JP2014056739A - Dye-sensitized solar cell - Google Patents

Dye-sensitized solar cell Download PDF

Info

Publication number
JP2014056739A
JP2014056739A JP2012201315A JP2012201315A JP2014056739A JP 2014056739 A JP2014056739 A JP 2014056739A JP 2012201315 A JP2012201315 A JP 2012201315A JP 2012201315 A JP2012201315 A JP 2012201315A JP 2014056739 A JP2014056739 A JP 2014056739A
Authority
JP
Japan
Prior art keywords
electrode
dye
metal oxide
solar cell
sensitized solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012201315A
Other languages
Japanese (ja)
Inventor
Mamoru Ikeguchi
護 池口
Shuichi Mayumi
周一 真弓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PGS HOME CO Ltd
Original Assignee
PGS HOME CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PGS HOME CO Ltd filed Critical PGS HOME CO Ltd
Priority to JP2012201315A priority Critical patent/JP2014056739A/en
Publication of JP2014056739A publication Critical patent/JP2014056739A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a dye-sensitized solar cell which can inhibit short-circuit current and decrease in open-circuit voltage which are caused by an exposed part of electrodes to which metal oxide semiconductors adhere thereby to improve conversion efficiency; and further make it easy to procure materials even when production is increased thereby to decrease manufacturing cost.SOLUTION: A dye-sensitized solar cell comprises electrodes to which dye-adsorbed metal oxide semiconductors adhere in which a barely exposed part of the electrodes where the metal oxide semiconductor does not adhere is covered with an insulating film. The electrodes are net-like electrodes. The insulation film is an inorganic compound having at least one of alumina and silica. The insulating film is an organic compound which is an electrodeposition paint.

Description

本発明は、色素を電極に吸着させてなる色素増感太陽電池に関する。より具体的には、金属酸化物半導体が付着する電極の一部に絶縁性皮膜が被覆されている色素増感太陽電池に関する。   The present invention relates to a dye-sensitized solar cell obtained by adsorbing a dye to an electrode. More specifically, the present invention relates to a dye-sensitized solar cell in which an insulating film is coated on a part of an electrode to which a metal oxide semiconductor adheres.

色素増感太陽電池は、グラッツェルらの研究グループが1991年に太陽エネルギー変換効率7.1%を発表し(非特許文献1)、さらに1993年に同グループが同変換効率10%を発表したことに端を発し(非特許文献2)、世界的に注目される技術となっている。   Regarding the dye-sensitized solar cell, a research group of Gratzel et al. Announced a solar energy conversion efficiency of 7.1% in 1991 (Non-patent Document 1), and in 1993 the group announced a conversion efficiency of 10%. In particular, it has become a technology that attracts worldwide attention (Non-Patent Document 2).

グラッツェルらが発表した色素増感太陽電池の構成は、ガラス板、又は透明プラスチックシートの内側にインジウム/スズ系の透明電導層を設け、さらにその透明電導層に二酸化チタンなどの微粒子金属酸化物半導体を固定し、この金属酸化物半導体にルテニウム化合物などの色素を吸着させた電極と、白金や炭素などの対極との間にヨウ素溶液などの酸化還元体を充填したものである。   The structure of the dye-sensitized solar cell announced by Gratzel et al. Is provided with an indium / tin based transparent conductive layer on the inside of a glass plate or transparent plastic sheet, and fine metal oxide such as titanium dioxide in the transparent conductive layer. A redox body such as an iodine solution is filled between an electrode in which a semiconductor is fixed and a dye such as a ruthenium compound is adsorbed on the metal oxide semiconductor and a counter electrode such as platinum or carbon.

上記の色素増感太陽電池における正極及び負極である電極に使用される白金、インジウムおよびルテニウムなどの材料は希少で高価であるため、色素増感太陽電池が普及するためには当該電極が安価に製造されることが課題であった。このため、電極を安価に製造しようとする試みがなされている。   Since materials such as platinum, indium, and ruthenium used for the positive electrode and the negative electrode in the dye-sensitized solar cell are rare and expensive, in order for the dye-sensitized solar cell to spread, the electrode is inexpensive. It was a problem to be manufactured. For this reason, attempts have been made to manufacture electrodes at low cost.

例えば、特許文献1では、簡便な製造方法を用いて安価で高い変換効率を有する色素増感太陽電池を提供するため、正極の電極として白金等の材料で格子状の網目を有する金属メッシュ電極を用いた色素増感太陽電池が開示されている。   For example, in Patent Document 1, in order to provide a dye-sensitized solar cell that is inexpensive and has high conversion efficiency using a simple manufacturing method, a metal mesh electrode having a lattice-like network made of a material such as platinum is used as a positive electrode. The dye-sensitized solar cell used is disclosed.

また、特許文献2では、製造方法が容易で接続不良を生じにくい高品質な色素増感太陽電池を提供するため、負極の透明電極の導電性を向上させる目的でメッシュ状の金属製電極を透明電極と一体とする電極層を有する色素増感太陽電池が開示されている。   Further, in Patent Document 2, in order to provide a high-quality dye-sensitized solar cell that is easy to manufacture and hardly causes poor connection, a mesh-like metal electrode is transparent for the purpose of improving the conductivity of the negative electrode transparent electrode. A dye-sensitized solar cell having an electrode layer integrated with an electrode is disclosed.

