JP2014057918A - Processing method of colored liquid - Google Patents

Processing method of colored liquid Download PDF

Info

Publication number
JP2014057918A
JP2014057918A JP2012204215A JP2012204215A JP2014057918A JP 2014057918 A JP2014057918 A JP 2014057918A JP 2012204215 A JP2012204215 A JP 2012204215A JP 2012204215 A JP2012204215 A JP 2012204215A JP 2014057918 A JP2014057918 A JP 2014057918A
Authority
JP
Japan
Prior art keywords
colored liquid
added
dye solution
hydride
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012204215A
Other languages
Japanese (ja)
Inventor
Katsuhiro Terazono
克博 寺薗
Yasuyuki Koga
康之 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUKUOKAKEN SUKOYAKA KENKO JIGYODAN
Original Assignee
FUKUOKAKEN SUKOYAKA KENKO JIGYODAN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUKUOKAKEN SUKOYAKA KENKO JIGYODAN filed Critical FUKUOKAKEN SUKOYAKA KENKO JIGYODAN
Priority to JP2012204215A priority Critical patent/JP2014057918A/en
Publication of JP2014057918A publication Critical patent/JP2014057918A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a processing method of colored liquid for decoloring the colored liquid and removing organic compounds in the colored liquid while preventing generation of sludge.SOLUTION: The processing method of colored liquid includes the step of contacting the colored liquid with an alkaline earth metal hydride and a catalyst of a carry material including copper or manganese carried on zeolite. The alkaline earth metal hydride is calcium hydride or magnesium hydride.

Description

本発明は着色した液体の処理方法に関する。詳しくは、例えば染料溶液など着色した液体の処理方法に係るものである。   The present invention relates to a method for treating colored liquids. Specifically, it relates to a method for treating a colored liquid such as a dye solution.

工場などから公共用水域例えば、河川、湖沼、港湾、沿岸海域、かんがい用水路に排出される水の水質汚濁の防止が行なわれている。   Prevention of water pollution of water discharged from factories and the like into public water areas such as rivers, lakes, harbors, coastal waters, and irrigation canals.

また、染料製造工場のように染料を扱う工場などから排出される排水は、染料等により着色していることが多く、着色した排水は、人に不快感を与えることが多い。   Further, wastewater discharged from factories that handle dyes, such as dye manufacturing factories, is often colored with dyes and the like, and the colored wastewater often gives people discomfort.

そこで、着色した排水を、河川、湖沼、海などに放流しないよう排水中の着色成分や懸濁物質(有機化合物)の処理方法として様々な方法が提案されている。
このような方法として、例えば特許文献1には、浄水用の原水に、有機凝結剤または無機凝集剤と有機凝結剤を添加混合した後、高分子凝集剤を添加する方法が記載されている。
In view of this, various methods have been proposed for treating colored components and suspended substances (organic compounds) in the wastewater so that the colored wastewater is not released into rivers, lakes, seas, and the like.
As such a method, for example, Patent Document 1 describes a method in which an organic coagulant or an inorganic coagulant and an organic coagulant are added to and mixed with raw water for water purification, and then a polymer coagulant is added.

特開2002−346572号公報JP 2002-346572 A

しかしながら、人に不快感を与えない色度まで着色成分や懸濁物質の量を低減させるためには、極めて多量の無機凝集剤が必要であり、特許文献1のような、無機凝集剤と有機凝結剤を併用しても、それでもなお発生する汚泥の量が多く、経済的負担や環境負荷がかかるという問題があった。   However, an extremely large amount of inorganic flocculant is required to reduce the amount of coloring components and suspended substances to a chromaticity that does not cause discomfort to humans. Even when a coagulant is used in combination, there is still a problem that a large amount of sludge is generated, which imposes an economic burden and an environmental burden.

本発明は、以上の点に鑑みて創案されたものであり、汚泥の発生を抑え、着色した液体の脱色と、着色した液体中の有機化合物の除去を行なうことができる、着色した液体の処理方法を提供することを目的とする。   The present invention was devised in view of the above points, and treatment of a colored liquid capable of suppressing the generation of sludge, decolorizing the colored liquid, and removing organic compounds in the colored liquid. It aims to provide a method.

上記の目的を達成するために、本発明の着色した液体の処理方法は、着色した液体を、水素化物アルカリ土類金属と、ゼオライトに銅またはマンガンを含む担持物を担持させた触媒とに接触させる工程を備える。   In order to achieve the above object, the method for treating a colored liquid according to the present invention comprises contacting a colored liquid with a hydride alkaline earth metal and a catalyst in which a support containing copper or manganese is supported on zeolite. A step of causing

ここで、水素化物アルカリ土類金属によって、着色した液体を嫌気性およびアルカリ性にし、また、水素化物アルカリ土類金属が着色した液体中で水素ガスを発生させることができる。
また、ゼオライトに銅またはマンガンを含む担持物を担持させた触媒によって、着色した液体中の色素の原因物質である有機化合物を吸着および分解することができる。
Here, the colored liquid can be made anaerobic and alkaline by the hydride alkaline earth metal, and hydrogen gas can be generated in the liquid colored by the hydride alkaline earth metal.
In addition, an organic compound that is a causative substance of a pigment in a colored liquid can be adsorbed and decomposed by a catalyst in which a support containing copper or manganese is supported on zeolite.

また、本発明の着色した液体の処理方法において、水素化物アルカリ土類金属は、水素化カルシウムまたは水素化マグネシウムであるものとすることができる。   In the colored liquid treatment method of the present invention, the hydride alkaline earth metal may be calcium hydride or magnesium hydride.

また、本発明の着色した液体の処理方法において、着色した液体中の水素化カルシウムの濃度は、0.1〜0.5質量%である場合、特に脱色率と有機化合物除去率が良い。   Moreover, in the processing method of the colored liquid of this invention, when the density | concentration of the calcium hydride in the colored liquid is 0.1-0.5 mass%, especially a decoloring rate and an organic compound removal rate are good.

また、本発明の着色した液体の処理方法において、着色した液体中の水素化マグネシウムの濃度は、2.0質量%である場合、特に脱色率と有機化合物除去率が良い。   In the colored liquid treatment method of the present invention, when the concentration of magnesium hydride in the colored liquid is 2.0% by mass, the decolorization rate and the organic compound removal rate are particularly good.

また、本発明の着色した液体の処理方法において、触媒は、さらにニッケルを含む担持物を担持させたものである場合、さらに脱色率と有機化合物除去率が良い。   In the method for treating a colored liquid of the present invention, when the catalyst further supports a support containing nickel, the decolorization rate and the organic compound removal rate are further improved.

本発明に係る着色した液体の処理方法は、汚泥の発生を抑え、着色した液体の脱色と、着色した液体中の有機化合物の除去を行なうことができる。   The method for treating a colored liquid according to the present invention can suppress the generation of sludge, and can decolor the colored liquid and remove organic compounds in the colored liquid.

本発明の着色した液体の処理方法を実施できる浄化槽の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the septic tank which can implement the processing method of the colored liquid of this invention.

本発明の着色した液体の処理方法は、着色した液体を、水素化物アルカリ土類金属と、ゼオライトに銅またはマンガンを含む担持物を担持させた触媒とに接触させる工程を備える方法である。   The colored liquid treatment method of the present invention is a method comprising a step of bringing a colored liquid into contact with a hydride alkaline earth metal and a catalyst in which a supported material containing copper or manganese is supported on zeolite.

ここで、「接触」とは、文字通り、着色した液体が、水素化物アルカリ土類金属と、ゼオライトに銅またはマンガンを含む担持物を担持させた触媒とに、物理的に接触することであり、具体的には例えば、着色した液体中に、水素化物アルカリ土類金属と、ゼオライトに銅またはマンガンを含む担持物を担持させた触媒とを添加することである。   Here, “contacting” literally means that a colored liquid is physically in contact with a hydride alkaline earth metal and a catalyst in which a support containing copper or manganese is supported on zeolite. Specifically, for example, a hydride alkaline earth metal and a catalyst in which a support containing copper or manganese is supported on zeolite are added to a colored liquid.

また、「着色した液体」とは、染料など色素を有する有機化合物が水に溶けた液体であり、具体的には例えば染料溶液である。   Further, the “colored liquid” is a liquid in which an organic compound having a pigment such as a dye is dissolved in water, and specifically, for example, a dye solution.

また、本発明の着色した液体の処理方法において使用する触媒は、担体であるゼオライトに、銅(Cu)またはマンガン(Mn)を含む担持物を担持させたものである。   Further, the catalyst used in the method for treating a colored liquid according to the present invention is obtained by supporting a support containing copper (Cu) or manganese (Mn) on zeolite as a support.

また、本発明の着色した液体の処理方法において使用する触媒は、さらに遷移金属であるニッケル(Ni)を含む担持物を担持させることができる。   In addition, the catalyst used in the method for treating a colored liquid of the present invention can further support a support containing nickel (Ni) as a transition metal.

ここで、ゼオライトに担持させる担持物は、銅(Cu)またはマンガン(Mn)、さらにはニッケル(Ni)を含んでいれば、銅単体、マンガン単体、ニッケル単体、銅酸化物、マンガン酸化物、ニッケル酸化物などどのような態様であってもよい。   Here, if the support to be supported on the zeolite contains copper (Cu) or manganese (Mn), and further nickel (Ni), copper simple substance, manganese simple substance, nickel simple substance, copper oxide, manganese oxide, Any form such as nickel oxide may be used.

また、本発明の着色した液体の処理方法において使用する水素化物アルカリ土類金属は、アルカリ土類金属(マグネシウム、カルシウムなど)が水素と化合した物質である。
また、本発明で使用する水素化物アルカリ土類金属は、具体的には例えば、水素化マグネシウム、水素化カルシウムである。
In addition, the hydride alkaline earth metal used in the colored liquid processing method of the present invention is a substance in which an alkaline earth metal (magnesium, calcium, etc.) is combined with hydrogen.
The hydride alkaline earth metal used in the present invention is specifically, for example, magnesium hydride or calcium hydride.

また、着色した液体中の水素化カルシウムの濃度は、0.01〜0.5質量%とすることができ、好ましくは、0.1〜0.5質量%とすることができる。   Moreover, the density | concentration of the calcium hydride in the colored liquid can be 0.01-0.5 mass%, Preferably, it can be 0.1-0.5 mass%.

また、着色した液体中の水素化マグネシウムの濃度は、0.1〜2.0質量%とすることができ、好ましくは、1.0〜2.0質量%とすることができ、さらに好ましくは2.0質量%とすることができる。   Moreover, the density | concentration of the magnesium hydride in the colored liquid can be 0.1-2.0 mass%, Preferably, it can be 1.0-2.0 mass%, More preferably It can be 2.0 mass%.

以下、実施例に基づき、本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではないことは勿論である。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, of course, this invention is not limited to these Examples.

[実施例1]
(銅担持ゼオライト触媒の調製)
蒸留水150mlに硫酸銅(HSO・5HO:和光純薬工業株式会社製:特級500g)28gを溶解して、硫酸銅溶液を得た。
次に、ゼオライト10gを硫酸銅溶液に入れて2〜3時間撹拌し、銅担持ゼオライト溶液を得た。
[Example 1]
(Preparation of copper supported zeolite catalyst)
Copper sulfate in distilled water 150ml was dissolved (H 2 SO 4 · 5H 2 O:: manufactured by Wako Pure Chemical Industries, Ltd. special grade 500 g) 28 g, to obtain a copper sulfate solution.
Next, 10 g of zeolite was put into a copper sulfate solution and stirred for 2 to 3 hours to obtain a copper-supported zeolite solution.

また、別途、蒸留水100mlに、過マンガン酸カリウム(KMnO:和光純薬工業株式会社製:特級500g)2.0gと水酸化カリウム(KOH:和光純薬工業株式会社製:特級500g)20gを入れて、pH調整液を得た。
そして、銅担持ゼオライト溶液を撹拌しながら、銅担持ゼオライト溶液のpHが6.7〜7.0になるまでpH調整液を銅担持ゼオライト溶液に添加し、沈殿物を生成した。
Separately, in 100 ml of distilled water, 2.0 g of potassium permanganate (KMnO 4 : Wako Pure Chemical Industries, Ltd .: special grade 500 g) and potassium hydroxide (KOH: Wako Pure Chemical Industries, Ltd .: special grade 500 g) 20 g Was added to obtain a pH adjusting solution.
Then, while stirring the copper-supported zeolite solution, a pH adjusting solution was added to the copper-supported zeolite solution until the pH of the copper-supported zeolite solution became 6.7 to 7.0, thereby generating a precipitate.

そして、沈殿物を、ろ紙No.5A(東洋ADVANTEC社製)と蒸留水で、ろ過および洗浄した。その後、ろ紙に残った物を、乾燥器を用いて110℃の温度で乾燥し、銅担持ゼオライト触媒を得た。   Then, the precipitate is filtered with a filter paper No. It was filtered and washed with 5A (manufactured by Toyo ADVANTEC) and distilled water. Thereafter, the material remaining on the filter paper was dried at a temperature of 110 ° C. using a drier to obtain a copper-supported zeolite catalyst.

(銅ニッケル担持ゼオライト触媒の調製)
純水10mlに硝酸ニッケル(Ni(NO・6HO:和光純薬工業株式会社製:精密分析用500g)2.0gを溶解して、硝酸ニッケル溶液を得た。
次に、銅担持ゼオライト触媒10gを、硝酸ニッケル溶液に添加し、銅ニッケル担持ゼオライト溶液を得た。
そして、銅ニッケル担持ゼオライト溶液を、110℃の温度で恒温乾燥器(三洋電機株式会社製:MOV−112F(U))を用いて乾燥し、さらに、電気炉(光洋サーモシステム株式会社製:KBF828N)を用いて700℃の温度で3時間焼成して、銅ニッケル担持ゼオライト触媒を得た。
(Preparation of copper nickel supported zeolite catalyst)
In 10 ml of pure water, 2.0 g of nickel nitrate (Ni (NO 3 ) 2 · 6H 2 O: Wako Pure Chemical Industries, Ltd .: 500 g for precision analysis) was dissolved to obtain a nickel nitrate solution.
Next, 10 g of a copper supported zeolite catalyst was added to the nickel nitrate solution to obtain a copper nickel supported zeolite solution.
And the copper nickel carrying | support zeolite solution is dried using the constant temperature dryer (the Sanyo Electric Co., Ltd. product: MOV-112F (U)) at the temperature of 110 degreeC, and also an electric furnace (the Koyo Thermo System Co., Ltd. product: KBF828N). ) Was used for 3 hours to obtain a copper nickel supported zeolite catalyst.

(染料溶液の処理)
水溶性反応性染料である「Remazol Brilliant Blue R」(商品名)(C2216Na11:SIGMA ALDRICH(シグマアルドリッヒ)社製)0.18gを、1000mlの純水に溶解させ、染料溶液を得た。染料溶液のpHは5.9±0.1であった。
(Dye solution treatment)
1000 ml of pure water of 0.18 g of “Remazol Brilliant Blue R” (trade name) (C 22 H 16 N 2 Na 2 O 11 S 3 : SIGMA ALDRICH (Sigma Aldrich)), which is a water-soluble reactive dye To obtain a dye solution. The pH of the dye solution was 5.9 ± 0.1.

次に、染料溶液を100mlずつ4つ採取し、各染料溶液100mlに銅ニッケル担持ゼオライト触媒1.0gを添加した(染料溶液中の銅ニッケル担持ゼオライト触媒の濃度は1.0質量%である。)。
さらに、各染料溶液100mlに、水素化マグネシウム(MgH:バイオコーク技研株式会社製:純度90%以上:タブレット型)を、0.1g、0.5g、1.0gおよび2.0g添加し、マグネチックスターラーで各染料溶液を2時間撹拌した。
Next, four 100 ml each of the dye solution was sampled, and 1.0 g of a copper nickel supported zeolite catalyst was added to 100 ml of each dye solution (the concentration of the copper nickel supported zeolite catalyst in the dye solution is 1.0 mass%). ).
Further, to 100 ml of each dye solution, 0.1 g, 0.5 g, 1.0 g and 2.0 g of magnesium hydride (MgH 2 : manufactured by Bio-Coke Giken Co., Ltd .: purity 90% or more: tablet type) were added, Each dye solution was stirred for 2 hours with a magnetic stirrer.

ここで、染料溶液中の水素化マグネシウムの濃度は、0.1g添加のときが0.1質量%、0.5g添加のときが0.5質量%、1.0g添加のときが1.0質量%、そして2.0g添加のときが2.0質量%である。   Here, the concentration of magnesium hydride in the dye solution is 0.1% by mass when 0.1 g is added, 0.5% by mass when 0.5 g is added, and 1.0% when 1.0 g is added. The mass% is 2.0 mass% when 2.0 g is added.

その後、各染料溶液を、ろ紙No.5A(東洋ADVANTEC社製)で、ろ過した。そして、ろ液のpHが6.5〜8.5の範囲内になるように、1N−HClと1N−NaOHでpH調整し、このろ液について、脱色率と有機化合物除去率を測定した。結果を表1に示す。   Thereafter, each dye solution was filtered with a filter paper No. It filtered with 5A (made by Toyo ADVANTEC). And pH was adjusted with 1N-HCl and 1N-NaOH so that the pH of the filtrate would be in the range of 6.5-8.5, and the decolorization rate and the organic compound removal rate were measured about this filtrate. The results are shown in Table 1.

(脱色率の測定)
脱色率は、紫外可視分光光度計(株式会社島津製作所製:UV−160A:石英セル10mm)を用いて、ろ過を経た染料溶液中の染料の可視光線域内の最大吸収波長における吸光度(Abs.)を測定することで、下記式に基づき算出した。
脱色率(%)={(Abs.)−(Abs.)}/(Abs.)×100 (1)
(Measurement of decolorization rate)
The decolorization rate is the absorbance (Abs.) At the maximum absorption wavelength in the visible light region of the dye in the dye solution that has been filtered using an ultraviolet-visible spectrophotometer (manufactured by Shimadzu Corporation: UV-160A: quartz cell 10 mm). Was calculated based on the following formula.
Decolorization rate (%) = {(Abs.) 0 − (Abs.) 1 } / (Abs.) 0 × 100 (1)

ここで、「(Abs.)」は、本発明の処理方法による処理前の染料溶液の波長595nmにおける吸光度であり、「(Abs.)」は、本発明の処理方法による処理後の染料溶液の波長595nmにおける吸光度である。 Here, “(Abs.) 0 ” is the absorbance at a wavelength of 595 nm of the dye solution before treatment by the treatment method of the present invention, and “(Abs.) 1 ” is the dye after treatment by the treatment method of the present invention. Absorbance at a wavelength of 595 nm of the solution.

(有機化合物除去率の測定)
有機化合物除去率は、JIS K 0102:2008、12.1の滴定法(過マンガン酸カリウム酸化法)に従い、COD(化学的酸素要求量)を測定することで、下記式に基づき算出した。
有機化合物除去率(%)=(COD−COD)/COD×100 (2)
(Measurement of organic compound removal rate)
The organic compound removal rate was calculated based on the following formula by measuring COD (chemical oxygen demand) according to the titration method (potassium permanganate oxidation method) of JIS K 0102: 2008, 12.1.
Organic compound removal rate (%) = (COD 0 −COD 1 ) / COD 0 × 100 (2)

ここで、「COD」は、本発明の処理方法による処理前の染料溶液のCOD(mg/l)であり、「COD」は、本発明の処理方法による処理後の染料溶液のCOD(mg/l)である。 Here, “COD 0 ” is the COD (mg / l) of the dye solution before the treatment by the treatment method of the present invention, and “COD 1 ” is the COD of the dye solution after the treatment by the treatment method of the present invention (mg / l). mg / l).

また、染料は、二重結合(C=C結合)を有するので難分解性の有機化合物であり、そのためCODの除去率だけで有機化合物の除去率を評価し難い。そこで、二重結合の有無を確認するために、波長260nmにおける吸光度(E260)を測定し、二重結合の開裂率についても、下記式に基づき算出した。
E260(%)={(E260)−(E260)}/(E260)×100 (3)
In addition, since the dye has a double bond (C═C bond), it is a hardly decomposable organic compound. Therefore, it is difficult to evaluate the removal rate of the organic compound only by the removal rate of COD. Therefore, in order to confirm the presence or absence of a double bond, the absorbance (E260) at a wavelength of 260 nm was measured, and the cleavage rate of the double bond was also calculated based on the following formula.
E260 (%) = {(E260) 0 − (E260) 1 } / (E260) 0 × 100 (3)

ここで、「(E260)」は、本発明の処理方法による処理前の染料溶液の波長260nmにおける吸光度であり、「(E260)」は、本発明の処理方法による処理後の染料溶液の波長260nmにおける吸光度である。 Here, “(E260) 0 ” is the absorbance at a wavelength of 260 nm of the dye solution before the treatment by the treatment method of the present invention, and “(E260) 1 ” is the dye solution after the treatment by the treatment method of the present invention. Absorbance at a wavelength of 260 nm.

[実施例2]
実施例1と同様にして得られた染料溶液を100mlずつ4つ採取し、各染料溶液100mlに、実施例1と同様にして得られた銅ニッケル担持ゼオライト触媒1.0gを添加した(染料溶液中の銅ニッケル担持ゼオライト触媒の濃度は1.0質量%である。)。
[Example 2]
Four 100 ml each of the dye solution obtained in the same manner as in Example 1 was collected, and 1.0 g of a copper nickel supported zeolite catalyst obtained in the same manner as in Example 1 was added to each 100 ml of the dye solution (dye solution). The concentration of the copper-nickel-supported zeolite catalyst is 1.0% by mass).

また、水不溶性ポリエチレン(和光純薬工業株式会社製)1.0gを110〜130℃で溶解し、溶解した水不溶性ポリエチレンに、水素化カルシウムを添加して、ポリエチレンで水素化カルシウムを包み込んで、ポリエチレン包含水素化カルシウム固形物を作成した。
ここで、ポリエチレン包含水素化カルシウム固形物については、水素化カルシウムを0.01g添加したもの、0.05g添加したもの、0.1g添加したもの、および0.5g添加したものという4種を作成した。
Further, 1.0 g of water-insoluble polyethylene (manufactured by Wako Pure Chemical Industries, Ltd.) is dissolved at 110 to 130 ° C., calcium hydride is added to the dissolved water-insoluble polyethylene, and the calcium hydride is wrapped with polyethylene, Polyethylene-containing calcium hydride solids were made.
Here, four types of polyethylene-containing calcium hydride solids were prepared: 0.01 g calcium hydride, 0.05 g added, 0.1 g added, and 0.5 g added. did.

そして、各染料溶液100mlに、各ポリエチレン包含水素化カルシウム固形物を添加し、マグネチックスターラーで各染料溶液を2時間撹拌した。   Then, each polyethylene-containing calcium hydride solid was added to 100 ml of each dye solution, and each dye solution was stirred with a magnetic stirrer for 2 hours.

ここで、染料溶液中の水素化カルシウムの濃度は、0.01g添加のときが0.01質量%、0.05g添加のときが0.05質量%、0.1g添加のときが0.1質量%、そして0.5g添加のときが0.5質量%である。   Here, the concentration of calcium hydride in the dye solution is 0.01% by mass when 0.01 g is added, 0.05% by mass when 0.05 g is added, and 0.1% when 0.1 g is added. The mass% is 0.5 mass% when 0.5 g is added.

その後、各染料溶液を、ろ紙No.5A(東洋ADVANTEC社製)で、ろ過した。そして、ろ液のpHが6.5〜8.5の範囲内になるように、1N−HClと1N−NaOHでpH調整し、このろ液について、実施例1と同様に脱色率と有機化合物除去率を測定した。結果を表1に示す。   Thereafter, each dye solution was filtered with a filter paper No. It filtered with 5A (made by Toyo ADVANTEC). Then, the pH of the filtrate is adjusted with 1N-HCl and 1N-NaOH so that the pH is in the range of 6.5 to 8.5. For this filtrate, the decolorization rate and the organic compound are the same as in Example 1. The removal rate was measured. The results are shown in Table 1.

[実施例3]
実施例1と同様にして得られた銅担持ゼオライト触媒を、電気炉(光洋サーモシステム株式会社製:KBF828N)を用いて700℃の温度で3時間焼成した。
また、実施例1と同様にして得られた染料溶液を100mlずつ4つ採取し、各染料溶液100mlに、焼成された銅担持ゼオライト触媒1.0gを添加した(染料溶液中の銅担持ゼオライト触媒の濃度は1.0質量%である。)。
[Example 3]
The copper-supported zeolite catalyst obtained in the same manner as in Example 1 was calcined at 700 ° C. for 3 hours using an electric furnace (manufactured by Koyo Thermo System Co., Ltd .: KBF828N).
Further, four 100 ml each of the dye solution obtained in the same manner as in Example 1 was collected, and 1.0 g of the calcined copper-supported zeolite catalyst was added to 100 ml of each dye solution (copper-supported zeolite catalyst in the dye solution). Is 1.0 mass%).

さらに、各染料溶液100mlに、水素化マグネシウム(MgH:バイオコーク技研株式会社製:純度90%以上:タブレット型)を、0.1g、0.5g、1.0gおよび2.0g添加し、マグネチックスターラーで各染料溶液を2時間撹拌した。 Further, to 100 ml of each dye solution, 0.1 g, 0.5 g, 1.0 g and 2.0 g of magnesium hydride (MgH 2 : manufactured by Bio-Coke Giken Co., Ltd .: purity 90% or more: tablet type) were added, Each dye solution was stirred for 2 hours with a magnetic stirrer.

ここで、染料溶液中の水素化マグネシウムの濃度は、0.1g添加のときが0.1質量%、0.5g添加のときが0.5質量%、1.0g添加のときが1.0質量%、そして2.0g添加のときが2.0質量%である。   Here, the concentration of magnesium hydride in the dye solution is 0.1% by mass when 0.1 g is added, 0.5% by mass when 0.5 g is added, and 1.0% when 1.0 g is added. The mass% is 2.0 mass% when 2.0 g is added.

その後、各染料溶液を、ろ紙No.5A(東洋ADVANTEC社製)で、ろ過した。そして、ろ液のpHが6.5〜8.5の範囲内になるように、1N−HClと1N−NaOHでpH調整し、このろ液について、脱色率と有機化合物除去率を測定した。結果を表1に示す。   Thereafter, each dye solution was filtered with a filter paper No. It filtered with 5A (made by Toyo ADVANTEC). And pH was adjusted with 1N-HCl and 1N-NaOH so that the pH of the filtrate would be in the range of 6.5-8.5, and the decolorization rate and the organic compound removal rate were measured about this filtrate. The results are shown in Table 1.

[実施例4]
実施例1と同様にして得られた銅担持ゼオライト触媒を、電気炉(光洋サーモシステム株式会社製:KBF828N)を用いて700℃の温度で3時間焼成した。
また、実施例1と同様にして得られた染料溶液を100mlずつ4つ採取し、各染料溶液100mlに、焼成された銅担持ゼオライト触媒1.0gを添加した(染料溶液中の銅担持ゼオライト触媒の濃度は1.0質量%である。)。
[Example 4]
The copper-supported zeolite catalyst obtained in the same manner as in Example 1 was calcined at 700 ° C. for 3 hours using an electric furnace (manufactured by Koyo Thermo System Co., Ltd .: KBF828N).
Further, four 100 ml each of the dye solution obtained in the same manner as in Example 1 was collected, and 1.0 g of the calcined copper-supported zeolite catalyst was added to 100 ml of each dye solution (copper-supported zeolite catalyst in the dye solution). Is 1.0 mass%).

また、実施例2と同様にして4種のポリエチレン包含水素化カルシウム固形物を作成し、各染料溶液100mlに、各ポリエチレン包含水素化カルシウム固形物を添加し、マグネチックスターラーで各染料溶液を2時間撹拌した。   Further, four kinds of polyethylene-containing calcium hydride solids were prepared in the same manner as in Example 2, and each polyethylene solution-containing calcium hydride solid was added to 100 ml of each dye solution, and each dye solution was added with a magnetic stirrer. Stir for hours.

ここで、染料溶液中の水素化カルシウムの濃度は、0.01g添加のときが0.01質量%、0.05g添加のときが0.05質量%、0.1g添加のときが0.1質量%、そして0.5g添加のときが0.5質量%である。   Here, the concentration of calcium hydride in the dye solution is 0.01% by mass when 0.01 g is added, 0.05% by mass when 0.05 g is added, and 0.1% when 0.1 g is added. The mass% is 0.5 mass% when 0.5 g is added.

その後、各染料溶液を、ろ紙No.5A(東洋ADVANTEC社製)で、ろ過した。そして、ろ液のpHが6.5〜8.5の範囲内になるように、1N−HClと1N−NaOHでpH調整し、このろ液について、実施例1と同様に脱色率と有機化合物除去率を測定した。結果を表1に示す。   Thereafter, each dye solution was filtered with a filter paper No. It filtered with 5A (made by Toyo ADVANTEC). Then, the pH of the filtrate is adjusted with 1N-HCl and 1N-NaOH so that the pH is in the range of 6.5 to 8.5. For this filtrate, the decolorization rate and the organic compound are the same as in Example 1. The removal rate was measured. The results are shown in Table 1.

[比較例1]
実施例1と同様にして得られた染料溶液100mlに、水素化マグネシウム(MgH:バイオコーク技研株式会社製:純度90%以上:タブレット型)2.0gを添加し、マグネチックスターラーで染料溶液を2時間撹拌した。
[Comparative Example 1]
To 100 ml of the dye solution obtained in the same manner as in Example 1, 2.0 g of magnesium hydride (MgH 2 : manufactured by Bio-Coke Giken Co., Ltd .: purity 90% or more: tablet type) was added, and the dye solution was added with a magnetic stirrer. Was stirred for 2 hours.

その後、染料溶液を、ろ紙No.5A(東洋ADVANTEC社製)で、ろ過した。そして、ろ液のpHが6.5〜8.5の範囲内になるように、1N−HClと1N−NaOHでpH調整し、このろ液について、実施例1と同様に脱色率と有機化合物除去率を測定した。結果を表1に示す。   Thereafter, the dye solution was filtered with a filter paper No. It filtered with 5A (made by Toyo ADVANTEC). Then, the pH of the filtrate is adjusted with 1N-HCl and 1N-NaOH so that the pH is in the range of 6.5 to 8.5. For this filtrate, the decolorization rate and the organic compound are the same as in Example 1. The removal rate was measured. The results are shown in Table 1.

[比較例2]
水不溶性ポリエチレン(和光純薬工業株式会社製)1.0gを110〜130℃で溶解し、溶解した水不溶性ポリエチレンに、水素化カルシウム0.5gを添加して、ポリエチレンで水素化カルシウムを包み込んで、ポリエチレン包含水素化カルシウム固形物を作成した。
そして、実施例1と同様にして得られた染料溶液100mlに、ポリエチレン包含水素化カルシウム固形物を添加し、マグネチックスターラーで染料溶液を2時間撹拌した。
[Comparative Example 2]
1.0 g of water-insoluble polyethylene (manufactured by Wako Pure Chemical Industries, Ltd.) is dissolved at 110 to 130 ° C., 0.5 g of calcium hydride is added to the dissolved water-insoluble polyethylene, and the calcium hydride is wrapped with polyethylene. Polyethylene-containing calcium hydride solids were prepared.
Then, the solid solution containing calcium hydride containing polyethylene was added to 100 ml of the dye solution obtained in the same manner as in Example 1, and the dye solution was stirred with a magnetic stirrer for 2 hours.

その後、染料溶液を、ろ紙No.5A(東洋ADVANTEC社製)で、ろ過した。そして、ろ液のpHが6.5〜8.5の範囲内になるように、1N−HClと1N−NaOHでpH調整し、このろ液について、実施例1と同様に脱色率と有機化合物除去率を測定した。結果を表1に示す。   Thereafter, the dye solution was filtered with a filter paper No. It filtered with 5A (made by Toyo ADVANTEC). Then, the pH of the filtrate is adjusted with 1N-HCl and 1N-NaOH so that the pH is in the range of 6.5 to 8.5. For this filtrate, the decolorization rate and the organic compound are the same as in Example 1. The removal rate was measured. The results are shown in Table 1.

[比較例3]
実施例1と同様にして得られた染料溶液100mlに、実施例1と同様にして得られた銅ニッケル担持ゼオライト触媒1.0gを添加し、マグネチックスターラーで染料溶液を2時間撹拌した。
その後、染料溶液を、ろ紙No.5A(東洋ADVANTEC社製)で、ろ過した。そして、ろ液のpHが6.5〜8.5の範囲内になるように、1N−HClと1N−NaOHでpH調整し、このろ液について、実施例1と同様に脱色率と有機化合物除去率を測定した。結果を表1に示す。
[Comparative Example 3]
To 100 ml of the dye solution obtained in the same manner as in Example 1, 1.0 g of the copper nickel-supported zeolite catalyst obtained in the same manner as in Example 1 was added, and the dye solution was stirred with a magnetic stirrer for 2 hours.
Thereafter, the dye solution was filtered with a filter paper No. It filtered with 5A (made by Toyo ADVANTEC). Then, the pH of the filtrate is adjusted with 1N-HCl and 1N-NaOH so that the pH is in the range of 6.5 to 8.5. For this filtrate, the decolorization rate and the organic compound are the same as in Example 1. The removal rate was measured. The results are shown in Table 1.

[比較例4]
実施例1と同様にして得られた染料溶液100mlに、無処理のゼオライト1.0gを添加し、マグネチックスターラーで染料溶液を2時間撹拌した。
その後、染料溶液を、ろ紙No.5A(東洋ADVANTEC社製)で、ろ過した。そして、ろ液のpHが6.5〜8.5の範囲内になるように、1N−HClと1N−NaOHでpH調整し、このろ液について、実施例1と同様に脱色率と有機化合物除去率を測定した。結果を表1に示す。
[Comparative Example 4]
1.0 g of untreated zeolite was added to 100 ml of the dye solution obtained in the same manner as in Example 1, and the dye solution was stirred for 2 hours with a magnetic stirrer.
Thereafter, the dye solution was filtered with a filter paper No. It filtered with 5A (made by Toyo ADVANTEC). Then, the pH of the filtrate is adjusted with 1N-HCl and 1N-NaOH so that the pH is in the range of 6.5 to 8.5. For this filtrate, the decolorization rate and the organic compound are the same as in Example 1. The removal rate was measured. The results are shown in Table 1.

[比較例5]
実施例1と同様にして得られた染料溶液100mlに、焼成されたゼオライト1.0gを添加し、マグネチックスターラーで染料溶液を2時間撹拌した。
その後、染料溶液を、ろ紙No.5A(東洋ADVANTEC社製)で、ろ過した。そして、ろ液のpHが6.5〜8.5の範囲内になるように、1N−HClと1N−NaOHでpH調整し、このろ液について、実施例1と同様に脱色率と有機化合物除去率を測定した。結果を表1に示す。
[Comparative Example 5]
To 100 ml of the dye solution obtained in the same manner as in Example 1, 1.0 g of calcined zeolite was added, and the dye solution was stirred for 2 hours with a magnetic stirrer.
Thereafter, the dye solution was filtered with a filter paper No. It filtered with 5A (made by Toyo ADVANTEC). Then, the pH of the filtrate is adjusted with 1N-HCl and 1N-NaOH so that the pH is in the range of 6.5 to 8.5. For this filtrate, the decolorization rate and the organic compound are the same as in Example 1. The removal rate was measured. The results are shown in Table 1.

Figure 2014057918
Figure 2014057918

表1から、水素化物アルカリ土類金属と、銅担持ゼオライト触媒もしくは銅ニッケル担持ゼオライト触媒との相乗効果が判る。   Table 1 shows the synergistic effect of the hydride alkaline earth metal and the copper-supported zeolite catalyst or the copper-nickel-supported zeolite catalyst.

すなわち、実施例1および実施例3と、比較例1とを比べると、両者は水素化マグネシウム2.0質量%を染料溶液に添加しているが、銅ニッケル担持ゼオライト触媒も添加した実施例1および銅担持ゼオライト触媒も添加した実施例3の方が、銅担持ゼオライト触媒も銅ニッケル担持ゼオライト触媒も添加していない比較例1よりも、脱色率(λ595)および有機化合物除去率(E260およびCOD)の両方において優れていた。   That is, when Example 1 and Example 3 are compared with Comparative Example 1, both of them added 2.0% by mass of magnesium hydride to the dye solution, but Example 1 also added a copper nickel supported zeolite catalyst. 3 and the copper-supported zeolite catalyst were added in Example 3, compared to Comparative Example 1 in which neither the copper-supported zeolite catalyst nor the copper-nickel-supported zeolite catalyst was added, and the decolorization rate (λ595) and organic compound removal rate (E260 and COD). ) In both cases.

また、実施例2および実施例4と、比較例2とを比べると、両者は水素化カルシウム0.5質量%を染料溶液に添加しているが、銅ニッケル担持ゼオライト触媒も添加した実施例2および銅担持ゼオライト触媒も添加した実施例4の方が、銅担持ゼオライト触媒も銅ニッケル担持ゼオライト触媒も添加していない比較例2よりも、脱色率(λ595)および有機化合物除去率(E260およびCOD)の両方において優れていた。   Further, when Example 2 and Example 4 were compared with Comparative Example 2, both of them added 0.5% by mass of calcium hydride to the dye solution, but Example 2 also added a copper nickel supported zeolite catalyst. 4 and the copper-supported zeolite catalyst were added in Example 4, compared to Comparative Example 2 in which neither the copper-supported zeolite catalyst nor the copper-nickel-supported zeolite catalyst was added, and the organic compound removal rate (E260 and COD) ) In both cases.

また、実施例1と、比較例3とを比べると、両者は銅ニッケル担持ゼオライト触媒を染料溶液に添加しているが、水素化マグネシウムも添加した実施例1の方が、水素化マグネシウムを0.1質量%添加したときでさえ、水素化物アルカリ土類金属を添加していない比較例3よりも、脱色率(λ595)および有機化合物除去率(COD)の両方において優れていた。   Further, when Example 1 is compared with Comparative Example 3, both have added a copper nickel-supported zeolite catalyst to the dye solution, but in Example 1 in which magnesium hydride was also added, the magnesium hydride was reduced to 0. Even when 0.1 mass% was added, both the decolorization rate (λ595) and the organic compound removal rate (COD) were superior to those of Comparative Example 3 in which no hydride alkaline earth metal was added.

また、汚泥の発生を抑え、着色した液体の脱色と、着色した液体中の有機化合物の除去を行なうためには、着色した液体を、水素化物アルカリ土類金属と、ゼオライトに銅またはマンガンを含む担持物を担持させた触媒とに接触させればよいので、例えば図1に示すような浄化槽が考えられる。図1は、本発明の着色した液体の処理方法を実施できる浄化槽の一例を示す概略断面図である。   In addition, in order to suppress the generation of sludge, decolorize the colored liquid, and remove the organic compound in the colored liquid, the colored liquid contains a hydride alkaline earth metal and copper or manganese in the zeolite. For example, a septic tank as shown in FIG. 1 is conceivable because it may be brought into contact with the catalyst carrying the support. FIG. 1 is a schematic cross-sectional view showing an example of a septic tank that can carry out the colored liquid processing method of the present invention.

すなわち、浄化槽1の内部には空間が形成されており、浄化槽1の内部に、水素化物アルカリ土類金属を例えばペレット状にして得られた水素化物アルカリ土類金属層2と、ゼオライトに銅またはマンガンを含む担持物を担持させた触媒、或いはゼオライトに銅またはマンガンおよびニッケルを含む担持物を担持させた触媒を例えばペレット状にして得られた触媒層3とが、所定の間隔でそれぞれ複数枚取付けられている。   That is, a space is formed inside the septic tank 1, and a hydride alkaline earth metal layer 2 obtained by, for example, pelletizing hydride alkaline earth metal in the septic tank 1, and copper or copper in the zeolite A catalyst in which a catalyst containing manganese is supported, or a catalyst in which a catalyst in which a support containing copper or manganese and nickel is supported on zeolite is formed into, for example, pellets, a plurality of sheets at predetermined intervals. Installed.

そして、この浄化槽1の内部に、染料溶液(着色した液体)4を流して、着色した液体を脱色および液体中の有機化合物除去という浄化処理を行なう。
また、図1では、染料溶液4の流れの上流側に水素化物アルカリ土類金属層2を配置しているが、触媒層3を上流側に配置してもよいことは勿論である。
Then, a dye solution (colored liquid) 4 is allowed to flow inside the septic tank 1 to perform a purification process of decolorizing the colored liquid and removing organic compounds in the liquid.
In FIG. 1, the hydride alkaline earth metal layer 2 is disposed upstream of the flow of the dye solution 4, but the catalyst layer 3 may of course be disposed upstream.

以上のように、本発明の着色した液体の処理方法は、水素化物アルカリ土類金属を着色した液体に接触させているので、着色した液体を嫌気性およびアルカリ性にし、また、水素化物アルカリ土類金属が着色した液体中で水素ガスを発生させることができる。
また、本発明の着色した液体の処理方法は、ゼオライトに銅またはマンガンを含む担持物を担持させた触媒、或いはゼオライトに銅またはマンガンおよびニッケルを含む担持物を担持させた触媒も、着色した液体に接触させているので、着色した液体中の色素の原因物質である有機化合物を吸着および分解することができる。
As described above, in the method for treating a colored liquid according to the present invention, since the hydride alkaline earth metal is brought into contact with the colored liquid, the colored liquid is made anaerobic and alkaline, and the hydride alkaline earth Hydrogen gas can be generated in a liquid colored with metal.
In addition, the method for treating a colored liquid according to the present invention includes a catalyst in which a support containing copper or manganese is supported on zeolite, or a catalyst in which a support containing copper or manganese and nickel is supported on zeolite. Therefore, the organic compound that is the causative substance of the pigment in the colored liquid can be adsorbed and decomposed.

従って、本発明の着色した液体の処理方法は、触媒が有機化合物を吸着するので、汚泥の発生を抑え、また、着色した液体の脱色を行なうことができ、さらに、発生した水素ガスが触媒と接触して有機化合物の分解を行なうので、着色した液体中の有機化合物の除去を行なうことができる。   Therefore, in the method for treating a colored liquid of the present invention, the catalyst adsorbs the organic compound, so that the generation of sludge can be suppressed, and the colored liquid can be decolored. Since the organic compound is decomposed by contact, the organic compound in the colored liquid can be removed.

1 浄化槽
2 水素化物アルカリ土類金属層
3 触媒層
4 染料溶液
1 Septic tank 2 Hydride alkaline earth metal layer 3 Catalyst layer 4 Dye solution

Claims (5)

着色した液体を、水素化物アルカリ土類金属と、ゼオライトに銅またはマンガンを含む担持物を担持させた触媒とに接触させる工程を備える
着色した液体の処理方法。
A method for treating a colored liquid, comprising the step of bringing the colored liquid into contact with a hydride alkaline earth metal and a catalyst in which a support containing copper or manganese is supported on zeolite.
前記水素化物アルカリ土類金属は、水素化カルシウムまたは水素化マグネシウムである
請求項1に記載の着色した液体の処理方法。
The method for treating a colored liquid according to claim 1, wherein the hydride alkaline earth metal is calcium hydride or magnesium hydride.
着色した液体中の前記水素化カルシウムの濃度は、0.1〜0.5質量%である
請求項2に記載の着色した液体の処理方法。
The processing method of the colored liquid of Claim 2. The density | concentration of the said calcium hydride in the colored liquid is 0.1-0.5 mass%.
着色した液体中の前記水素化マグネシウムの濃度は、2.0質量%である
請求項2に記載の着色した液体の処理方法。
The method for treating a colored liquid according to claim 2, wherein the concentration of the magnesium hydride in the colored liquid is 2.0% by mass.
前記触媒は、さらにニッケルを含む担持物を担持させたものである
請求項1〜4のいずれか1つに記載の着色した液体の処理方法。
The method for treating a colored liquid according to any one of claims 1 to 4, wherein the catalyst further carries a support containing nickel.
JP2012204215A 2012-09-18 2012-09-18 Processing method of colored liquid Pending JP2014057918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012204215A JP2014057918A (en) 2012-09-18 2012-09-18 Processing method of colored liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012204215A JP2014057918A (en) 2012-09-18 2012-09-18 Processing method of colored liquid

Publications (1)

Publication Number Publication Date
JP2014057918A true JP2014057918A (en) 2014-04-03

Family

ID=50614908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012204215A Pending JP2014057918A (en) 2012-09-18 2012-09-18 Processing method of colored liquid

Country Status (1)

Country Link
JP (1) JP2014057918A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105585099A (en) * 2015-12-23 2016-05-18 中国科学院烟台海岸带研究所 Decolorization treatment method for colored liquid waste

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105585099A (en) * 2015-12-23 2016-05-18 中国科学院烟台海岸带研究所 Decolorization treatment method for colored liquid waste

Similar Documents

Publication Publication Date Title
Rostam et al. Advanced oxidation processes integrated by membrane reactors and bioreactors for various wastewater treatments: A critical review
Behera et al. A review on the treatment of textile industry waste effluents towards the development of efficient mitigation strategy: An integrated system design approach
Zhou et al. The coupling of persulfate activation and membrane separation for the effective pollutant degradation and membrane fouling alleviation
Ma et al. Enhanced activation of persulfate by AC@ CoFe2O4 nanocomposites for effective removal of lomefloxacin
Peighambardoust et al. Sono-photocatalytic activity of sea sediment@ 400/ZnO catalyst to remove cationic dyes from wastewater
Ahmad et al. Recent advances in new generation dye removal technologies: novel search for approaches to reprocess wastewater
Balarak et al. Photocatalytic degradation of amoxicillin using UV/Synthesized NiO from pharmaceutical wastewater
Laohaprapanon et al. Photodegradation of reactive black 5 in a ZnO/UV slurry membrane reactor
Zhang et al. Photocatalytic degradation of rhodamine B by Bi2O3@ LDHs S–scheme heterojunction: Performance, kinetics and mechanism
de Oliveira et al. Coupling photocatalytic degradation using a green TiO2 catalyst to membrane bioreactor for petroleum refinery wastewater reclamation
US9573825B2 (en) Advanced treatment method for biochemical tail water of coking wastewater
Elizalde-González et al. Removal of acid orange 7 by guava seed carbon: A four parameter optimization study
Liu et al. Treatment of recalcitrant organic silicone wastewater by fluidized-bed Fenton process
CN103613228B (en) A kind of method processing vitamin K3 factory effluent
He et al. Degradation of organic chemicals in aqueous system through ferrate-based processes: A review
Zhang et al. Construction of stable Ti3+-TiO2 photocatalytic membrane for enhanced photoactivity and emulsion separation
Alsohaimi et al. Tailoring confined CdS quantum dots in polysulfone membrane for efficiently durable performance in solar-driven wastewater remediating systems
Nair et al. A comprehensive review on electro-oxidation and its types for wastewater treatment
CN108212181A (en) A kind of hollow microsphere photochemical catalyst and preparation method for sewage disposal
Othman et al. Advanced membrane technology for textile wastewater treatment
Tanos et al. A Comprehensive Review on Modification of Titanium Dioxide‐Based Catalysts in Advanced Oxidation Processes for Water Treatment
JP2014057918A (en) Processing method of colored liquid
CN113354059B (en) Method for promoting ferric iron/hydrogen peroxide system to degrade environmental pollutants by using amorphous red phosphorus
Díez et al. Pesticide abatement using environmentally friendly nano zero valent particles as photo-Fenton catalyst
Al-Khalid et al. Organic contaminants in industrial wastewater: prospects of waste management by integrated approaches