a temperature of 0 to 100 ° C, more preferably an initiator having a temperature of 20 to 90 ° C. For example, azo compounds such as azobisisobutyronitrile; peroxydicarbonates such as diisopropylperoxydicarbonate; peroxyesters such as tert-butylperoxypivalate, tert-butylperoxyisobutyrate, tert-butylperoxyacetate; Non-fluorinated diacyl peroxides such as ril peroxide, octanoyl peroxide, benzoyl peroxide, lauroyl peroxide; (Z (CF 2 ) p COO) 2 (where Z is a hydrogen atom, a fluorine atom or a chlorine atom, and p is 1 And fluorine-containing diacyl peroxides; inorganic peroxides such as potassium persulfate, sodium persulfate, and ammonium persulfate.

重合媒体としては、上記したようにフッ化炭化水素、塩化炭化水素、フッ化塩化炭化水素、アルコール、炭化水素等の有機溶媒、水性媒体等が挙げられる。
連鎖移動剤としては、メタノール、エタノール等のアルコール;1,3−ジクロロ−1,1,2,2,3−ペンタフルオロプロパン、1,1−ジクロロ−1−フルオロエタン等のクロロフルオロハイドロカーボン;ペンタン、ヘキサン、シクロヘキサン等のハイドロカーボン;1−ヒドロトリデカフルオロヘキサン等の含フッ素ハイドロカーボンなどが挙げられる。
重合条件は特に限定しないが、例えば重合温度は通常0〜100℃が好ましく、20〜90℃がより好ましい。また重合圧力は0.1〜10MPaが好ましく、0.5〜3MPaがより好ましい。重合時間は重合温度及び重合圧力等により変わりうるが、通常1〜30時間が好ましく、2〜10時間がより好ましい。
Examples of the polymerization medium include organic solvents such as fluorinated hydrocarbons, chlorinated hydrocarbons, fluorinated chlorinated hydrocarbons, alcohols and hydrocarbons, and aqueous media as described above.
Examples of chain transfer agents include alcohols such as methanol and ethanol; chlorofluorohydrocarbons such as 1,3-dichloro-1,1,2,2,3-pentafluoropropane and 1,1-dichloro-1-fluoroethane; Examples thereof include hydrocarbons such as pentane, hexane, and cyclohexane; fluorine-containing hydrocarbons such as 1-hydrotridecafluorohexane.
Although the polymerization conditions are not particularly limited, for example, the polymerization temperature is usually preferably 0 to 100 ° C and more preferably 20 to 90 ° C. The polymerization pressure is preferably from 0.1 to 10 MPa, more preferably from 0.5 to 3 MPa. The polymerization time may vary depending on the polymerization temperature, polymerization pressure, etc., but is usually preferably 1-30 hours, more preferably 2-10 hours.

〔(C)その他の添加物〕
本発明で用いられるガスバリア層用樹脂組成物には、上記(A)側鎖1,2−ジオール含有EVOH系樹脂、(B)極性官能基含有フッ素樹脂の他、必要に応じて、本発明の効果を損なわない限り(例えば、樹脂組成物全体の5重量%未満にて)、ナイロン11、ナイロン12、ナイロン6、ナイロン66、ナイロン6・66等のポリアミド樹脂;上記一般式(1)の構造単位を有しない未変性ビニルアルコール系樹脂;他の熱可塑性樹脂;エチレングリコール、グリセリン、ヘキサンジオール等の脂肪族多価アルコール等の可塑剤;飽和脂肪族アミド(例えばステアリン酸アミド等)、不飽和脂肪酸アミド(例えばオレイン酸アミド等)、ビス脂肪酸アミド(例えばエチレンビスステアリン酸アミド等)、低分子量ポリオレフィン(例えば分子量500〜10000程度の低分子量ポリエチレン、又は低分子量ポリプロピレン)等の滑剤;アンチブロッキング剤;酸化防止剤;着色剤;帯電防止剤;紫外線吸収剤;抗菌剤;不溶性無機塩(例えば、ハイドロタルサイト等);充填材(例えば無機フィラー等);酸素吸収剤(例えば、ポリオクテニレン等のシクロアルケン類の開環重合体や、ブタジエン等の共役ジエン重合体の環化物等);界面活性剤、ワックス;分散剤(ステアリン酸モノグリセリド等)、熱安定剤、光安定剤、乾燥剤、難燃剤、架橋剤、硬化剤、発泡剤、結晶核剤、防曇剤、生分解用添加剤、シランカップリング剤、共役ポリエン化合物などの公知の添加剤を適宜配合することができる。
[(C) Other additives]
The resin composition for gas barrier layer used in the present invention includes (A) side chain 1,2-diol-containing EVOH resin, (B) polar functional group-containing fluororesin, and, if necessary, of the present invention. As long as the effect is not impaired (for example, less than 5% by weight of the entire resin composition), polyamide resin such as nylon 11, nylon 12, nylon 6, nylon 66, nylon 6, 66, etc .; structure of the above general formula (1) Unmodified vinyl alcohol resin having no unit; other thermoplastic resin; plasticizer such as aliphatic polyhydric alcohol such as ethylene glycol, glycerin, hexanediol; saturated aliphatic amide (eg stearamide), unsaturated Fatty acid amides (eg oleic acid amide), bis fatty acid amides (eg ethylene bisstearic acid amide), low molecular weight polyolefins (eg Lubricants such as low molecular weight polyethylene or low molecular weight polypropylene having a molecular weight of about 500 to 10,000; antiblocking agents; antioxidants; coloring agents; antistatic agents; ultraviolet absorbers; antibacterial agents; Sites, etc.); Fillers (for example, inorganic fillers); Oxygen absorbers (for example, ring-opened polymers of cycloalkenes such as polyoctenylene and cyclized products of conjugated diene polymers such as butadiene); Surfactants, waxes Dispersing agents (stearic acid monoglyceride, etc.), heat stabilizers, light stabilizers, drying agents, flame retardants, crosslinking agents, curing agents, foaming agents, crystal nucleating agents, antifogging agents, biodegradation additives, silane couplings Known additives such as an agent and a conjugated polyene compound can be appropriately blended.

また、(A)側鎖1,2−ジオール含有EVOH系樹脂又は(B)極性官能基含有フッ素樹脂の不可避的に含有されるモノマー残渣やモノマーのケン化物などが含まれていてもよい。   Further, (A) side chain 1,2-diol-containing EVOH resin or (B) polar functional group-containing fluororesin inevitably contained monomer residue or saponified monomer may be contained.

(A)側鎖1,2−ジオール含有EVOH系樹脂に伴って含まれる不可避的不純物としては、例えば、3,4−ジアセトキシ−1−ブテン、3,4−ジオール−1−ブテン、3,4−ジアセトキシ−1−ブテン、3−アセトキシ−4−オール−1−ブテン、4−アセトキシ−3−オール−1−ブテン等が挙げられる。   (A) Examples of inevitable impurities contained in the side chain 1,2-diol-containing EVOH resin include 3,4-diacetoxy-1-butene, 3,4-diol-1-butene, and 3,4. -Diacetoxy-1-butene, 3-acetoxy-4-ol-1-butene, 4-acetoxy-3-ol-1-butene and the like.

〔ガスバリア層用樹脂組成物及びその調製〕
ガスバリア層用樹脂組成物は、上記(A)側鎖1,2−ジオール含有EVOH系樹脂、(B)極性基含有フッ素樹脂、さらに必要に応じて添加される添加物(C)を、所定比率で配合し、溶融混練することにより調製できる。
[Resin composition for gas barrier layer and preparation thereof]
The resin composition for a gas barrier layer comprises (A) a side chain 1,2-diol-containing EVOH-based resin, (B) a polar group-containing fluororesin, and an additive (C) that is added as necessary at a predetermined ratio. And can be prepared by melt kneading.

上記(A)側鎖1,2−ジオール含有EVOH系樹脂と(B)極性官能基含有フッ素樹脂との含有量比は、質量比(A/B)にて、9.5/0.5〜5/5であることが好ましく、より好ましくは9/1〜6/4、特に好ましくは9/1〜7/3である。A成分の含有比率が大きくなりすぎると、柔軟性、耐屈曲性の改善が不十分となる傾向があり、B成分の含有比率が大きくなりすぎると、水素ガスバリア性が不足する傾向にある。特に極性官能基含有フッ素樹脂(B)の極性基がカルボキシル基である場合、水酸基とカルボキシル基の反応を促進し、相溶化を向上させる目的で各種塩類(酢酸ソーダ、酢酸カリウム、第2リン酸カリウム等)を配合することが好ましい。   The content ratio of the (A) side chain 1,2-diol-containing EVOH resin and the (B) polar functional group-containing fluororesin is 9.5 / 0.5 to mass ratio (A / B). It is preferably 5/5, more preferably 9/1 to 6/4, and particularly preferably 9/1 to 7/3. When the content ratio of the A component becomes too large, the improvement of flexibility and flex resistance tends to be insufficient, and when the content ratio of the B component becomes too large, the hydrogen gas barrier property tends to be insufficient. In particular, when the polar group of the polar functional group-containing fluororesin (B) is a carboxyl group, various salts (sodium acetate, potassium acetate, diphosphoric acid) are used for the purpose of promoting the reaction between the hydroxyl group and the carboxyl group and improving the compatibility. It is preferable to blend potassium and the like.

溶融混練は、押出機、バンバリーミキサー、ニーダールーダー、ミキシングロール、ブラストミル等の公知の混練機を用いることができる。例えば、押出機の場合、単軸または二軸の押出機等が挙げられる。溶融混練後、樹脂組成物をストランド状に押出し、カットしてペレット化する方法が採用され得る。
かかる溶融混練は、(A)側鎖1,2−ジオール含有EVOH系樹脂と(B)極性官能基含有フッ素樹脂とを一括投入して行ってもよいし、(A)側鎖1,2−ジオール含有EVOH系樹脂を二軸押出機で溶融混練しながら、(B)極性官能基含有フッ素樹脂を溶融状態、あるいは固体状態でサイドフィードして行ってもよい。
For the melt-kneading, a known kneader such as an extruder, a Banbury mixer, a kneader ruder, a mixing roll, or a blast mill can be used. For example, in the case of an extruder, a single screw or a twin screw extruder may be used. After melt-kneading, a method of extruding the resin composition into a strand shape, cutting and pelletizing can be employed.
Such melt-kneading may be carried out by charging (A) side chain 1,2-diol-containing EVOH resin and (B) polar functional group-containing fluororesin, or (A) side chain 1,2-diol. While melting and kneading the diol-containing EVOH resin with a twin-screw extruder, the (B) polar functional group-containing fluororesin may be side-feeded in a molten state or a solid state.

溶融混練温度は、(A)側鎖1,2−ジオール含有EVOH系樹脂、(B)極性官能基含有フッ素樹脂の種類に応じて適宜選択されるが、通常215〜250℃、好ましくは215〜240℃、より好ましくは220〜235℃、特に好ましくは220〜230℃である。   The melt kneading temperature is appropriately selected according to the type of (A) side chain 1,2-diol-containing EVOH resin and (B) polar functional group-containing fluororesin, but is usually 215 to 250 ° C., preferably 215 to It is 240 degreeC, More preferably, it is 220-235 degreeC, Most preferably, it is 220-230 degreeC.

以上のような組成を有するガスバリア層用樹脂組成物は、主たる成分である(A)側鎖1,2−ジオール含有EVOH系樹脂をマトリックスとして、(B)極性官能基含有フッ素樹脂を島とする海島構造を有するポリマーアロイを形成することができる。B成分の極性官能基が、A成分の水酸基と反応あるいは水素結合を形成することができるので、海島構造の界面は、強固な界面となることができる。さらに、前記ガスバリア層用樹脂組成物の海島構造は、島部の平均面積が、通常0.1〜3μm、好ましくは1.5μm以下、さらに好ましくは1.3μm以下、最も好ましくは1μm以下となる。   The resin composition for a gas barrier layer having the above composition has (A) side chain 1,2-diol-containing EVOH resin as a matrix as a main component and (B) a polar functional group-containing fluororesin as an island. A polymer alloy having a sea-island structure can be formed. Since the polar functional group of the B component can react or form a hydrogen bond with the hydroxyl group of the A component, the sea-island structure interface can be a strong interface. Further, in the sea-island structure of the gas barrier layer resin composition, the average area of the island part is usually 0.1 to 3 μm, preferably 1.5 μm or less, more preferably 1.3 μm or less, and most preferably 1 μm or less. .

このようなガスバリア層用樹脂組成物は、構成成分である側鎖1,2−ジオール含有EVOH系樹脂(A)に基づく優れた水素ガスバリア性を有し、且つ極性官能基含有フッ素樹脂(B)により、ビニルアルコール系樹脂の弱点であった耐屈曲性が改善される。さらに前記ガスバリア層用樹脂組成物は、上記のような海島構造を形成できることから、優れた耐水素脆性を有する。具体的には、70MPaという高圧で水素を曝露、脱気を繰り返す試験においても、ブリスタを発生しないという優れた高圧水素耐久性を有する。このような優れた高圧水素耐久性は、構成成分である側鎖1,2−ジオール含有EVOH系樹脂及び極性官能基含有フッ素樹脂の各々が低水素溶解性であるということに加えて、詳細な機構、構造の解明は不明であるが、側鎖1,2−ジオール含有EVOH系樹脂と極性官能基含有フッ素樹脂との海島構造の界面が、両樹脂の化学的結合によって生成した相溶化剤の存在により濡れ性が大幅に向上し、水素ガスの溶解、拡散の際の負荷に耐えうる強靭性を有しているためではないかと考えられる。つまり、構成成分の水素溶解性が低くても、海島構造の界面の濡れ性が悪いと、高圧水素曝露により界面剥離し、そこから水素ガスが侵入し、脱圧時には侵入した水素が脱出しようとするために、ブリスタが発生すると考えられる。しかしながら、界面の濡れ性が向上することにより、高圧水素ガスに曝露されても、脱圧時の島の部位に溶解した水素の気化に起因するブリスタが発生せずに済むのではないかと考えられる。   Such a resin composition for a gas barrier layer has an excellent hydrogen gas barrier property based on a side chain 1,2-diol-containing EVOH resin (A) which is a constituent component, and a polar functional group-containing fluororesin (B). As a result, the bending resistance, which was a weak point of the vinyl alcohol resin, is improved. Furthermore, since the said resin composition for gas barrier layers can form the above sea-island structures, it has the outstanding hydrogen embrittlement resistance. Specifically, even in a test in which hydrogen is exposed and degassed repeatedly at a high pressure of 70 MPa, it has excellent high-pressure hydrogen durability that no blister is generated. Such excellent high-pressure hydrogen durability is in addition to the fact that each of the constituent side chain 1,2-diol-containing EVOH resin and polar functional group-containing fluororesin has low hydrogen solubility. The elucidation of the mechanism and structure is unknown, but the interface of the sea-island structure between the side chain 1,2-diol-containing EVOH resin and the polar functional group-containing fluororesin is a compatibilizer produced by chemical bonding of both resins. It is thought that this is because the wettability is greatly improved by the presence, and the toughness can withstand the load during dissolution and diffusion of hydrogen gas. In other words, even if the hydrogen solubility of the constituent component is low, if the wettability of the interface of the sea-island structure is poor, the interface peels off due to high-pressure hydrogen exposure, hydrogen gas enters from there, and the intruded hydrogen tries to escape at the time of depressurization. Therefore, it is considered that blisters are generated. However, by improving the wettability of the interface, it is thought that even if exposed to high-pressure hydrogen gas, blisters caused by the vaporization of dissolved hydrogen in the island part at the time of depressurization may not be generated. .

さらに、水素脆性試験後の引張試験においても、初期の引張強度を保持し続けることが可能であった。このことは、水素侵入が阻止されることで、高圧水素曝露、脱気の繰り返しによっても、機械的強度の低下が抑制されたためと考えられる。   Furthermore, it was possible to keep the initial tensile strength in the tensile test after the hydrogen embrittlement test. This is thought to be because the decrease in mechanical strength was suppressed by the repeated high-pressure hydrogen exposure and degassing due to the prevention of hydrogen intrusion.

なお、以上のようなガスバリア用樹脂組成物は、上記のように水素ガスに対して優れたガスバリアを有するだけでなく、ヘリウム、酸素、窒素、空気等の他のガスに対しても優れたガスバリア性を有する。特に水素やヘリウム等の分子量10未満のガスに対するバリア性に優れる。   The resin composition for gas barrier as described above has not only an excellent gas barrier against hydrogen gas as described above, but also an excellent gas barrier against other gases such as helium, oxygen, nitrogen, and air. Have sex. In particular, it has excellent barrier properties against gases having a molecular weight of less than 10 such as hydrogen and helium.

<高圧ガス用ホース又は貯蔵容器>
本発明の高圧ガス用ホース又は貯蔵容器は、上記ガスバリア層用樹脂組成物からなる層を少なくとも1層含むものである。好ましくは多層構造からなるホース又は貯蔵容器のうち、内側層(すなわち高圧ガスと接する層)又は中間層、より好ましくは中間層として、ガスバリア層用樹脂組成物の層を含むものである。さらに、内側層及び/又は外側層(すなわち外気と接する層)に、耐水性、水分不透過性の熱可塑樹脂層を含むことが好ましい。なお、中間層とは外側層と内側層の間にある層をいう。また、外側層に、さらに補強層を設けることが好ましい。補強層が設けられている場合、補強層が外気と接する層(最外層)となる。さらにまた、これらの層間に、接着性樹脂からなる接着層が設けられていてもよい。
<High-pressure gas hose or storage container>
The hose or storage container for high-pressure gas of the present invention includes at least one layer made of the above resin composition for gas barrier layer. Of the hose or storage container preferably having a multilayer structure, the inner layer (that is, the layer in contact with the high-pressure gas) or the intermediate layer, more preferably the intermediate layer includes a layer of the resin composition for the gas barrier layer. Furthermore, it is preferable that the inner layer and / or the outer layer (that is, the layer in contact with the outside air) include a water-resistant, moisture-impermeable thermoplastic resin layer. The intermediate layer is a layer between the outer layer and the inner layer. Further, it is preferable to further provide a reinforcing layer on the outer layer. When the reinforcing layer is provided, the reinforcing layer is a layer in contact with the outside air (outermost layer). Furthermore, an adhesive layer made of an adhesive resin may be provided between these layers.

従って、高圧ガス用ホース又は貯蔵容器を構成する積層構造としては、内側から順に、本発明の樹脂組成物からなるガスバリア層/水分不透過性熱可塑性樹脂層/補強層、水分不透過性熱可塑性樹脂層/前記ガスバリア層/補強層、水分不透過性熱可塑性樹脂層/前記ガスバリア層/水分不透過性熱可塑性樹脂層/補強層などが挙げられる。好ましくは水分不透過性熱可塑性樹脂層/前記ガスバリア層/水分不透過性熱可塑性樹脂層/補強層である。これらのホース又は貯蔵容器を構成する多層構造の層間には、接着層を設けてもよい。尚、多層構造体の層数は、補強層を含むのべ数にて通常3〜15層、好ましくは4〜10層である。   Accordingly, the laminated structure constituting the hose for high pressure gas or the storage container is, in order from the inside, gas barrier layer / moisture impermeable thermoplastic resin layer / reinforcing layer made of the resin composition of the present invention, moisture impermeable thermoplastic. Resin layer / gas barrier layer / reinforcing layer, moisture impermeable thermoplastic resin layer / gas barrier layer / moisture impermeable thermoplastic resin layer / reinforcing layer, and the like. Preferably, it is water-impermeable thermoplastic resin layer / gas barrier layer / water-impermeable thermoplastic resin layer / reinforcing layer. An adhesive layer may be provided between layers of the multilayer structure constituting these hoses or storage containers. In addition, the number of layers of the multilayer structure is generally 3 to 15 layers, preferably 4 to 10 layers, including the reinforcing layers.

前記ガスバリア層と水分不透過性熱可塑性樹脂層の厚み比は、多層フィルム中の同種の層厚みを全て足し合わせた状態で、通常、水分不透過性熱可塑性樹脂層の方が厚く、前記ガスバリア層に対する水分不透過性熱可塑性樹脂層の厚み比(水分不透過性熱可塑性樹脂層/ガスバリア層)は、通常1〜100、好ましくは3〜20、特に好ましくは6〜15である。水分不透過性熱可塑性樹脂層の厚みは通常50〜150μmである。
ガスバリア層が薄すぎる場合、得られるホース又は貯蔵容器の高度なガスバリア性が得られにくい傾向がある。厚すぎる場合、耐屈曲性と経済性が低下する傾向がある。
また水分不透過性熱可塑性樹脂層が薄すぎる場合、得られるホース又は貯蔵容器の強度が低下する傾向があり、厚すぎる場合は耐屈曲性や柔軟性が低下する傾向がある。
The thickness ratio of the gas barrier layer to the moisture impermeable thermoplastic resin layer is generally the thickness of the moisture impermeable thermoplastic resin layer, with all the same layer thicknesses in the multilayer film being added. The thickness ratio of the moisture-impermeable thermoplastic resin layer to the layer (moisture-impermeable thermoplastic resin layer / gas barrier layer) is usually from 1 to 100, preferably from 3 to 20, particularly preferably from 6 to 15. The thickness of the moisture-impermeable thermoplastic resin layer is usually 50 to 150 μm.
When a gas barrier layer is too thin, there exists a tendency for the high gas barrier property of the obtained hose or a storage container to be hard to be acquired. When it is too thick, the bending resistance and the economy tend to be lowered.
In addition, when the moisture-impermeable thermoplastic resin layer is too thin, the strength of the hose or storage container obtained tends to decrease, and when it is too thick, the bending resistance and flexibility tend to decrease.

また、接着層を用いる場合、通常ガスバリア層を厚くすることが好ましい。接着層に対する前記ガスバリア層の厚み比(ガスバリア層/接着層)は通常1〜100、好ましくは1〜50、特に好ましくは1〜10である。接着層の厚みは通常10〜50μmであることが好ましい。接着層が薄すぎる場合、層間接着性が不足する傾向があり、厚すぎる場合は経済性が低下する傾向がある。   When using an adhesive layer, it is usually preferable to make the gas barrier layer thicker. The thickness ratio of the gas barrier layer to the adhesive layer (gas barrier layer / adhesive layer) is usually 1 to 100, preferably 1 to 50, particularly preferably 1 to 10. The thickness of the adhesive layer is usually preferably 10 to 50 μm. If the adhesive layer is too thin, the interlayer adhesion tends to be insufficient, and if it is too thick, the economy tends to be reduced.

水分不透過性熱可塑性樹脂層に用いられる熱可塑性樹脂としては、例えば、疎水性熱可塑性樹脂が好ましく用いられる。例えば具体的には、直鎖状低密度ポリエチレン(LLDPE)、低密度ポリエチレン(LDPE)、中密度ポリエチレン(MDPE)、高密度ポリエチレン(HDPE)等のポリエチレン系樹脂、エチレン−酢酸ビニル共重合体、アイオノマー、エチレン−プロピレン共重合体、エチレン−α−オレフィン(炭素数4〜20のα−オレフィン)共重合体、エチレン−アクリル酸エステル共重合体、ポリプロピレン、プロピレン−α−オレフィン(炭素数4〜20のα−オレフィン)共重合体などのポリプロピレン系樹脂、ポリブテン、ポリペンテン等のオレフィンの単独又は共重合体、環状ポリオレフィン、或いはこれらのオレフィンの単独又は共重合体を不飽和カルボン酸又はそのエステルでグラフト変性したもの(カルボン酸変性ポリオレフィン系樹脂、エステル変性ポリオレフィン系樹脂)等の広義のポリオレフィン系樹脂、ポリスチレン系樹脂、ナイロン11、ナイロン12、ナイロン6、ナイロン66等のポリアミドやナイロン6・12、ナイロン6・66等の共重合ポリアミド等のポリアミド系樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、アクリル系樹脂、ポリ酢酸ビニル等のビニルエステル系樹脂、ポリウレタン系樹脂、テトラフルオロエチレン、テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)共重合体、エチレン/テトラフルオロエチレン共重合体、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体等のフッ素系重合体、塩素化ポリエチレン、塩素化ポリプロピレン、極性基を有するフッ素系樹脂等の熱可塑性樹脂が挙げられる。   As the thermoplastic resin used for the moisture-impermeable thermoplastic resin layer, for example, a hydrophobic thermoplastic resin is preferably used. For example, specifically, polyethylene resins such as linear low density polyethylene (LLDPE), low density polyethylene (LDPE), medium density polyethylene (MDPE), and high density polyethylene (HDPE), ethylene-vinyl acetate copolymer, Ionomer, ethylene-propylene copolymer, ethylene-α-olefin (α-olefin having 4 to 20 carbon atoms) copolymer, ethylene-acrylic acid ester copolymer, polypropylene, propylene-α-olefin (4 to 4 carbon atoms) 20 α-olefin) polypropylene resins such as copolymers, olefin homo- or copolymers such as polybutene and polypentene, cyclic polyolefins, or homo- or copolymers of these olefins with unsaturated carboxylic acids or esters thereof Graft modified (carboxylic acid modified polyolefin) Broadly defined polyolefin resins such as vinyl resins, ester-modified polyolefin resins), polystyrene resins, nylon 11, nylon 12, nylon 6, nylon 66, and other polyamides, nylon 6, 12, nylon 6, 66, etc. Polyamide resins such as polymerized polyamide, polyvinyl chloride, polyvinylidene chloride, acrylic resins, vinyl ester resins such as polyvinyl acetate, polyurethane resins, tetrafluoroethylene, tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer Polymers, fluoropolymers such as ethylene / tetrafluoroethylene copolymer, tetrafluoroethylene / hexafluoropropylene copolymer, thermoplastic resins such as chlorinated polyethylene, chlorinated polypropylene, and fluororesins having polar groups It is done.

