JP2014058340A - Tank for fluid and tank system for fluid - Google Patents
Tank for fluid and tank system for fluid Download PDFInfo
- Publication number
- JP2014058340A JP2014058340A JP2012205139A JP2012205139A JP2014058340A JP 2014058340 A JP2014058340 A JP 2014058340A JP 2012205139 A JP2012205139 A JP 2012205139A JP 2012205139 A JP2012205139 A JP 2012205139A JP 2014058340 A JP2014058340 A JP 2014058340A
- Authority
- JP
- Japan
- Prior art keywords
- water
- water supply
- supply tank
- tank
- fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012530 fluid Substances 0.000 title claims description 71
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 333
- 238000002347 injection Methods 0.000 claims description 34
- 239000007924 injection Substances 0.000 claims description 34
- 230000002093 peripheral effect Effects 0.000 claims description 11
- 239000007788 liquid Substances 0.000 claims description 6
- 230000000052 comparative effect Effects 0.000 description 33
- 238000002474 experimental method Methods 0.000 description 33
- 230000005484 gravity Effects 0.000 description 9
- 239000003651 drinking water Substances 0.000 description 5
- 235000020188 drinking water Nutrition 0.000 description 5
- 230000014759 maintenance of location Effects 0.000 description 4
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- RBTBFTRPCNLSDE-UHFFFAOYSA-N 3,7-bis(dimethylamino)phenothiazin-5-ium Chemical compound C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 RBTBFTRPCNLSDE-UHFFFAOYSA-N 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 1
- 229960000907 methylthioninium chloride Drugs 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000008400 supply water Substances 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
Abstract
Description
本発明は、流体用タンク及び複数の流体用タンクを含む流体用タンクシステムに関し、より詳細には、飲料水を貯留しつつ供給する給水タンク及び複数の給水タンクを含む給水タンクシステムに関する。 The present invention relates to a fluid tank system including a fluid tank and a plurality of fluid tanks, and more particularly to a water supply tank that supplies drinking water while storing drinking water and a water supply tank system including a plurality of water supply tanks.
給水タンクを水道などの流体を供給する設備に介在させる流体の供給システムがある。このシステムにおいては、水道などの設備(以下、「水道等」という)から流体(水道の場合は水、以下、流体を「水」に代表させて記載する)を供給することも、給水タンクに貯留されている水を供給することもできるようになっている。そこで、水道等からの給水が止まった場合に、タンク内部に貯留されている水を供給するという処置が可能である。このようなシステムは、例えば、災害時、水道施設における停電や水道管の破損等による断水といった緊急時に、タンクに貯留されている水を供給することができ、極めて有用である。この場合の水の供給には、自家発電や手動のポンプ等の様々なものを用いることができる。このシステムにあっては、水道等からの給水においても、水道等からタンク内部に流入した水は、給水タンク内部を通って給水タンク出口から給水されるまでに、給水タンク内部に貯留されている水と混ざりつつ流れるものの、給水タンク内部の水が流れにくい領域に水が長期間滞留することがある。 There is a fluid supply system in which a water supply tank is interposed in a facility for supplying fluid such as water. In this system, it is possible to supply a fluid (water in the case of water supply, hereinafter referred to as “water” as a representative) from a facility such as water supply (hereinafter referred to as “water supply”) to a water supply tank. The stored water can also be supplied. Therefore, when water supply from the water supply or the like stops, it is possible to take a measure of supplying water stored in the tank. Such a system is extremely useful because it can supply water stored in a tank in an emergency such as a disaster, water outage due to a power failure or damage to a water pipe in a water supply facility. In this case, various types of water such as private power generation and a manual pump can be used for supplying water. In this system, even when water is supplied from a water supply or the like, the water flowing into the tank from the water supply or the like is stored inside the water supply tank before being supplied from the water supply tank outlet through the water supply tank. Although flowing while mixing with water, water may stay in a region where the water inside the water supply tank is difficult to flow for a long time.
給水タンク内部の水の滞留時間を短くして水の品質を維持するために、旋回流を用いるものもいくつか提案されてきた(特許文献1や2)。特許文献1に係る貯水タンクは、円筒部が横方向に延びるように設置される横型のタンクであり、その内部に滞留水が発生しないように旋回流を形成する(図5参照)。この貯水タンクは、胴体とその両端を塞ぐ鏡板とからなるタンク本体と、タンク本体内へ水を送る流入管と、タンク本体外へ水を戻す流出管とからなり、前記流入管をタンク本体内部で第1枝管と第2枝管とに2つに分岐し、第1枝管の出口を一方の鏡板の中央部近傍まで延ばし、第2枝管の出口をタンク本体の内壁の近傍まで延ばし、第1枝管からの吐出水を鏡板に当てて反転させることで中央流を形成し、第2枝管からの吐出水を内壁に沿わせることで旋回流を形成する。 In order to maintain the quality of the water by shortening the residence time of the water inside the water supply tank, some using a swirling flow have been proposed (Patent Documents 1 and 2). The water storage tank according to Patent Document 1 is a horizontal tank that is installed so that a cylindrical portion extends in the horizontal direction, and forms a swirling flow so that no stagnant water is generated therein (see FIG. 5). This water storage tank is composed of a tank main body consisting of a body and an end plate closing both ends thereof, an inflow pipe for sending water into the tank main body, and an outflow pipe for returning water to the outside of the tank main body. The first branch pipe and the second branch pipe are branched into two, the outlet of the first branch pipe is extended to the vicinity of the center of one end plate, and the outlet of the second branch pipe is extended to the vicinity of the inner wall of the tank body. A central flow is formed by reversing the discharge water from the first branch pipe against the end plate, and a swirling flow is formed by causing the discharge water from the second branch pipe along the inner wall.
特許文献2に係る貯水槽は、円筒部が縦方向に延びるように設置される縦型のタンクであり、そのタンク内に旋回流を生じさせて、貯留水の滞留を防止する(図1参照)。この貯水槽は、水の流入管の吐出口をタンクの上部分に設けると共に、吐出口からタンクの接線方向に水を噴出するように配置する。吐出口から噴出される水は、タンク上部からタンクの周壁内面に沿って下向きの旋回流を形成しながら、タンク底面に向かって流れる。 The water storage tank according to Patent Document 2 is a vertical tank that is installed so that a cylindrical portion extends in the vertical direction, and a swirling flow is generated in the tank to prevent retention of stored water (see FIG. 1). ). The water storage tank is provided with a discharge port of a water inflow pipe at an upper portion of the tank, and is arranged so as to eject water from the discharge port in a tangential direction of the tank. The water ejected from the discharge port flows from the upper part of the tank toward the bottom surface of the tank while forming a downward swirling flow along the inner surface of the peripheral wall of the tank.
しかしながら、特許文献1に係る貯水タンクでは、横型のタンク内に旋回流を形成するものの、流入管が第1枝管及び第2枝管に分岐してこれらの先端から水がタンク内に流入するため、2つの枝管自体がタンク内で流路抵抗となるだけでなく、各枝管から流出する水流自体が弱くなるという問題が生じる。 However, in the water storage tank according to Patent Document 1, although a swirl flow is formed in the horizontal tank, the inflow pipe branches into the first branch pipe and the second branch pipe, and water flows into the tank from these tips. For this reason, there arises a problem that not only the two branch pipes themselves become flow resistance in the tank, but also the water flow itself flowing out from each branch pipe becomes weak.
また、特許文献2に係る貯水槽では、縦型のタンク内に旋回流を形成するものである。この貯水槽を単に横型として設置したとしても、効率よく旋回流を形成することはできない。それは、横型のタンクではその内部に形成される水流に対する重力の影響が縦型のタンクとは異なるためである。また、そもそも、横型のタンクではその内部に形成される水流の方向と重力との関係が複雑に変動し、内部の水流に対する重力の影響が縦型のタンクのものから簡単に予測がつかない。 Moreover, in the water storage tank which concerns on patent document 2, a swirl | vortex flow is formed in a vertical tank. Even if this water tank is simply installed as a horizontal type, a swirl flow cannot be formed efficiently. This is because the effect of gravity on the water flow formed inside the horizontal tank is different from that of the vertical tank. In the first place, in the horizontal tank, the relationship between the direction of the water flow formed inside and the gravity varies in a complicated manner, and the influence of gravity on the internal water flow cannot be easily predicted from that of the vertical tank.