特開2006−156214号公報JP 2006-156214 A 特開2011−243556号公報JP 2011-243556 A

B.O‘regan, M.Graetzel, Nature (London, United Kingdom), 353, 737 (1991)B. O'regan, M.M. Graetzel, Nature (London, United Kingdom), 353, 737 (1991) M.K.Nazeeruddin, a.Kay, I.Rodicio, R.Humphry−Baker, E.Mueller, P.Liska,N.Vlachopoulos, M.Graetzel, Journal of the American Chemical Society, 115, 6382 (1993)M.M. K. Nazeeruddin, a. Kay, I.D. Rodicio, R.C. Humphry-Baker, E .; Mueller, P.M. Liska, N .; Vlachopoulos, M.M. Graetzel, Journal of the American Chemical Society, 115, 6382 (1993)

しかしながら、特許文献1のように、正極に網目状の電極を用いて光を透過させ、電解質層を介して金属酸化物半導体を有する負極に光を照射すると、電解質層で光の一部が遮光され色素増感太陽電池に照射される光を十分に活用できていなかった。   However, as in Patent Document 1, when light is transmitted using a mesh electrode for the positive electrode and light is irradiated to the negative electrode having a metal oxide semiconductor through the electrolyte layer, part of the light is blocked by the electrolyte layer. The light applied to the dye-sensitized solar cell has not been fully utilized.

また、特許文献2のように、負極に網目状の電極を用いたとしても透明電極の補助的なものであり、酸化インジウムにスズを添加したITOなどを材料とした透明電極を用いているので、生産を拡大すれば材料の調達が困難になり、また、色素増感太陽電池のコストが高くなる。   In addition, as in Patent Document 2, even if a network electrode is used for the negative electrode, it is an auxiliary to the transparent electrode, and the transparent electrode made of ITO or the like in which tin is added to indium oxide is used. If the production is expanded, it becomes difficult to procure materials, and the cost of the dye-sensitized solar cell increases.

そして、負極に網目状電極を用いたときに、付着させる金属酸化物半導体を網目状電極に完全に覆うように付着させることは困難であり、局所的に金属酸化物半導体が剥がれて網目状電極が剥き出しとなった露出部があり、この露出部が存在するために、色素増感太陽電池において、負極と正極の電位差が小さくなり、また、露出部から逆方向の電流が流れるため電流値も小さくなる。その結果、光電変換効率が低くなることがあった。   When a mesh electrode is used for the negative electrode, it is difficult to adhere the metal oxide semiconductor to be adhered so as to completely cover the mesh electrode, and the metal oxide semiconductor is locally peeled off to form a mesh electrode. In the dye-sensitized solar cell, the potential difference between the negative electrode and the positive electrode is small, and a current in the reverse direction flows from the exposed portion. Get smaller. As a result, the photoelectric conversion efficiency may be lowered.

さらには、そもそも特許文献1や特許文献2に開示された網目状電極のみならず、板状の電極であっても、酸化チタンなどの金属酸化物半導体を微小ホールなどの欠陥が存在しない状態で付着することは困難であり、又は、付着させた金属酸化物半導体を乾燥や焼結させている間に剥がれ落ち、電極の一部に剥き出しとなった露出部が生じる。この露出部により色素増感太陽電池の短絡電流及び開放電圧が低く、さらには変換効率が低くなるという課題があった。   Furthermore, in the first place, not only the mesh electrode disclosed in Patent Document 1 and Patent Document 2, but also a plate-like electrode, a metal oxide semiconductor such as titanium oxide is not present in a state where defects such as micro holes exist. It is difficult to adhere, or it is peeled off during drying or sintering of the attached metal oxide semiconductor, and an exposed portion is exposed on a part of the electrode. This exposed portion has a problem that the short-circuit current and the open-circuit voltage of the dye-sensitized solar cell are low, and further, the conversion efficiency is low.

そこで、本発明では、色素増感太陽電池において、金属酸化物半導体を付着させた電極の露出部による短絡電流及び開放電圧の低下を抑制し、変換効率を向上させることができ、さらには、その生産を拡大しても材料の調達が容易であり、製造コストを低減することができる色素増感太陽電池を提供することを目的とする。   Therefore, in the present invention, in the dye-sensitized solar cell, it is possible to suppress a decrease in short-circuit current and open-circuit voltage due to the exposed portion of the electrode to which the metal oxide semiconductor is attached, and to improve the conversion efficiency. It is an object of the present invention to provide a dye-sensitized solar cell that can easily procure materials even when production is expanded and can reduce manufacturing costs.

(1)すなわち、本発明は、色素を吸着した金属酸化物半導体が付着した電極を具備し、前記電極のうち、前記金属酸化物半導体が付着せず剥き出しとなった露出部が絶縁性皮膜により被覆されていることを特徴とする色素増感太陽電池である。   (1) That is, the present invention includes an electrode to which a metal oxide semiconductor adsorbing a dye is attached, and the exposed portion of the electrode that is not attached to the metal oxide semiconductor is exposed by an insulating film. It is a dye-sensitized solar cell characterized by being coated.

(2)そして、前記電極が網目状電極であることを特徴とする上記(1)に記載の色素増感太陽電池である。   (2) The dye-sensitized solar cell according to (1), wherein the electrode is a mesh electrode.

(3)そして、前記絶縁性皮膜が、アルミナ又はシリカの少なくとも一方を有する無機化合物であることを特徴とする上記(1)又は上記(2)に記載の色素増感太陽電池である。   (3) The dye-sensitized solar cell according to (1) or (2), wherein the insulating film is an inorganic compound having at least one of alumina and silica.

(4)そして、前記絶縁性皮膜が、電着塗料である有機化合物であることを特徴とする上記(1)又は上記(2)に記載の色素増感太陽電池である。   (4) The dye-sensitized solar cell according to (1) or (2), wherein the insulating film is an organic compound that is an electrodeposition paint.

本発明によれば、色素増感太陽電池において、金属酸化物半導体を付着させた電極の露出部による短絡電流及び開放電圧の低下を抑制し、変換効率を向上させることができ、さらには、その生産を拡大しても材料の調達が容易であり、製造コストを低減することができる。   According to the present invention, in a dye-sensitized solar cell, it is possible to suppress a decrease in short-circuit current and open-circuit voltage due to an exposed portion of an electrode to which a metal oxide semiconductor is attached, and to improve conversion efficiency. Even if production is expanded, the procurement of materials is easy, and the manufacturing cost can be reduced.

本発明の色素増感太陽電池の好ましい形態の概略断面図Schematic sectional view of a preferred form of the dye-sensitized solar cell of the present invention

以下、本発明に関する実施形態について詳しく説明する。なお、範囲を表す表現は、その上限と下限を含むものである。   Hereinafter, embodiments related to the present invention will be described in detail. In addition, the expression showing a range includes the upper limit and the lower limit.

色素増感太陽電池の負極は、導電性の平板状又は網目状の電極に粒子径が1〜100nmである金属酸化物半導体が分散された溶液を塗布し、加熱により溶媒を除去し、さらに高温に加熱して平板状電極又は網目状電極に膜厚10〜100μmである層状の金属酸化物半導体が形成され、層状の金属酸化物半導体が形成されずに露出した平板状電極又は網目状電極の露出部を絶縁性皮膜により被覆され、そして、色素を含有する溶液に金属酸化物半導体層を浸漬し、取り出した後に溶媒を除去して色素を層状の金属酸化物半導体に色素を吸着させることにより、作製される。   The negative electrode of the dye-sensitized solar cell is obtained by applying a solution in which a metal oxide semiconductor having a particle diameter of 1 to 100 nm is dispersed on a conductive flat or network electrode, removing the solvent by heating, and further increasing the temperature. The layered metal oxide semiconductor having a film thickness of 10 to 100 μm is formed on the plate-like electrode or mesh electrode by heating to the plate-like electrode or mesh-like electrode exposed without forming the layered metal oxide semiconductor. The exposed part is covered with an insulating film, and the metal oxide semiconductor layer is immersed in a solution containing the dye, and after removing the solvent, the dye is adsorbed to the layered metal oxide semiconductor by removing the solvent. Produced.

上記平板状電極は、導電性の材料を用いて、長方形状、正方形状、円形状、楕円形状等の形状を有する板状のものであり、金属酸化物半導体からの電子を導通することができる。この平板状電極は、透明であることが好ましいが、不透明であっても光が照射する側に色素を吸着した金属酸化物半導体が付着し、さらに電解質が接触するよう構成されていると所望の動作は可能であるため、各種ステンレス、銅などの汎用な材料で構成することができ、色素増感太陽電池の生産を拡大しても材料の調達が容易であり、製造コストを低減することができる。 The flat electrode is a plate having a rectangular shape, a square shape, a circular shape, an elliptical shape, or the like using a conductive material, and can conduct electrons from a metal oxide semiconductor. . This flat electrode is preferably transparent, but even if it is opaque, it is desirable that the metal oxide semiconductor adsorbing the dye adheres to the side irradiated with light and that the electrolyte is in contact with the electrode. Because it can operate, it can be made of various materials such as various types of stainless steel and copper. Even if the production of dye-sensitized solar cells is expanded, it is easy to procure materials and reduce manufacturing costs. it can.

上記導電性の網目状電極は、導電性の材料を用いて、三角形、四角形、六角形など多角形、又は円形の孔を複数有するものであり、金属酸化物半導体からの電子を導通することができる。このように電極を網目状にすることにより電極自体を透明にする必要性がなくなるので、インジウムなどの希少で高価な材料ではなく、各種ステンレス、銅などの汎用な材料で構成することができ、色素増感太陽電池の生産を拡大しても材料の調達が容易であり、製造コストを低減することができる。   The conductive mesh electrode has a plurality of polygonal or circular holes such as a triangle, a quadrangle, and a hexagon using a conductive material, and can conduct electrons from a metal oxide semiconductor. it can. By eliminating the need for the electrode itself to be transparent by making the electrode mesh like this, it is not a rare and expensive material such as indium, but can be composed of general-purpose materials such as various stainless steels and copper, Even if the production of dye-sensitized solar cells is expanded, the procurement of materials is easy, and the manufacturing cost can be reduced.

上記平板状電極又は網目状電極の厚みとしては、0.1μm〜1mmの範囲内であることが好ましい。上記平板状電極又は網目状電極の厚みが上記範囲を超える場合は、色素増感太陽電池の質量が重くなり物流及び施工に支障を来し、また、製造コストが高くなるからである。また、上記平板状電極又は網目状電極の厚みが上記範囲に満たない場合は、上記平板状電極又は網目状電極が電極としての機能を十分に果たさない可能性があるからである。   The thickness of the flat electrode or mesh electrode is preferably in the range of 0.1 μm to 1 mm. This is because when the thickness of the plate-like electrode or the mesh-like electrode exceeds the above range, the mass of the dye-sensitized solar cell becomes heavy, which hinders physical distribution and construction, and increases the manufacturing cost. Moreover, when the thickness of the said flat electrode or mesh electrode is less than the said range, it is because the said flat electrode or mesh electrode may not fully fulfill | perform the function as an electrode.

上記網目状電極の開口部の比率としては、10%〜99%の範囲内であることが好ましい。上記網目状電極の開口部の比率が上記範囲に満たない場合は、開口部をヨウ素イオンが通過するのに支障を来し、電流が減少する結果、変換効率を下げるからである。また、上記網目状電極の開口部の比率が上記範囲を超える場合は、大部分の光が開口部から通過してしまい、変換効率を下げるからである。   The ratio of the openings of the mesh electrode is preferably in the range of 10% to 99%. This is because, when the ratio of the openings of the mesh electrode is less than the above range, it interferes with the passage of iodine ions through the openings, and as a result, the current is reduced, thereby reducing the conversion efficiency. Further, when the ratio of the openings of the mesh electrode exceeds the above range, most of the light passes through the openings, and the conversion efficiency is lowered.

また、上記網目状電極の線幅、および目開き間隔としては、用いられる色素増感太陽電池の形状に合わせて適宜選択されるものであるが、上記網目状電極の線幅としては、1μm〜3mmが好ましく、5μm〜1mmがさらに好ましく、10μm〜100μmであることが最も好ましい。上記網目状電極の目開き間隔としては、5μm〜1000μmが好ましく、10μm〜500μmがさらに好ましく、20μm〜300μmが最も好ましい。   The line width of the mesh electrode and the gap between the mesh electrodes are appropriately selected according to the shape of the dye-sensitized solar cell to be used. The line width of the mesh electrode is 1 μm to 3 mm is preferable, 5 μm to 1 mm is more preferable, and 10 μm to 100 μm is most preferable. The mesh spacing of the mesh electrode is preferably 5 μm to 1000 μm, more preferably 10 μm to 500 μm, and most preferably 20 μm to 300 μm.

上記平板状電極又は網目状電極の材料としては、導電性を有する材料であれば特に限定されるものではなく、具体的には、銅、アルミニウム、チタン、クロム、タングステン、モリブデン、白金、タンタル、ニオブ、ジルコニウム、亜鉛、炭素、各種ステンレスおよびそれらの合金等が挙げられ、チタン、クロム、タングステン、各種ステンレスおよびそれらの合金が望ましい。なお、平板状電極又は網目状電極は、フレキシブル性を有するものであっても良い。   The material of the flat electrode or the mesh electrode is not particularly limited as long as it is a conductive material. Specifically, copper, aluminum, titanium, chromium, tungsten, molybdenum, platinum, tantalum, Examples include niobium, zirconium, zinc, carbon, various stainless steels, and alloys thereof, and titanium, chromium, tungsten, various stainless steels, and alloys thereof are preferable. Note that the flat electrode or the mesh electrode may have flexibility.

上記金属酸化物半導体は、バンドギャップ間の遷移が生じる粒子状等の形状を有する金属酸化物半導体が、複数集合してなるものである。個々の金属酸化物半導体の形状については、球状に限られるものでなく、棒状、針状、円錐状などいかなる形状であっても良い。また、その金属酸化物半導体の素材としては、例えば、TiSrO3 ,BaTiO3 ,TiO2 ,Nb2 5 ,MgO,ZnO,WO3 ,Bi2 3 ,CdS,CdSe,CdTe,In2 3 ,SnO2などの各種金属酸化物半導体が用いられる。このうち光電変換効率の向上のため、TiO2を用いることが好ましい。また、TiO2を用いる場合、結晶構造としてルチル型よりアナターゼ型の方がより好ましい。 The metal oxide semiconductor is formed by aggregating a plurality of metal oxide semiconductors having a particle shape or the like in which transition between band gaps occurs. The shape of each metal oxide semiconductor is not limited to a spherical shape, and may be any shape such as a rod shape, a needle shape, or a cone shape. Examples of the material of the metal oxide semiconductor include TiSrO 3 , BaTiO 3 , TiO 2 , Nb 2 O 5 , MgO, ZnO, WO 3 , Bi 2 O 3 , CdS, CdSe, CdTe, In 2 O 3. Various metal oxide semiconductors such as SnO 2 are used. Of these, TiO 2 is preferably used to improve photoelectric conversion efficiency. When TiO 2 is used, the anatase type is more preferable as the crystal structure than the rutile type.

上記平板状電極又は網目状電極に上記金属酸化物半導体を付着させる方法としては、粒子状等の形状を有する金属酸化物半導体の分散溶液に平板状電極又は網目状電極を浸漬させから引き上げ溶媒を乾燥する工程を1回、又は複数回繰り返し、その後300〜500℃で焼結させる方法などが好ましい。また、チタニウムイソプロポキシドなどの金属アルコキシドに平板状電極又は網目状電極を浸漬させ、金属アルコキシドを加水分解する工程を有する方法で平板状電極又は網目状電極に金属酸化物半導体を付着させても良い。   As a method for adhering the metal oxide semiconductor to the plate-like electrode or mesh electrode, the plate-like electrode or mesh electrode is immersed in a dispersion solution of a metal oxide semiconductor having a particle shape or the like, and then a lifting solvent is used. A method of repeating the drying step once or a plurality of times and then sintering at 300 to 500 ° C. is preferable. Alternatively, the metal oxide semiconductor may be attached to the plate electrode or network electrode by a method comprising a step of immersing the plate electrode or network electrode in a metal alkoxide such as titanium isopropoxide and hydrolyzing the metal alkoxide. good.

上記金属酸化物半導体の膜厚としては、0.1μm〜200μmが好ましく、0.5μm〜100μmがさらに好ましく、1〜50μmが最も好ましい。金属酸化物半導体の膜厚がこの範囲であると、変換効率を向上させることができる。   The film thickness of the metal oxide semiconductor is preferably 0.1 μm to 200 μm, more preferably 0.5 μm to 100 μm, and most preferably 1 to 50 μm. Conversion efficiency can be improved as the film thickness of a metal oxide semiconductor is this range.

上記平板状電極又は網目状電極に上記金属酸化物半導体を付着させる工程を経たとしても、特に網目状電極がその有する形状のために金属酸化物半導体が付着しにくい、又は、金属酸化物半導体が付着したが乾燥や焼結している間に剥がれ落ちることにより、網目状電極の一部が剥き出しとなった露出部が生じる。この露出部により色素増感太陽電池の短絡電流及び開放電圧が低く、さらには変換効率が低くなるため、それを改良するために、本発明における色素増感太陽電池では、その露出部を絶縁性皮膜により被覆する。   Even if the metal oxide semiconductor is attached to the flat electrode or the mesh electrode, the metal oxide semiconductor is difficult to adhere due to the shape of the mesh electrode, or the metal oxide semiconductor is Although it adheres and peels off during drying and sintering, an exposed portion in which a part of the mesh electrode is exposed is generated. This exposed portion reduces the short-circuit current and open-circuit voltage of the dye-sensitized solar cell and further reduces the conversion efficiency. In order to improve this, in the dye-sensitized solar cell of the present invention, the exposed portion is insulated. Cover with a film.

上記絶縁性皮膜は、導電性が極めて低い無機化合物、有機化合物、又はそれらの複合物を材料とするものであり、前記露出部を所定の膜厚で保護する部材である。上記絶縁性皮膜に用いられる無機化合物としては、アルミナ、シリカなどの絶縁性の高い金属酸化物を単独で又は複数組み合わせて用いられることが好ましい。また、上記絶縁性皮膜に用いられる有機化合物としては、絶縁性の高い塗料、特に電着塗料が好ましい。これらの材料を用いて被覆すると、平板状電極又は網目状電極の露出部との密着性も良く、絶縁性を保てるので色素増感太陽電池の短絡電流及び開放電圧を向上し、さらには変換効率を向上することができる。特に、電着塗料を用いると、平板状電極又は網目状電極の露出部のみを選択的に確実に被覆することができる。   The insulating film is made of an inorganic compound, an organic compound, or a composite thereof having extremely low conductivity, and is a member that protects the exposed portion with a predetermined film thickness. As an inorganic compound used for the insulating film, it is preferable to use a single metal oxide or a combination of a plurality of highly insulating metal oxides such as alumina and silica. Moreover, as an organic compound used for the insulating film, a highly insulating paint, particularly an electrodeposition paint is preferable. When these materials are used for coating, the adhesion to the exposed portion of the plate-like or mesh-like electrode is good and the insulation can be maintained, so that the short-circuit current and the open-circuit voltage of the dye-sensitized solar cell are improved, and further the conversion efficiency Can be improved. In particular, when an electrodeposition paint is used, only the exposed portion of the flat electrode or the mesh electrode can be selectively and reliably covered.

上記絶縁性皮膜の膜厚としては、0.1μm〜200μmが好ましく、0.5μm〜100μmがさらに好ましく、1〜50μmが最も好ましい。絶縁性皮膜の膜厚がこの範囲であると、平板状電極又は網目状電極の露出部を確実に絶縁することができ、金属酸化物半導体を過剰に覆うことがないので色素増感太陽電池の変換効率を低減させない。   The film thickness of the insulating film is preferably 0.1 μm to 200 μm, more preferably 0.5 μm to 100 μm, and most preferably 1 to 50 μm. When the film thickness of the insulating film is within this range, the exposed portion of the flat electrode or the mesh electrode can be reliably insulated, and the metal oxide semiconductor is not excessively covered. Does not reduce conversion efficiency.

上記色素は、太陽光の特定の波長を吸収し励起状態となり、その色素が吸着する金属酸化物半導体に電子を注入する増感色素として機能する。そして、色素に含有される金属として、ルテニウム、オスミウム、鉄、銅、白金、コバルト、レニウム、クロムなどの遷移金属が使用される。   The above dye functions as a sensitizing dye that absorbs a specific wavelength of sunlight and enters an excited state, and injects electrons into the metal oxide semiconductor to which the dye adsorbs. And as a metal contained in a pigment | dye, transition metals, such as ruthenium, osmium, iron, copper, platinum, cobalt, rhenium, chromium, are used.

このような色素として、cis−dithiocyano bis(4,4’−dicarboxy−2,2’−bipyridine)ruthenium;Ru(dcbpy)(NCS);N3、bis(tetrabutylammonium)[shis−di(thiocyanato)−bis(2,2’−bipyridyl−4−carboxylate−4’−carboxylic acid)−ruthenium;N719、Ru(tctpy)(NCS);N714、Ru(dmipy)(dcbpyH)I、Ru(dcphenTBA(H))(NCS)、cis−Ru(dcbiqH)(NCS)(TBA)などのルテニウム−ビピリジン系錯体、cis−dithiocyano bis(4,4’−dicarboxy−2,2’−bipyridine)osmium;Os(dcbpy)(NCS)などのオスミウム−ビピリジン系錯体、cis−dithiocyano bis(4,4’−dicarboxy−2,2’−bipyridine)iron;Fe(dcbpy)(NCS)などの鉄−ビピリジン系錯体、bis(2,9−di(4−carboxy)diphenyl−1,10−phenanthroline)copperなどの銅−フェナントロリン系錯体、Pt(dcbpy)(L)[L:quinoxaline−2,3−dithiolate]などの白金−キノキサリン系錯体、Re(bpy)(CO)(ina)などのレニウム−ピリジン系錯体などが挙げられる。 Such dyes include cis-dithiocyano bis (4,4′-dicarboxy-2,2′-bipyridine) ruthenium; Ru (dcbpy) 2 (NCS) 2 ; -Bis (2,2'-bipyridyl-4-carboxylate-4'-carboxylic acid) -ruthenium; N719, Ru (tctpy) 2 (NCS) 3 ; N714, Ru (dmypy) (dcbpyH) I, Ru (c H)) ruthenium-bipyridine complexes such as 2 (NCS) 2 , cis-Ru (dcbiqH) 2 (NCS) 2 (TBA) 2 , cis-dithiocyanobi s (4,4′-dicarboxy-2,2′-bipyridine) osmium; osmium-bipyridine-based complexes such as Os (dcbpy) 2 (NCS) 2 , cis-dithiocyano bis (4,4′-dicarboxy-2,2 '-Bipyridine) iron; iron-bipyridine complexes such as Fe (dcbpy) 2 (NCS) 2 , copper-phenanthroline systems such as bis (2,9-di (4-carboxy) diphenyl-1,10-phenanthroline) copper Complexes, platinum-quinoxaline complexes such as Pt (dcbpy) 2 (L) 2 [L: quinoxaline-2,3-dithiolate], rhenium-pyridine complexes such as Re (bpy) (CO) 3 (ina), etc. Cited .

また、金属酸化物半導体に結合する官能基(イミダゾリル基、カルボキシル基、ホスホン基等)を有し、結合の結果脱着を起こさず、かつ吸着の結果、電極の表面の露出を抑えることができる分子を添加剤として使用することができる。具体的には、例えば、tert−ブチルピリジン(tert−Butylpyridine)、1−メトキシベンゾイミダゾール(1−Methoxybenzoimidazole)、デカンリン酸(decanephosphoric acid)等の長鎖アルキル基を持つホスホン酸などが挙げられる。   A molecule that has a functional group (imidazolyl group, carboxyl group, phosphone group, etc.) that binds to a metal oxide semiconductor, does not cause desorption as a result of bonding, and can suppress exposure of the electrode surface as a result of adsorption. Can be used as an additive. Specific examples include phosphonic acids having a long-chain alkyl group such as tert-butylpyridine, 1-methoxybenzimidazole, and decanephosphoric acid.

色素増感太陽電池を作製するときに、対極である正極は、導電性物質であれば任意のものを用いることができるが、絶縁性の物質でも、負極である上記平板状電極又は網目状電極に面している側に導電層が設置されていれば、使用することができる。ただし、電気化学的に安定である物質を対極に用いることが好ましい。具体的には、白金、白金黒、カーボン、各種ステンレス、導電性高分子などが挙げられる。正極は石英ガラス基板などの透明または不透明の基板上に上記の物質の膜を形成したものであっても良いし、白金基板などであっても良い。また、上記網目状電極の目開きである開口部、及び電解質を透過した光は本来、光電変換に寄与しないが、上記透過した光を上記正極表面で反射させて上記網目状電極の電解質側に付着した金属酸化物半導体に照射すると、光電変換に寄与することができる。そのため、上記正極は光を反射させるものであることが好ましい。   When producing a dye-sensitized solar cell, the positive electrode that is the counter electrode can be any conductive material as long as it is a conductive material. If a conductive layer is installed on the side facing the surface, it can be used. However, it is preferable to use an electrochemically stable substance for the counter electrode. Specific examples include platinum, platinum black, carbon, various stainless steels, and conductive polymers. The positive electrode may be a transparent or opaque substrate such as a quartz glass substrate on which a film of the above substance is formed, or a platinum substrate. In addition, the light that has passed through the openings that are the openings of the mesh electrode and the electrolyte does not originally contribute to photoelectric conversion. Irradiation to the attached metal oxide semiconductor can contribute to photoelectric conversion. Therefore, the positive electrode is preferably one that reflects light.

上記電解質は、正極から電子を受け取り酸化状態の色素を還元するために用いられ、液状、ゲル状又は固体状の形態を有する。上記電解質としては、酸化還元化学種であるヨウ素−ヨウ素塩(ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化テトラブチルアンモニウム等)などの溶質を、アセトニトリル、イオン性液体など揮発しにくい極性溶媒、又は、ゲル状、固体状の高分子材料に溶解又は分散させることにより得られる。   The electrolyte is used for receiving electrons from the positive electrode and reducing the oxidized dye, and has a liquid, gel, or solid form. As the electrolyte, a solute such as an iodine-iodide salt (such as lithium iodide, sodium iodide, tetrabutylammonium iodide) that is a redox chemical species, a polar solvent that does not easily volatilize, such as acetonitrile or ionic liquid, or It can be obtained by dissolving or dispersing in a gel or solid polymer material.

また、上記平板状電極又は網目状電極の外表面側、すなわち、電解質側とは反対側には、平板状電極又は網目状電極を保護するためなどに、厚みの薄いガラス板、ポリカーボネートフィルム、ハードコート処理したPETフィルムなど太陽光を透過する透明な材料を用いた保護層を設けることが好ましい。   In addition, on the outer surface side of the flat electrode or mesh electrode, that is, on the side opposite to the electrolyte side, a thin glass plate, polycarbonate film, hard It is preferable to provide a protective layer using a transparent material that transmits sunlight, such as a coated PET film.

以下、本発明の一の実施形態について具体的に説明する。なお、本発明は以下の実施形態に限定されるものではない。   Hereinafter, one embodiment of the present invention will be described in detail. In addition, this invention is not limited to the following embodiment.

(実施例1)
1.負極の作製
粒径が数nm〜数十nm、アナターゼ型の酸化チタンの微粒子をエチレングリコール、アセチルアセトン、水から成る混合液に分散溶解し、10重量%の酸化チタン分散液を作成した。この酸化チタン分散液を、網目状でオーステナイト系ステンレスであるSUS306の網目状電極1に25℃条件下3秒間浸漬し、その後120℃にて3分間乾燥した。この浸漬と乾燥の操作を5回繰り返し、網目状電極1に酸化チタンを付着した。さらに450℃で30分の焼結を行い、膜厚15μmの酸化チタンからなる層状の金属酸化物半導体2を形成した。
Example 1
1. An anatase-type titanium oxide fine particle having a particle diameter of several nanometers to several tens of nanometers was dispersed and dissolved in a mixed liquid composed of ethylene glycol, acetylacetone, and water to prepare a 10 wt% titanium oxide dispersion. This titanium oxide dispersion was immersed in a mesh-like electrode 1 of SUS306, which is a mesh-like and austenitic stainless steel, under a condition of 25 ° C. for 3 seconds, and then dried at 120 ° C. for 3 minutes. This dipping and drying operation was repeated 5 times to attach titanium oxide to the mesh electrode 1. Further, sintering was performed at 450 ° C. for 30 minutes to form a layered metal oxide semiconductor 2 made of titanium oxide having a thickness of 15 μm.

次に、上記の金属酸化物半導体2が付着した網目状電極1と、対極として網目状のSUS306とを、変性ポリアミド・イミド樹脂を含有する電着塗料(日本ペイント株式会社製「インシュリード4000」)に浸漬し、上記の金属酸化物半導体2が付着した網目状電極1を陰極として24Vの電圧を30秒間加えることにより、上記の金属酸化物半導体が付着した網目状電極の露出部11を絶縁性皮膜4により被覆した。   Next, a mesh electrode 1 to which the metal oxide semiconductor 2 is attached and a mesh SUS306 as a counter electrode are coated with an electrodeposition paint containing a modified polyamide-imide resin (“INSURED 4000” manufactured by Nippon Paint Co., Ltd.). ) And applying a voltage of 24 V for 30 seconds using the mesh electrode 1 with the metal oxide semiconductor 2 attached thereto as a cathode to insulate the exposed portion 11 of the mesh electrode with the metal oxide semiconductor attached thereto. Was coated with a functional film 4.

そして、色素3として、ルテニウム色素N719〔cis−dithiocyano bis(4,4’−dicarboxy−2,2’−bipyridine)rutheniumの二つのカルボキシル基のプロトンをテトラn―ブチルアンモニウムに置換した構造。〕3.57mgを無水エタノール10mLに溶解し、濃度3×10−4mol/Lの色素吸着用の溶液を作成した。この溶液に、上記の酸化チタンを付着した網目状ステンレスを一晩浸漬し、色素3を酸化チタンに吸着させた。 Then, as the dye 3, a structure in which the protons of the two carboxyl groups of the ruthenium dye N719 [cis-dithiocyanobis (4,4′-dicboxy-2,2′-bipyridine) ruthenium are substituted with tetra n-butylammonium. 3.57 mg was dissolved in 10 mL of absolute ethanol to prepare a dye adsorption solution having a concentration of 3 × 10 −4 mol / L. In this solution, the mesh stainless steel to which the titanium oxide was attached was immersed overnight, and the dye 3 was adsorbed on the titanium oxide.

2.色素増感太陽電池の作製
1−プロピル−3−メチルイミダゾリウムヨーダイド(PMII)1.97g、ヨウ素81.5mg、ポリフッ化ビニリデン−ヘキサフルオロプロピレン(PVdF−HFP)0.49gにアセトン20mLを加え、1時間超音波処理することにより溶解し、ゲル状の電解質溶液を作製した。そして、この電解質溶液2mLを、対極6として網目がない板状のステンレス板に滴下し、電荷質溶液が乾燥する前に上記の色素を吸着した層状の金属酸化物半導体2が付着した網目状電極1を滴下した電解質溶液の上に載置し、さらにその上をスライドガラスからなる保護層8で覆った。このスライドガラスと正極のステンレス板とをクリップで挟み電解質溶液の溶媒を揮発させることにより電解質5となり色素増感太陽電池を作製した。
2. Preparation of dye-sensitized solar cell 1.97 g of 1-propyl-3-methylimidazolium iodide (PMII), 81.5 mg of iodine, and 0.49 g of polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP) were added with 20 mL of acetone. It melt | dissolved by ultrasonically treating for 1 hour, The gel-like electrolyte solution was produced. Then, 2 mL of this electrolyte solution is dropped onto a plate-like stainless steel plate having no mesh as a counter electrode 6, and a mesh electrode to which the layered metal oxide semiconductor 2 adsorbing the above-mentioned dye is attached before the charge solution is dried. 1 was placed on the electrolyte solution to which 1 was dropped, and the top was covered with a protective layer 8 made of a slide glass. The slide glass and the stainless steel plate of the positive electrode were sandwiched between clips, and the solvent of the electrolyte solution was volatilized to become the electrolyte 5 to prepare a dye-sensitized solar cell.

(実施例2)
実施例1と同様に層状の金属酸化物半導体2が付着した網目状電極1を作製し、そして、上記ルテニウム色素N719を吸着させた後に、アルミニウムイソプロポキシド76.7mgに2−プロパノールを加えて全量25mLとし、15mMに調整したアルミニウムイソプロポキシド溶液に、15分間色素を吸着した上記金属酸化物半導体2が付着した網目状電極1を浸漬し、表面にアルミナコーティングを行うことにより、上記の色素を吸着した層状の金属酸化物半導体2が付着した網目状電極1の露出部11を被覆して、負極を作製した。そして、実施例1と同様に、この負極を用いて色素増感太陽電池を作製した。
(Example 2)
A network electrode 1 having a layered metal oxide semiconductor 2 attached thereto was prepared in the same manner as in Example 1, and after adsorbing the ruthenium dye N719, 2-propanol was added to 76.7 mg of aluminum isopropoxide. By immersing the mesh electrode 1 with the metal oxide semiconductor 2 adsorbed to the dye for 15 minutes in an aluminum isopropoxide solution adjusted to 15 mM in a total volume of 25 mL and performing alumina coating on the surface, the above dye is obtained. A negative electrode was fabricated by covering the exposed portion 11 of the mesh electrode 1 to which the layered metal oxide semiconductor 2 adsorbing the metal adhering. In the same manner as in Example 1, a dye-sensitized solar cell was produced using this negative electrode.

(比較例1)
実施例1と同様に層状の金属酸化物半導体2が付着した網目状電極1を作製し、そして、上記ルテニウム色素N719である色素3を吸着させて負極を作製した。なお、光学顕微鏡で作成した負極を観察すると上記金属酸化物半導体2が付着した網目状電極のうち、10μm〜40μmの大きさで剥き出しとなった露出部11が散見された。そして、実施例1と同様に、この負極を用いて色素増感太陽電池を作製した。
(Comparative Example 1)
Similarly to Example 1, a network electrode 1 having a layered metal oxide semiconductor 2 adhered thereto was prepared, and the negative electrode was prepared by adsorbing the dye 3 which is the ruthenium dye N719. In addition, when the negative electrode produced with the optical microscope was observed, the exposed part 11 which was exposed by the magnitude | size of 10 micrometers-40 micrometers among the mesh-like electrode to which the said metal oxide semiconductor 2 adhered was scattered. In the same manner as in Example 1, a dye-sensitized solar cell was produced using this negative electrode.

実施例1〜2及び比較例1で得られた色素増感太陽電池の負極である網目状電極1と正極である対極6をリード線7で接続し、キセノンランプ光源(PerkinElmer社製「PF−300BF」)を用いて、それぞれ電流―電圧特性を測定した。得られた電流―電圧曲線から、電池の短絡電流、開放電圧、および光電変換効率を算出した。   The mesh electrode 1 that is the negative electrode of the dye-sensitized solar cell obtained in Examples 1 and 2 and Comparative Example 1 and the counter electrode 6 that is the positive electrode are connected by a lead wire 7, and a xenon lamp light source (“PF-” manufactured by PerkinElmer) 300BF "), current-voltage characteristics were measured respectively. From the obtained current-voltage curve, the short-circuit current, open-circuit voltage, and photoelectric conversion efficiency of the battery were calculated.

上記負極を用いて作製した色素増感太陽電池の性能の一覧を表1に示す。   Table 1 shows a list of performances of the dye-sensitized solar cells produced using the negative electrode.

Figure 2014056739
Figure 2014056739

表1の結果より、実施例1〜2において、負極に用いた網目状電極1の一部が露出する露出部11を被覆しているので、被覆してない比較例1よりも短絡電流及び開放電圧が向上し、その結果として、変換効率も向上することが分かった。特に、実施例1においては、網目状電極1の露出部11を選択的に確実に被覆することができたため変換効率を大幅に向上させられることが見出された。   From the results of Table 1, in Examples 1 and 2, since the exposed portion 11 where a part of the mesh electrode 1 used for the negative electrode is exposed is covered, the short circuit current and the open circuit are more open than in the comparative example 1 that is not covered. It has been found that the voltage is improved and, as a result, the conversion efficiency is also improved. In particular, in Example 1, it was found that the exposed portion 11 of the mesh electrode 1 could be selectively and reliably covered, so that the conversion efficiency could be greatly improved.

1・・・網目状電極
11・・露出部
2・・・金属酸化物半導体
3・・・色素
4・・・絶縁性皮膜
5・・・電解質
6・・・対極
7・・・リード線
8・・・保護層
DESCRIPTION OF SYMBOLS 1 ... Mesh electrode 11 ... Exposed part 2 ... Metal oxide semiconductor 3 ... Dye 4 ... Insulating film 5 ... Electrolyte 6 ... Counter electrode 7 ... Lead wire 8 ... ..Protective layer

Claims (4)

色素を吸着した金属酸化物半導体が付着した電極を具備し、
前記電極のうち、前記金属酸化物半導体が付着せず剥き出しとなった露出部が絶縁性皮膜により被覆されていることを特徴とする色素増感太陽電池。
Comprising an electrode to which a metal oxide semiconductor adsorbing a dye is attached;
The dye-sensitized solar cell, wherein an exposed portion of the electrode where the metal oxide semiconductor is not attached and is exposed is covered with an insulating film.
前記電極が網目状電極であることを特徴とする請求項1に記載の色素増感太陽電池。 The dye-sensitized solar cell according to claim 1, wherein the electrode is a mesh electrode. 前記絶縁性皮膜が、アルミナ又はシリカの少なくとも一方を有する無機化合物であることを特徴とする請求項1又は請求項2に記載の色素増感太陽電池。 The dye-sensitized solar cell according to claim 1 or 2, wherein the insulating film is an inorganic compound having at least one of alumina and silica. 前記絶縁性皮膜が、電着塗料である有機化合物であることを特徴とする請求項1又は請求項2に記載の色素増感太陽電池。 The dye-sensitized solar cell according to claim 1, wherein the insulating film is an organic compound that is an electrodeposition paint.
JP2012201315A 2012-09-13 2012-09-13 Dye-sensitized solar cell Pending JP2014056739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012201315A JP2014056739A (en) 2012-09-13 2012-09-13 Dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012201315A JP2014056739A (en) 2012-09-13 2012-09-13 Dye-sensitized solar cell

Publications (1)

Publication Number Publication Date
JP2014056739A true JP2014056739A (en) 2014-03-27

Family

ID=50613902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012201315A Pending JP2014056739A (en) 2012-09-13 2012-09-13 Dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP2014056739A (en)

Similar Documents

Publication Publication Date Title
Tang et al. A microporous platinum counter electrode used in dye-sensitized solar cells
JP5002595B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
Zhang et al. Effects of TiO2 film thickness on photovoltaic properties of dye-sensitized solar cell and its enhanced performance by graphene combination
Raj et al. Surface reinforced platinum counter electrode for quantum dots sensitized solar cells
JP5678345B2 (en) Dye-sensitized solar cell and method for producing the same
JP5150818B2 (en) Dye-sensitized solar cell and method for producing the same
Sahu et al. Synthesis and application of core-shell Au–TiO2 nanowire photoanode materials for dye sensitized solar cells
JP4063802B2 (en) Photoelectrode
Yang et al. Enhanced electron collection in TiO2 nanoparticle-based dye-sensitized solar cells by an array of metal micropillars on a planar fluorinated tin oxide anode
Vijayakumar et al. Electrical and optical studies of flexible stainless steel mesh electrodes for dye sensitized solar cells
JP4963165B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
Punnoose et al. Highly catalytic nickel sulfide counter electrode for dye-sensitized solar cells
Wijeratne et al. Aspect-ratio dependent electron transport and recombination in dye-sensitized solar cells fabricated with one-dimensional ZnO nanostructures
Sun et al. Mixed P25 nanoparticles and large rutile particles as a top scattering layer to enhance performance of nanocrystalline TiO2 based dye-sensitized solar cells
Meng et al. Efficient quasisolid dye-and quantum-dot-sensitized solar cells using thiolate/disulfide redox couple and CoS counter electrode
Casillas et al. Substituting TiCl4-carbon nanohorn interfaces for dye-sensitized solar cells
JP2010009786A (en) Dye sensitized solar cell, and dye sensitized solar cell module
JP4892186B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP4716636B2 (en) Compound semiconductor
JP5657780B2 (en) Photoelectric conversion element and photoelectric conversion module
JP2006073488A (en) Dye-sensitized solar cell and manufacturing method thereof
JP5332739B2 (en) Photoelectric conversion element and solar cell
JP4601582B2 (en) Photoelectrode, dye-sensitized solar cell and dye-sensitized solar cell module using the same
WO2012033049A1 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP2014056739A (en) Dye-sensitized solar cell