なかでも、耐水性、強度、靱性や低温での耐久性の点で、ポリオレフィン系樹脂、ポリアミド系樹脂、極性基を有するフッ素系樹脂から選ばれる少なくとも1種が好ましく、より好ましくはカルボン酸変性ポリオレフィン系樹脂、ポリアミド系樹脂、極性基を有するフッ素系樹脂から選ばれる少なくとも1種である。尚、水分不透過性熱可塑性樹脂層の外側にエポキシ樹脂を塗工してもよい。   Among these, at least one selected from polyolefin resins, polyamide resins, and fluorine-based resins having a polar group is preferable from the viewpoint of water resistance, strength, toughness, and durability at low temperatures, and more preferably carboxylic acid-modified polyolefin. It is at least one selected from a fluororesin, a polyamide resin, and a fluororesin having a polar group. An epoxy resin may be applied to the outside of the moisture-impermeable thermoplastic resin layer.

接着層としては、公知の接着性樹脂を用いることが可能であり、通常ポリオレフィン系樹脂をマレイン酸等の不飽和カルボン酸(または不飽和カルボン酸無水物)で変性したカルボン酸変性ポリオレフィン系樹脂や、極性基を有するフッ素樹脂が好ましく用いられる。前記ポリオレフィン系樹脂としては、上述の水分不透過性の熱可塑性樹脂層に用いられる熱可塑性樹脂として列挙したポリオレフィン系樹脂を用いることができる。   As the adhesive layer, a known adhesive resin can be used, and usually a carboxylic acid-modified polyolefin resin obtained by modifying a polyolefin resin with an unsaturated carboxylic acid (or unsaturated carboxylic acid anhydride) such as maleic acid, A fluororesin having a polar group is preferably used. As said polyolefin resin, the polyolefin resin enumerated as a thermoplastic resin used for the above-mentioned moisture-impermeable thermoplastic resin layer can be used.

極性基を有するフッ素樹脂としては、ガスバリア層用樹脂組成物に用いた極性官能基含有フッ素樹脂と同種類のフッ素樹脂であってもよいし、異なる種類のフッ素樹脂であってもよい。経済性と性能のバランスの点から、カルボン酸変性ポリオレフィン系樹脂が好ましく、より好ましくはカルボン酸変性ポリプロピレン系樹脂若しくはカルボン酸変性ポリエチレン系樹脂又はこれらの混合物である。   The fluororesin having a polar group may be the same type of fluororesin as the polar functional group-containing fluororesin used in the gas barrier layer resin composition, or may be a different type of fluororesin. In view of the balance between economy and performance, a carboxylic acid-modified polyolefin resin is preferable, and a carboxylic acid-modified polypropylene resin, a carboxylic acid-modified polyethylene resin, or a mixture thereof is more preferable.

なお、上記水分不透過性熱可塑性樹脂層、接着層には、成形加工性や諸物性の向上のために、公知一般の各種添加剤や改質剤、充填材、他の樹脂等を本発明の効果を阻害しない範囲で配合してもよい。   The moisture-impermeable thermoplastic resin layer and the adhesive layer are coated with known general additives, modifiers, fillers, other resins, etc. in order to improve moldability and various physical properties. You may mix | blend in the range which does not inhibit this effect.

また、本発明で用いるガスバリア層用樹脂組成物は、PVA樹脂、EVOH系樹脂に対して接着性を有するため、特殊な態様としてPVA樹脂やEVOH系樹脂を上記水分不透過性熱可塑性樹脂層に用いることも可能である。例えば、ポリアミド樹脂層/EVOH系樹脂層/ガスバリア層、ポリアミド樹脂層/EVOH系樹脂層/ガスバリア層/EVOH系樹脂層等の層構成が挙げられる。上記ポリアミド樹脂は、好ましくは共重合ポリアミドであり、特に好ましくはナイロン6・66である。   Moreover, since the gas barrier layer resin composition used in the present invention has adhesiveness to PVA resin and EVOH resin, as a special embodiment, PVA resin or EVOH resin is used as the moisture-impermeable thermoplastic resin layer. It is also possible to use it. Examples of the layer structure include polyamide resin layer / EVOH-based resin layer / gas barrier layer, polyamide resin layer / EVOH-based resin layer / gas barrier layer / EVOH-based resin layer, and the like. The polyamide resin is preferably a copolymerized polyamide, and particularly preferably nylon 6.66.

補強層としては、繊維を用いた補強繊維層や、ゴムを用いた補強ゴム層等が挙げられる。補強繊維層としては、例えば、ポリパラフェニレンベンズビスオキサゾール(PBO)繊維、アラミド繊維、炭素繊維等の高強度繊維、不織布、布などを用いることができる。好ましくは、補強繊維層であり、さらに好ましくは高強度樹維を用いた補強繊維層であり、特に好ましくは高強度繊維を編み組したシート層又は当該シートをスパイラルに巻き付けてなる補強繊維層である。
尚、ホースの補強層の構造は、例えば、特開2010−31993号公報に記載の構造に準じて構成してもよい。ホースの補強層としては、ポリパラフェニレンベンズビスオキサゾール(PBO)繊維を用いることが好ましい。貯蔵容器の補強層としては、炭素繊維が好適に使用される。
Examples of the reinforcing layer include a reinforcing fiber layer using fibers and a reinforcing rubber layer using rubber. As the reinforcing fiber layer, for example, high-strength fibers such as polyparaphenylene benzbisoxazole (PBO) fibers, aramid fibers, and carbon fibers, nonwoven fabrics, cloths, and the like can be used. Preferably, it is a reinforcing fiber layer, more preferably a reinforcing fiber layer using high-strength fibers, particularly preferably a sheet layer braided with high-strength fibers or a reinforcing fiber layer formed by winding the sheet around a spiral. is there.
In addition, you may comprise the structure of the reinforcement layer of a hose according to the structure of Unexamined-Japanese-Patent No. 2010-31993, for example. As the reinforcing layer of the hose, it is preferable to use polyparaphenylene benzbisoxazole (PBO) fiber. Carbon fibers are preferably used as the reinforcing layer of the storage container.

本発明のホースまたは貯蔵容器が、ガスバリア層用樹脂組成物からなる層を少なくとも1層含む多層構造からなるホース又は貯蔵容器である場合、多層構造を構成する樹脂層の各層を構成する材料の平均線膨張係数が等しいことが好ましい。また、ガスバリア層に対する多層構造を構成する層の平均線膨張係数の比(多層構造を構成する材料/ガスバリア層用樹脂組成物)は、通常2以下、好ましくは0.8〜1.8、特に好ましくは1〜1.8である。好ましくはガスバリア層に対する該ガスバリア層の隣接層の比(隣接層を構成する材料/ガスバリア層用樹脂組成物)が上記範囲内であり、特に好ましくはガスバリア層に対する最外層の比(最外層を構成する材料/ガスバリア層用樹脂組成物)が上記範囲内である。   When the hose or storage container of the present invention is a hose or storage container having a multilayer structure including at least one layer composed of the resin composition for the gas barrier layer, the average of the materials constituting each layer of the resin layer constituting the multilayer structure It is preferable that the linear expansion coefficients are equal. The ratio of the average linear expansion coefficient of the layer constituting the multilayer structure to the gas barrier layer (material constituting the multilayer structure / resin composition for gas barrier layer) is usually 2 or less, preferably 0.8 to 1.8, particularly Preferably it is 1-1.8. Preferably, the ratio of the adjacent layer of the gas barrier layer to the gas barrier layer (material constituting the adjacent layer / resin composition for the gas barrier layer) is within the above range, and particularly preferably the ratio of the outermost layer to the gas barrier layer (configures the outermost layer). Material / resin composition for gas barrier layer) is within the above range.

平均線膨張係数の比を1に近づけることにより、水素暴露の高圧時と脱圧時の環境変化に対して各層が類似挙動を示し、ガスバリア層が他の層の挙動に追随できるので、ガスバリア層の受ける屈曲等の負荷を軽減することができる。
かかる平均線膨張係数の比は、同一条件で測定した平均線膨張係数を適用することが可能である。さらには、高圧ガス設備における実用的な温度範囲である、−60〜40℃における平均線膨張係数を用いることが好ましい。
By making the ratio of the average linear expansion coefficient close to 1, each layer shows similar behavior with respect to environmental changes during high-pressure and decompression of hydrogen exposure, and the gas barrier layer can follow the behavior of other layers. It is possible to reduce the load such as bending.
As the ratio of the average linear expansion coefficient, an average linear expansion coefficient measured under the same conditions can be applied. Furthermore, it is preferable to use an average linear expansion coefficient at −60 to 40 ° C., which is a practical temperature range in high-pressure gas equipment.

特に、補強層として、上記高強度繊維を編み組したシート層又は当該シートをスパイラルに巻き付けてなる層(補強繊維層)を有する場合、補強繊維層の線膨張係数を考慮して、多層構造の層材料の組み合わせを選定することが好ましい。なお、平均線膨張係数は、熱機械分析装置(TMA)によって測定することができる。   In particular, when the reinforcing layer has a sheet layer braided with the high-strength fibers or a layer formed by winding the sheet in a spiral (reinforcing fiber layer), considering the linear expansion coefficient of the reinforcing fiber layer, the multilayer structure It is preferable to select a combination of layer materials. The average linear expansion coefficient can be measured by a thermomechanical analyzer (TMA).

ホースの内径、外径、厚み、長さは、用途により選定すればよく、例えばその内径は通常1〜180mm、好ましくは3〜100mm、特に好ましくは4.5〜50mm、殊に好ましくは5〜12mmである。外径は、通常5〜200mm、好ましくは7〜100mm、特に好ましくは9〜50mm、殊に好ましくは10〜15mmである。その厚さは、通常1〜50mm、好ましくは1〜20mm、特に好ましくは1〜10mmである。長さは、通常0.5〜300m、好ましくは1〜200m、特に好ましくは3〜100mである。   The inner diameter, outer diameter, thickness, and length of the hose may be selected depending on the application. For example, the inner diameter is usually 1 to 180 mm, preferably 3 to 100 mm, particularly preferably 4.5 to 50 mm, particularly preferably 5 to 5. 12 mm. The outer diameter is usually 5 to 200 mm, preferably 7 to 100 mm, particularly preferably 9 to 50 mm, and particularly preferably 10 to 15 mm. The thickness is usually 1 to 50 mm, preferably 1 to 20 mm, particularly preferably 1 to 10 mm. The length is usually 0.5 to 300 m, preferably 1 to 200 m, particularly preferably 3 to 100 m.

貯蔵容器の厚み、サイズは、用途により選定すればよく、例えばその厚みは通常1〜100mm、好ましくは3〜80mm、特に好ましくは3〜50mmである。貯蔵容器の容量サイズとしては、特に限定しないが、容量が通常5〜500Lであり、好ましくは10〜450Lであり、特に好ましくは50〜400Lである。形状は円柱状、角柱状、樽状など適宜選択できる。   What is necessary is just to select the thickness and size of a storage container by a use, for example, the thickness is 1-100 mm normally, Preferably it is 3-80 mm, Most preferably, it is 3-50 mm. Although it does not specifically limit as a capacity | capacitance size of a storage container, A capacity | capacitance is 5-500L normally, Preferably it is 10-450L, Most preferably, it is 50-400L. The shape can be appropriately selected from a cylindrical shape, a prismatic shape, a barrel shape, and the like.

ガスバリア層の厚みは、ホース又は貯蔵容器の厚みの通常5〜60%、特に8〜45%の範囲で選択することが好ましい。   The thickness of the gas barrier layer is preferably selected in the range of usually 5 to 60%, particularly 8 to 45% of the thickness of the hose or storage container.

本発明の高圧ガス用ホース又は貯蔵容器は、ガスバリア層が、水素バリア性に優れ、しかもEVOH系樹脂の弱点であった柔軟性を有し、且つ水素脆化しにくく、初期の機械的強度を長期間にわたって保持することができる。さらに、高圧の水素の曝露、脱圧が繰り返されてもブリスタの発生を抑制できるので、多層構造を有するホース又は貯蔵容器において、ガスバリア層と隣接する層(例えば、補強層、水分不透過性熱可塑性樹脂層)との界面での接着強度の低下も防止できる。よって、本発明の高圧ガス用ホース又は貯蔵容器は、高圧(通常35〜90MPa、好ましくは50〜90MPa)の水素の曝露、脱圧が繰り返され、水素脆化に対する優れた耐久性が要求される、水素ステーションでの高圧水素供給用ホースあるいはTypeIV貯蔵容器等の貯蔵容器、燃料電池の水素ガス燃料貯蔵容器やホースとして、好適に用いることができる。   In the hose or storage container for high pressure gas of the present invention, the gas barrier layer has excellent hydrogen barrier properties, and has the flexibility that was a weak point of EVOH-based resins, is difficult to hydrogen embrittlement, and has long initial mechanical strength. Can be held for a period of time. Furthermore, since the generation of blisters can be suppressed even after repeated exposure and depressurization of high-pressure hydrogen, in a hose or storage container having a multilayer structure, a layer adjacent to the gas barrier layer (for example, a reinforcing layer, moisture-impermeable heat) A decrease in adhesive strength at the interface with the plastic resin layer) can also be prevented. Therefore, the high-pressure gas hose or storage container of the present invention is repeatedly exposed to high pressure (usually 35 to 90 MPa, preferably 50 to 90 MPa) and depressurized, and is required to have excellent durability against hydrogen embrittlement. It can be suitably used as a high-pressure hydrogen supply hose at a hydrogen station or a storage container such as a Type IV storage container, a hydrogen gas fuel storage container or a hose of a fuel cell.

特に、A成分として、側鎖1,2−ジオール含有EVOH系樹脂を用いた場合、側鎖1,2−ジオール含有PVA樹脂を用いた場合と比べて、耐屈曲性に顕著に優れ、線膨張係数もナイロン11、ナイロン12やポリオレフィン系樹脂に近づけることができる。従って、仕様において屈曲頻度が高いホース用途には、側鎖1,2−ジオール含有EVOH系樹脂が、より好適に用いられる。   In particular, when the side chain 1,2-diol-containing EVOH resin is used as the component A, the flex resistance is remarkably superior and the linear expansion is greater than when the side chain 1,2-diol-containing PVA resin is used. The coefficient can also be close to that of nylon 11, nylon 12, or polyolefin resin. Therefore, the side chain 1,2-diol-containing EVOH resin is more preferably used for hose applications having a high bending frequency in the specifications.

なお、以上の説明は、水素ガスを中心に説明したが、本発明にかかるガスバリア層が優れたガスバリア性を発揮できる対象のガスは、高圧水素ガスに限定されない。水素ガスのほか、ヘリウム、窒素、酸素、空気などの高圧ガス供給用ホース又は貯蔵容器としても好ましく用いることができる。とりわけ、水素、ヘリウムといった分子量10未満のガスに対しては、ガスバリア性と耐屈曲性等の機械的強度の双方を満足させることは、従来公知の材料では困難であったが、本発明にかかるガスバリア層は双方の要求を満足することができる。   In addition, although the above description was demonstrated centering on hydrogen gas, the gas of the object which the gas barrier layer concerning this invention can exhibit the gas barrier property which was excellent is not limited to high pressure hydrogen gas. In addition to hydrogen gas, it can also be preferably used as a hose for supplying high pressure gas such as helium, nitrogen, oxygen, air, or a storage container. In particular, for a gas having a molecular weight of less than 10 such as hydrogen and helium, it has been difficult to satisfy both the gas barrier property and the mechanical strength such as the bending resistance with a conventionally known material. The gas barrier layer can satisfy both requirements.

以下、実施例を挙げて本発明を具体的に説明するが、本発明は以下の実施例の記載に限定されるものではない。
尚、例中「部」とあるのは、断りのない限り重量基準を意味する。
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, this invention is not limited to description of a following example.
In the examples, “part” means a weight basis unless otherwise specified.

〔測定評価方法〕
はじめに、以下の実施例で採用した測定評価方法について説明する。
(1)平均重合度
JIS K6726に準じて分析した。
[Measurement evaluation method]
First, the measurement evaluation method employed in the following examples will be described.
(1) Average polymerization degree It analyzed according to JISK6726.

(2)側鎖1,2−ジオール構造単位(1a)の含有量
1H−NMR(300MHzプロトンNMR、d6−DMSO溶液、内部標準物質:テトラメチルシラン)にて測定した積分値より算出した。
(2) Content of side chain 1,2-diol structural unit (1a)
It was calculated from the integral value measured by 1 H-NMR (300 MHz proton NMR, d6-DMSO solution, internal standard substance: tetramethylsilane).

(3)ケン化度
残存酢酸ビニル及び3,4−ジアセトキシ−1−ブテンの加水分解に要するアルカリ消費量より算出した。
(3) Degree of saponification Calculated from the alkali consumption required for hydrolysis of residual vinyl acetate and 3,4-diacetoxy-1-butene.

(4)水素透過係数
厚み300μmのフィルム試験片を、図1に示す水素透過度測定装置のサンプル部分にセットし、41℃雰囲気下で、水素圧0.5MPa、0.9MPaの加圧水素をフィルムサンプルに向けて送り、透過した水素を回収し、透過係数(cc・20μm/m2・day・atm)を測定した。
図1中、TIは温度計(Temperature Indicator)、PIは圧力計(Pressure Indicator)、MFCは流量制御装置(Mass Flow Controller)を表す。
(4) Hydrogen Permeation Coefficient A film test piece having a thickness of 300 μm is set in the sample portion of the hydrogen permeability measuring apparatus shown in FIG. 1, and hydrogen is applied at a hydrogen pressure of 0.5 MPa and 0.9 MPa under a 41 ° C. atmosphere. The sample was sent to the sample, the permeated hydrogen was collected, and the permeation coefficient (cc · 20 μm / m 2 · day · atm) was measured.
In FIG. 1, TI represents a thermometer (Temperature Indicator), PI represents a pressure gauge (Pressure Indicator), and MFC represents a flow rate control device (Mass Flow Controller).

(5)水素溶解量(ppm)
直径13mm×厚さ3mmの試験片を、60℃で70MPaの水素ガスに24時間曝露した後、試験片を昇温脱離ガス分析装置(TDA:Thermal desorption Gas Analysis)中で定温に保ち、水素放出量の経時変化をガスクロマトグラフィにより測定した。得られた残存水素量の経時変化について、下記に示す拡散方程式の多項式近似解を飽和水素量と拡散係数Dを未知定数として、最小二乗法によりフィッティングすることにより決定した。
(5) Hydrogen dissolution amount (ppm)
A test piece having a diameter of 13 mm and a thickness of 3 mm was exposed to hydrogen gas of 70 MPa at 60 ° C. for 24 hours, and then the test piece was kept at a constant temperature in a thermal desorption gas analysis (TDA) to generate hydrogen. The time course of the release amount was measured by gas chromatography. The change over time in the amount of residual hydrogen obtained was determined by fitting a polynomial approximation solution of the diffusion equation shown below by the least square method using the saturated hydrogen amount and the diffusion coefficient D as unknown constants.

なお、式中、CH,R(t)(wt・ppm)は、水素曝露後の減圧時点からの経過時間t(sec)における試験片中の水素量、CH0(wt・ppm)は、水素曝露時の飽和水素量、D(m2/sec)は拡散係数、βnは0次ベッセル関数の根、l(m)とρ(m)は、それぞれ試験片の厚さと半径を示す。なお、かかる測定法の参考文献としては、日本機械学会論文集A編75巻756号1063〜1073頁を参照できる。 In the formula, C H, R (t) (wt · ppm) is the amount of hydrogen in the test piece at the elapsed time t (sec) from the time of decompression after hydrogen exposure, and C H0 (wt · ppm) is The amount of saturated hydrogen at the time of hydrogen exposure, D (m 2 / sec) is the diffusion coefficient, βn is the root of the zero-order Bessel function, and l (m) and ρ (m) indicate the thickness and radius of the test piece, respectively. In addition, as a reference for such a measurement method, refer to the Japan Society of Mechanical Engineers, Vol. 75, Volume 756, pages 1063-1107.

(6)耐屈曲疲労性
得られた乾燥フィルムを使用し、ゲルボフレックステスター(理学工業社製)にて、23℃、50%RH条件下で捻じり試験を行った。25インチ水平に進んだ後に、3.5インチで440°の捻じりを100回(40サイクル/分)加えた後、該フィルムの中央部28cm×17cmあたりのピンホール発生数を数えた。かかるテストを5回試行し、その平均値を求めた。
(6) Bending fatigue resistance Using the obtained dry film, a torsion test was performed with a gelbo flex tester (manufactured by Rigaku Corporation) under the conditions of 23 ° C. and 50% RH. After proceeding horizontally for 25 inches, a twist of 440 ° at 3.5 inches was added 100 times (40 cycles / min), and the number of pinholes generated per 28 cm × 17 cm in the center of the film was counted. This test was tried 5 times, and the average value was obtained.

(7)水素脆性(耐久性)
(7−1)高圧水素ガス曝露−脱圧サイクル試験後のブリスタ発生の有無
図3に示すように構成された水素高圧ガス設備を用いて、「試験体」と記載された部分に、図2に示すダンベル状試験片(ISO 527-3に準拠し、b1=6、b2=25、L0=25、l1=33、L=80、l3=115、h=1、単位はいずれもmm)をセットして、図4に示す圧力パターン(0.5時間で水素ガスを70MPaまで昇圧し、かかる高圧水素環境下に20時間曝露し、30秒間で脱圧後0.5時間静置)を1サイクルとして、20サイクル繰り返した(合計曝露時間400時間)。
高圧水素ガス曝露−脱圧サイクル試験後、試験片を取り出し、試験片の状態を目視で観察し、ブリスタの発生の有無(通常、ダンベル部分に発生)を観察した。ダンベル部分にブリスタが発生しなかった場合を「○」(ブリスタ個数:0個)、ブリスタ発生個数が50個以上300個未満の場合を「△」、ブリスタ発生個数が300個以上の場合を「×」として、評価した。
(7) Hydrogen embrittlement (durability)
(7-1) Presence / absence of blister generation after high-pressure hydrogen gas exposure-depressurization cycle test Using a hydrogen high-pressure gas equipment configured as shown in FIG. Dumbbell-shaped test piece (in accordance with ISO 527-3, b1 = 6, b2 = 25, L 0 = 25, l 1 = 33, L = 80, l 3 = 115, h = 1, all units mm), and the pressure pattern shown in FIG. 4 (hydrogen gas pressure was increased to 70 MPa in 0.5 hours, exposed to such a high-pressure hydrogen environment for 20 hours, allowed to stand for 0.5 hours after depressurization in 30 seconds. ) Was repeated 20 times (total exposure time 400 hours).
After the high-pressure hydrogen gas exposure-depressurization cycle test, the test piece was taken out, the state of the test piece was visually observed, and the presence or absence of blisters (usually generated in the dumbbell portion) was observed. A case where no blister occurred in the dumbbell portion is indicated by “◯” (the number of blisters: 0), a case where the number of blisters generated is 50 or more and less than 300, “△”, and a case where the number of blisters generated is 300 or more. Evaluation was made as “×”.

(7−2)高圧水素ガス曝露−脱圧サイクル試験による機械的強度の変化
上記高圧水素ガス曝露−脱圧サイクル試験を行った後、引張試験を行った。弾性率、破断伸び(%)が、高圧水素ガス曝露−脱圧サイクル試験を行う前の弾性率、破断伸びと比べたときの変化度合が、10%以下であり、かつ亀裂が生じる等の水素脆化が認められなかった場合を「○」とし、10%を超える場合又は亀裂が生じる等の水素脆化が認められた場合を「×」とした。
(7-2) Change in mechanical strength by high-pressure hydrogen gas exposure-depressurization cycle test After the high-pressure hydrogen gas exposure-depressurization cycle test, a tensile test was performed. Hydrogen whose elastic modulus and elongation at break (%) are less than 10% when compared to the elastic modulus and elongation at break before high-pressure hydrogen gas exposure-decompression cycle test, and cracking occurs The case where no embrittlement was observed was indicated as “◯”, and the case where it exceeded 10% or a case where hydrogen embrittlement such as a crack was observed was indicated as “x”.

(8)モルフォルジーの観察(ドメインサイズ)(μm)
下記方法により得られた樹脂ペレット(No.4,5,7,13)をエポキシ樹脂で包埋し、ウルトラークライオミクロトームを用いて切断した。かかる切断面をイオンエッチング処理し、Osコーターを用いて導電処理し、走査電子顕微鏡で観察(10000倍)し、ドメインの平均サイズを求めた。
(8) Observation of morphology (domain size) (μm)
Resin pellets (No. 4, 5, 7, 13) obtained by the following method were embedded with an epoxy resin and cut using an ultra cryomicrotome. The cut surface was subjected to ion etching treatment, conductive treatment using an Os coater, and observed with a scanning electron microscope (10,000 times), and the average size of the domains was obtained.

(9)平均水素透過量(cc/m・hr)
内径8.3mm、外径10.3mmの押出成形品であるホースを作成し、ホース内に70MPaで1000時間、水素を通過させ、ホース外に漏出した水素量を測定し、同一厚みで1時間当たりの水素透過量(cc/m・hr)に換算した。
(9) Average hydrogen permeation rate (cc / m · hr)
A hose which is an extruded product having an inner diameter of 8.3 mm and an outer diameter of 10.3 mm is prepared, hydrogen is passed through the hose at 70 MPa for 1000 hours, and the amount of hydrogen leaked out of the hose is measured. Converted to per hydrogen permeation amount (cc / m · hr).

(10)多層構造ホースの高圧水素暴露−脱圧サイクル試験
図5に示すように構成された高圧水素設備の取り付け位置1〜8のいずれかに、ホース試験体をセットし、−30℃、70MPaの高圧水素を、所定の圧力パターン(0.6MPaから70MPaへの昇圧:180秒、70MPaの保持:2秒、70MPaから0.6MPaへの脱圧:8秒、0.6MPaの保持:170秒)を1サイクルとして、2200サイクル繰り返すことにより、水素暴露−脱圧試験を行った。かかる試験は、−20℃雰囲気下で行った。いずれの取り付け位置のホースであっても、試験中のホースの平均表面温度は−22〜−11℃であった。
図5中、NVはニードルバルブ、SVはストップバルブを表す。
(10) High-pressure hydrogen exposure of multi-layered hose-decompression cycle test A hose specimen is set at any one of the attachment positions 1 to 8 of the high-pressure hydrogen equipment configured as shown in FIG. Of high pressure hydrogen in a predetermined pressure pattern (pressurization from 0.6 MPa to 70 MPa: 180 seconds, holding 70 MPa: 2 seconds, releasing pressure from 70 MPa to 0.6 MPa: 8 seconds, holding 0.6 MPa: 170 seconds. ) As one cycle, hydrogen exposure-depressurization test was performed by repeating 2200 cycles. This test was performed in an atmosphere at -20 ° C. Regardless of the hose at any attachment position, the average surface temperature of the hose under test was −22 to −11 ° C.
In FIG. 5, NV represents a needle valve, and SV represents a stop valve.

高圧水素ガス暴露−脱圧サイクル試験後、試験体を取り出し、試験体を解体後に内部を目視で観察し、ガスバリア層の破断が確認された場合を「×」、ガスバリア層に折れ痕が確認されたが破断していなかった場合を「△」、折れがなかった場合を「○」とした。   After the high-pressure hydrogen gas exposure-depressurization cycle test, the test specimen is taken out, the inside of the test specimen is visually observed, and the inside of the specimen is visually observed. However, the case where it was not broken was designated as “Δ”, and the case where it was not broken was designated as “◯”.

(11)線膨張係数(α)
微小定荷重熱膨張計(リガク製)を用いて、昇温速度10℃/min、荷重10g、プローブ5mmφで試験を行い、得られた結果から線膨張係数(10-5/℃)を算出した。
(11) Linear expansion coefficient (α)
Using a micro constant load thermal dilatometer (manufactured by Rigaku), a temperature increase rate of 10 ° C./min, a load of 10 g, a probe of 5 mmφ was tested, and a linear expansion coefficient (10 −5 / ° C.) was calculated from the obtained results. .

〔使用した樹脂の種類及び調製〕
(1)側鎖1,2−ジオール含有EVOH系樹脂
冷却コイルを持つ1m3の重合容器に酢酸ビニルを500部、メタノール80部、アセチルパーオキシド250ppm(対酢酸ビニル)、クエン酸30ppm(対酢酸ビニル)、および3,4−ジアセトキシ−1−ブテンを13部を仕込み、系を窒素ガスで一旦置換した後、次いでエチレンで置換して、エチレン圧が42kg/cm2となるまで圧入して、攪拌しながら、67℃まで昇温して、重合率が60%になるまで6時間重合した。
その後、重合反応を停止してエチレン含有量32モル%、重合度450のエチレン−酢酸ビニル−ジアセトキシブテン三元共重合体を得た。次いで、エチレン−酢酸ビニル−ジアセトキシブテン三元共重合体を含有する反応液を蒸留塔に供給し、塔下部からメタノール蒸気を導入することで未反応酢酸ビニルを除去し、エチレン−酢酸ビニル−ジアセトキシブテン三元共重合のメタノール溶液を得た。
[Type and preparation of resin used]
(1) EVOH resin containing side chain 1,2-diol 500 parts vinyl acetate, 80 parts methanol, 250 ppm acetyl peroxide (compared to vinyl acetate), 30 ppm citric acid (compared to acetic acid) in a 1 m 3 polymerization vessel with a cooling coil Vinyl) and 3,4-diacetoxy-1-butene are charged in 13 parts, and the system is temporarily replaced with nitrogen gas, then is replaced with ethylene, and is injected until the ethylene pressure is 42 kg / cm 2 . While stirring, the temperature was raised to 67 ° C., and polymerization was carried out for 6 hours until the polymerization rate reached 60%.
Thereafter, the polymerization reaction was stopped to obtain an ethylene-vinyl acetate-diacetoxybutene terpolymer having an ethylene content of 32 mol% and a polymerization degree of 450. Subsequently, the reaction liquid containing ethylene-vinyl acetate-diacetoxybutene terpolymer is supplied to a distillation column, methanol vapor is introduced from the bottom of the column to remove unreacted vinyl acetate, and ethylene-vinyl acetate- A methanol solution of diacetoxybutene terpolymer was obtained.

該エチレン−酢酸ビニル−ジアセトキシブテン三元共重合体のメタノール溶液に、該共重合体中の残存酢酸基に対して、0.008当量の水酸化ナトリウムを含むメタノール溶液を供給することによりケン化を行い、一般式(1a)で表わされる1,2−ジオール構造単位の含有量が1.0モル%含有するEVOH系樹脂のメタノール溶液(EVOH系樹脂30%、メタノール70%)を得た。かかるEVOH系樹脂のアセチルオキシ部分のケン化度は99.8モル%であり、乾燥後ペレットのMFRは12g/10分(210℃、荷重2160g)であった。   By supplying a methanol solution containing 0.008 equivalents of sodium hydroxide to the remaining acetic acid groups in the copolymer to a methanol solution of the ethylene-vinyl acetate-diacetoxybutene terpolymer. To obtain a methanol solution of EVOH resin (30% EVOH resin, 70% methanol) containing 1.0 mol% of the 1,2-diol structural unit represented by the general formula (1a). . The saponification degree of the acetyloxy portion of the EVOH resin was 99.8 mol%, and the MFR of the pellets after drying was 12 g / 10 minutes (210 ° C., load 2160 g).

得られた側鎖1,2−ジオール含有EVOH系樹脂のメタノール溶液を冷水中に、ストランド状に押し出し、得られたストランド状物(含水多孔質体)をカッターで切断し、直径3.8mm、長さ4mmの樹脂分35%の側鎖1,2−ジオール含有EVOH系樹脂の多孔性ペレットを得た。
得られた多孔性ペレットを、EVOH系樹脂100部に対してナトリウム分0.08部となるまで水洗した。かかる多孔性ペレットを、EVOH系樹脂100部に対して酢酸0.5部/リン酸カルシウム0.004部(リン換算)、ホウ酸0.025部(ホウ素換算)を含有する水500部に4時間浸漬させた。次いで、得られた多孔性ペレットを、窒素気流下で110℃で8時間乾燥を行い、EVOH系樹脂100部に対しナトリウム分0.03部、リン酸根0.0005部(リン換算)、ホウ酸0.02部(ホウ素換算)を含有するEVOH系樹脂のペレットを得た。得られた側鎖1,2−ジオール含有EVOH系樹脂のMFRは4.1g/10分(210℃、荷重2160g)、4.9g/10分(220℃、荷重2160g)であり、結晶化度は45%であった。
The obtained methanol solution of the side chain 1,2-diol-containing EVOH resin was extruded into cold water in the form of a strand, and the resulting strand (water-containing porous material) was cut with a cutter, and the diameter was 3.8 mm, A porous pellet of EVOH resin containing a side chain 1,2-diol having a resin content of 35% and a length of 4 mm was obtained.
The obtained porous pellet was washed with water until the sodium content was 0.08 part with respect to 100 parts of EVOH resin. This porous pellet is immersed in 500 parts of water containing 0.5 part of acetic acid / 0.004 part of calcium phosphate (phosphorus equivalent) and 0.025 part of boric acid (boron equivalent) with respect to 100 parts of EVOH resin for 4 hours. I let you. Subsequently, the obtained porous pellet was dried at 110 ° C. for 8 hours under a nitrogen stream, and 0.03 part of sodium content, 0.0005 part of phosphate group (phosphorus equivalent), boric acid with respect to 100 parts of EVOH resin. EVOH-based resin pellets containing 0.02 part (in terms of boron) were obtained. The MFR of the obtained side chain 1,2-diol-containing EVOH resin is 4.1 g / 10 min (210 ° C., load 2160 g), 4.9 g / 10 min (220 ° C., load 2160 g), and the crystallinity Was 45%.

(2)側鎖1,2−ジオール含有PVA樹脂(PVA1,2,3)
還流冷却器、攪拌機を備えた反応容器に、酢酸ビニル68.0部、メタノール23.8部、3,4−ジアセトキシ−ブテン8.2部を仕込み、アゾビスイソブチロニトリルを0.3モル%(対仕込み酢酸ビニル)投入し、攪拌しながら窒素気流下で温度を上昇させ、重合を開始した。酢酸ビニルの重合率が90%となった時点で、m−ジニトロベンゼンを添加して重合を終了し、続いて、メタノール蒸気を吹き込む方法により未反応の酢酸ビニルモノマーを系外に除去し、共重合体のメタノール溶液とした。
次いで、上記メタノール溶液を、さらにメタノールで希釈し、濃度45%に調整して、ニーダーに仕込み、溶液温度を35℃に保ちながら、水酸化ナトリウムの2%メタノール溶液を共重合体中の酢酸ビニル構造単位及び3,4−ジアセトキシ−1−ブテン構造単位の合計量1モルに対して11.5ミリモルとなる割合で加えてケン化を行った。
ケン化が進行するとともに、ケン化物が析出し、粒子状となった時点で濾別した。得られたケン化物をメタノールでよく洗浄して熱風乾燥機で乾燥し、上記(1a)式の側鎖1,2−ジオール構造単位を有するPVA樹脂(PVA2)を得た。
(2) Side chain 1,2-diol-containing PVA resin (PVA1,2,3)
A reaction vessel equipped with a reflux condenser and a stirrer was charged with 68.0 parts of vinyl acetate, 23.8 parts of methanol, and 8.2 parts of 3,4-diacetoxy-butene, and 0.3 mol of azobisisobutyronitrile. % (Vs. vinyl acetate charged) was added and the temperature was raised under a nitrogen stream while stirring to initiate polymerization. When the polymerization rate of vinyl acetate reaches 90%, m-dinitrobenzene is added to terminate the polymerization, and then unreacted vinyl acetate monomer is removed from the system by blowing methanol vapor. A methanol solution of the polymer was used.
Next, the methanol solution was further diluted with methanol, adjusted to a concentration of 45%, charged into a kneader, and while maintaining the solution temperature at 35 ° C., a 2% methanol solution of sodium hydroxide was added to vinyl acetate in the copolymer. Saponification was performed by adding 11.5 mmol with respect to 1 mol of the total amount of the structural unit and 3,4-diacetoxy-1-butene structural unit.
As saponification progressed, the saponified product precipitated and became particulate, and was filtered off. The obtained saponified product was thoroughly washed with methanol and dried with a hot air dryer to obtain a PVA resin (PVA2) having a side chain 1,2-diol structural unit of the above formula (1a).

得られた側鎖1,2−ジオール含有PVA樹脂のケン化度は99.9モル%、平均重合度は470、一般式(1a)で表わされる1,2−ジオール構造単位の含有量は6モル%であった。   The obtained side chain 1,2-diol-containing PVA resin has a saponification degree of 99.9 mol%, an average polymerization degree of 470, and a content of 1,2-diol structural unit represented by the general formula (1a) is 6. Mol%.

3,4−ジアセトキシ−1−ブテンの配合量を変更することにより、重合度470で、側鎖1,2−ジオール含有率が異なる2種類のポリビニルアルコール(PVA1、PVA3)を合成した。   By changing the blending amount of 3,4-diacetoxy-1-butene, two types of polyvinyl alcohol (PVA1, PVA3) having a polymerization degree of 470 and different side chain 1,2-diol contents were synthesized.

(3)極性官能基含有フッ素樹脂(酸無水物基含有フッ素樹脂)(B)
内容積が430リットルの撹拌機付き重合槽を脱気し、溶媒として、1−ヒドロトリデカフルオロヘキサン200.7kg及び1,3−ジクロロ−1,1,2,2,3−ペンタフルオロプロパン(旭硝子社製AK225cb、以下「AK225cb」という。)55.8kgを仕込み、さらに、重合モノマーとして、1.3kgのCH2=CH(CF24Fを仕込んだ。次いで、重合モノマーとして、122.2kgのヘキサフルオロプロピレン(HFP)、36.4kgのテトラフルオロエチレン(TFE)、1.2kgのエチレン(E)を圧入し、重合槽内を66℃に昇温し、重合開始剤としてtert−ブチルペルオキシピバレート85.8gを仕込み、重合を開始させた。重合中圧力が一定になるように組成TFE/E=54/46(モル比)のモノマー混合ガスを連続的に仕込み、TFE/Eのモノマー混合ガスに対して、1.0モル%となるようにCH2=CH(CF24Fを、0.35モル%となるように極性官能基含有化合物である無水イタコン酸を、それぞれ連続的に仕込んだ。重合開始3.6時間後、モノマー混合ガスの29kgを仕込んだ時点で、重合槽内温を室温まで降温するとともに常圧までパージした。
(3) Polar functional group-containing fluororesin (acid anhydride group-containing fluororesin) (B)
A polymerization tank equipped with a stirrer having an internal volume of 430 liters was degassed, and 200.7 kg of 1-hydrotridecafluorohexane and 1,3-dichloro-1,1,2,2,3-pentafluoropropane ( AK225cb manufactured by Asahi Glass Co., Ltd., hereinafter referred to as “AK225cb”.) 55.8 kg was charged, and 1.3 kg of CH 2 ═CH (CF 2 ) 4 F was further charged as a polymerization monomer. Next, 122.2 kg of hexafluoropropylene (HFP), 36.4 kg of tetrafluoroethylene (TFE) and 1.2 kg of ethylene (E) were injected as polymerization monomers, and the temperature in the polymerization tank was raised to 66 ° C. Then, 85.8 g of tert-butyl peroxypivalate was charged as a polymerization initiator to initiate polymerization. A monomer mixed gas having a composition TFE / E = 54/46 (molar ratio) is continuously charged so that the pressure is constant during the polymerization, so that the pressure becomes 1.0 mol% with respect to the monomer mixed gas of TFE / E. Were charged with CH 2 ═CH (CF 2 ) 4 F and itaconic anhydride, which is a polar functional group-containing compound, in an amount of 0.35 mol%. 3.6 hours after the start of polymerization, when 29 kg of the monomer mixed gas was charged, the temperature in the polymerization tank was lowered to room temperature and purged to normal pressure.

得られたスラリーから溶媒を留去して、極性官能基として酸無水物基を含有するフッ素樹脂を得、これを130℃で4時間真空乾燥することにより、30kgの極性官能基含有フッ素樹脂(B)を得た。   The solvent was distilled off from the obtained slurry to obtain a fluororesin containing an acid anhydride group as a polar functional group, and this was vacuum-dried at 130 ° C. for 4 hours to obtain 30 kg of a polar functional group-containing fluororesin ( B) was obtained.

極性官能基含有フッ素樹脂(B)の結晶化温度は175℃、Q値は12mm3/秒、コモノマー組成はTFE/E/HFP/CH2=CH(CF24F/無水イタコン酸=47.83/42.85/7.97/1.00/0.35(モル%)であった。また、MFR2.3g/10分(210℃、2160g)であった。 The crystallization temperature of the polar functional group-containing fluororesin (B) is 175 ° C., the Q value is 12 mm 3 / second, the comonomer composition is TFE / E / HFP / CH 2 ═CH (CF 2 ) 4 F / itaconic anhydride = 47 It was 0.83 / 42.85 / 7.97 / 1.00 / 0.35 (mol%). Moreover, it was MFR2.3g / 10min (210 degreeC, 2160g).

(4)ポリアミド樹脂
以下に示すポリアミド樹脂を用いた。
・ナイロン11:アルケマ社の「Rilsan BESN P40」(商標)、溶融粘度(220℃、せん断速度122sec-1)は1557Pa・s
・ナイロン6・66:三菱エンジニアリング社製の「Novamid2420J」(商標)、溶融粘度(220℃、せん断速度122sec-1)は1368Pa・s、SP値25.8である。
(4) Polyamide resin The polyamide resin shown below was used.
Nylon 11: “Rilsan BESN P40” (trademark) manufactured by Arkema Co., Ltd., melt viscosity (220 ° C., shear rate 122 sec −1 ) is 1557 Pa · s
Nylon 6.66: “Novamid 2420J” (trademark) manufactured by Mitsubishi Engineering Corporation, melt viscosity (220 ° C., shear rate 122 sec −1 ) is 1368 Pa · s, SP value 25.8.

(5)カルボン酸変性ポリオレフィン系樹脂
以下に示すポリオレフィン系樹脂を用いた。
・カルボン酸変性LLDPE:三井化学社製「アドマー NF518」、溶融粘度(せん断速度122sec-1、1149Pa・s)、MFRは3.4g/10min(220℃、2160g)
・カルボン酸変性PP:三井化学社製「アドマー QF551」、溶融粘度(せん断速度122sec-1、549Pa・s)、MFRは2.4g/10min(220℃、2160g)
(5) Carboxylic acid-modified polyolefin resin The following polyolefin resin was used.
Carboxylic acid modified LLDPE: “Admer NF518” manufactured by Mitsui Chemicals, melt viscosity (shear rate 122 sec −1 , 1149 Pa · s), MFR 3.4 g / 10 min (220 ° C., 2160 g)
Carboxylic acid modified PP: “Admer QF551” manufactured by Mitsui Chemicals, melt viscosity (shear rate: 122 sec −1 , 549 Pa · s), MFR: 2.4 g / 10 min (220 ° C., 2160 g)

〔ペレット及びフィルムの作製〕
使用した樹脂及び樹脂組成物は、二軸押出機(テクノベル社製)を用いて、下記条件でペレット化した。尚、樹脂組成物の調製は、各樹脂をドライブレンドした後、二軸押出機で押し出した。
スクリュー径:15mm
L/D=60mm
回転方向:同方向
スクリューパターン:3か所練り
スクリーンメッシュ:90/90メッシュ
スクリュー回転数 :200rpm
温度パターン:C1/C2/C3/C4/C5/C6/C7/C8/D=180/200/210/210/215/215/220/220/220℃
樹脂温度:225℃
吐出量:1.5kg/hr
[Preparation of pellets and films]
The used resin and resin composition were pelletized under the following conditions using a twin screw extruder (manufactured by Technobell). The resin composition was prepared by dry blending each resin and then extruding with a twin screw extruder.
Screw diameter: 15mm
L / D = 60mm
Rotation direction: Same direction Screw pattern: Kneaded in 3 places Screen mesh: 90/90 mesh Screw rotation speed: 200 rpm
Temperature pattern: C1 / C2 / C3 / C4 / C5 / C6 / C7 / C8 / D = 180/200/210/210/215/215/220/220/220 ℃
Resin temperature: 225 ° C
Discharge rate: 1.5kg / hr

得られた樹脂(又は樹脂組成物)のペレットを、二軸押出機(テクノベル社)にて下記条件で製膜し、厚さ30μmのフィルムを得た。
直径(D)15mm
L/D=60
スクリュー:練り3か所
ベント :C7オーブン
設定温度:C1/C2/C3/C4/C5/C6/C7/C8/D=180/200/210/210/215/215/220/220/220℃
スクリーンメッシュ:90/90メッシュ
スクリュー回転数:200rpm
樹脂温度:225℃
吐出量:1.5kg/hr
ダイ:幅300mm、コートハンガータイプ
引取速度:2.6m/min
ロール温度:50℃
エアーギャップ:1cm
The obtained resin (or resin composition) pellets were formed using a twin-screw extruder (Technobel) under the following conditions to obtain a film having a thickness of 30 μm.
Diameter (D) 15mm
L / D = 60
Screw: Kneading 3 places Vent: C7 oven Setting temperature: C1 / C2 / C3 / C4 / C5 / C6 / C7 / C8 / D = 180/200/210/210/215/215/220/220/220 ° C
Screen mesh: 90/90 mesh Screw rotation speed: 200 rpm
Resin temperature: 225 ° C
Discharge rate: 1.5kg / hr
Die: width 300mm, coat hanger type take-up speed: 2.6m / min
Roll temperature: 50 ° C
Air gap: 1cm

〔水素ガスバリア性の比較〕
上記で調製した側鎖1,2−ジオール含有率が異なるPVA1、PVA2、PVA3、側鎖1,2−ジオール含有EVOH系樹脂、ナイロン11の水素透過係数を測定し、比較した。結果を表1に示す。
[Comparison of hydrogen gas barrier properties]
The hydrogen permeation coefficients of PVA1, PVA2, PVA3, side chain 1,2-diol-containing EVOH resin, and nylon 11 with different side chain 1,2-diol contents prepared above were measured and compared. The results are shown in Table 1.

表1から、ナイロン11では、41℃、0.5MPaにおける水素透過係数が2.1×104cc/m2・day・atmであり、かかる値は側鎖1,2−ジオール含有EVOH系樹脂の150倍以上、側鎖1,2−ジオール含有PVA樹脂の3000倍以上である。したがって、ビニルアルコール構造単位、側鎖1,2−ジオール構造単位を有する樹脂は、ビニルアルコール構造単位を有しない熱可塑性樹脂と比べて、非常にガスバリア性に優れていることがわかる。 From Table 1, the nylon 11 has a hydrogen permeability coefficient of 2.1 × 10 4 cc / m 2 · day · atm at 41 ° C. and 0.5 MPa, and this value is EVOH resin containing a side chain 1,2-diol. 150 times or more, and 3000 times or more of the side chain 1,2-diol-containing PVA resin. Therefore, it can be seen that a resin having a vinyl alcohol structural unit and a side chain 1,2-diol structural unit is very excellent in gas barrier properties as compared with a thermoplastic resin having no vinyl alcohol structural unit.

側鎖1,2−ジオール含有EVOH系樹脂では、水素透過係数は130cc/m2・day・atmであり、側鎖1,2−ジオール含有PVA系樹脂よりも低かった。しかしながら、PVA1,PVA2,PVA3の結果から、側鎖1,2−ジオール含有率の増大に伴い、水素透過係数が減少していくことが認められる。よって、側鎖1,2−ジオール含有EVOH系樹脂において、側鎖1,2−ジオール含有率を高めることにより、水素ガスバリア性を高めることを期待できる。 The side chain 1,2-diol-containing EVOH resin had a hydrogen permeability coefficient of 130 cc / m 2 · day · atm, which was lower than that of the side chain 1,2-diol-containing PVA resin. However, from the results of PVA1, PVA2, and PVA3, it is recognized that the hydrogen permeation coefficient decreases as the side chain 1,2-diol content increases. Therefore, in the side chain 1,2-diol-containing EVOH resin, it can be expected that the hydrogen gas barrier property is improved by increasing the side chain 1,2-diol content.

〔ガスバリア用樹脂組成物の調製及び評価〕
表2に示した組成(重量比率)を有する樹脂組成物について、上記方法によりペレット及びフィルムを作成し、水素溶解量、耐屈曲性、耐水素脆性を測定評価した。結果を表2に示す。また、樹脂組成物No.3の走査電子顕微鏡写真(10000倍)を図6に示す。写真右下の白線の長さが1μmである。
[Preparation and evaluation of resin composition for gas barrier]
About the resin composition which has a composition (weight ratio) shown in Table 2, the pellet and the film were created by the said method, and hydrogen dissolution amount, bending resistance, and hydrogen embrittlement resistance were measured and evaluated. The results are shown in Table 2. Resin composition No. A scanning electron micrograph of No. 3 (10,000 times) is shown in FIG. The length of the white line at the lower right of the photograph is 1 μm.

側鎖1,2−ジオール含有EVOH系樹脂については、表3のNo.1−4からわかるように、極性官能基含有フッ素樹脂を含有することで、側鎖1,2−ジオール含有EVOH系樹脂の耐水素脆性効果に影響を及ぼすことなく、組成物の耐屈曲性が改善された。混合比率(側鎖1,2−ジオール含有EVOH系樹脂/極性官能基含有フッ素樹脂)が9/1〜7/3の範囲において、極性官能基含有フッ素樹脂の含有割合が高くなるほど、ピンホール数が減少し、耐屈曲性を大幅に改善できたことがわかる。図6から、極性官能基含有フッ素樹脂と側鎖1,2−ジオール含有EVOH系樹脂との組成物では、ドメインサイズが小さく、B成分が微分散されていた。上記耐久性の改善は、単なる側鎖1,2−ジオール含有EVOH系樹脂と極性官能基含有フッ素樹脂との混合物ではなく、ポリマーアロイ化したことによると考えられる。   For the side chain 1,2-diol-containing EVOH-based resin, no. As can be seen from 1-4, by containing the polar functional group-containing fluororesin, the flex resistance of the composition can be improved without affecting the hydrogen embrittlement resistance of the side chain 1,2-diol-containing EVOH resin. Improved. When the mixing ratio (side chain 1,2-diol-containing EVOH resin / polar functional group-containing fluororesin) is in the range of 9/1 to 7/3, the higher the content ratio of the polar functional group-containing fluororesin, the more pinholes It can be seen that the bending resistance was greatly improved. From FIG. 6, in the composition of the polar functional group-containing fluororesin and the side chain 1,2-diol-containing EVOH resin, the domain size was small and the B component was finely dispersed. The improvement in the durability is considered to be due to the polymer alloy, not just a mixture of the side chain 1,2-diol-containing EVOH resin and the polar functional group-containing fluororesin.

一方、側鎖1,2−ジオール含有EVOH系樹脂及びナイロン11を含有する組成物の場合、側鎖1,2−ジオール含有EVOH系樹脂単独の場合と比べて耐屈曲性を改善することはできたが(No.1とNo.5の比較)が、耐水素脆性は、側鎖1,2−ジオール含有EVOH系樹脂単独、側鎖1,2−ジオール含有EVOH系樹脂及び極性官能基含有フッ素樹脂を含有する組成物よりも低下した(No.1−4とNo.5との比較)。   On the other hand, in the case of the composition containing the side chain 1,2-diol-containing EVOH resin and nylon 11, the bending resistance can be improved as compared with the case of the side chain 1,2-diol-containing EVOH resin alone. However, the hydrogen embrittlement resistance is that the side chain 1,2-diol-containing EVOH resin alone, the side chain 1,2-diol-containing EVOH resin, and the polar functional group-containing fluorine. It was lower than the composition containing the resin (comparison between No. 1-4 and No. 5).

また、No.3とNo.6との比較から、側鎖1,2−ジオール含有EVOH系樹脂と極性官能基含有フッ素樹脂とを組み合わせた組成物の方が、側鎖1,2−ジオール含有PVA樹脂と極性官能基含有フッ素樹脂とを組み合わせた組成物よりも耐屈曲性に優れていることがわかる。   No. 3 and no. 6 shows that the composition in which the side chain 1,2-diol-containing EVOH resin and the polar functional group-containing fluororesin are combined has a side chain 1,2-diol-containing PVA resin and the polar functional group-containing fluorine. It turns out that it is excellent in bending resistance rather than the composition which combined resin.

〔ホースNo.11−13の作製及び評価〕
表3に示すような樹脂(組成物)及び層構造を有するホース(内径8.3mm、外径10.3mm、長さ1m)を、押出成形により作製した。作製したホースの外側面に高強度繊維であるポリパラフェニレンベンズビスオキサゾール(PBO)繊維を用いた補強繊維層(厚み2mm)を設け、ホース(内径8.3mm、外径16mm、長さ1m)を得た。
得られた補強繊維層有りのホースNo.11〜13内に70MPaで1000時間、水素を通過させ、ホース外に漏出した水素量を測定し、同一厚みで1時間あたりの水素透過量(cc/m・hr)に換算した。結果を表3に示す。なお、ホースNo.13は、ガスバリア層として、上記で合成した側鎖1,2−ジオール含有PVA2及びナイロン6・66を8:2(重量比)で含有する組成物を用いたものである。
[Hose No. Production and evaluation of 11-13]
A hose (inner diameter: 8.3 mm, outer diameter: 10.3 mm, length: 1 m) having a resin (composition) and a layer structure as shown in Table 3 was prepared by extrusion molding. A reinforcing fiber layer (thickness 2 mm) using polyparaphenylene benzbisoxazole (PBO) fiber, which is a high-strength fiber, is provided on the outer surface of the produced hose, and the hose (inner diameter 8.3 mm, outer diameter 16 mm, length 1 m) Got.
Hose No. obtained with reinforcing fiber layer Hydrogen was passed through 11 to 13 at 70 MPa for 1000 hours, and the amount of hydrogen leaked out of the hose was measured and converted to hydrogen permeation amount (cc / m · hr) per hour at the same thickness. The results are shown in Table 3. In addition, hose No. No. 13 uses a composition containing the side chain 1,2-diol-containing PVA2 synthesized above and nylon 6.66 in a weight ratio of 8: 2 as a gas barrier layer.

ガスバリア層として、側鎖1,2−ジオール含有EVOH系樹脂と極性官能基含有フッ素樹脂を含有するEVOH系樹脂組成物No.3を使用し、さらに内側層に極性官能基含有フッ素樹脂層を設けたホース(No.12)は、側鎖1,2−ジオール含有EVOH系樹脂よりも水素透過係数が小さい側鎖1,2−ジオール含有PVA樹脂とナイロン6・66とを組合せた組成物をガスバリア層とした場合(No.13)よりも、水素透過量を低減できた。   As the gas barrier layer, EVOH resin composition No. 1 containing EVOH resin containing side chain 1,2-diol and fluororesin containing polar functional group was used. 3 and a hose (No. 12) provided with a polar functional group-containing fluororesin layer on the inner layer has a side chain 1,2 having a smaller hydrogen permeability coefficient than the side chain 1,2-diol-containing EVOH resin. -The hydrogen permeation amount could be reduced as compared with the case where a composition comprising a combination of a diol-containing PVA resin and nylon 6,66 was used as a gas barrier layer (No. 13).

〔ホースNo.21−25の作製及び評価〕
表4に示すような樹脂(組成物)及び層構造を有するホース(外側層の厚み800μm、中間層の厚み100μm、内側層の厚み100μm、内径8.3mm、外径10.3mm、長さ1m)を、押出成形により作製した。得られたホースの外側面に高強度繊維であるポリパラフェニレンベンズビスオキサゾール(PBO)繊維を用いた補強繊維層(厚み2mm)を設け、ホース(内径8.3mm、外径16mm、長さ1m)を得た。
得られた補強繊維層有りのホースNo.21−25を用いて、平均水素透過量を測定した後、高圧水素サイクル試験を行った。測定結果を表4に示す。また、ナイロン11、EVOH系樹脂組成物No.3,4、PVA樹脂組成物No.6の線膨張係数を測定した結果を表5に示す。
[Hose No. Production and evaluation of 21-25]
Resin (composition) and hose having a layer structure as shown in Table 4 (outer layer thickness 800 μm, intermediate layer thickness 100 μm, inner layer thickness 100 μm, inner diameter 8.3 mm, outer diameter 10.3 mm, length 1 m) ) Was produced by extrusion. A reinforcing fiber layer (thickness 2 mm) using polyparaphenylene benzbisoxazole (PBO) fibers, which are high-strength fibers, is provided on the outer surface of the obtained hose, and the hose (inner diameter 8.3 mm, outer diameter 16 mm, length 1 m). )
Hose No. obtained with reinforcing fiber layer After measuring the average hydrogen permeation amount using 21-25, a high-pressure hydrogen cycle test was conducted. Table 4 shows the measurement results. Further, nylon 11, EVOH resin composition No. 3 and 4, PVA resin composition No. The results of measuring the linear expansion coefficient of 6 are shown in Table 5.

ホースNo.22−24は、内側層の材料が異なるホースである。内側層の樹脂の種類により高圧水素サイクル試験後のガスバリア層のダメージ状態が異なっていた。これは、ガスバリア層と内側層に用いられる材料との線膨張係数の比(内側層を構成する樹脂/ガスバリア層用樹脂組成物)が相違することにより、サイクル試験中に受ける屈曲頻度、レベルが相違していたためであると考えられる。   Hose No. 22-24 is a hose from which the material of an inner layer differs. The damage state of the gas barrier layer after the high-pressure hydrogen cycle test was different depending on the type of resin in the inner layer. This is because the bending frequency ratio between the material used for the gas barrier layer and the inner layer (resin composition for the inner layer / resin composition for the gas barrier layer) is different, and the bending frequency and level received during the cycle test are different. This is probably because of the difference.

ガスバリア層として、PVA樹脂組成物No.6を用いたホースNo.25は、試験前の水素透過量が少なく、ガスバリア層としてEVOH系樹脂組成物No.4を用いたホースNo.22−24よりガスバリア性が優れていた。しかしながら、かかるホースNo.25は、高圧水素ガス暴露−脱圧サイクル試験によりガスバリア層が破断し、No.22−24よりもガスバリア性が低下した。   As the gas barrier layer, PVA resin composition No. Hose No. 6 using No. 25 has a small amount of hydrogen permeation before the test, and EVOH resin composition No. Hose No. 4 using The gas barrier property was superior to 22-24. However, such hose no. No. 25 is a gas barrier layer fractured by a high-pressure hydrogen gas exposure-depressurization cycle test. Gas barrier properties were lower than 22-24.

多層構造のホースでは、高圧ガス暴露、脱圧の繰り返しにより、各層の材料に基づく膨張差、これによりホースに屈曲が発生する。従って、頻繁に屈曲を受ける仕様下では、耐屈曲性に優れた側鎖1,2−ジオール含有EVOH系樹脂を用いた樹脂組成物をガスバリア層として用いることにより、組成物が本来有する優れた水素ガスバリア性を長期間にわたって保持できる。   In a hose having a multi-layer structure, repeated expansion of exposure to high pressure gas and depressurization causes a difference in expansion based on the material of each layer, which causes bending of the hose. Therefore, under specifications that frequently undergo bending, by using a resin composition using a side chain 1,2-diol-containing EVOH resin excellent in bending resistance as a gas barrier layer, the excellent hydrogen inherent in the composition is obtained. Gas barrier properties can be maintained over a long period of time.

なお、外側側のナイロン11と中間層のEVOH系樹脂組成物No.4の平均線膨張係数の比(外側層を構成する樹脂/ガスバリア層用樹脂組成物)は−60〜40℃、40〜80℃のいずれも1.6倍である。したがって、多層構造の場合、多層を構成する層材料の平均線線膨張係数の比が通常2以下となるように、各層の材料を選定することが好ましいことがわかる。   The outer side nylon 11 and the intermediate layer EVOH resin composition No. The ratio of the average linear expansion coefficient of 4 (resin composition constituting the outer layer / resin composition for gas barrier layer) is 1.6 times both of −60 to 40 ° C. and 40 to 80 ° C. Therefore, in the case of a multilayer structure, it can be seen that it is preferable to select the material of each layer so that the ratio of the average linear expansion coefficients of the layer materials constituting the multilayer is usually 2 or less.

本発明の高圧ガス用ホース又は貯蔵容器は、高度なガスバリア性と柔軟性を兼ね備え、特に水素のような小さな分子のガスに対しても高度なガスバリア性及び耐水素脆性を有し、しかも伸び、柔軟性にも優れているので、ガスステーションにおいて、燃料電池への水素ガス供給に用いるような、高圧水素ガス供給用のホース、ガスステーションの高圧ガス貯蔵容器や車両搭載用の水素ガス燃料貯蔵容器として有用である。   The hose or storage container for high-pressure gas of the present invention has a high gas barrier property and flexibility, and has a high gas barrier property and hydrogen embrittlement resistance, especially against a small molecule gas such as hydrogen, and is extended. Because of its excellent flexibility, the gas station has a high-pressure hydrogen gas supply hose, a high-pressure gas storage container for the gas station, and a hydrogen gas fuel storage container for on-vehicle use. Useful as.

Claims (14)

(A)下記一般式(1)で表わされる1,2ジオール構造単位を含有するエチレン−ビニルエステル共重合体ケン化物、及び(B)水酸基と反応又は水素結合を形成する極性官能基を有するフッ素樹脂を含有する樹脂組成物からなる層を少なくとも1層有する高圧ガス用ホース又は貯蔵容器。
〔式中、R〜R3はそれぞれ独立して水素原子又は有機基を表し、Xは単結合又は結合鎖を示し、R4〜Rはそれぞれ独立して水素原子又は有機基を示す〕
(A) a saponified ethylene-vinyl ester copolymer containing a 1,2-diol structural unit represented by the following general formula (1), and (B) a fluorine having a polar functional group that reacts with a hydroxyl group or forms a hydrogen bond. A high-pressure gas hose or storage container having at least one layer made of a resin composition containing a resin.
[Wherein, R 1 to R 3 each independently represents a hydrogen atom or an organic group, X represents a single bond or a bond chain, and R 4 to R 6 each independently represent a hydrogen atom or an organic group]
前記(A)エチレン−ビニルエステル共重合体ケン化物と前記(B)極性官能基含有フッ素樹脂との含有重量比(A/B)が9.5/0.5〜5/5である請求項1に記載の高圧ガス用ホース又は貯蔵容器。 The content weight ratio (A / B) of the (A) saponified ethylene-vinyl ester copolymer and the (B) polar functional group-containing fluororesin is 9.5 / 0.5 to 5/5. The hose or storage container for high pressure gas according to 1. 前記(B)フッ素樹脂の極性官能基がカルボニル含有基又は水酸基である請求項1又は2に記載の高圧ガス用ホース又は貯蔵容器。 The hose or storage container for high pressure gas according to claim 1 or 2, wherein the polar functional group of the (B) fluororesin is a carbonyl-containing group or a hydroxyl group. 前記カルボニル含有基が、カーボネート基、ハロホルミル基、アルデヒド基、ケトン基、カルボキシル基、アルコキシカルボニル基、カルボン酸無水物基、及びイソシアナト基からなる群より選択される少なくとも1種である請求項1〜3のいずれか1項に記載の高圧ガス用ホース又は貯蔵容器。 The carbonyl-containing group is at least one selected from the group consisting of a carbonate group, a haloformyl group, an aldehyde group, a ketone group, a carboxyl group, an alkoxycarbonyl group, a carboxylic anhydride group, and an isocyanato group. The hose for high pressure gas or the storage container according to any one of 3. 前記(B)極性官能基含有フッ素樹脂は、構成モノマーとして、少なくとも、テトラフルオロエチレンを含む共重合体である請求項1〜4のいずれか1項に記載の高圧ガス用ホース又は貯蔵容器。 5. The high-pressure gas hose or storage container according to claim 1, wherein the (B) polar functional group-containing fluororesin is a copolymer containing at least tetrafluoroethylene as a constituent monomer. 前記(B)極性官能基含有フッ素樹脂は、構成モノマーとして、さらにエチレンを含む請求項5に記載の高圧ガス用ホース又は貯蔵容器。 The high-pressure gas hose or storage container according to claim 5, wherein the (B) polar functional group-containing fluororesin further contains ethylene as a constituent monomer. 前記(B)極性官能基含有フッ素樹脂を構成するフッ素樹脂は、エチレン/テトラフルオロエチレン系共重合体、エチレン/テトラフルオロエチレン/ヘキサフルオロプロピレン系共重合体、エチレン/テトラフルオロエチレン/CH2=CH−Rf(Rfは炭素数2〜6のペルフルオロアルキル基)系共重合体、及びエチレン/テトラフルオロエチレン/ヘキサフルオロプロピレン/CH2=CH−Rf(Rfは炭素数2〜6のペルフルオロアルキル基)系共重合体からなる群より選択される一種である請求項6に記載の高圧ガス用ホース又は貯蔵容器。 The fluororesin constituting the (B) polar functional group-containing fluororesin is an ethylene / tetrafluoroethylene copolymer, an ethylene / tetrafluoroethylene / hexafluoropropylene copolymer, ethylene / tetrafluoroethylene / CH 2 = CH-Rf (Rf is a perfluoroalkyl group having 2 to 6 carbon atoms) copolymer, and ethylene / tetrafluoroethylene / hexafluoropropylene / CH 2 = CH-Rf ( Rf is a perfluoroalkyl group having 2 to 6 carbon atoms The high-pressure gas hose or storage container according to claim 6, which is a kind selected from the group consisting of :) a copolymer. 前記(B)極性官能基含有フッ素樹脂の融点が120〜240℃である請求項1〜7のいずれか1項に記載の高圧ガス用ホース又は貯蔵容器。 The melting point of the (B) polar functional group-containing fluororesin is 120 to 240 ° C. The hose for high pressure gas or the storage container according to any one of claims 1 to 7. 前記(A)エチレン−ビニルエステル共重合体ケン化物における、前記側鎖1,2−ジオール構造単位の含有率は、0.1〜30モル%である請求項1〜8のいずれか1項に記載の高圧ガス用ホース又は貯蔵容器。 The content of the side chain 1,2-diol structural unit in the saponified ethylene-vinyl ester copolymer (A) is 0.1 to 30 mol%. The hose or storage container for high-pressure gas as described. 前記(A)側鎖1,2−ジオール含有ビニルアルコール系樹脂が、エチレン構造単位を20〜60モル%含有するエチレン−ビニルエステル共重合体ケン化物である請求項9に記載の高圧ガス用ホース又は貯蔵容器。 The high-pressure gas hose according to claim 9, wherein the (A) side-chain 1,2-diol-containing vinyl alcohol resin is a saponified ethylene-vinyl ester copolymer containing 20 to 60 mol% of an ethylene structural unit. Or storage container. 前記高圧ガス用ホースまたは貯蔵容器は多層構造を有していて、
前記樹脂組成物と、前記多層構造の該樹脂組成物以外の層を構成する材料との平均線膨張係数の比(多層構造を構成する材料/樹脂組成物)が2以下である請求項1〜10のいずれか1項に記載の高圧ガス用ホース又は貯蔵容器。
The high-pressure gas hose or storage container has a multilayer structure,
The ratio of the average linear expansion coefficient between the resin composition and the material constituting the layer other than the resin composition of the multilayer structure (material / resin composition constituting the multilayer structure) is 2 or less. 11. The high-pressure gas hose or storage container according to any one of 10 above.
前記多層構造は、外側層、中間層、及び内側層を有し、前記樹脂組成物からなる層が中間層又は内側層である請求項11に記載の高圧ガス用ホースまたは貯蔵容器。 The high-pressure gas hose or storage container according to claim 11, wherein the multilayer structure includes an outer layer, an intermediate layer, and an inner layer, and the layer made of the resin composition is an intermediate layer or an inner layer. 前記多層構造のうち、前記樹脂組成物で構成される層以外の少なくともいずれか1層の構成材料は、ポリオレフィン系樹脂、ポリアミド系樹脂、及び極性基含有フッ素樹脂からなる群より選ばれる少なくとも1種である請求項11又は12に記載の高圧ガス用ホース又は貯蔵容器。 Of the multilayer structure, at least one of the constituent materials other than the layer composed of the resin composition is at least one selected from the group consisting of polyolefin resins, polyamide resins, and polar group-containing fluororesins. The hose or storage container for high pressure gas according to claim 11 or 12. 分子量10未満の高圧ガス用である、請求項1〜13のいずれか1項に記載の高圧ガス用ホース又は貯蔵容器。 The hose or storage container for high pressure gas according to any one of claims 1 to 13, which is for high pressure gas having a molecular weight of less than 10.
JP2013162999A 2012-08-20 2013-08-06 High pressure gas hose or storage container Active JP6192418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013162999A JP6192418B2 (en) 2012-08-20 2013-08-06 High pressure gas hose or storage container

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012181585 2012-08-20
JP2012181585 2012-08-20
JP2013162999A JP6192418B2 (en) 2012-08-20 2013-08-06 High pressure gas hose or storage container

Publications (2)

Publication Number Publication Date
JP2014058659A true JP2014058659A (en) 2014-04-03
JP6192418B2 JP6192418B2 (en) 2017-09-06

Family

ID=50615407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013162999A Active JP6192418B2 (en) 2012-08-20 2013-08-06 High pressure gas hose or storage container

Country Status (1)

Country Link
JP (1) JP6192418B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210082367A (en) * 2019-12-24 2021-07-05 장 춘 페트로케미컬 컴퍼니 리미티드 Ethylene-vinyl alcohol copolymer resin composition, and multi-layer structure thereof
KR20210086958A (en) * 2019-12-30 2021-07-09 장 춘 페트로케미컬 컴퍼니 리미티드 Ethylene vinyl alcohol copolymer resin composition as well as films and multi-layer structures thereof
US11512196B2 (en) 2019-12-30 2022-11-29 Chang Chun Petrochemical Co., Ltd. Fluorine-containing ethylene-vinyl alcohol copolymer resin composition as well as mixture and blend thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005121194A1 (en) * 2004-06-10 2005-12-22 The Nippon Synthetic Chemical Industry Co., Ltd. Ethylene/vinyl alcohol copolymer and molded object thereof
JP2006328195A (en) * 2005-05-25 2006-12-07 Daikin Ind Ltd Resin composition and fuel container comprising the same
WO2009128411A1 (en) * 2008-04-14 2009-10-22 日本合成化学工業株式会社 Resin composition and multi-layered construct using the resin composition
JP2011006673A (en) * 2009-05-28 2011-01-13 Nippon Synthetic Chem Ind Co Ltd:The Resin composition, and molded article and multilayered structure using the same
WO2012005288A1 (en) * 2010-07-09 2012-01-12 日本合成化学工業株式会社 Saponified ethylene/vinyl ester copolymer composition and multilayer structure using the composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005121194A1 (en) * 2004-06-10 2005-12-22 The Nippon Synthetic Chemical Industry Co., Ltd. Ethylene/vinyl alcohol copolymer and molded object thereof
JP2006328195A (en) * 2005-05-25 2006-12-07 Daikin Ind Ltd Resin composition and fuel container comprising the same
WO2009128411A1 (en) * 2008-04-14 2009-10-22 日本合成化学工業株式会社 Resin composition and multi-layered construct using the resin composition
JP2011006673A (en) * 2009-05-28 2011-01-13 Nippon Synthetic Chem Ind Co Ltd:The Resin composition, and molded article and multilayered structure using the same
WO2012005288A1 (en) * 2010-07-09 2012-01-12 日本合成化学工業株式会社 Saponified ethylene/vinyl ester copolymer composition and multilayer structure using the composition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210082367A (en) * 2019-12-24 2021-07-05 장 춘 페트로케미컬 컴퍼니 리미티드 Ethylene-vinyl alcohol copolymer resin composition, and multi-layer structure thereof
KR102415598B1 (en) 2019-12-24 2022-06-30 장 춘 페트로케미컬 컴퍼니 리미티드 Ethylene-vinyl alcohol copolymer resin composition, and multi-layer structure thereof
KR20210086958A (en) * 2019-12-30 2021-07-09 장 춘 페트로케미컬 컴퍼니 리미티드 Ethylene vinyl alcohol copolymer resin composition as well as films and multi-layer structures thereof
KR20210086959A (en) * 2019-12-30 2021-07-09 장 춘 페트로케미컬 컴퍼니 리미티드 Ethylene vinyl alcohol copolymer resin composition as well as films and multi-layer structures thereof
KR102413801B1 (en) 2019-12-30 2022-06-27 장 춘 페트로케미컬 컴퍼니 리미티드 Ethylene vinyl alcohol copolymer resin composition as well as films and multi-layer structures thereof
KR102463956B1 (en) * 2019-12-30 2022-11-04 장 춘 페트로케미컬 컴퍼니 리미티드 Ethylene vinyl alcohol copolymer resin composition as well as films and multi-layer structures thereof
US11512196B2 (en) 2019-12-30 2022-11-29 Chang Chun Petrochemical Co., Ltd. Fluorine-containing ethylene-vinyl alcohol copolymer resin composition as well as mixture and blend thereof

Also Published As

Publication number Publication date
JP6192418B2 (en) 2017-09-06

Similar Documents

Publication Publication Date Title
WO2014021422A1 (en) High-pressure gas hose or storage vessel
JP6620741B2 (en) Saponified ethylene-vinyl ester copolymer resin composition, resin tube for high pressure gas or resin liner for composite container, and high pressure gas hose or composite container
JP4576782B2 (en) Laminated resin molded product and multilayer molded product
JP7177377B2 (en) fluorine-containing copolymer
JP6468775B2 (en) Saponified ethylene-vinyl ester copolymer and hose or storage container for high pressure gas
JP2006328195A (en) Resin composition and fuel container comprising the same
JP6192418B2 (en) High pressure gas hose or storage container
JP7277843B2 (en) fluorine-containing copolymer
JP6178154B2 (en) High pressure gas hose or storage container
JP4771217B2 (en) Laminated hose made of fluorine-containing copolymer
JP5818349B2 (en) High pressure gas transfer hose
CN116867825A (en) Fluorine-containing copolymer
JP2021025039A (en) Ethylene/vinyl alcohol-based copolymer composition
JP7401837B2 (en) Fluorine-containing copolymer
WO2022158589A1 (en) Ethylene-vinyl alcohol copolymer composition
CN116888165A (en) Fluorine-containing copolymer
WO2022181847A1 (en) Fluorine-containing copolymer
JP2023153022A (en) Fluorine-containing copolymer
JP2008307693A (en) Multilayer film and multilayer stretched film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170808

R150 Certificate of patent or registration of utility model

Ref document number: 6192418

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350