本発明は、横型の流体用タンクにおいて、効率よく螺旋状の旋回流を形成して流体の滞留時間を短くできる流体用タンク及び流体用タンクシステムを提供することを目的とする。 An object of the present invention is to provide a fluid tank and a fluid tank system capable of efficiently forming a spiral swirl flow and shortening the residence time of the fluid in a horizontal fluid tank.
本発明の流体用タンクは上記課題を解決するために、筒状の本体と、前記本体の一端側で内部に流体を導く流入管と、前記流入管から流入する流体を前記内部に噴射する噴射口と、前記本体の他端側で外部に流体を流出する流出口と、前記本体の前記一端側で前記本体を閉鎖する第1鏡板と、前記本体の前記他端側で前記本体を閉鎖する第2鏡板と、を備える横型の流体用タンクであって、前記噴射口は、前記流体用タンク内の上部であって、前記第1鏡板の周部分及び/又は前記周部分の近傍に向いていることを特徴とする流体用タンクである。 In order to solve the above-described problems, a fluid tank according to the present invention has a cylindrical main body, an inflow pipe that guides fluid to the inside on one end side of the main body, and an injection that injects fluid flowing in from the inflow pipe into the inside An outlet, an outlet through which fluid flows out on the other end side of the main body, a first end plate that closes the main body on the one end side of the main body, and the main body is closed on the other end side of the main body A horizontal fluid tank comprising: a second end plate, wherein the injection port is an upper part in the fluid tank, and faces the peripheral portion of the first end plate and / or the vicinity of the peripheral portion. A fluid tank.
前記第1鏡板は、外側に湾曲する曲面部を備える。前記周部分は、前記曲面部の周囲に設けられる。前記第1鏡板は、前記本体と接続される筒状部を備える。前記流入管は前記筒状部の上部に固定される。前記第1鏡板は、前記曲面部と前記筒状部とを接続する肩部を備える。前記肩部は前記周部分である。前記流入管はL字状に形成される。前記流入管の噴射口側部分は、ほぼ水平に配置される。前記流体は液体であり、前記液体は水である。前記流体用タンクを複数備える。前記複数の流体用タンクが直列に接続されるか、前記複数の流体用タンクが並列に接続される。一例として、前記複数の流体用タンクは、それぞれほぼ水平に設置される。 The first end plate includes a curved surface portion that curves outward. The peripheral portion is provided around the curved surface portion. The first end plate includes a cylindrical portion connected to the main body. The inflow pipe is fixed to an upper portion of the cylindrical portion. The first end plate includes a shoulder portion that connects the curved surface portion and the cylindrical portion. The shoulder is the peripheral portion. The inflow pipe is formed in an L shape. The injection port side portion of the inflow pipe is disposed substantially horizontally. The fluid is a liquid and the liquid is water. A plurality of fluid tanks are provided. The plurality of fluid tanks are connected in series, or the plurality of fluid tanks are connected in parallel. As an example, each of the plurality of fluid tanks is installed substantially horizontally.
本発明に係る流体用タンク及び流体用タンクシステムは、横型の流体用タンクにおいて、噴射口が流体用タンク内の上部にあって、第1鏡板の周部分及び/又はその近傍に向けて流体を噴射するため、流体の流れが重力で加速されて効率よく螺旋状の旋回流を形成して、流体用タンク内に流体が長期間滞留することなく、流体の貯留及び供給を行うことができる。 In the fluid tank and the fluid tank system according to the present invention, in the horizontal fluid tank, the injection port is at an upper portion in the fluid tank, and the fluid is directed toward the peripheral portion of the first end plate and / or the vicinity thereof. Since the fluid is jetted, the fluid flow is accelerated by gravity to efficiently form a spiral swirl flow, and the fluid can be stored and supplied without the fluid staying in the fluid tank for a long period of time.
(概要)
本発明に係る流体用タンクは、その内部に流体(液体や気体)を流す際、流入部にほぼL字状の流入管を固定して、鏡板の肩部(周部分)に向けて流体を噴射することにより、流体用タンク内部に螺旋状の旋回流を発生させるものである。この流れによって、タンク内の流体が撹拌されながら螺旋状に押し流され流出口まで移動するため、タンク内に流体が長期間滞留することを防止するものである。
(Overview)
In the fluid tank according to the present invention, when a fluid (liquid or gas) is allowed to flow inside, a substantially L-shaped inflow pipe is fixed to the inflow portion, and the fluid is directed toward the shoulder portion (circumferential portion) of the end plate. By ejecting, a spiral swirl flow is generated inside the fluid tank. This flow prevents the fluid from staying in the tank for a long time because the fluid in the tank is swirled spirally and moved to the outlet while being stirred.
以下、本発明の流体用タンクを給水タンクに適用した各実施形態を図面を用いて説明する。本発明が前提とする流体用タンク(給水タンク)は、その長手方向を横向き又はほぼ水平に設置する横型のタンクである。本発明において、「横」、「横向き」、「ほぼ水平」とは完全に水平である必要はなく、設置されたタンクにおいて内部の流体の置換を妨げない程度に傾斜して設置された状態を含む。また、以下の実施形態、実施例、及び比較例において、同じ部分には同じ名称及び同じ符号を付して、同じ部分の説明は省略する。 Embodiments in which the fluid tank of the present invention is applied to a water supply tank will be described below with reference to the drawings. The fluid tank (water supply tank) on which the present invention is predicated is a horizontal tank whose longitudinal direction is set sideways or substantially horizontally. In the present invention, “horizontal”, “sideways”, and “substantially horizontal” do not have to be completely horizontal, and the installed tank is inclined so as not to prevent the replacement of the internal fluid. Including. Moreover, in the following embodiment, an Example, and a comparative example, the same name and the same code | symbol are attached | subjected to the same part, and description of the same part is abbreviate | omitted.
(第1実施形態)
第1実施形態に係る給水タンク10を、図1〜図4を参照して説明する。図1に示す横型の給水タンク10は、円筒状の本体1と、本体1の開口端の一方を閉鎖する第1鏡板2と、本体1の開口端の他方を閉鎖する第2鏡板3とから構成される。本体1、第1鏡板2、及び第2鏡板3は、それぞれステンレス鋼から形成される。第1鏡板2は、タンクの内側から外側に膨らむ湾曲部(曲面部)2aと、この湾曲部2aと一体に形成される円筒部2bと、湾曲部2aの周縁及び円筒部2bを滑らかに接続する肩部(周部分)2cとを備える。第2鏡板3は、タンク内側から外側に膨らむ湾曲部3aと、この湾曲部3aと一体に形成される円筒部3bと備える。湾曲部2aの外面上部には第1フック7aが、湾曲部3aの外面上部には第2フック7bが、それぞれ溶接等により一体的に設けられる。第1フック7a及び第2フック7bは、給水タンク10を吊上げて移動するために使用される。
(First embodiment)
The water supply tank 10 which concerns on 1st Embodiment is demonstrated with reference to FIGS. 1-4. A horizontal water supply tank 10 shown in FIG. 1 includes a cylindrical main body 1, a first end plate 2 that closes one of the open ends of the main body 1, and a second end plate 3 that closes the other open end of the main body 1. Composed. The main body 1, the first end plate 2, and the second end plate 3 are each formed from stainless steel. The first end plate 2 smoothly connects the curved portion (curved surface portion) 2a bulging outward from the inside of the tank, the cylindrical portion 2b formed integrally with the curved portion 2a, and the peripheral edge of the curved portion 2a and the cylindrical portion 2b. Shoulder portion (circumferential portion) 2c. The second end plate 3 includes a curved portion 3a that swells outward from the inside of the tank, and a cylindrical portion 3b that is formed integrally with the curved portion 3a. A first hook 7a is integrally provided on the outer surface upper portion of the bending portion 2a, and a second hook 7b is integrally provided on the outer surface upper portion of the bending portion 3a by welding or the like. The first hook 7a and the second hook 7b are used for lifting and moving the water supply tank 10.
第1鏡板2の円筒部2bは、その上部に形成された孔の周囲に外側から溶接等により固定される流入部(ソケット)5と、円筒部2bの内側から流入部5に溶接等により固定される流入管6とを備える。流入部5は、図示しない弁により開閉可能である。流入管6は、ほぼ90°に湾曲されたエルボ管であり、給水タンク10内の流入管6の開口端は噴射口6aとなる。噴射口6aは、横型の給水タンク10内の上部、かつ第1鏡板2の湾曲部2aの近傍において、肩部2cに向けて配置される。噴射口6aの開口中心は貯水タンク10内の上部に設けられる。これにより、噴射口6aから噴射された水流は、噴射の方向と重力の方向の合力の方向である斜め下方に加速して流れることになる。この合力の方向は、後述するように、同時に、水流自身の給水タンクの内壁への衝突からのエネルギーも得て経時的に変動し、水流は貯水タンク内を螺旋を描いて流れることができる。なお、給水タンク10内の上部とは、貯水タンク10内の上端から下端までの間の範囲において、好ましくは最も上側の3分の1の範囲とすることができ、より好ましくは最も上側の4分の1の範囲とすることができる。 The cylindrical part 2b of the first end plate 2 is fixed to the inflow part (socket) 5 which is fixed by welding or the like around the hole formed in the upper part thereof, and is fixed to the inflow part 5 from the inside of the cylindrical part 2b by welding or the like. The inflow pipe 6 is provided. The inflow part 5 can be opened and closed by a valve (not shown). The inflow pipe 6 is an elbow pipe curved at approximately 90 °, and the opening end of the inflow pipe 6 in the water supply tank 10 serves as an injection port 6a. The injection port 6a is arranged toward the shoulder 2c in the upper part of the horizontal water supply tank 10 and in the vicinity of the curved part 2a of the first end plate 2. The opening center of the injection port 6 a is provided in the upper part in the water storage tank 10. As a result, the water flow injected from the injection port 6a accelerates and flows obliquely downward, which is the direction of the resultant force of the injection direction and the direction of gravity. As will be described later, the direction of the resultant force also varies with time by obtaining energy from the collision of the water flow itself with the inner wall of the water supply tank, and the water flow can flow in the water storage tank in a spiral. In addition, in the range from the upper end in the water storage tank 10 to a lower end, the upper part in the water supply tank 10 can be made into the range of the uppermost 1/3, More preferably, the uppermost 4 It can be in the range of a fraction.
図2は、図1のA方向からみた給水タンク10の第1鏡板2である。図2に示すように、流入管6の噴射側部分6bは、水平線Hとほぼ平行に設置され、流入管6の流入側部分6cは、垂直線Vとほぼ平行に設置される。 FIG. 2 is the first end plate 2 of the water supply tank 10 as viewed from the direction A in FIG. As shown in FIG. 2, the injection side portion 6 b of the inflow pipe 6 is installed substantially parallel to the horizontal line H, and the inflow side portion 6 c of the inflow pipe 6 is installed substantially parallel to the vertical line V.
図3の給水タンク10の上面図に示すように、流入管6の噴射口6aから噴射される水流の噴射方向Jと、貯水タンク10の長手方向Lとが所定の角度θをなすように、噴射口6aが配置される。この所定の角度θは、噴射口6aから噴射される水流が、第1鏡板2の肩部2cを向く角度である。本実施形態における噴射口6aの配置において、角度θは、好ましくは60〜70°とすることができ、より好ましくは約65°とすることができる。 As shown in the top view of the water supply tank 10 in FIG. 3, the injection direction J of the water flow injected from the injection port 6a of the inflow pipe 6 and the longitudinal direction L of the water storage tank 10 form a predetermined angle θ. An injection port 6a is arranged. The predetermined angle θ is an angle at which the water flow ejected from the ejection port 6 a faces the shoulder 2 c of the first end plate 2. In the arrangement of the injection ports 6a in the present embodiment, the angle θ can be preferably 60 to 70 °, more preferably about 65 °.
図1に示したように、第1鏡板2の円筒部2bの外径は、円筒状の本体1の外径とほぼ同じである。図4に示す第1鏡板2の円筒部2bの末端に設けられる挿入縁部2dは、本体1の内径とほぼ同じ外径とされる。したがって、挿入縁部2dが本体1に差し込まれると、本体1に対して鏡板2が位置が決めされる。同様に、第2鏡板3の円筒部3bの末端に設けられる挿入縁部が本体1内に差し込まれると、本体1に対して第2鏡板3の位置が決まる。 As shown in FIG. 1, the outer diameter of the cylindrical portion 2 b of the first end plate 2 is substantially the same as the outer diameter of the cylindrical main body 1. An insertion edge 2 d provided at the end of the cylindrical portion 2 b of the first end plate 2 shown in FIG. 4 has an outer diameter that is substantially the same as the inner diameter of the main body 1. Therefore, when the insertion edge 2 d is inserted into the main body 1, the end plate 2 is positioned with respect to the main body 1. Similarly, when the insertion edge provided at the end of the cylindrical portion 3 b of the second end plate 3 is inserted into the main body 1, the position of the second end plate 3 is determined with respect to the main body 1.
図1に示すように、第2鏡板3の円筒部3bの上部には、給水タンク10内の空気を抜く空気抜き部(ソケット)8が形成され、空気抜き部8は、図示しない弁により開閉可能である。第2鏡板3の円筒部3bの下部には、給水タンク10内の水を流出する流出口を含む流出部(ソケット)4が形成され、流出部4は、図示しない弁により開閉可能である。 As shown in FIG. 1, an air vent (socket) 8 that vents the air in the water supply tank 10 is formed on the upper portion of the cylindrical portion 3b of the second end plate 3. The air vent 8 can be opened and closed by a valve (not shown). is there. An outflow portion (socket) 4 including an outflow port through which water in the water supply tank 10 flows out is formed at the lower portion of the cylindrical portion 3b of the second end plate 3. The outflow portion 4 can be opened and closed by a valve (not shown).
給水タンク10は、横向き(ほぼ水平)に設置した後、空気抜き部8の弁を開き、流出部4の弁を閉鎖した状態で流入部5の弁を開き、流入部5から注水して貯水することができる。給水タンク10内に水が十分に貯水された状態で、空気抜き部8の弁を閉じ、流入部5及び流出部4の弁を開くと、通常使用状態となる。通常使用状態では、図5及び図6に矢印で示すように、給水タンク10の噴出孔6aからの水流は、第1鏡板の肩部2c及び/又は肩部2cの近傍(以下、肩部2と総称する)に向かって噴射される。噴射された水流は、重力により下向きに曲げられつつ、第1鏡板2の肩部2cに到達して、肩部2cの曲面に沿って旋回流を形成する。同時に、この水流には、肩部2cとの衝突により水流を第2鏡板3側へ向ける力が作用するため、螺旋状の旋回流を形成しつつ第2鏡板3側へ流れて、全ての水が長期間滞留することなく流出部4から流出する。 After the water supply tank 10 is installed sideways (substantially horizontal), the valve of the air vent part 8 is opened, the valve of the inflow part 5 is opened with the valve of the outflow part 4 closed, and water is poured from the inflow part 5 to store water. be able to. When water is sufficiently stored in the water supply tank 10, when the valve of the air vent 8 is closed and the valves of the inflow part 5 and the outflow part 4 are opened, the normal use state is obtained. In the normal use state, as indicated by arrows in FIGS. 5 and 6, the water flow from the ejection hole 6 a of the water supply tank 10 is in the vicinity of the shoulder portion 2 c and / or the shoulder portion 2 c of the first end plate (hereinafter referred to as the shoulder portion 2). Is generally injected). The jetted water flow reaches the shoulder 2c of the first end plate 2 while being bent downward by gravity, and forms a swirling flow along the curved surface of the shoulder 2c. At the same time, a force that directs the water flow toward the second end plate 3 due to the collision with the shoulder portion 2c acts on this water flow, so that it flows to the second end plate 3 side while forming a spiral swirl, and all the water flows. Flows out from the outflow part 4 without staying for a long time.
(第2実施形態)
第2実施形態に係る給水タンクシステム100を、図7を参照して説明する。この給水タンクシステム100は、第1給水タンク10aと、第2給水タンク10bとを直列に接続したものである。第1給水タンク10a及び第2給水タンク10bは、第1実施形態の給水タンク10と同じ構造である。給水タンクシステム100は、第1給水タンク10a及び第2給水タンク10bのそれぞれを設置面上で横向き(ほぼ水平)に支持する支持台11と、第1給水タンク10aの流出部4aを第2給水タンク10bの流入部5bに接続する接続配管12とを備える。
(Second Embodiment)
A water supply tank system 100 according to the second embodiment will be described with reference to FIG. This water supply tank system 100 has a first water supply tank 10a and a second water supply tank 10b connected in series. The 1st water supply tank 10a and the 2nd water supply tank 10b are the same structures as the water supply tank 10 of 1st Embodiment. The water supply tank system 100 includes a support base 11 that supports each of the first water supply tank 10a and the second water supply tank 10b sideways (substantially horizontal) on the installation surface, and an outflow portion 4a of the first water supply tank 10a. And a connecting pipe 12 connected to the inflow portion 5b of the tank 10b.
第2実施形態の給水タンクシステム100では、水道等から供給される飲料水は、第1給水タンク10aの流入部5aからタンク内部に導かれ、螺旋状の旋回流を形成して長期間滞留することなく、第1給水タンク10aの流出部4aから流出する。この流出部4aから流出した水は、接続配管12を通って、第2給水タンク10bに導かれる。さらに、接続配管12から供給された水は、第2給水タンク10bの流入部5bからタンク内部に導かれ、旋回流を形成して長期間滞留することなく、第2給水タンク10bの流出部4bから流出する。 In the water supply tank system 100 of 2nd Embodiment, the drinking water supplied from a water supply etc. is guide | induced to the tank inside from the inflow part 5a of the 1st water supply tank 10a, forms a spiral turning flow, and retains for a long period of time. Without flowing out from the outflow portion 4a of the first water supply tank 10a. The water flowing out from the outflow portion 4a is guided to the second water supply tank 10b through the connection pipe 12. Furthermore, the water supplied from the connection pipe 12 is guided into the tank from the inflow portion 5b of the second water supply tank 10b, forms a swirling flow, and does not stay for a long period of time, so that the outflow portion 4b of the second water supply tank 10b. Spill from.
(第3実施形態)
第3実施形態に係る給水タンクシステム200を、図8〜図11を参照して説明する。この給水タンクシステム200は、第1給水タンク10cと、第2給水タンク10dとを並列に接続したものである。第1給水タンク10c及び第2給水タンク10dは、第1実施形態の給水タンク10と同じ構造である。給水タンクシステム200は、第1給水タンク10c及び第2給水タンク10dのそれぞれを設置面上で横向き(ほぼ水平)に支持する支持台11と、第1給水タンク10c及び第2給水タンク10dのそれぞれの流入部に接続されるT字状の流入配管13と、第1給水タンク10c及び第2給水タンク10dのそれぞれの流出部に接続されるT字状の流出配管14とを備える。
(Third embodiment)
A water supply tank system 200 according to a third embodiment will be described with reference to FIGS. This water supply tank system 200 has a first water supply tank 10c and a second water supply tank 10d connected in parallel. The 1st water supply tank 10c and the 2nd water supply tank 10d are the same structures as the water supply tank 10 of 1st Embodiment. The water supply tank system 200 includes a support base 11 that supports each of the first water supply tank 10c and the second water supply tank 10d sideways (substantially horizontal) on the installation surface, and each of the first water supply tank 10c and the second water supply tank 10d. The T-shaped inflow piping 13 connected to the inflow portion of the first water tank and the T-shaped outflow piping 14 connected to the respective outflow portions of the first water supply tank 10c and the second water supply tank 10d.
第3実施形態の給水タンクシステム200では、水道等から供給される飲料水は、第1給水タンク10c及び第2給水タンク10dの各流入部5から各タンク内部に導かれ、螺旋状の旋回流を形成して長期間滞留することなく、第1給水タンク10c及び第2給水タンク10dの各流出部4から流出する。各流出部4から流出した水は、接続配管14で合流する。 In the water supply tank system 200 of 3rd Embodiment, the drinking water supplied from a water supply etc. is guide | induced into each tank from each inflow part 5 of the 1st water supply tank 10c and the 2nd water supply tank 10d, and a spiral swirl flow Without being retained for a long time, and flows out from each outflow portion 4 of the first water supply tank 10c and the second water supply tank 10d. The water that flows out from each outflow portion 4 joins at the connection pipe 14.
なお、本発明は、各実施形態で説明した給水タンクに限定されず、飲料水以外に、油、有機溶媒、ジュース類等の任意の液体、又は任意の気体を、貯留し供給する流体用タンクとして用いることができる。さらに、各実施形態で給水タンクはほぼ水平に設置されるものとして説明したが、本発明の流体用タンクを自動車等の荷台に設置して移動可能とすることもできる。第2実施形態や第3実施形態のように複数の給水タンクを備える場合に、複数の給水タンクの互いの位置関係は任意に設定することができる。例えば、複数の給水タンクのそれぞれを、水平面上に配置するか、垂直面に沿って配置するか、または傾斜面に沿って配置することもできる。 In addition, this invention is not limited to the water supply tank demonstrated by each embodiment, The tank for fluids which stores and supplies arbitrary liquids, such as oil, organic solvent, juices, or arbitrary gases other than drinking water Can be used as Furthermore, although the water supply tank has been described as being installed substantially horizontally in each embodiment, the fluid tank of the present invention may be installed on a loading platform such as an automobile to be movable. When a plurality of water supply tanks are provided as in the second embodiment or the third embodiment, the positional relationship between the plurality of water supply tanks can be arbitrarily set. For example, each of the plurality of water supply tanks may be arranged on a horizontal plane, arranged along a vertical plane, or arranged along an inclined plane.
(まとめ)
本発明の各実施形態に係る給水タンク及び給水タンクシステムは、横型の給水タンクにおいて、噴射口が給水タンク内の上部から第1鏡板の肩部に向けて水を噴射する。噴射された水流は、噴射の方向と重力の方向の合力の方向である斜め下方に流れ、湾曲した肩部に衝突して水流に第2鏡板の方向に向かう力が加わることにより、横型の給水タンク内に螺旋状の旋回流を効率よく形成することができる。これによって、給水タンク内に水が長期間滞留することなく、水の貯留及び供給を行うことができる。
(Summary)
In the water supply tank and the water supply tank system according to each embodiment of the present invention, in the horizontal water supply tank, the injection port injects water from the upper part of the water supply tank toward the shoulder portion of the first end plate. The jetted water flow flows diagonally downward, which is the direction of the resultant force of the jetting direction and the direction of gravity, and collides with the curved shoulder, and a force directed toward the second end plate is applied to the water flow, whereby horizontal water supply A spiral swirl can be efficiently formed in the tank. Thereby, water can be stored and supplied without water staying in the water supply tank for a long time.
1.流入管の配置による給水タンク内の水の滞留比較実験
本発明において、流入管の配置を最適化するために、以下の比較例及び実施例を用いて滞留比較実験を行った。実施例1は、第1実施形態(図1〜図6)に示した給水タンク10の模型を用いた。各比較例は、実施例1の模型とは流入管の上下方向の配置及び向き(角度)が異なる。給水タンク10の模型は、次のサイズで実機の約2分の1スケールモデルとした。円筒状の本体1の模型に関して、内径は150mm、全長は1080mm、内容積は20.5Lとした。また、本体1の模型は透明な樹脂から作成して内部を観察可能とすると共に、給水タンク内に水と同じ比重のABS球を含む水を入れて、ABS球の排出度合を確認した。比較例及び実施例を示す図12〜図15において、給水タンクの水流は矢印で図示すると共に、水流に含まれるABS球は黒点で図示した。比較例1、2、及び4は、従来の技術水準に対応するものである。比較例3は従来の技術水準に工夫を加えたものであり、実施例1は、比較例1をさらに改善したものである。
1. Retention comparison experiment of water in the water supply tank by arrangement of the inflow pipe In the present invention, in order to optimize the arrangement of the inflow pipe, a retention comparison experiment was performed using the following comparative examples and examples. In Example 1, the model of the water supply tank 10 shown in the first embodiment (FIGS. 1 to 6) was used. Each comparative example differs from the model of Example 1 in the vertical arrangement and direction (angle) of the inflow pipe. The model of the water supply tank 10 was a half scale model of the actual machine with the following size. Regarding the model of the cylindrical main body 1, the inner diameter was 150 mm, the total length was 1080 mm, and the internal volume was 20.5 L. In addition, the model of the main body 1 was made of a transparent resin so that the inside could be observed, and water containing ABS spheres having the same specific gravity as that of water was placed in a water supply tank, and the discharge degree of the ABS spheres was confirmed. 12-15 which show a comparative example and an Example, while the water flow of a water supply tank was illustrated with the arrow, the ABS ball | bowl contained in a water flow was illustrated with the black dot. Comparative Examples 1, 2, and 4 correspond to the conventional technical level. Comparative Example 3 is a modification of the conventional technical level, and Example 1 is a further improvement of Comparative Example 1.
給水タンク内における流入管の配置を下記のものとして実験した。
・比較例1(図12):中央位置で傾きがなく中央軸線C上にあり第1鏡板を向く状態
・比較例2(図13):下部位置で長手方向Lに平行で第1鏡板を向く状態
・比較例3(図14):下部位置で長手方向Lに対して傾けて第1鏡板の肩部を向く状態
・比較例4(不図示):上部位置で長手方向Lに平行で第1鏡板を向く状態
・実施例1(図15):上部位置で長手方向Lに対して傾けて第1鏡板の肩部を向く状態
The arrangement of the inlet pipe in the water tank was tested as follows.
Comparative Example 1 (FIG. 12): No tilt at the center position and on the central axis C and facing the first end plate. Comparative Example 2 (FIG. 13): Lower position parallel to the longitudinal direction L and facing the first end plate. Condition / Comparative Example 3 (FIG. 14): State tilted with respect to the longitudinal direction L at the lower position and facing the shoulder of the first end plate / Comparative Example 4 (not shown): First parallel with the longitudinal direction L at the upper position State facing end plate-Example 1 (Fig. 15): State tilted with respect to the longitudinal direction L at the upper position and facing the shoulder portion of the first end plate
(比較例1)
図12に示す比較例1の給水タンク10xは、流入管6xが中央位置で、噴射口6xaの噴出方向が本体1の中央軸線C上を延びる。流入管6xが、給水タンク10x上部の流入部5から下方へ、円筒状の本体1の中央軸線C(長手方向L)まで延びて、ここからさらに中央軸線C上を第1鏡板2の中央に向かって延びてその末端に噴射口6xaが形成される。この給水タンク10xに5L/分の流量でABS球を含む水を流して、滞留の有無を確認した。
(Comparative Example 1)
In the water supply tank 10 x of Comparative Example 1 shown in FIG. 12, the inflow pipe 6 x is at the center position, and the ejection direction of the ejection port 6 xa extends on the central axis C of the main body 1. An inflow pipe 6x extends downward from the inflow portion 5 above the water supply tank 10x to the central axis C (longitudinal direction L) of the cylindrical main body 1, and further on the central axis C from here to the center of the first end plate 2 An injection port 6xa is formed at the end of the nozzle. Water containing ABS spheres was allowed to flow through the water supply tank 10x at a flow rate of 5 L / min to check whether there was any stagnation.
給水タンク10xでは、噴射口6xaから噴射される水流に含まれるABS球は、第1鏡板2の中央に衝突して第1鏡板2に沿って流れる。本体1の内底面上の領域x1では第1鏡板2から遠ざかるようにABS球を含む水流が生じる。しかし、給水タンク10xの末端(左端)から300mm位の内底面の領域x2に、ABS球が溜まって全く動かなくなったため、この部分に水が滞留していることが確認された。 In the water supply tank 10 x, the ABS sphere included in the water flow injected from the injection port 6 xa collides with the center of the first end plate 2 and flows along the first end plate 2. In a region x1 on the inner bottom surface of the main body 1, a water flow including an ABS sphere is generated so as to be away from the first end plate 2. However, since the ABS sphere accumulated in the region x2 on the inner bottom surface about 300 mm from the end (left end) of the water supply tank 10x, it was confirmed that water was retained in this portion.
(比較例2)
図13に示す比較例2の給水タンク10yは、流入管6yが下位置で、噴出口6yaの噴出方向を長手方向Lに平行に第1鏡板2を向くようにした。より詳しくは、流入管6yが、給水タンク10y上部の流入部5から下方へ、円筒状の本体1内の下部まで延びて、ここからさらに中央軸線Cに平行に第1鏡板2に向かって延びてその末端に噴射口6yaが形成される。この給水タンク10yに5L/分の流量でABS球を含む水を流して、滞留の有無を確認した。
(Comparative Example 2)
In the water supply tank 10y of Comparative Example 2 shown in FIG. 13, the inflow pipe 6y is at the lower position, and the jet direction of the jet port 6ya is parallel to the longitudinal direction L and faces the first end plate 2. More specifically, the inflow pipe 6y extends downward from the inflow portion 5 at the upper portion of the water supply tank 10y to the lower portion in the cylindrical main body 1, and further extends from here toward the first end plate 2 in parallel with the central axis C. A jet port 6ya is formed at the end of the lever. Water containing ABS spheres was allowed to flow through the water supply tank 10y at a flow rate of 5 L / min, and the presence or absence of stagnation was confirmed.
給水タンク10yでは、噴射口6yaから噴射される水流に含まれるABS球は、第1鏡板2の下部に衝突して第1鏡板2に沿って上方に流れていき、領域y1からABS球は徐々に落下する。また、第1鏡板2に対して流入部5より後方にある領域y2では、水流が弱くなっているもののABS球は流れている。領域y2の下方の領域y3では、水流が弱まっているため、少量のABS球が溜まる。また、流入管6yに近接する領域y4では、噴射口6yaの噴射によって流入管6y側にABS球が引き寄せられている。比較例2では、噴射口6yaから噴射される水流が、第1鏡板2の下部から上部に上昇する流れとなるため、この上昇の際に重力の影響で流れが弱まっていることが確認された。 In the water supply tank 10y, the ABS sphere included in the water flow injected from the injection port 6ya collides with the lower part of the first end plate 2 and flows upward along the first end plate 2, and the ABS sphere gradually starts from the region y1. Fall into. Moreover, in the area | region y2 behind the inflow part 5 with respect to the 1st end plate 2, although the water flow is weak, the ABS sphere is flowing. In the region y3 below the region y2, since the water flow is weakened, a small amount of ABS spheres accumulate. In the region y4 close to the inflow pipe 6y, the ABS sphere is attracted toward the inflow pipe 6y by the injection of the injection port 6ya. In Comparative Example 2, since the water flow injected from the injection port 6ya is a flow that rises from the lower part of the first end plate 2 to the upper part, it has been confirmed that the flow is weakened by the influence of gravity during this ascent. .
(比較例3)
図14に示す比較例3の給水タンク10zは、流入管6zが下位置まで延びて、噴出口6zaの噴出方向が長手方向Lに対して上から見て角度をなして第1鏡板2の肩部を向くようにした。流入管6zが、給水タンク10z上部の流入部5から下方へ、円筒状の本体1内の下部まで延びて、ここからさらに上から見て長手方向Lに対して30°の角度をなす方向に延びてその末端に噴射口6zaが形成される。この給水タンク10zに5L/分の流量でABS球を含む水を流して、滞留の有無を確認した。
(Comparative Example 3)
In the water supply tank 10z of Comparative Example 3 shown in FIG. 14, the inflow pipe 6z extends to the lower position, and the ejection direction of the ejection port 6za forms an angle with respect to the longitudinal direction L when viewed from above. I turned to the part. The inflow pipe 6z extends downward from the inflow part 5 at the upper part of the water supply tank 10z to the lower part in the cylindrical main body 1, and further in a direction forming an angle of 30 ° with respect to the longitudinal direction L when viewed from above. It extends to form an injection port 6za at its end. Water containing ABS spheres was allowed to flow through the water supply tank 10z at a flow rate of 5 L / min, and the presence or absence of stagnation was confirmed.
噴出口6zaからの水流は、給水タンク10zの下部から螺旋状の旋回流を形成して流れる。この水流に含まれるABS球は、領域z1で溜まり噴射口6za側に徐々に戻っていくものもある。注水を止めてもある程度は旋回流は持続していた。領域z2では少量のABS球が溜まりやすく、水流が弱まっていることが確認された。 The water flow from the jet outlet 6za flows in a spiral swirl from the lower part of the water supply tank 10z. Some ABS spheres contained in the water flow accumulate in the region z1 and gradually return to the injection port 6za side. Even if water injection was stopped, the swirl flow continued to some extent. In the region z2, it was confirmed that a small amount of ABS spheres were easily collected and the water flow was weakened.
(比較例4)
図示しない比較例4の給水タンクは、流入管が上位置で、噴出口の噴出方向が長手方向Lに平行で第1鏡板2を向くようにした。この給水タンクに5L/分の流量でABS球を含む水を流して、滞留の有無を確認した。比較例4の上位置では、比較例2の下位置と同様に、水流に含まれるABS球は徐々に噴射口側に戻っていくが、上から下への流れであるため、比較例2よりも比較例4の方が水流に含まれるABS球が流れやすいものの、比較例4では給水タンクの中央下部にABS球が溜まりやすいことが確認された。
(Comparative Example 4)
In the water supply tank of Comparative Example 4 (not shown), the inflow pipe is at the upper position, the ejection direction of the ejection port is parallel to the longitudinal direction L, and faces the first end plate 2. Water containing ABS spheres was allowed to flow through this water supply tank at a flow rate of 5 L / min, and the presence or absence of residence was confirmed. At the upper position of Comparative Example 4, as in the lower position of Comparative Example 2, the ABS sphere contained in the water flow gradually returns to the injection port side. In Comparative Example 4, it was confirmed that ABS spheres contained in the water flow were easier to flow, but in Comparative Example 4, ABS spheres were more likely to accumulate in the lower center of the water supply tank.
(実施例1)
図15に示す実施例1の給水タンク10は、第1の実施形態の給水タンク10と類似する構造である。実施例1の給水タンク10は、流入管6が上位置で噴射口6aの噴射方向が長手方向Lに対して角度30°をなして第1鏡板2の肩部を向くようにした。この給水タンク10に5L/分の流量でABS球を含む水を流して、滞留の有無を確認した。図15に示すようにABS球を含む水流は、螺旋状の旋回流を形成して、流入管6の噴射口6aから流出口4まで流れる。
Example 1
The water supply tank 10 of Example 1 shown in FIG. 15 has a structure similar to the water supply tank 10 of the first embodiment. In the water supply tank 10 of Example 1, the inflow pipe 6 was at the upper position, and the injection direction of the injection port 6a made an angle of 30 ° with respect to the longitudinal direction L so as to face the shoulder of the first end plate 2. Water containing ABS spheres was allowed to flow through the water supply tank 10 at a flow rate of 5 L / min, and the presence or absence of stagnation was confirmed. As shown in FIG. 15, the water flow including the ABS sphere forms a spiral swirl flow and flows from the injection port 6 a of the inflow pipe 6 to the outflow port 4.
実施例1(図15)の水流は、比較例3(図14)よりも強い螺旋状の旋回流を形成するため、水流に含まれるABS球は流出部4側へ徐々に進んでいき、ほとんどのABS球が溜まることがなく流出口4まで流れることが確認された。領域a1に示す中央付近では、少数のABS球が第1鏡板側に戻ったり流出口4側に流れたりしつつ、流出口4付近の領域a2ではABS球の動きが若干遅くなって水流が弱くなっているものの、最終的に全てのABS球が排出されることが確認された。また、実施例1では、固体であるABS球を異物と考えると、このような異物の排出が可能であることも確認された。 Since the water flow of Example 1 (FIG. 15) forms a stronger spiral swirl flow than that of Comparative Example 3 (FIG. 14), the ABS sphere contained in the water flow gradually advances toward the outflow part 4 side. It was confirmed that the ABS spheres flowed to the outlet 4 without accumulating. In the vicinity of the center shown in the region a1, a small number of ABS spheres return to the first end plate side or flow toward the outflow port 4, while in the region a2 near the outflow port 4, the movement of the ABS sphere is slightly delayed and the water flow is weak. However, it was confirmed that all ABS spheres were finally discharged. In Example 1, it was also confirmed that such foreign matter can be discharged when the ABS sphere that is solid is considered as a foreign matter.
(まとめ)
比較例1の流入管の中央位置(角度無)では中央にABS球が溜まり流れない。比較例2の流入管の下位置(角度無)、比較例4の流入管の上位置(角度無)では、戻りが多く排出されるABS球がごくわずかであった。比較例3の下位置(角度有)の場合には、螺旋状の旋回流は、多少偏りが生じて動きが不確定になる部分が生じていた。さらに、比較例3では、流出部4の近傍において螺旋状の旋回流が著しく弱まっていた。これに対して、実施例1では、流出部4の近傍においても螺旋状の旋回流が生じているため、長手方向の全ての部分でまんべんなく旋回流が生じることとなり、長期間の水の滞留が防止できることが確認された。
(Summary)
At the center position (no angle) of the inflow pipe of Comparative Example 1, the ABS sphere accumulates in the center and does not flow. At the lower position (no angle) of the inflow pipe of Comparative Example 2 and the upper position (no angle) of the inflow pipe of Comparative Example 4, there were very few ABS spheres that returned a lot. In the case of the lower position (with an angle) of Comparative Example 3, the spiral swirl flow had a portion where the movement was uncertain due to some deviation. Further, in Comparative Example 3, the spiral swirling flow was significantly weakened in the vicinity of the outflow portion 4. On the other hand, in Example 1, since the spiral swirling flow is generated in the vicinity of the outflow portion 4, the swirling flow is uniformly generated in all the portions in the longitudinal direction, and the water stays for a long time. It was confirmed that it can be prevented.
2.模型による給水タンクの滞留確認実験
第2実施形態(図7)に係る給水タンクシステムにおいて、注水時に各給水タンク内に長期間動かない滞留が生じるか、さらには完全に換水しているのかを模型を用いて評価した。使用する模型の給水タンクは、実施例1と同じものを用いて直列接続して給水タンクシステムを作成した。また、メチレンブルーで着色した着色水を用いて、模型の給水タンクシステム内の換水を確認した。
2. Retention check experiment of water supply tank by model In the water supply tank system according to the second embodiment (FIG. 7), whether water stays in each water supply tank does not move for a long time during water injection, or whether the water is completely changed. Was used to evaluate. The model water tank used was the same as in Example 1 and connected in series to create a water tank system. In addition, the water exchange in the model water tank system was confirmed using colored water colored with methylene blue.
(実験水量)
実機における給水口径13mmの標準使用水量から、実験1では実機の流量を17L/分と仮定し、実験2では実機の流量を実験1の2分の1の8.5L/分と仮定した。これらの実機の仮定流量からレイノルズ数を用いて2分の1スケール模型における必要な実験水量を、実験1、2についてそれぞれ9.2L/分、4.6L/分として求めた。これらの実験水量で実験模型の給水タンクシステム内に注水して実験を行った。実験1では連続注水を行い、実験2では日常の使用量を想定し断続的に注水、即ち、10分間注水し3分間休止の繰り返しを行った。
(Experimental water volume)
Based on the standard amount of water used with a water supply port diameter of 13 mm in the actual machine, the flow rate of the actual machine was assumed to be 17 L / min in Experiment 1, and the flow rate of the actual machine was assumed to be 8.5 L / min, one-half of Experiment 1. Using the Reynolds number from the assumed flow rates of these actual machines, the required amount of experimental water in the 1/2 scale model was determined as 9.2 L / min and 4.6 L / min for Experiments 1 and 2, respectively. Experiments were conducted by injecting water into the experimental water tank system using these experimental water volumes. In Experiment 1, continuous water injection was performed, and in Experiment 2, water was intermittently injected assuming daily use, that is, water was injected for 10 minutes, and pauses were repeated for 3 minutes.
標準使用水量とは、給水用具の種類に関わらず、吐水量を口径によって一律の水量として扱うものである。標準使用水量は、施設等の給水装置の使用水量を計画するための標準数であり、この使用水量から必要な給水管の口径や受水槽容量を決めるために用いられる。施設等の使用水量を算定するために、給水用具毎に必要な口径と使用水量がある程度決まっており、使用される給水用具の種類や数量に基づき、これらの吐水量を合算して標準使用水量を算定する。例えば台所流しは、使用水量12〜40L/分、給水用具の口径13〜20mmとなっている。なお、上記給水口径13mmの標準使用水量は、「厚生労働省給水装置データベース」の「給水装置標準計画・施工方法 設計使用水量」を用いて算出することができる。 The standard amount of water used means that the amount of water discharged is treated as a uniform amount of water depending on the diameter regardless of the type of water supply tool. The standard amount of water used is a standard number for planning the amount of water used by a water supply device such as a facility, and is used to determine the required diameter of the water supply pipe and the capacity of the water receiving tank from this amount of water used. In order to calculate the amount of water used by facilities, the required diameter and amount of water used for each water supply device are determined to some extent, and based on the type and quantity of the water supply device used, these water discharge amounts are added together to obtain the standard amount of water used. Is calculated. For example, the kitchen sink has a water usage of 12 to 40 L / min and a water supply tool diameter of 13 to 20 mm. In addition, the standard amount of water used for the above-mentioned water supply diameter of 13 mm can be calculated by using the “Water Supply Device Standard Plan / Construction Method Design Water Usage” in the “Ministry of Health, Labor and Welfare Water Supply Device Database”.
(レイノルズ数)
実機の瞬時使用水量を算出したレイノルズ数Reと、模型のレイノルズ数Reとを同数値として模型で実験することにより、実機における流体の挙動を評価することができる。レイノルズ数Reは下記式(1)により定義される。
(Reynolds number)
The behavior of the fluid in the actual machine can be evaluated by conducting an experiment using the model with the Reynolds number Re calculated for the instantaneous water usage of the actual machine and the Reynolds number Re of the model being the same value. The Reynolds number Re is defined by the following formula (1).
ここで、vはタンク内の水の流速(m/s)、dはタンク直径(m)、νは水の動粘度(m/s)である。 Here, v is the flow velocity of water in the tank (m / s), d is the tank diameter (m), and ν is the kinematic viscosity (m / s) of water.
実験1では、図7の第2実施形態に示した給水タンクシステムを用いた。実験1の実機では給水栓口径13mmの標準使用水量として17L/分と仮定した。17L/分は、0.000283m3/secであり、これを流路の断面積0.0767m2で割ると、流速0.003696(m/s)が求められる。実機のレイノルズ数Reを求めるために下記の数値を用いた。
v=0.003696m/s
d=0.3125m
ν=1.083x10−6m/s(実験時の水温17℃の動粘度)
求められたレイノルズ数Reは1066であった。実験1における2分の1スケールの模型の実験に必要な流速vは、下記の式(2)から求めることができる。
In Experiment 1, the water tank system shown in the second embodiment in FIG. 7 was used. In the actual machine of Experiment 1, it was assumed that the standard amount of water used was 13 L / min. 17 L / min is 0.000283 m 3 / sec, and when this is divided by a cross-sectional area of the flow path of 0.0767 m 2 , a flow velocity of 0.003696 (m / s) is obtained. In order to obtain the Reynolds number Re of the actual machine, the following numerical values were used.
v = 0.003696 m / s
d = 0.125m
ν = 1.083 × 10 −6 m / s (kinematic viscosity at a water temperature of 17 ° C. during the experiment)
The calculated Reynolds number Re was 1066. The flow velocity v necessary for the experiment of the half-scale model in Experiment 1 can be obtained from the following equation (2).
実験1の模型で必要な流速vを求めるために下記の数値を用いた。
Re=1066
d=0.156m
ν=1.171x10−6m/s(実験時の水温14℃の動粘度)
In order to obtain the required flow velocity v in the model of Experiment 1, the following numerical values were used.
Re = 1066
d = 0.156m
ν = 1.171 × 10 −6 m / s (kinematic viscosity at a water temperature of 14 ° C. during the experiment)
実験1の模型に必要な流速vは0.008005m/sであった。これに模型の断面積0.0191m3をかけてから単位をL/分に変換した。実験1の模型の実験に必要な単位時間当たりの使用水量は、9.2L/分となり、この水量を実験1の模型に適用して実験を行った。 The flow velocity v required for the model of Experiment 1 was 0.008005 m / s. The unit was converted to L / min after applying a cross-sectional area of 0.0191 m 3 to the model. The amount of water used per unit time necessary for the experiment of the model of Experiment 1 was 9.2 L / min. The experiment was performed by applying this amount of water to the model of Experiment 1.
実験2では、実験1と同一サイズの実機及び模型を用いた。実機では給水栓口径13mmの使用水量として8.5L/分と仮定した。実験2の模型で必要な水量は、4.6L/分と求められ、この水量で実験を行った。実験1の模型では予め模型の給水タンクシステム内に着色水を充填しておき、9.2L/分の水量で透明水を注水して、色の変化を目視により確認した。実験2の模型では予め模型の給水タンクシステム内に透明水を充填しておき、そこに4.6L/分の水量で着色水を注水し、最後に4.6L/分の水量で透明水を流して、色の変化を目視により確認した。 In Experiment 2, an actual machine and a model having the same size as Experiment 1 were used. In the actual machine, it was assumed that the amount of water used with a water tap diameter of 13 mm was 8.5 L / min. The amount of water required for the model of Experiment 2 was determined to be 4.6 L / min, and the experiment was performed with this amount of water. In the model of Experiment 1, colored water was filled in the model water tank system in advance, transparent water was poured at a water amount of 9.2 L / min, and the color change was visually confirmed. In the model of Experiment 2, the model water tank system is filled with clear water in advance, and colored water is poured into it at a volume of 4.6 L / min. Finally, the clear water is supplied at a volume of 4.6 L / min. The color change was visually confirmed.
(実験結果)
模型の給水タンクシステムにおいて、数分後ごとに撮影した写真を比較したところ、滞留領域がなく短絡する流れが認められなかった。これは螺旋状の旋回流ではない長手方向に短絡する流れが認められないことを意味する。表1に、置換時間と水量を示す。置換時間は、直列に接続される第1給水タンク10aと第2給水タンク10bともテスト水量が大きくなれば置換時間が早まっている。各給水タンクにおいて、水道水流入側の構造を変更し、直径が21.7mmの流入管(エルボパイプ)の噴射口を第1鏡板の肩部分に向けたため、螺旋状の水流が形成され、この螺旋水流が押出し流となることがわかった。
(Experimental result)
In the model water tank system, when photographs taken every few minutes were compared, there was no stagnation area and no short-circuiting flow was observed. This means that a short-circuited flow in the longitudinal direction that is not a spiral swirl flow is not observed. Table 1 shows the replacement time and the amount of water. The replacement time is advanced as the test water amount increases in both the first water supply tank 10a and the second water supply tank 10b connected in series. In each water tank, the structure on the inflow side of tap water is changed and the injection port of the inflow pipe (elbow pipe) having a diameter of 21.7 mm is directed to the shoulder portion of the first end plate, so that a spiral water flow is formed. It was found that the water flow became an extrusion flow.
(実験結果からの実機への考察)
一般家庭(家族4人)の平均使用水量は32〜40m3/月であり、1日の平均使用水量は1050〜1300L(1.05〜1.3m3/日)である。この平均使用水量と実験結果とを比較するため、実験1及び2の試験水量から表2に示す実機換算水量を求めた。給水タンクの実験模型で置換に要した模型置換水量は、表2の模型試験水量に対して表2の模型置換時間をかけると求められる。さらに、この模型置換水量に、容積比((実機の容積)/(模型の容積))をかけると、実機換算水量となる。なお、実機の給水タンクの容量(容積)は163L、実験模型の給水タンクの容量(容積)は20.5Lであり、容積比は7.95となる。具体的には、実験1の模型では、9.2x13x7.95=951として実機換算水量が求められ、実験2の模型では、4.6x30x7.95=1097として実機換算水量が求められる。
(Consideration of actual machine from experimental results)
The average water usage of a general household (4 family members) is 32 to 40 m 3 / month, and the average daily water usage is 1050 to 1300 L (1.05 to 1.3 m 3 / day). In order to compare the average amount of water used and the experimental results, the actual water equivalent water amounts shown in Table 2 were obtained from the test water amounts in Experiments 1 and 2. The model replacement water amount required for replacement in the experimental model of the water tank can be obtained by applying the model replacement time in Table 2 to the model test water amount in Table 2. Furthermore, when the volume ratio ((volume of actual machine) / (volume of model)) is multiplied by this model replacement water quantity, it becomes the actual machine equivalent water quantity. The capacity (volume) of the actual water tank is 163 L, the capacity (volume) of the experimental model water tank is 20.5 L, and the volume ratio is 7.95. Specifically, in the model of Experiment 1, the actual device equivalent water amount is obtained as 9.2 × 13 × 7.95 = 951, and in the model of Experiment 2, the actual device equivalent water amount is obtained as 4.6 × 30 × 7.95 = 1097.
表2によれば、実験1及び2の実機換算水量と1日の平均使用水量とはほぼ等しい値となっているため、実験1及び2の給水タンクシステムを実機に適用した場合にも、その給水タンク内の水が滞留することなく約1日で入れ替わることが認められ、水質の劣化が生じず安全性が確保されることが確認された。 According to Table 2, the actual water equivalent water volume in Experiments 1 and 2 and the daily average water consumption are almost equal, so even when the water tank system in Experiments 1 and 2 is applied to the actual machine, It was confirmed that the water in the water supply tank was replaced in about one day without stagnation, and it was confirmed that the water quality did not deteriorate and safety was ensured.
1 本体
2 第1鏡板
2a 湾曲部
2b 円筒部
2c 肩部
3 第2鏡板
4 流出部
5 流入部
6 流入管
6a 噴出口
10 給水タンク
100 給水タンクシステム
200 給水タンクシステム
C 中央軸線
H 水平方向
L 長手方向
V 垂直方向
DESCRIPTION OF SYMBOLS 1 Main body 2 1st end plate 2a Curved part 2b Cylindrical part 2c Shoulder part 3 2nd end plate 4 Outflow part 5 Inflow part 6 Inlet pipe 6a Spout 10 Water supply tank 100 Water supply tank system 200 Water supply tank system C Central axis H Horizontal direction L Longitudinal Direction V Vertical direction
Claims (15)
前記噴射口は、前記流体用タンク内の上部であって前記第1鏡板の周部分及び/又は前記周部分の近傍に向いていることを特徴とする流体用タンク。 A cylindrical main body, an inflow pipe for introducing fluid into the inside at one end of the main body, an injection port for injecting fluid flowing in from the inflow pipe into the inside, and outflowing fluid to the outside at the other end of the main body A horizontal fluid tank, comprising: an outlet port configured to close; a first end plate that closes the main body on the one end side of the main body; and a second end plate that closes the main body on the other end side of the main body. ,
2. The fluid tank according to claim 1, wherein the ejection port is an upper part in the fluid tank and faces the peripheral portion of the first end plate and / or the vicinity of the peripheral portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012205139A JP5661077B2 (en) | 2012-09-19 | 2012-09-19 | Fluid tank and fluid tank system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012205139A JP5661077B2 (en) | 2012-09-19 | 2012-09-19 | Fluid tank and fluid tank system |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014139244A Division JP2014196146A (en) | 2014-07-07 | 2014-07-07 | Tank for fluid and tank system for fluid |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014058340A true JP2014058340A (en) | 2014-04-03 |
JP5661077B2 JP5661077B2 (en) | 2015-01-28 |
Family
ID=50615211
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012205139A Active JP5661077B2 (en) | 2012-09-19 | 2012-09-19 | Fluid tank and fluid tank system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5661077B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107902279A (en) * | 2017-12-15 | 2018-04-13 | 佛山高富中石油燃料沥青有限责任公司 | A kind of conduction oil oil storage tank |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5677440A (en) * | 1979-11-26 | 1981-06-25 | Nippon Kokan Kk | Water storage device |
JPS56139321A (en) * | 1980-03-31 | 1981-10-30 | Nippon Kokan Kk | Water supply pipe passage |
JPH10219765A (en) * | 1997-02-12 | 1998-08-18 | Sakai Tekkosho:Kk | Emergency water storage device |
JP2012086900A (en) * | 2004-11-12 | 2012-05-10 | Kubota-Ci Co | Water storage tank, and installation method of water storage tank |
-
2012
- 2012-09-19 JP JP2012205139A patent/JP5661077B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5677440A (en) * | 1979-11-26 | 1981-06-25 | Nippon Kokan Kk | Water storage device |
JPS56139321A (en) * | 1980-03-31 | 1981-10-30 | Nippon Kokan Kk | Water supply pipe passage |
JPH10219765A (en) * | 1997-02-12 | 1998-08-18 | Sakai Tekkosho:Kk | Emergency water storage device |
JP2012086900A (en) * | 2004-11-12 | 2012-05-10 | Kubota-Ci Co | Water storage tank, and installation method of water storage tank |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107902279A (en) * | 2017-12-15 | 2018-04-13 | 佛山高富中石油燃料沥青有限责任公司 | A kind of conduction oil oil storage tank |
Also Published As
Publication number | Publication date |
---|---|
JP5661077B2 (en) | 2015-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101920657B (en) | Anti-siphon device | |
WO2009055291A3 (en) | Liquid storage tank with internal flow control baffle and methods | |
US20150053292A1 (en) | Storage apparatus having tank with tapered bottom and axle assembly | |
JP5661077B2 (en) | Fluid tank and fluid tank system | |
JP4878003B2 (en) | Bubble generator and bubble generator | |
CN201619814U (en) | Liquid storing tank with easy cleaning device | |
US20100232254A1 (en) | Liquid storage tank with draft tube mixing system | |
JP2008290015A (en) | Gas dissolving device and bubble generating apparatus | |
JP2014196146A (en) | Tank for fluid and tank system for fluid | |
CN205127777U (en) | Take static mixer of shower nozzle device | |
KR200468258Y1 (en) | Portable oil container | |
KR101762772B1 (en) | Structure for fuel storage tank | |
KR101352953B1 (en) | Insurge property testing system and insurge property testing method using the same | |
KR200444898Y1 (en) | Structure for open and close of Air vent head | |
JP6438289B2 (en) | Tap water storage system and method of using tap water storage system | |
JP4966511B2 (en) | Aquarium | |
CN202169033U (en) | Inner container type liquid storage tank | |
JP2005282050A (en) | Water storage tank device | |
JP2008178806A (en) | Microbubble generating apparatus | |
EP3604116A1 (en) | Drainage system of marine desulfurization device | |
CN206503184U (en) | Running water pressure water storage container | |
CN203743820U (en) | Low-temperature liquid storage tank | |
CN110548431A (en) | Liquid stirring device and liquid stirring system | |
CN109298198A (en) | A kind of quick liquid injection system | |
CN203959797U (en) | The nozzle of confinement of flow bundle and use beer or the Ge Wasi distributing valve of this nozzle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140120 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140408 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140707 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140707 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20140909 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141125 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141202 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5661077 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |