JP2014057688A - Pulmonary function testing method and apparatus - Google Patents

Pulmonary function testing method and apparatus Download PDF

Info

Publication number
JP2014057688A
JP2014057688A JP2012203734A JP2012203734A JP2014057688A JP 2014057688 A JP2014057688 A JP 2014057688A JP 2012203734 A JP2012203734 A JP 2012203734A JP 2012203734 A JP2012203734 A JP 2012203734A JP 2014057688 A JP2014057688 A JP 2014057688A
Authority
JP
Japan
Prior art keywords
airway
lung
cross
sectional area
estimated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012203734A
Other languages
Japanese (ja)
Other versions
JP6090828B2 (en
Inventor
Ippei Torigoe
一平 鳥越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012203734A priority Critical patent/JP6090828B2/en
Publication of JP2014057688A publication Critical patent/JP2014057688A/en
Application granted granted Critical
Publication of JP6090828B2 publication Critical patent/JP6090828B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a testing method and apparatus which enable a clinical pulmonary function test based on a respiratory tract cross section for testing a pulmonary function by using sounds.SOLUTION: In a pulmonary function testing method, forced oscillation is applied to a pulmonary airway, pressure fluctuation inside the pulmonary airway or a tube connected to the pulmonary airway is detected, a cross section of an upper respiratory tract is estimated on the basis of this pressure signal, and a pulmonary function is tested on the basis of information on the estimated cross section. Alternatively, the contribution of the upper respiratory tract is removed from respiratory impedance on the basis of the information on the upper respiratory tract cross section, and peripheral airway impedance expected from a peripheral side end position of the upper respiratory tract to the pulmonary airway is estimated.

Description

本発明は、音を利用して、肺機能を検査する技術に関わる。臨床肺機能検査手法として、医療、保健の分野で利用される。   The present invention relates to a technique for examining lung function using sound. Used as a clinical pulmonary function test method in the medical and health fields.

臨床肺機能検査において、肺内気量や気道抵抗を測定する方法として、体プレチスモグラフ法がある。また、近年、肺気道に強制振動を印可し、このとき肺気道内の口唇近傍に生ずる圧力変動と、肺気道内に流入する気流の変動とを検出し、これら二信号の比である呼吸インピーダンスを測定する方法(Forced Oscillation Technique=FOT法)が用いられるようになっている。   In clinical lung function tests, there is a body plethysmograph method as a method for measuring lung volume and airway resistance. In recent years, forced vibration has been applied to the pulmonary airway. At this time, pressure fluctuations that occur near the lips in the pulmonary airway and fluctuations in the airflow flowing into the pulmonary airway are detected, and the respiratory impedance, which is the ratio of these two signals, is detected. (Forced Oscillation Technique = FOT method) is used.

DuBois AB, Botelho SY,Comroe JH Jr. “A new method for measuringairway resistance in man using a body plethysmograph: values in normal subjectsand in patients with respiratory disease,” J Clin Invest, 35, 327-335, 1956DuBois AB, Botelho SY, Comroe JH Jr. “A new method for measuringairway resistance in man using a body plethysmograph: values in normal subjectsand in patients with respiratory disease,” J Clin Invest, 35, 327-335, 1956 N.B.Pride, “Forced oscillation techniquesfor measuring mechanical properties of the respiratory system,” Thorax, 47,317-320, 1992N.B.Pride, “Forced oscillation techniques for measuring mechanical properties of the respiratory system,” Thorax, 47,317-320, 1992 E.Oostveen et al., “The forced oscillation technique in clinicalpractice: methodology, recommendations and future developments,” EuropeanRespiratory Journal, 22, 1026-1041, 2003E. Oostveen et al., “The forced oscillation technique in clinicalpractice: methodology, recommendations and future developments,” European Respiratory Journal, 22, 1026-1041, 2003 H.J.Smith et al., “Forced oscillation technique and impulseoscillometry,” European Respiratory Society Monograph, 31(Lung FunctionTesting), Ch.5, 72-105, 2005H.J.Smith et al., “Forced oscillation technique and impulseoscillometry,” European Respiratory Society Monograph, 31 (Lung FunctionTesting), Ch. 5, 72-105, 2005 栂博久、黄正寿、「呼吸機能検査」、呼吸と循環、57巻、4号、385−393,2009年Hirohisa Tsuji, Masatoshi Huang, “Respiratory Function Test”, Respiration and Circulation, Vol.57, No.4, 385-393, 2009 J.L.Flanagan, “SpeechAnalysis, Synthesis and Perception,” 2nd. expanded ed., Springer-Verlag, 1983J.L.Flanagan, “SpeechAnalysis, Synthesis and Perception,” 2nd. Expanded ed., Springer-Verlag, 1983 M.R.Schroeder, “Computer Speech,” 2nd.ed., Springer-Verlag, 2004M.R.Schroeder, “Computer Speech,” 2nd.ed., Springer-Verlag, 2004 M.M.Sondhi, B.Gopinath, “Determination of Vocal-Tract Shape fromImpulse Response at the Lips,” Jounal of Acoustical Society of America,49(6-2), 1867-1873, 1971M.M.Sondhi, B. Gopinath, “Determination of Vocal-Tract Shape from Impulse Response at the Lips,” Jounal of Acoustical Society of America, 49 (6-2), 1867-1873, 1971 J.D.Markel and A.H.Gray: Linear Predictionof Speech, Springer-Verlag, 1976J.D.Markel and A.H.Gray: Linear Predictionof Speech, Springer-Verlag, 1976

特開昭62−161346JP 62-161346 A 特開平3−39140JP-A-3-39140 特表2008-541957Special table 2008-541957 特開2010−264235JP 2010-264235 A

体プレチスモグラフ法は、被験者が中に入るボディーボックスと呼ばれる容器を使用する大がかりな検査であるうえ、パンティングという特殊な動作を被験者に要求する。また、肺気道内の気体が等温変化することを仮定して測定原理が構築されており、この仮定はパンティング中は成り立たないので、測定結果は、厳密な定量的根拠を持つものとは言えない。   The body plethysmography method is a large-scale examination using a container called a body box in which a subject enters, and also requires a special action of panting. In addition, the measurement principle has been established on the assumption that the gas in the lung airway changes isothermally, and this assumption does not hold during punting, so it can be said that the measurement result has a strict quantitative basis. Absent.

FOT法で測定されるのは、口唇から気管を経て肺胞に至る肺気道を、口唇位置から見込んだ入力インピーダンスである。測定される呼吸インピーダンスは、口唇に近い上部気道(中枢側気道)の寄与と、肺胞に近い末梢側気道の寄与を共に含んでいる。しかしながら、臨床肺機能検査の観点から重要なのは、通常、末梢側気道のインピーダンスである。たとえば、強制振動の印可に伴って頬や舌が振動すれば、呼吸インピーダンスに影響が出るが、この影響は、「上部気道アーチファクト」として正しい肺機能診断を妨げる原因となる。この影響を除くために、被験者の頭部全体を容器に入れて強制振動を印可する工夫などが試みられているが、検査が大がかりで煩瑣になり、被験者の負担も大きくなるという問題がある。さらに、上記振動に留まらず、舌の高さ、頬の膨らみ、喉の緊張、声門の開度など、検査中の気道内の状態、上部気道形状の個人差や年齢差なども、上部気道のインピーダンスに影響を及ぼし、呼吸インピーダンスを利用した肺機能検査の妨げになるという問題がある。   What is measured by the FOT method is the input impedance of the pulmonary airway from the lips to the alveoli, through the trachea and from the lip position. The measured respiratory impedance includes both the contribution of the upper airway (central airway) close to the lips and the contribution of the peripheral airway close to the alveoli. However, what is important from the viewpoint of clinical lung function tests is usually the impedance of the peripheral airway. For example, if the cheeks or tongue vibrate with the application of forced vibration, the respiratory impedance is affected, but this effect is a cause of “upper airway artifacts” and hinders correct lung function diagnosis. In order to eliminate this effect, attempts have been made to apply forced vibration by putting the entire head of the subject into a container, but there is a problem that the examination becomes large and cumbersome, and the burden on the subject increases. In addition to the above vibration, the airway condition under examination, such as tongue height, cheek bulge, throat tension, glottal opening, and individual and age differences in the upper airway shape are also affected by the upper airway. There is a problem in that it affects impedance and hinders lung function tests using respiratory impedance.

これらの問題のため、肺機能検査の測定結果は、厳密な定量的な根拠は等閑視して、診断上の目安として使用されている。例えば、FOT法による気道抵抗測定では、口唇部分で測定した呼吸インピーダンスのうち、低周波数(5Hz)における抵抗(呼吸インピーダンスの実部)を全気道抵抗、高周波数(20Hz)における抵抗を中枢気道抵抗と見なし、前者から後者を引き算したものを末梢気道抵抗の推定値とするといった推定が行われている(非特許文献5)。しかしながら、この推定法は、明確な定量的根拠に基づくものではないから、便宜的な方策に過ぎず、また、周波数の関数としてのインピーダンスが提供する情報を捨て去っている。   Because of these problems, the measurement results of the lung function test are used as a diagnostic guideline, neglecting the exact quantitative basis. For example, in the measurement of airway resistance by the FOT method, of the respiratory impedance measured at the lip, the resistance at the low frequency (5 Hz) (the real part of the respiratory impedance) is the total airway resistance, and the resistance at the high frequency (20 Hz) is the central airway resistance. Assuming that the latter is subtracted from the former, the estimated value of peripheral airway resistance is estimated (Non-patent Document 5). However, since this estimation method is not based on a clear quantitative basis, it is only a convenient measure and discards the information provided by the impedance as a function of frequency.

上記の課題を解決するために、本発明では、肺気道に強制振動を印加し、肺気道ないしは肺気道に連結した管の中の圧力変動を検出し、この圧力変動信号に基づいて上部気道の断面積を推定し、推定した断面積の情報に基づいて肺機能を検査する。   In order to solve the above-described problems, in the present invention, forced vibration is applied to the lung airway, pressure fluctuation in the lung airway or a tube connected to the lung airway is detected, and the upper airway is detected based on the pressure fluctuation signal. The cross-sectional area is estimated, and lung function is examined based on the estimated cross-sectional area information.

請求項2に記載の発明では、口唇より肺気道に強制振動を印加し、このとき口唇近傍に生じる圧力変動を検出して、口唇側から末梢側に向かって伝播する進行波と、末梢側から口唇側に向かって伝播する反射波を分離し、音波の伝播所要時間の情報を利用して、肺気道内の各位置の断面積とそこで生じる反射の推定を末梢側に向かって逐次的に進め、肺気道内の所望の位置までの断面積を推定し、これに基づいて肺機能検査を行う。   In the invention described in claim 2, forced vibration is applied to the lung airway from the lips, pressure fluctuations generated in the vicinity of the lips are detected at this time, traveling waves propagating from the lip side toward the peripheral side, and from the peripheral side The reflected waves propagating toward the lips are separated, and the cross-sectional area of each position in the lung airway and the estimation of the reflections that occur are sequentially advanced toward the distal side using information on the time required to propagate the sound waves. The cross-sectional area up to a desired position in the lung airway is estimated, and a lung function test is performed based on the estimated cross-sectional area.

請求項3に記載の発明では、推定した上部気道の断面積に基づいて、呼吸インピーダンスに対する上部気道の寄与をのぞき、上部気道の末梢側端部位置から肺気道の末梢側を見込んだインピーダンスを推定する。   According to the third aspect of the invention, based on the estimated cross-sectional area of the upper airway, the impedance of the peripheral side of the pulmonary airway is estimated from the peripheral end position of the upper airway, excluding the contribution of the upper airway to the respiratory impedance. To do.

請求項4に記載の発明では、被験者が発する音声信号を口唇近傍で検出して、検出した音声信号に基づいて口唇近傍から声門までの上部気道断面積を気道軸に沿って逐次的に推定し、この情報に基づいて肺機能検査を行う。   In the invention according to claim 4, a voice signal emitted by the subject is detected in the vicinity of the lips, and an upper airway cross-sectional area from the vicinity of the lips to the glottis is sequentially estimated along the airway axis based on the detected voice signal. Based on this information, a lung function test is performed.

本発明により、気道の断面積に基づいた臨床肺機能検査が可能となる。また、本発明により、呼吸インピーダンスから上部気道の寄与を除き、末梢側の肺気道インピーダンスを測定することが可能になるので、上部気道アーチファクトや上部気道の形状影響をうけることなく、臨床肺機能検査がより正確に行えるようになる。   The present invention enables a clinical lung function test based on the cross-sectional area of the airway. Further, according to the present invention, it is possible to measure the peripheral lung airway impedance by removing the contribution of the upper airway from the respiratory impedance, so that the clinical lung function test can be performed without being affected by the upper airway artifact or the shape of the upper airway. Can be done more accurately.

(第一実施例)
以下、本発明の具現形態を実施例に基づいて説明する。図1は、本発明の第一実施例である。図において、1は、被験者5の肺気道に強制振動を印加するためのスピーカーボックスである。2は、強制振動を肺気道に印加するための管であり、左端はスピーカーボックス1に接続され、右端はマウスピース(図示せず)を介して被験者5の口唇に接続されている。21は、被験者の呼気および吸気のための開口である。3および3’は、管2に取り付けられたマイクロホンであり、管2の中の圧力変動を検出している。4は、信号処理装置であり、スピーカーボックス1に対して強制振動信号を出力するとともに、マイクロホン3,3’および流量センサー6の信号を取り込み、信号処理を行っている。信号処理装置4の実態は、A/D変換器とD/A変換器を備えたデジタルコンピューターであり、信号処理結果に基づいて肺機能検査を行う機能もインストールされている。スピーカーボックス1で発生した振動は、管2を介して、被験者5の肺気道に印加される。51は口唇に近い上部の気道、52は肺胞を含む末梢側気道、53は声門、54は胸郭を表す。マイクロホンの位置で計測される呼吸インピーダンスは、上部気道51,末梢側気道52および胸郭54の機械インピーダンスが接続されたインピーダンスとなる。6は、呼吸流量を測定する流量センサーである。
(First Example)
Hereinafter, embodiments of the present invention will be described based on examples. FIG. 1 shows a first embodiment of the present invention. In the figure, 1 is a speaker box for applying a forced vibration to the lung airway of the subject 5. Reference numeral 2 denotes a tube for applying forced vibration to the lung airway, the left end is connected to the speaker box 1 and the right end is connected to the lip of the subject 5 via a mouthpiece (not shown). 21 is an opening for exhalation and inhalation of the subject. Reference numerals 3 and 3 ′ denote microphones attached to the tube 2 and detect pressure fluctuations in the tube 2. A signal processing device 4 outputs a forced vibration signal to the speaker box 1 and takes in signals from the microphones 3 and 3 ′ and the flow rate sensor 6 to perform signal processing. The actual condition of the signal processing device 4 is a digital computer including an A / D converter and a D / A converter, and a function for performing a lung function test based on the signal processing result is also installed. The vibration generated in the speaker box 1 is applied to the lung airway of the subject 5 via the tube 2. 51 represents the upper airway close to the lips, 52 represents the peripheral airway including the alveoli, 53 represents the glottis, and 54 represents the thorax. The respiratory impedance measured at the position of the microphone is an impedance in which the mechanical impedances of the upper airway 51, the peripheral airway 52, and the thorax 54 are connected. 6 is a flow sensor for measuring the respiratory flow rate.

図2は、断面積が連続的に変化する肺気道を、一定断面積の短い円管の連鎖で表現した肺気道(一部)の模式図である。各短管(区間)には、口唇端から0,1,2,・・・, m-1, m, m+1,・・・と付番している。上部気道の端の区間を第M区間とし、第M区間の右端は、これより末梢側の肺気道の音響インピーダンスZPで終端されていると考えることで、肺気道全体をモデル化することができる。各区間の直径は、通常、スピーカーボックス1で印可される強制振動の波長に比べて十分に小さいので、区間内を伝播する音波は平面波と仮定することができる。 FIG. 2 is a schematic diagram of a lung airway (part) in which a lung airway whose cross-sectional area continuously changes is represented by a chain of short tubes having a constant cross-sectional area. Each short tube (section) is numbered 0, 1, 2,..., M-1, m, m + 1,. A section of the end of the upper airway and the M segment, the right end of the M intervals, that considered to be terminated at this from the peripheral side of the lung airways acoustic impedance Z P, to model the entire lung airways it can. Since the diameter of each section is usually sufficiently smaller than the wavelength of forced vibration applied by the speaker box 1, the sound wave propagating in the section can be assumed to be a plane wave.

図3は、第m区間内の音波の伝播を示す図である。Smは区間の断面積、pm +は区間内を末梢側に向かって進む進行波の音圧、pm -は区間内を中枢側に向かって進む反射波の音圧を表す。区間m内の進行波pm +は、区間(m+1)との境界で一部が反射される。一方、区間(m+1)内を中枢側に向かって進んできた反射波pm+1 -の一部は区間境界を透過する。これらの反射波と透過波を重ね合わせたものが反射波pm -である。また、区間(m+1)内の進行波pm+1 +は、区間境界を通過したpm +の一部と、区間境界で反射されたpm+1 -の一部の重ね合わせである。なお、各区間の長さをlとし、各区間内の位置を座標xmで示し、時刻t、位置xmにおける音圧をpm +(xm,t)などと書く。ただし、混乱するおそれが無い場合には、添え字mを省略して位置をxで表す。 FIG. 3 is a diagram showing the propagation of sound waves in the m-th section. S m represents the sectional area of the section, p m + represents the sound pressure of the traveling wave traveling toward the distal side within the section, and p m represents the sound pressure of the reflected wave traveling toward the central side within the section. The traveling wave p m + in the section m is partially reflected at the boundary with the section (m + 1). On the other hand, a part of the reflected wave p m + 1 that has traveled in the section (m + 1) toward the central side passes through the section boundary. The reflected wave p m is obtained by superimposing these reflected wave and transmitted wave. The traveling wave p m + 1 + in the section (m + 1) is a superposition of a part of p m + that has passed through the section boundary and a part of p m + 1 that has been reflected at the section boundary. is there. Note that the length of each section is l, the position in each section is indicated by coordinates x m , and the sound pressure at time t and position x m is written as p m + (x m , t). However, if there is no possibility of confusion, the subscript m is omitted and the position is represented by x.

区間境界で、音圧と体積速度は連続であるから、各音圧の時刻tにおける値の間には、以下の関係が成り立つ。   Since the sound pressure and the volume velocity are continuous at the section boundary, the following relationship is established between the values of each sound pressure at time t.

Figure 2014057688
Figure 2014057688

ただし、μは反射係数を表し、 Where μ m represents the reflection coefficient,

Figure 2014057688
Figure 2014057688

である。上の関係を、信号流れ図として表すと図4のようになる。ここで、τは、音波が区間長lを伝播するのに要する時間、r (l)(t)は、音波が区間m内を距離lだけ進んだときの波形変化を表すインパルス応答である。(1)式の関係は、周波数領域では It is. The above relationship can be expressed as a signal flow diagram as shown in FIG. Here, τ is a time required for the sound wave to propagate through the section length l, and r m (l) (t) is an impulse response representing a waveform change when the sound wave travels within the section m by the distance l. . The relationship of equation (1) is

Figure 2014057688
Figure 2014057688

と表される。ただし、kmは第m区間内の波数、ωは角周波数、c0は音速(区間断面積に依らず一定と近似している)、Pは音圧pのフーリエ変換を表す。また、r (l)(t)のフーリエ変換をe-αm lとしている。この関係を音圧の漸化式の形に変形すると It is expressed. Where k m is the wave number in the m-th section, ω is the angular frequency, c 0 is the speed of sound (approximated to be constant regardless of the section area), and P is the Fourier transform of the sound pressure p. In addition, the Fourier transform of r m (l) (t) is e −αm l . When this relationship is transformed into a recurrence form of sound pressure

Figure 2014057688
Figure 2014057688

となる。(4)式から、区間mにおける音波の伝播特性e-j km lと反射係数μがわかれば、区間m+1における進行波と反射波は、区間mにおける進行波と反射波から求まることがわかる。(4)式を再帰的に用いると It becomes. If the propagation characteristic e -j km l and the reflection coefficient μ m in the section m are known from the equation (4), the traveling wave and the reflected wave in the section m + 1 can be obtained from the traveling wave and the reflected wave in the section m. I understand. (4) When recursively using

Figure 2014057688
Figure 2014057688
Figure 2014057688
Figure 2014057688
Figure 2014057688
Figure 2014057688

となり、0からMの全てのmに対して、kmとμmがわかれば、上部気道端部の位置における進行波PM+1 +と反射波PM+1 -も、口唇位置の進行波P0 +および反射波P0 -から、逐次的に計算できることがわかる。口唇位置における進行波P0 +および反射波P0 -は、マイクロホン3および3’で検出された音圧に基づき、音響計測分野で周知の進行波/反射波分離手法を用いて求めることができる。なお、本実施例では、二つのマイクロホンを用いているが、一つのマイクロホンと粒子速度検出手段とを用いて、口唇位置における進行波と反射波を求めても構わない。粒子速度検出手段としては、音響インテンシティー計測用に利用されている粒子速度検出装置や従来のFOT法で用いられているニューモタコグラフなどを用いることができる。 If k m and μ m are known for all m from 0 to M, the traveling wave P M + 1 + and the reflected wave P M + 1 − at the position of the upper airway end also progress in the lip position. It can be seen that the wave P 0 + and the reflected wave P 0 can be calculated sequentially. The traveling wave P 0 + and the reflected wave P 0 − at the lip position can be obtained based on the sound pressure detected by the microphones 3 and 3 ′ using a traveling wave / reflected wave separation method known in the acoustic measurement field. . In this embodiment, two microphones are used. However, a traveling wave and a reflected wave at the lip position may be obtained using one microphone and particle velocity detection means. As the particle velocity detection means, a particle velocity detection device used for sound intensity measurement, a pneumotachograph used in the conventional FOT method, or the like can be used.

次に、kmとμmを逐次的に決定する方法を説明する。式(4)の第二式両辺にe-j km lをかけて、時間領域で表現すると Next, a method for sequentially determining the k m and mu m. When e -j km l is applied to both sides of the second equation in equation (4) and expressed in the time domain,

Figure 2014057688
Figure 2014057688

となる。ここで、r (2l)(t)は、音波が区間m内を往復したときの波形変化を表すインパルス応答であり、周波数領域ではe-2αm lと書ける。ところで、強制振動を印可し始める時刻をt=0とすると、区間mまで音波が到達するには、mτの時間を要するから、各音波について It becomes. Here, r m (2l) (t) is an impulse response representing a waveform change when the sound wave reciprocates within the section m, and can be written as e −2αml in the frequency domain. By the way, if the time to start applying the forced vibration is t = 0, it takes mτ time for the sound wave to reach the section m.

Figure 2014057688
Figure 2014057688

という条件が成立する。(8)式でこの条件を考慮すると、区間mにおける進行波と反射波の間には The condition is established. If this condition is taken into account in Eq. (8), the distance between the traveling wave and the reflected wave in interval m

Figure 2014057688
Figure 2014057688

の関係が成り立つ。μm-1が既知であればSmがわかる。区間m内の音波伝播特性r (2l)(t)(またはそのフーリエ変換e-2αm l)は、断面積Smを基に推定することが可能である。このr (2l)(t)とpm +、pm -を用いて、(10)式からμmを推定できるので、第(m+1)区間の断面積Sm+1が計算できる。以上のように、km、μm、pm +(Pm )、pm -(Pm -)を、口唇側から抹消側に向かって、逐次的に決定していくことができる。なお、これまでの説明で明らかなように、連続的に断面積が変化する気道を短管の連鎖で近似表現しており、区間mの断面積Smは、区間の断面積を音響的な意味で平均したものを表している。また、気管の分岐部(カリーナ)よりも末梢側については、km、μmは、気道を一本と見なしたときの等価的な断面積と伝播特性を表す。 The relationship holds. If μ m-1 is known, S m is known. The sound wave propagation characteristic r m (2l) (t) in the section m (or its Fourier transform e −2αm l ) can be estimated based on the cross-sectional area S m . Using this r m (2l) (t) and p m + , p m , μ m can be estimated from equation (10), so that the cross-sectional area S m + 1 of the (m + 1) -th section can be calculated. . As described above, k m, μ m, p m + (P m +), p m - (P m -) and toward the peripheral side from the lip side, it is possible to continue to determine sequentially. As is clear from the above description, the airway whose cross-sectional area continuously changes is approximated by a chain of short tubes, and the cross-sectional area S m of the section m is an acoustic representation of the cross-sectional area of the section. It represents the averaged meaning. Also, the distal side of the bifurcation of the trachea (carina), k m, mu m represents an equivalent cross-sectional area as the propagation characteristics when regarded as one airway.

断面積Smに基づいて、区間内の伝播特性km(r (l)(t))を推定する方法については、音声分析の分野などで研究が行われており(非特許文献5)、声道(上部肺気道)内壁の機械的特性のデータなども蓄積されている。本実施例では、伝播特性km(r (l)(t))の推定を、音声分析分野で周知の壁面モデルに基づいて行っている。 Based on the cross-sectional area S m, propagation characteristics k m in the interval (r m (l) (t)) for the method of estimating the has been studied in the fields of speech analysis (Non-Patent Document 5) In addition, data on the mechanical properties of the inner wall of the vocal tract (upper lung airway) are also accumulated. In this embodiment, the estimation of the propagation characteristic k m (r m (l) (t)), is performed based on the well-known wall model speech analysis art.

以上のようにして推定された気道断面積から、中枢気道狭窄などの病変がないかを検査することができる。また、流量センサー6の信号に基づいて呼気期間と吸気期間を判定し、それぞれの期間で気道断面積推定を行って比較することで、呼気時気道狭窄が生じているか否かを検査することも可能になる。   From the airway cross-sectional area estimated as described above, it is possible to examine whether there is a lesion such as central airway stenosis. Further, it is possible to determine whether or not an expiration airway stenosis has occurred by determining an expiration period and an inspiration period based on a signal from the flow sensor 6, and performing an airway cross-sectional area estimation and comparing in each period. It becomes possible.

強制振動波形には、本実施例では、図5のパルス信号を図6に示すように時間伸長した波形を用いている。図5の波形は、ガウシアンパルスを誤差関数でシグモイド化して作成している。図5の信号を用いた場合、(10)式において、pm +とpm -の極大値を比較するだけでμmを決定することができる。図6の信号は、図5の信号の各周波数成分に、周波数の二乗に比例した位相回転を付加して時間伸長したものである。スピーカーボックスから図6の波形を出力し、マイクロホンで検出した信号に、位相回転を引き去る逆操作を施すことで、等価的に、スピーカーボックスから図5のパルス信号を送出した場合と同じ測定ができる。図6の信号では、各周波数成分が時間軸上に分散するので、クレストファクターが大幅に減少し、高いS/N比を確保することが可能になっている。 In this embodiment, the forced vibration waveform is a waveform obtained by extending the pulse signal of FIG. 5 as shown in FIG. The waveform of FIG. 5 is created by sigmoidizing a Gaussian pulse with an error function. When using the signal of FIG. 5, in (10), p m + and p m - it can be determined mu m by simply comparing the maximum value. The signal of FIG. 6 is obtained by adding a phase rotation proportional to the square of the frequency to each frequency component of the signal of FIG. 6 is output from the speaker box, and the signal detected by the microphone is subjected to a reverse operation to remove the phase rotation, so that the same measurement as when the pulse signal of FIG. 5 is transmitted from the speaker box is equivalently performed. it can. In the signal of FIG. 6, since each frequency component is dispersed on the time axis, the crest factor is greatly reduced, and a high S / N ratio can be secured.

(第二実施例)
第二実施例の肺機能検査装置では、口唇近傍で測定した呼吸インピーダンスから、上部気道の寄与を除いて、当該上部気道の端部から末梢側を見込んだときの末梢側気道インピーダンスを測定する。装置の構成や強制振動信号などは、第一実施例とまったく同じである。
(Second embodiment)
In the pulmonary function test apparatus of the second embodiment, the peripheral airway impedance when the peripheral side is viewed from the end of the upper airway is measured by removing the contribution of the upper airway from the respiratory impedance measured in the vicinity of the lips. The configuration of the apparatus and the forced vibration signal are exactly the same as in the first embodiment.

第一実施例と同様の手順で、逐次的な推定を上部気道端部まで進めれば、式(5)に示したように、上部気道出口の音圧信号PM+1 +とPM+1 -が求まる。上部気道端部の音響インピーダンスZpは、進行波PM+1 +と反射波PM+1 -から If sequential estimation is advanced to the upper airway end in the same procedure as in the first embodiment, the sound pressure signals P M + 1 + and P M + at the upper airway exit are obtained as shown in Equation (5). 1 - is found. The acoustic impedance Z p of the upper air roadside unit, traveling wave P M + 1 + and the reflected wave P M + 1 - from

Figure 2014057688
Figure 2014057688

と計算できる。このインピーダンスは、上部気道端部から末梢側気道を見込んだときの入力インピーダンスであり、上部気道の寄与を含まない。したがって、上部気道アーチファクトや上部気道状態の影響を受けることなく、末梢気道抵抗や末梢気道リアクタンスを推定することが可能になる。 Can be calculated. This impedance is an input impedance when the peripheral airway is viewed from the end of the upper airway, and does not include the contribution of the upper airway. Therefore, it is possible to estimate peripheral airway resistance and peripheral airway reactance without being affected by upper airway artifacts and upper airway conditions.

逐次的推定過程における伝播特性km(r (l)(t))の推定を、モデルに基づいて推定する(0034)のではなく、マイクロホンで検出した音圧信号自体に基づいて行うことも可能である。まず、強制振動信号として、高い周波数成分からなる等価パルス波形を用いて、第一実施例で説明した手順にしたがって、km、μm、pm +(Pm )、pm -(Pm -)を推定する。高周波領域では、上部気道アーチファクトや区間内減衰の影響が小さいので、km、μmの推定は精度よく進めることができる。次に、低周波域における伝播特性を推定するために、低い周波数成分を含む強制振動信号を用いて、断面積分布μmが既知という条件の下で、(10)式に基づいてkm(r (l)(t))の推定を行う。すなわち、この場合には、インピーダンス推定は二つの工程からなり、第一の工程では、高い周波数成分を用いてkmとμmを決定し、第二の工程においては、第一の工程で決定したμm(断面積分布)を用いて、低周波域まで含めた伝播特性km(r (l)(t))を推定することになる。もし、第二の工程の強制振動に含まれる周波数成分では、低域の周波数分解能がなお不足する場合には、肺気道壁面の機械−音響モデルを先験知識として利用して、周波数特性を低域側に外挿することが行われる。 The propagation characteristic k m (r m (l) (t)) in the sequential estimation process may be estimated not based on the model (0034) but based on the sound pressure signal itself detected by the microphone. Is possible. First, as a forced vibration signals by using the equivalent pulse waveform consisting of a high frequency component, according to the procedure described in the first embodiment, k m, μ m, p m + (P m +), p m - (P m -) to estimate. In the high frequency region, the influence of the upper respiratory tract artifacts or interval within the attenuation is small, k m, the estimation of mu m can proceed accurately. Next, in order to estimate the propagation characteristics in the low frequency range, using a forced vibration signal including a low frequency component, under the condition that the known cross-sectional area distribution mu m, based on formula (10) k m ( the estimation of r m (l) (t) ). That is, in this case, the impedance estimate consists of two steps, the first step to determine the k m and mu m by using a high frequency component, in the second step, determining in the first step the mu m using a (cross-sectional area distribution), so that to estimate the propagation characteristics including up to a low frequency band k m (r m (l) (t)). If the frequency component included in the forced vibration of the second step still lacks low-frequency resolution, the frequency characteristics are reduced by using a mechanical-acoustic model of the lung airway wall as a priori knowledge. Extrapolation to the band side is performed.

第二実施例においては、上部気道は、典型的には、口唇から声門までに設定される。この上部気道をいくつの区間に分割するかは、検査目的や信号の周波数帯域などの条件によって決定される。ところで、ここまでの説明からわかるように、各区間長lの長さは、上部気道の全長がlの整数倍となるように取ることが望ましい。上部気道の長さは、被験者の体格等からおおよそ推定することが可能であるが、スピーカーボックスから、上部気道長を推定するためのパルス信号を送信するなどして、声門からの反射を利用して音響的に測定すれば、より正確に推定することができる。なお、検査目的によっては、口唇から声門までの上部気道を一つの区間で近似する場合もある。   In the second embodiment, the upper airway is typically set from the lips to the glottis. The number of sections into which the upper airway is divided is determined by conditions such as the examination purpose and the signal frequency band. By the way, as can be seen from the above description, it is desirable that the length of each section length l is set so that the total length of the upper airway is an integral multiple of l. The length of the upper airway can be roughly estimated from the subject's physique, etc., but the reflection from the glottis is used by transmitting a pulse signal from the speaker box to estimate the upper airway length. If it is measured acoustically, it can be estimated more accurately. Depending on the examination purpose, the upper airway from the lips to the glottis may be approximated by one section.

第一実施例および第二実施例では、被験者は開口21を通して外気を自発呼吸しており、スピーカーボックスを利用して強制振動を重畳印可することを想定している。しかし、呼吸インピーダンスの測定は、強制呼吸装置が直流的呼吸流に振動的気流を重畳させて被験者の肺気道に送出している場合でも、自発呼吸に振動的な強制振動が重畳している場合と変わらない。すなわち、本方法は、人工呼吸器などと組み合わせて使用することも可能であるし、強制振動の印加手段はスピーカーボックスに限定される訳でもない。また、図6の信号の持続時間は短時間であるので、呼吸流量センサー6の信号を利用して、肺内気量の様々なレベルごとの呼吸インピーダンスを測定することもできる。   In the first embodiment and the second embodiment, it is assumed that the subject breathes the outside air spontaneously through the opening 21 and applies the forced vibration superimposed using the speaker box. However, when measuring the respiratory impedance, the forced breathing device superimposes the oscillatory airflow on the DC respiratory flow and sends it to the lung airway of the subject, but the forced breathing is superimposed on the spontaneous breathing. And no different. That is, this method can be used in combination with a ventilator or the like, and the means for applying forced vibration is not limited to the speaker box. Further, since the duration of the signal in FIG. 6 is short, the respiratory impedance at various levels of the lung air volume can be measured using the signal of the respiratory flow sensor 6.

(第三実施例)
本発明の第三の実施例は、検査中に、被験者の自発的な協力が得られる場合に適した実現形態である。機器の構成は第一実施例と同一である。第三実施例においては、被験者は、検査の第一の工程において、マウスピースをくわえたままで一時的に声門を閉めることを求められる。声門を閉めた状態では、声門53において、インピーダンスは近似的に無限大となっている。
(Third embodiment)
The third embodiment of the present invention is an implementation suitable for the case where the subject's voluntary cooperation is obtained during the examination. The configuration of the equipment is the same as in the first embodiment. In the third embodiment, the subject is required to temporarily close the glottis while holding the mouthpiece in the first step of the examination. When the glottis are closed, the impedance of the glottis 53 is approximately infinite.

検査の第一の工程においては、声門までの上部気道の断面積と伝播特性が測定される。その方法としては、第一実施例および第二実施例と同じ方法を用いればよい。しかし、声門が閉じているという条件を活かして、以下の方法を取ることもできる。すなわち、強制振動信号として、パルス波やランダム波あるいは掃引正弦波や周波数をステップ的に変化させた正弦波などを用い、音声分析分野で周知の声道断面積推定手法(非特許文献7、8)を用いて、声門までの上部気道の断面積と伝播特性を求める。また、検査目的に応じて、上部気道を一区間で近似し、十分な低域成分を有する信号を用い、十分な測定時間をかけて特性を測定して、等価断面積と伝播特性を推定する場合もある。   In the first step of the examination, the cross-sectional area and propagation characteristics of the upper airway to the glottis are measured. As the method, the same method as in the first and second embodiments may be used. However, taking advantage of the condition that the glottis are closed, the following method can be used. That is, as a forced vibration signal, a pulse wave, a random wave, a swept sine wave, a sine wave whose frequency is changed stepwise, or the like is used, and a vocal tract cross-sectional area estimation method known in the speech analysis field (Non-Patent Documents 7 and 8). ) To determine the cross-sectional area and propagation characteristics of the upper airway to the glottis. Depending on the purpose of the examination, the upper airway is approximated in one section, a signal with a sufficient low-frequency component is used, the characteristics are measured over a sufficient measurement time, and the equivalent cross-sectional area and propagation characteristics are estimated. In some cases.

検査の第二の工程においては、被験者は、声門を開けるよう指示される。この状態で、強制振動を印加して呼吸インピーダンスを測定する。第一の工程で推定した上部気道の特性を用いて上部気道出口における進行波と反射波を推定し、式(11)に基づいて、上部気道の寄与を除いた末梢側インピーダンスを計算する。その手順は第一実施例および第二実施例で説明した手順と同一である。なお、検査目的によっては、肺気道を、特性が既知の上部気道の出口が未知の末梢側気道インピーダンスZpで終端されているという回路モデルに基づき、口唇位置から呼吸インピーダンスを測定して、終端インピーダンスZpを推定するという方法を用いる場合もある。また、必要に応じて、被験者に対して、様々な肺内気量レベルで、声門を開けたまま呼吸動作を中断するように指示する場合がある。 In the second step of the test, the subject is instructed to open the glottis. In this state, forced impedance is applied to measure respiratory impedance. Using the characteristics of the upper airway estimated in the first step, the traveling wave and the reflected wave at the upper airway exit are estimated, and the peripheral impedance excluding the contribution of the upper airway is calculated based on Equation (11). The procedure is the same as that described in the first and second embodiments. Depending on the test object, the pulmonary airways, characteristics based on the circuit model of the outlet of known upper airway is terminated with an unknown distal airways impedance Z p, by measuring the respiratory impedance from lip position, end In some cases, a method of estimating the impedance Z p is used. Further, if necessary, the subject may be instructed to interrupt the breathing operation with the glottal open at various lung air volume levels.

(第四実施例)
本発明の第四実施例は、検査中に、被験者が発声できる場合に適した実現形態である。本実施例の機器構成も、第一実施例のそれと同一である。検査の第一の工程において、被験者は、マウスピースをくわえたまま、調音器官を自発呼吸時と同じ状態にして、発声することが求められる。このときの圧力変動信号(音声信号)は、マイクロホン3によって検出される。
(Fourth embodiment)
The fourth embodiment of the present invention is an implementation suitable for a case where the subject can speak during the examination. The equipment configuration of this embodiment is the same as that of the first embodiment. In the first step of the examination, the subject is required to utter while keeping the mouthpiece in the same state as the spontaneous breathing organ. The pressure fluctuation signal (voice signal) at this time is detected by the microphone 3.

検出された音声信号に基づき、音声分析の分野で周知の推定法、本実施例では偏相関関数(PARCOR)を用いた推定法(非特許文献9)で、上部気道(声道)断面積が気道軸に沿って逐次的に推定される。声道断面積関数すなわち口唇部分から声門までの区間の断面積Smの分布が求まれば、第一実施例および第二実施例と同様の方法によって、声門までの上部気道の伝播特性も推定できる。 Based on the detected speech signal, an upper airway (vocal tract) cross-sectional area is estimated by a well-known estimation method in the field of speech analysis, in this embodiment, an estimation method using a partial correlation function (PARCOR) (Non-Patent Document 9). Estimated sequentially along the airway axis. Once the vocal tract cross-sectional area function, that is, the distribution of the cross-sectional area S m from the lip to the glottis, is obtained, the propagation characteristics of the upper airway to the glottis can also be estimated by the same method as in the first and second embodiments. it can.

第二の工程では、被験者は、発声を止めて自発呼吸を再開するよう指示される。以下、第三実施例の第二の工程と同様の手順によって、声門から肺気道の末梢側を見込んだ末梢気道インピーダンスを推定することができる。 In the second step, the subject is instructed to stop speaking and resume spontaneous breathing. Hereinafter, the peripheral airway impedance in which the peripheral side of the pulmonary airway is expected from the glottis can be estimated by the same procedure as the second step of the third embodiment.

本発明の第一実施例の構成を示す図である。It is a figure which shows the structure of the 1st Example of this invention. 短管の連鎖で表現した肺気道の模式図である。It is a schematic diagram of the lung airway expressed by a chain of short tubes. 肺気道の各区間内の音響伝播を説明する図である。It is a figure explaining the acoustic propagation in each area of a lung airway. 肺気道の区間内と境界での信号の流れを示す図である。It is a figure which shows the flow of the signal in the area of a lung airway, and a boundary. 強制振動に用いられる信号の等価波形である。It is an equivalent waveform of a signal used for forced vibration. 時間伸長された実際の強制振動波形である。It is an actual forced vibration waveform extended in time.

1 スピーカーボックス
2 検査用管
21 呼吸用開口
3,3’ マイクロホン
4 信号処理装置
5 被験者
51 上部気道
52 末梢気道
53 声門
54 胸郭
6 呼吸流量センサー

1 Speaker box
2 Test tube 21 Breathing opening 3,3 'microphone
4 signal processing equipment
5 Subjects 51 Upper airway 52 Peripheral airway 53 Glottis 54 Thorax
6 Respiratory flow sensor

Claims (5)

肺気道に強制振動を印加して肺機能を検査する方法において、肺気道ないしは肺気道に連結した管の中の圧力変動を検出し、この圧力変動信号に基づいて上部気道の断面積を推定し、推定した断面積の情報に基づいて肺機能を検査することを特徴とする肺機能検査方法。   In the method of inspecting lung function by applying forced vibration to the lung airway, pressure fluctuation in the lung airway or a tube connected to the lung airway is detected, and the cross-sectional area of the upper airway is estimated based on this pressure fluctuation signal. A lung function test method, wherein the lung function is tested based on the estimated cross-sectional area information. 口唇より肺気道に強制振動を印加し、このとき口唇近傍に生じる圧力変動を検出して、口唇側から末梢側に向かって伝播する進行波と、末梢側から口唇側に向かって伝播する反射波を分離し、音波の伝播所要時間の情報を利用して、肺気道内の各位置の断面積とそこで生じる反射の推定を末梢側に向かって逐次的に進め、肺気道内の所望の位置までの断面積を推定することを特徴とする、請求項1に記載の肺機能検査方法。   Applying forced vibration from the lips to the lung airway, detecting pressure fluctuations that occur in the vicinity of the lips at this time, traveling waves propagating from the lip side to the peripheral side, and reflected waves propagating from the peripheral side to the lip side Using the information on the time required for propagation of sound waves, the cross-sectional area of each position in the lung airway and the estimation of the reflection that occurs are sequentially advanced toward the distal side until the desired position in the lung airway. The lung function test method according to claim 1, wherein a cross-sectional area of the lung function is estimated. 推定した上部気道の断面積に基づいて、呼吸インピーダンスに対する上部気道の寄与をのぞき、上部気道の末梢側端部位置から肺気道の末梢側を見込んだインピーダンスを推定することを特徴とする、請求項1〜2に記載の肺機能検査方法。   The impedance of the peripheral side of the pulmonary airway is estimated from the position of the peripheral end of the upper airway, excluding the contribution of the upper airway to the respiratory impedance based on the estimated cross-sectional area of the upper airway. The lung function testing method according to 1-2. 被験者が発する音声信号を口唇近傍で検出して、検出した音声信号に基づいて口唇近傍から声門までの上部気道断面積を気道軸に沿って逐次的に推定することを特徴とする、請求項3に記載の肺機能検査方法。   The voice signal emitted by the subject is detected in the vicinity of the lips, and the upper airway cross-sectional area from the vicinity of the lips to the glottis is sequentially estimated along the airway axis based on the detected voice signal. The lung function test method according to 1. 肺気道に強制振動を印加する手段と、肺気道内の圧力変動を検出する手段と、上部気道の断面積を推定する手段とを有し、請求項1〜4に記載の方法を用いて肺機能検査を行うことを特徴とする装置。

A means for applying a forced vibration to the lung airway, a means for detecting pressure fluctuations in the lung airway, and a means for estimating a cross-sectional area of the upper airway, and using the method according to claims 1 to 4 A device characterized by performing a function test.

JP2012203734A 2012-09-15 2012-09-15 Lung function testing device Expired - Fee Related JP6090828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012203734A JP6090828B2 (en) 2012-09-15 2012-09-15 Lung function testing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012203734A JP6090828B2 (en) 2012-09-15 2012-09-15 Lung function testing device

Publications (2)

Publication Number Publication Date
JP2014057688A true JP2014057688A (en) 2014-04-03
JP6090828B2 JP6090828B2 (en) 2017-03-08

Family

ID=50614752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012203734A Expired - Fee Related JP6090828B2 (en) 2012-09-15 2012-09-15 Lung function testing device

Country Status (1)

Country Link
JP (1) JP6090828B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023243764A1 (en) * 2022-06-16 2023-12-21 가톨릭대학교 산학협력단 Device for measuring obstruction of tracheostomy tube, trachea, and bronchus of patient with tracheostomy tube
JP7474758B2 (en) 2018-11-09 2024-04-25 ソラシス ソラシック メディカル システムズ インコーポレイテッド Modular vibration measurement device with dynamic calibration

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993011703A1 (en) * 1991-12-17 1993-06-24 Jeffrey Joseph Fredberg Airway geometry imaging

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993011703A1 (en) * 1991-12-17 1993-06-24 Jeffrey Joseph Fredberg Airway geometry imaging

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6016032651; 西山雄太 外1名: '肺気道音響インピーダンスの測定' 日本機械学会講演論文集 No.128-1, 20120316, pp.401-402 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7474758B2 (en) 2018-11-09 2024-04-25 ソラシス ソラシック メディカル システムズ インコーポレイテッド Modular vibration measurement device with dynamic calibration
WO2023243764A1 (en) * 2022-06-16 2023-12-21 가톨릭대학교 산학협력단 Device for measuring obstruction of tracheostomy tube, trachea, and bronchus of patient with tracheostomy tube

Also Published As

Publication number Publication date
JP6090828B2 (en) 2017-03-08

Similar Documents

Publication Publication Date Title
US7347824B2 (en) Method and apparatus for determining conditions of biological tissues
Slifka Some physiological correlates to regular and irregular phonation at the end of an utterance
Hoffstein et al. The acoustic reflection technique for non-invasive assessment of upper airway area
US5316002A (en) Nasopharyngealometric apparatus and method
JP5161768B2 (en) Method for measuring the acoustic impedance of the respiratory system and method for monitoring the progress of treatment for respiratory diseases or disorders
US20060070623A1 (en) Method and apparatus for determining a bodily characteristic or condition
KR20070009577A (en) Method and system for analysing respiratory tract air flow
Bergstresser et al. Sound transmission in the lung as a function of lung volume
JP2001505085A (en) Phonopneograph system
US20060100666A1 (en) Apparatus and method for lung analysis
US20080139956A1 (en) Augmented RIC model of respiratory systems
US10820890B2 (en) Diagnosing lung disease using transthoracic pulmonary doppler ultrasound during lung vibration
Urbankowski et al. Methods of airway resistance assessment
Kiyokawa et al. Volume-dependent variations of regional lung sound, amplitude, and phase
Mansy et al. Pneumothorax detection using computerised analysis of breath sounds
Bogomolov et al. Mathematical model of sound absorption by lungs with acoustic stimulation of the respiratory system
JP6090828B2 (en) Lung function testing device
Goncharoff et al. Wideband acoustic transmission of human lungs
Awan et al. Use of a vortex whistle for measures of respiratory capacity
Dragan et al. A method for acoustic impedance spectroscopy of the respiratory tract
Korenbaum et al. Regression simulation of the dependence of forced expiratory tracheal noises duration on human respiratory system biomechanical parameters
Berger et al. Velocity and attenuation of sound in the isolated fetal lung as it is expanded with air
Rollins et al. Effects of nasal emission and microphone placement on nasalance score during/s
Casassa et al. A Phonatory System Simulator for testing purposes of voice-monitoring contact sensors
KR20190041011A (en) Newborn diagnostic devices and programs

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20120924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170202

R150 Certificate of patent or registration of utility model

Ref document number: 6090828

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees