JP2014055606A - Vacuum heat insulation material - Google Patents

Vacuum heat insulation material Download PDF

Info

Publication number
JP2014055606A
JP2014055606A JP2012199530A JP2012199530A JP2014055606A JP 2014055606 A JP2014055606 A JP 2014055606A JP 2012199530 A JP2012199530 A JP 2012199530A JP 2012199530 A JP2012199530 A JP 2012199530A JP 2014055606 A JP2014055606 A JP 2014055606A
Authority
JP
Japan
Prior art keywords
porous silica
insulating material
heat insulating
particles
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012199530A
Other languages
Japanese (ja)
Other versions
JP6095922B2 (en
Inventor
Yoshiki Okuhara
芳樹 奥原
Yasutoshi Mizuta
安俊 水田
Tomohiro Kuroyama
友宏 黒山
Mitsue Ogawa
光恵 小川
Hideaki Matsubara
秀彰 松原
Noribumi Isu
紀文 井須
Masatsugu Miura
正嗣 三浦
Naoyuki Takeda
直行 竹田
Kaoru Mori
馨 毛利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Fine Ceramics Center
Lixil Corp
Original Assignee
Japan Fine Ceramics Center
Lixil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Fine Ceramics Center, Lixil Corp filed Critical Japan Fine Ceramics Center
Priority to JP2012199530A priority Critical patent/JP6095922B2/en
Publication of JP2014055606A publication Critical patent/JP2014055606A/en
Application granted granted Critical
Publication of JP6095922B2 publication Critical patent/JP6095922B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thermal Insulation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vacuum heat insulation material in which a heat insulating property has been improved by improving surface texture of silica particles.SOLUTION: A vacuum heat insulation material comprises by mixing porous silica particles and carbon particles, and vacuum-sealing by an air impermeable sealing film. The porous silica particles are the porous silica particles having a hydrocarbon group on the surface, and by heat treating at 350 to 550°C, a present amount of the surface hydrocarbon group is reduced. It is preferable that in the porous silica particles, a tapping bulk density is equal to or less than 0.1 g/cmand a packing density is equal to or less than 0.125 g/cm. Graphite is preferable for the carbon particles, and the mixed amount is made to be 2.5 to 12.5 wt.%. The vacuum heat insulation material like this has an infrared absorption coefficient equal to or more than 110 m/kg.

Description

本発明は、真空断熱材に関する。   The present invention relates to a vacuum heat insulating material.

従来から、各種温冷機器や住宅などにおいて、内外の熱伝達を遮断する断熱材が使用されている。ここで、伝熱機構には、大きく分けて固体伝熱、気体伝熱、及び輻射伝熱とがあり、望ましくはこれら全てに対応することで、断熱性を向上できることが一般的に知られている。そこで、固体伝熱に対する断熱性に優れる粒子と輻射伝熱を抑制する粒子とを混合分散し、非通気性の封止フィルムで真空封止することで気体伝熱にも対応した、真空断熱材の開発が進められている。当該真空断熱材では、断熱性の高い粒子として一般的にシリカ粒子が使用され、輻射伝熱を抑制する粒子として炭素粒子が使用されることが多い。   2. Description of the Related Art Conventionally, heat insulating materials that block heat transfer inside and outside have been used in various types of heating and cooling equipment and houses. Here, the heat transfer mechanism is roughly divided into solid heat transfer, gas heat transfer, and radiant heat transfer, and it is generally known that it is possible to improve the heat insulation property by desirably dealing with all of them. Yes. Therefore, vacuum heat insulating material that supports gas heat transfer by mixing and dispersing particles with excellent heat insulation for solid heat transfer and particles that suppress radiant heat transfer, and vacuum-sealing with a non-breathable sealing film Development is underway. In the vacuum heat insulating material, silica particles are generally used as particles having high heat insulating properties, and carbon particles are often used as particles for suppressing radiant heat transfer.

このような真空断熱材としては、例えば特許文献1がある。特許文献1では、シリカ粒子の粒径や炭素粒子の種類又は比表面積を改良することで、真空断熱材の向上を図っている。具体的には、平均一次粒子径が50nm以下のヒュームドシリカ粒子に、黒鉛化炭素(グラファイト)粒子又は比表面積100〜300mm2/gのカーボンブラック粒子を1〜10重量%混合している。 As such a vacuum heat insulating material, there exists patent document 1, for example. In patent document 1, the improvement of a vacuum heat insulating material is aimed at by improving the particle size of a silica particle, the kind of carbon particle, or a specific surface area. Specifically, 1 to 10% by weight of graphitized carbon (graphite) particles or carbon black particles having a specific surface area of 100 to 300 mm 2 / g is mixed with fumed silica particles having an average primary particle size of 50 nm or less.

特許第3558980号公報Japanese Patent No. 3558980

特許文献1では、シリカ粒子に関してはその平均一次粒子径を調整することで断熱性の向上を図っている。しかしながら、シリカ粒子の性状(特に表面性状)も断熱性に大きく影響する。したがって、特許文献1のようにシリカ粒子の平均一次粒子径を調整(改良)するだけでは、断熱性の向上には限界がある。   In Patent Document 1, the heat insulation is improved by adjusting the average primary particle diameter of silica particles. However, the properties of the silica particles (particularly the surface properties) also greatly affect the heat insulation properties. Therefore, the adjustment of the average primary particle diameter of silica particles as in Patent Document 1 is limited (improved), and there is a limit to the improvement of heat insulation.

そこで、本発明は上記課題を解決するものであって、シリカ粒子の表面性状を改良することで断熱性が向上された、真空断熱材を提供することを目的とする。   Then, this invention solves the said subject, and it aims at providing the vacuum heat insulating material by which the heat insulation was improved by improving the surface property of a silica particle.

そのための手段として、本発明は次の手段を採る。
(1)多孔質シリカ粒子と、炭素粒子とを混合し、非通気性の封止フィルムによって真空封止してなる真空断熱材であって、前記多孔質シリカ粒子は、表面に炭化水素基を有する多孔質シリカ粒子であって、熱処理により前記炭化水素基の存在量が低減されていることを特徴とする、真空断熱材。
(2)前記熱処理を350〜550℃の範囲で行う、(1)に記載の真空断熱材。
(3)前記多孔質シリカ粒子は、タッピング嵩密度が0.1g/cm以下であり、且つパッキング密度が0.125g/cm以下である、(1)または(2)に記載の真空断熱材。
(4)前記炭素粒子がグラファイト粒子である、(1)ないし(3)のいずれかに記載の真空断熱材。
(5)前記炭素粒子の混合量が2.5〜12.5重量%である、(1)ないし(4)のいずれかに記載の真空断熱材。
(6)前記炭素粒子の平均粒子径が20μm以下である、(1)ないし(5)のいずれかに記載の真空断熱材。
(7)赤外線吸収係数が110m/kg以上である、(1)ないし(6)のいずれかに記載の真空断熱材。
(8)多孔質シリカ粒子と、炭素粒子とを混合し、非通気性の封止フィルムによって真空封止する真空断熱材の製造方法であって、前記多孔質シリカ粒子は表面に炭化水素基を有する多孔質シリカ粒子であって、前記炭素粒子と混合する前に、予め熱処理により前記炭化水素基の存在量を低減する工程を有することを特徴とする、真空断熱材の製造方法。
(9)前記熱処理を350〜550℃の範囲で行う、(8)に記載の真空断熱材の製造方法。
For this purpose, the present invention adopts the following means.
(1) A vacuum heat insulating material obtained by mixing porous silica particles and carbon particles and vacuum-sealing with a non-breathable sealing film, wherein the porous silica particles have hydrocarbon groups on the surface. A vacuum heat insulating material comprising porous silica particles, wherein the abundance of the hydrocarbon group is reduced by heat treatment.
(2) The vacuum heat insulating material according to (1), wherein the heat treatment is performed in a range of 350 to 550 ° C.
(3) The porous silica particles are a tapping bulk density of 0.1 g / cm 3 or less, and packing density of 0.125 g / cm 3 or less, vacuum insulation according to (1) or (2) Wood.
(4) The vacuum heat insulating material according to any one of (1) to (3), wherein the carbon particles are graphite particles.
(5) The vacuum heat insulating material according to any one of (1) to (4), wherein a mixing amount of the carbon particles is 2.5 to 12.5% by weight.
(6) The vacuum heat insulating material according to any one of (1) to (5), wherein an average particle diameter of the carbon particles is 20 μm or less.
(7) The vacuum heat insulating material according to any one of (1) to (6), wherein the infrared absorption coefficient is 110 m 2 / kg or more.
(8) A method for producing a vacuum heat insulating material in which porous silica particles and carbon particles are mixed and vacuum-sealed with a non-breathable sealing film, wherein the porous silica particles have hydrocarbon groups on the surface. A method for producing a vacuum heat insulating material, comprising: a step of reducing the abundance of the hydrocarbon group by heat treatment before mixing with the carbon particles.
(9) The manufacturing method of the vacuum heat insulating material as described in (8) which performs the said heat processing in the range of 350-550 degreeC.

なお、本発明において多孔質シリカ粒子のタッピング嵩密度とは、JISR 1628に従って測定される嵩密度である。具体的には、一定容積の容器に多孔質シリカ粒子を充填し、十分に緻密化するまで数百回タッピングを繰り返す。そして、重量変化が0.3%以下に収まったところで、そのときの多孔質シリカ粒子の重量と体積から求められる密度である。   In the present invention, the tapping bulk density of the porous silica particles is a bulk density measured according to JIS R 1628. Specifically, the porous silica particles are filled in a fixed volume container, and the tapping is repeated several hundred times until it is sufficiently densified. When the weight change is within 0.3%, the density is obtained from the weight and volume of the porous silica particles at that time.

また、パッキング密度とは、封止フィルム内に一定重量の芯材粒子を充填し、内部を真空とした際の大気圧で加圧された状態における重量と体積から求められる密度である。   The packing density is a density determined from the weight and volume in a state where core particles of a constant weight are filled in the sealing film and the interior is evacuated and pressurized at atmospheric pressure.

また、本発明において数値範囲を示す「○○〜××」とは、特に明記しない限り「○○以上××以下」を意味する。   In the present invention, “OO to XX” indicating a numerical range means “XX or more and XX or less” unless otherwise specified.

本発明では、シリカ粒子として内部に多数の空隙を有する多孔質シリカ粒子を使用しているので、非多孔質なシリカ粒子を使用した場合よりもシリカ粒子そのものによる断熱性を向上することができる。ところで、表面に炭化水素基(例えばCH基)を有する多孔質シリカ粒子は基本的に疎水性であって、当該炭化水素基の存在により空気中の水分が吸着し難い。これにより、真空断熱材を真空封止する際の真空引きに要する時間が短縮され、生産性を向上できる。また、同じ真空引き時間であれば、真空度を向上することができる。しかしながら、この表面炭化水素基の存在は熱伝導に影響を及ぼし、当該表面炭化水素基が単純に固体伝熱のパスを増やす要因となる。また、表面炭化水素基の存在により多孔質シリカ粒子間の摩擦が低減されるため、粒子の流動性が高くなる。この場合、真空封止時の充填状態が過度によくなってパッキング密度が高くなることで、熱伝導率が増大してしまう。そこで、本発明では、多孔質シリカ粒子の表面炭化水素基を低減していることで、上記のような問題を解決でき、熱伝導率の低減すなわち断熱性の向上に有効となる。 In this invention, since the porous silica particle which has many space | gap inside is used as a silica particle, the heat insulation by the silica particle itself can be improved rather than the case where a non-porous silica particle is used. By the way, porous silica particles having a hydrocarbon group (for example, CH 3 group) on the surface are basically hydrophobic, and moisture in the air is difficult to adsorb due to the presence of the hydrocarbon group. Thereby, the time required for evacuation at the time of vacuum-sealing a vacuum heat insulating material is shortened, and productivity can be improved. In addition, the degree of vacuum can be improved with the same evacuation time. However, the presence of the surface hydrocarbon group affects heat conduction, and the surface hydrocarbon group simply increases the path of solid heat transfer. Further, since the friction between the porous silica particles is reduced due to the presence of the surface hydrocarbon group, the fluidity of the particles becomes high. In this case, the state of filling at the time of vacuum sealing is excessively improved and the packing density is increased, thereby increasing the thermal conductivity. Therefore, in the present invention, since the surface hydrocarbon groups of the porous silica particles are reduced, the above-described problems can be solved, which is effective in reducing the thermal conductivity, that is, improving the heat insulation.

多孔質シリカ粒子を350〜550℃の範囲で熱処理すれば、的確に断熱性を向上することができる。また、多孔質シリカ粒子のタッピング嵩密度が0.1g/cm以下と小さく、且つパッキング密度も0.125g/cm以下と小さければ、真空断熱材中の固体成分が少なく空隙率が大きくなる。これにより、固体伝熱に対する断熱性が向上する。 If the porous silica particles are heat-treated in the range of 350 to 550 ° C., the heat insulating properties can be improved accurately. Also, small tapped bulk density of the porous silica particles and 0.1 g / cm 3 or less, and the smaller the packing density 0.125 g / cm 3 or less, the solid component porosity increases less in the vacuum heat insulating material . Thereby, the heat insulation with respect to solid heat transfer improves.

炭素粒子としてグラファイトを配合していれば、カーボンブラックを配合した場合よりも輻射伝熱の抑制効果が大きく、真空断熱材の断熱性をより向上できる。ここで、輻射伝熱は固体振動による熱放射であり、その主体は波長が赤外線領域の熱放射である。したがって、赤外線吸収係数が110m/kg以上と大きければ、輻射伝熱の主体をなす赤外線領域の放射の吸収能も大きくなることで輻射伝熱が的確に抑制され、断熱性がより向上する。 If graphite is blended as carbon particles, the effect of suppressing radiant heat transfer is greater than when carbon black is blended, and the heat insulation of the vacuum heat insulating material can be further improved. Here, radiant heat transfer is heat radiation by solid vibration, and its main component is heat radiation having a wavelength in the infrared region. Therefore, if the infrared absorption coefficient is as large as 110 m 2 / kg or more, the radiation absorption capability in the infrared region, which is the main component of the radiant heat transfer, is increased, so that the radiant heat transfer is accurately suppressed and the heat insulation is further improved.

多孔質シリカ粒子のタッピンング嵩密度及びパッキング密度と真空断熱材の熱伝導率との関係を示すグラフである。It is a graph which shows the relationship between the tapping bulk density and packing density of a porous silica particle, and the thermal conductivity of a vacuum heat insulating material. 多孔質シリカ粒子の熱処理温度と真空断熱材の熱伝導率との関係を示すグラフである。It is a graph which shows the relationship between the heat processing temperature of a porous silica particle, and the heat conductivity of a vacuum heat insulating material. 多孔質シリカ粒子の熱処理温度と真空断熱材のパッキング密度との関係を示すグラフである。It is a graph which shows the relationship between the heat processing temperature of a porous silica particle, and the packing density of a vacuum heat insulating material. 赤外吸収スペクトルである。It is an infrared absorption spectrum.

以下、本発明について詳しく説明する。本発明の真空断熱材は、多孔質シリカ粒子と炭素粒子との混合粒子を芯材とし、当該芯材を非通気性の封止フィルムによって真空封止してなる。   The present invention will be described in detail below. The vacuum heat insulating material of the present invention comprises a mixed particle of porous silica particles and carbon particles as a core material, and the core material is vacuum sealed with a non-breathable sealing film.

シリカ粒子としては、多孔質シリカ粒子を使用する。真空封止した際はシリカ粒子同士ないしシリカ粒子と炭素粒子との接触は避けられず、この粒子接触により固体伝熱(熱伝導)の経路が形成され得るが、多孔質シリカ粒子であれば、非多孔質シリカ粒子を使用した場合よりも固体伝熱に対する断熱性が向上する。多孔質シリカ粒子の気孔率は90%以上が好ましい。気孔率が低いと、ポーラス構造による断熱性の向上効果が得られ難くなるためである。   As silica particles, porous silica particles are used. When vacuum sealed, contact between silica particles or between silica particles and carbon particles is unavoidable, and a solid heat transfer (heat conduction) path can be formed by this particle contact, but if porous silica particles, The heat insulation against solid heat transfer is improved as compared with the case of using non-porous silica particles. The porosity of the porous silica particles is preferably 90% or more. This is because if the porosity is low, it is difficult to obtain the effect of improving the heat insulation by the porous structure.

また、表面に炭化水素基(CH基)を有する多孔質シリカ粒子が好ましい。多孔質シリカ粒子の中には本来的に炭化水素基を有しないものもあるが、このような多孔質シリカ粒子は親水性なので、空気中の水分を吸着し易い傾向がある。そのため、断熱材を真空封止する際の所要時間が長くなったり、真空度が向上し難い傾向がある。一方、表面に炭化水素基を有する多孔質シリカ粒子であれば、断熱材を真空封止する際に空気中の水分が吸着され難いので真空効率が向上し、真空断熱材の断熱性を向上することができる。 The porous silica particles having a surface to a hydrocarbon group (CH 3 groups) are preferred. Some porous silica particles do not inherently have a hydrocarbon group, but since such porous silica particles are hydrophilic, they tend to adsorb moisture in the air. Therefore, the time required for vacuum-sealing the heat insulating material tends to be long, and the degree of vacuum tends to be difficult to improve. On the other hand, if the porous silica particles have hydrocarbon groups on the surface, moisture in the air is hardly adsorbed when the heat insulating material is vacuum-sealed, so that the vacuum efficiency is improved and the heat insulating property of the vacuum heat insulating material is improved. be able to.

但し、表面炭化水素基の存在量はできるだけ少ないことが好ましい。表面炭化水素基の存在量が少ないほど固体伝熱を減らすことができ、真空断熱材の断熱性が向上する。また、表面炭化水素基の存在量を適切に減らすことで多孔質シリカ粒子間の流動性を下げて真空封止後のパッキング密度を下げ、断熱性を向上できる。表面炭化水素基の低減量の目安としては、表面炭化水素基の存在量の指針となる炭化水素基由来の炭素量が、5重量%以下となる程度まで低減することが好ましく、3重量%以下となる程度まで低減することがより好ましい。但し、表面炭化水素を完全に除去することは現実的に困難であり、また表面炭化水素基が存在する上記効果が得られなくなるので、表面炭化水素基由来の炭素量の下限は0重量%を超えていることが好ましい。より好ましくは0.1重量%以上であり、さらに好ましくは0.5重量%以上である。   However, the amount of surface hydrocarbon groups is preferably as small as possible. The smaller the amount of surface hydrocarbon groups, the more solid heat transfer can be reduced and the heat insulation of the vacuum heat insulating material is improved. In addition, by appropriately reducing the amount of surface hydrocarbon groups, the fluidity between the porous silica particles can be lowered, the packing density after vacuum sealing can be lowered, and the heat insulation can be improved. As a measure of the amount of surface hydrocarbon groups to be reduced, it is preferable to reduce the amount of carbon derived from hydrocarbon groups, which serves as a guide for the amount of surface hydrocarbon groups, to 5 wt% or less, preferably 3 wt% or less. It is more preferable to reduce to such an extent. However, it is practically difficult to completely remove surface hydrocarbons, and the above effect due to the presence of surface hydrocarbon groups cannot be obtained, so the lower limit of the amount of carbon derived from surface hydrocarbon groups is 0% by weight. It is preferable to exceed. More preferably, it is 0.1 weight% or more, More preferably, it is 0.5 weight% or more.

表面炭化水素基の存在量は、多孔質シリカ粒子を熱処理することで低減できる。熱処理温度は350〜550℃、好ましくは370〜530℃、より好ましくは400〜500℃とする。多孔質シリカ粒子の熱処理温度が350℃未満では、有効に表面炭化水素基の存在量を低減できない。一方、熱処理温度が550℃を超えると、多孔質シリカ粒子の焼結収縮により密度が増加する。これにより、パッキング密度も増大することで、真空断熱材の断熱性が低下してしまう。熱処理は、電気炉等によって行えばよい。また、熱処理は酸素存在下で行う。酸素存在下で熱処理することで、表面炭化水素基が酸素と反応して低減するからである。不活性雰囲気下で熱処理すると、表面炭化水素基の炭素化が進行するだけなので、断熱性向上効果が損なわれる。   The amount of surface hydrocarbon groups can be reduced by heat-treating the porous silica particles. The heat treatment temperature is 350 to 550 ° C, preferably 370 to 530 ° C, more preferably 400 to 500 ° C. When the heat treatment temperature of the porous silica particles is less than 350 ° C., the amount of surface hydrocarbon groups cannot be effectively reduced. On the other hand, when the heat treatment temperature exceeds 550 ° C., the density increases due to sintering shrinkage of the porous silica particles. Thereby, the packing density also increases, and the heat insulating property of the vacuum heat insulating material is lowered. The heat treatment may be performed with an electric furnace or the like. The heat treatment is performed in the presence of oxygen. This is because heat treatment in the presence of oxygen reduces surface hydrocarbon groups by reacting with oxygen. When the heat treatment is performed in an inert atmosphere, the carbonization of the surface hydrocarbon group only proceeds, so that the effect of improving heat insulation is impaired.

多孔質シリカ粒子は、できるだけ微細であることが好ましい。微細な多孔質シリカ粒子であることでタッピング嵩密度及びパッキング密度を低減できるため、炭素粒子添加による断熱性の改善効果が向上して真空断熱材の熱伝導率を相乗的に低く抑えられるからである。そこで、多孔質シリカ粒子のタッピング嵩密度が、少なくとも0.1g/cm以下、好ましくは0.08g/cm以下となる程度の微細な多孔質シリカ粒子を使用する。また、多孔質シリカ粒子のみを芯材とした場合のパッキング密度が、少なくとも0.125g/cm以下、好ましくは0.110g/cm以下となる程度の微細な多孔質シリカ粒子を使用する。多孔質シリカ粒子のタッピング嵩密度が0.1g/cmより大きかったり、若しくはパッキング密度が0.125g/cmより大きいと、真空断熱材において優れた断熱性を得られ難い。 The porous silica particles are preferably as fine as possible. Since the tapping bulk density and packing density can be reduced by using fine porous silica particles, the effect of improving the heat insulation by adding carbon particles is improved and the thermal conductivity of the vacuum heat insulating material can be kept low synergistically. is there. Therefore, fine porous silica particles having a tapping bulk density of the porous silica particles of at least 0.1 g / cm 3 or less, preferably 0.08 g / cm 3 or less are used. Further, the packing density in the case where only the porous silica particles as a core material is at least 0.125 g / cm 3 or less, preferably using a fine porous silica particles to the extent that the 0.110 g / cm 3 or less. Large or tapped bulk density of the porous silica particles is from 0.1 g / cm 3, or a packing density of greater than 0.125 g / cm 3, it is difficult to obtain excellent thermal insulation in the vacuum thermal insulating material.

炭素粒子は、真空断熱材において輻射伝熱を抑制するために混合される。その混合量は、多孔質シリカ粒子と炭素粒子との合計重量基準で、2.5〜12.5重量%、好ましくは4〜10重量%、より好ましくは5〜7.5重量%とする。炭素粒子の混合量が2.5重量%未満では、輻射伝熱の抑制効果を的確に得られない。一方、12.5重量%を超えると、本来炭素粒子は比較的熱伝導率の高い材料なので、輻射伝熱の抑制効果よりも、炭素粒子を混合したことによる固体伝熱性が大きくなってしまい、結果として真空断熱材の断熱性が低下してしまう。   Carbon particles are mixed to suppress radiant heat transfer in the vacuum heat insulating material. The mixing amount is 2.5 to 12.5% by weight, preferably 4 to 10% by weight, more preferably 5 to 7.5% by weight, based on the total weight of the porous silica particles and the carbon particles. If the mixing amount of the carbon particles is less than 2.5% by weight, the effect of suppressing radiant heat transfer cannot be obtained accurately. On the other hand, if it exceeds 12.5% by weight, the carbon particles are inherently a material having a relatively high thermal conductivity, so that the solid heat transfer by mixing the carbon particles becomes larger than the effect of suppressing the radiant heat transfer, As a result, the heat insulating property of the vacuum heat insulating material is lowered.

また、炭素粒子もできるだけ微細であることが好ましいため、平均粒子径は20μm以下、好ましくは15μm以下、より好ましくは10μm以下、さらに好ましくは6μm以下とする。炭素粒子の粒子径が大きいと、芯材となる混合粒子中において固体伝熱性の高い連続領域(1個の炭素粒子)が長くなり固体伝熱の経路が形成されやすくなるため、真空断熱材の熱伝導率が大きくなってしまう。   In addition, since the carbon particles are preferably as fine as possible, the average particle size is 20 μm or less, preferably 15 μm or less, more preferably 10 μm or less, and even more preferably 6 μm or less. If the particle size of the carbon particles is large, a continuous region (one carbon particle) with high solid heat transfer becomes longer in the mixed particles as the core material, and a solid heat transfer path is easily formed. Thermal conductivity will increase.

炭素粒子であれば、例えばカーボンブラック等でもある程度の輻射伝熱抑制効果を期待できるが、中でもグラファイト粒子が好ましい。グラファイトは、非晶質の炭素やカーボンブラックなど他の炭素粒子よりも層状構造が規則的に構成されており、自由電子が多く光の吸収係数が高いため、他の炭素粒子よりも輻射伝熱の抑制効果が高いからである。   In the case of carbon particles, for example, carbon black or the like can be expected to have a certain degree of radiation heat transfer suppression effect, but among these, graphite particles are preferable. Graphite has a regular layered structure compared to other carbon particles such as amorphous carbon and carbon black, and has many free electrons and a high light absorption coefficient. This is because the suppression effect is high.

封止フィルムは、非通気性である限りその材料は特に限定されない。例えば、ポリエチレンテレフタレート等のポリエステル、ポリアミド、ポリビニルアルコール、ポリエチレン、ポリプロピレン、ポリ塩化ビニリデンなどからなる包装フィルムを使用できる。なお、封止フィルムは、断熱性やガスバリヤ性等を向上させるために、アルミニウム等からなる金属ラミネート層を有することが好ましい。   The material of the sealing film is not particularly limited as long as it is non-breathable. For example, a packaging film made of polyester such as polyethylene terephthalate, polyamide, polyvinyl alcohol, polyethylene, polypropylene, polyvinylidene chloride, or the like can be used. In addition, it is preferable that the sealing film has a metal laminate layer made of aluminum or the like in order to improve heat insulating properties, gas barrier properties, and the like.

真空断熱材は、多孔質シリカ粒子と炭素粒子とを所定の割合で混合分散させたものを芯材として封止フィルムに充填し、十分に真空引きできたところで封止フィルムの開口を熱溶着等によって封止することで得られる。このとき、多孔質シリカ粒子は、炭素粒子と混合する前に、上述のごとく予め熱処理することで表面炭化水素基の存在量を低減しておく。真空圧力は、5〜20Pa程度とすればよい。   The vacuum heat insulating material is a mixture of porous silica particles and carbon particles mixed at a predetermined ratio and filled into the sealing film as a core material, and when the vacuum is fully evacuated, the opening of the sealing film is thermally welded, etc. It is obtained by sealing with. At this time, the porous silica particles are preliminarily heat-treated as described above before being mixed with the carbon particles to reduce the amount of surface hydrocarbon groups. The vacuum pressure may be about 5 to 20 Pa.

真空封止後の真空断熱材全体のパッキング密度(芯材に炭素粒子も含む場合の密度)は、0.138g/cm以下が好ましく、0.120g/cm以下がより好ましい。真空断熱材のパッキング密度が低いことで、内部の空隙量が多く固体伝熱の経路が少ないこととなり、断熱性が向上する。また、真空断熱材の赤外線吸収係数は110m/kg以上であることが好ましい。赤外線吸収係数が大きいほど、輻射伝熱の抑制効果が大きいからである。 Vacuum heat insulator overall packing density after vacuum seal (density when the core material including carbon particles) is preferably 0.138 g / cm 3 or less, 0.120 g / cm 3 or less is more preferable. Since the packing density of the vacuum heat insulating material is low, the amount of voids in the interior is large and the path of solid heat transfer is small, and the heat insulation is improved. Moreover, it is preferable that the infrared absorption coefficient of a vacuum heat insulating material is 110 m < 2 > / kg or more. This is because the greater the infrared absorption coefficient, the greater the effect of suppressing radiant heat transfer.

以下、本発明の具体的な実施例について説明するが、これに限られず本発明の要旨を逸脱しない範囲で種々の変更が可能であることは言うまでもない。   Specific examples of the present invention will be described below, but it is needless to say that various modifications are possible without departing from the scope of the present invention.

<試験1>
先ず、多孔質シリカ粒子のタッピング嵩密度及びパッキング密度の影響について評価した。多孔質シリカ粒子としては、90%以上の気孔率をもち、タッピング嵩密度が約0.08〜0.11g/cmの範囲でそれぞれ異なる(表1参照)4種類の多孔質シリカ粒子(試料1〜4)を使用した。この試料1〜4の各多孔質シリカ粒子50gを芯材として、アルミニウムラミネート層を有する昭和電工製の封止フィルムによって真空圧力10Paにまで減圧した状態で真空封止して、縦200mm×横200mm×高さ10mmの真空断熱材を作製し、そのパッキング密度を測定した。その結果を表1に示す。
<Test 1>
First, the influence of the tapping bulk density and packing density of the porous silica particles was evaluated. As the porous silica particles, four types of porous silica particles (samples) having a porosity of 90% or more and different in tapping bulk density in the range of about 0.08 to 0.11 g / cm 3 (see Table 1). 1-4) were used. Using each porous silica particle 50g of Samples 1 to 4 as a core material, vacuum sealing was performed in a state where the vacuum pressure was reduced to 10 Pa with a sealing film made by Showa Denko having an aluminum laminate layer, and the length was 200 mm × width 200 mm. X A vacuum heat insulating material having a height of 10 mm was prepared, and its packing density was measured. The results are shown in Table 1.

次いで、上記試料1〜4の各多孔質シリカ粒子に、炭素粒子を5重量%の割合で均一に分散するまで十分に撹拌混合した混合粒子50gを芯材として、上記と同様にして真空断熱材を作製し、そのパッキング密度も測定した。その結果も表1に示す。なお、炭素粒子としては、平均粒子径5μmのグラファイト(SECカーボン社製のSGP−5)を使用した。   Next, a vacuum heat insulating material in the same manner as described above, using as a core 50 g of mixed particles obtained by sufficiently stirring and mixing carbon particles in each porous silica particle of Samples 1 to 4 until 5% by weight was uniformly dispersed. The packing density was also measured. The results are also shown in Table 1. In addition, as the carbon particles, graphite having an average particle diameter of 5 μm (SGP-5 manufactured by SEC Carbon Co.) was used.

Figure 2014055606
Figure 2014055606

続いて、炭素粒子の混合量を種々変更した(図1の横軸参照)混合粒子50gを芯材として、上記と同様にして作製した真空断熱材の熱伝導率(Thermal conductivity)を測定した。その結果を図1に示す。なお、熱伝導率の測定には、保護熱板法(GHP:GuardedHot Plate法)を用いた。具体的には、ホットプレート高温部30℃の上下に真空断熱材2枚をセットして、その外側に低温部20℃を設けて定常状態とする。その定常熱流を保つためにホットプレートに供給される熱量(電力)をもとに、熱伝導率の絶対値を求めることができる。   Subsequently, the thermal conductivity of the vacuum heat insulating material produced in the same manner as described above was measured using 50 g of mixed particles with various amounts of carbon particles mixed (see the horizontal axis in FIG. 1) as a core material. The result is shown in FIG. In addition, the protection hot plate method (GHP: GuardedHot Plate method) was used for the measurement of thermal conductivity. Specifically, two vacuum heat insulating materials are set above and below the hot plate high temperature portion 30 ° C., and the low temperature portion 20 ° C. is provided on the outside thereof to obtain a steady state. In order to maintain the steady heat flow, the absolute value of the thermal conductivity can be obtained based on the amount of heat (electric power) supplied to the hot plate.

図1及び表1の結果から明らかなように、多孔質シリカ粒子のタッピング嵩密度及びパッキング密度が小さいほど熱伝導率が低くなる傾向が確認された。   As is clear from the results of FIG. 1 and Table 1, it was confirmed that the thermal conductivity tends to be lower as the tapping bulk density and packing density of the porous silica particles are smaller.

<試験2>
次に、多孔質シリカ粒子の表面炭化水素基の存在量に基づく断熱性の影響について評価した。多孔質シリカ粒子としては、上記試験1で使用した試料4を使用した。そして、多孔質シリカ粒子を、酸化性雰囲気(酸素ガス雰囲気)で350℃、450℃、550℃、750℃、及び不活性雰囲気(窒素ガス雰囲気)で750℃の各条件でそれぞれ熱処理した。なお、熱処理は、真空ガス置換が可能な電気炉により行い、昇温速度200℃/時間として、各熱処理温度において10時間保持した。また、多孔質シリカ粒子の表面炭化水素基の存在量を低減できていることを確認するために、代表的なサンプルとして熱処理前および450℃にて熱処理した多孔質シリカ粒子について炭化水素基由来の炭素量を測定したところ、前者は6.9重量%、後者は2.1重量%であった。表面炭化水素基由来の炭素量は、酸素気流中燃焼−赤外線吸収法によって測定した。
<Test 2>
Next, the influence of heat insulation based on the amount of surface hydrocarbon groups in the porous silica particles was evaluated. As the porous silica particles, the sample 4 used in Test 1 was used. The porous silica particles were heat-treated at 350 ° C., 450 ° C., 550 ° C., 750 ° C. in an oxidizing atmosphere (oxygen gas atmosphere), and 750 ° C. in an inert atmosphere (nitrogen gas atmosphere). The heat treatment was performed in an electric furnace capable of vacuum gas replacement, and the temperature was raised at a rate of 200 ° C./hour for 10 hours at each heat treatment temperature. Moreover, in order to confirm that the abundance of surface hydrocarbon groups in the porous silica particles can be reduced, as a representative sample, the porous silica particles heat-treated before heat treatment and at 450 ° C. are derived from hydrocarbon groups. When the amount of carbon was measured, the former was 6.9% by weight, and the latter was 2.1% by weight. The amount of carbon derived from surface hydrocarbon groups was measured by combustion in an oxygen stream-infrared absorption method.

当該各熱処理多孔質シリカ粒子及び未処理多孔質シリカ粒子に、それぞれ上記試験1と同じ炭素粒子を2.5〜12.5重量%の範囲で混合量を種々変更した(図2参照)混合粒子50gを芯材とし、試験1と同様にして作製した真空断熱材の熱伝導率を、試験1と同様に測定した。その結果を図2に示す。また、炭素粒子の混合量を7.5重量%とした場合の、真空断熱材のパッキング密度も測定した。その結果を図3に示す。   Each heat-treated porous silica particle and untreated porous silica particle were mixed in various amounts in the range of 2.5 to 12.5% by weight of the same carbon particles as in Test 1 above (see FIG. 2). The thermal conductivity of a vacuum heat insulating material produced in the same manner as in Test 1 using 50 g as a core material was measured in the same manner as in Test 1. The result is shown in FIG. Further, the packing density of the vacuum heat insulating material when the mixing amount of the carbon particles was 7.5% by weight was also measured. The result is shown in FIG.

図2の結果から明らかなように、酸素存在雰囲気において350〜550℃で熱処理することで表面炭化水素基が的確に低減され、真空断熱材の熱伝導率が向上することが確認された。中でも、熱処理温度450℃、炭素粒子含有量7.5重量%の真空断熱材は、熱伝導率が2.87mW/mKと最も低かった。一方、酸素存在雰囲気でも750℃にて熱処理した場合や、不活性雰囲気において熱処理した場合は、熱伝導率の低減効果は殆ど得られなかった。これは、多孔質シリカ粒子の焼結収縮による高密度化や表面炭化水素基の炭素化が原因と考えられる。   As is clear from the results of FIG. 2, it was confirmed that the surface hydrocarbon groups were accurately reduced by heat treatment at 350 to 550 ° C. in an oxygen-existing atmosphere, and the thermal conductivity of the vacuum heat insulating material was improved. Among them, the vacuum heat insulating material having a heat treatment temperature of 450 ° C. and a carbon particle content of 7.5% by weight had the lowest thermal conductivity of 2.87 mW / mK. On the other hand, when heat treatment was performed at 750 ° C. even in an oxygen-existing atmosphere, or when heat treatment was performed in an inert atmosphere, the effect of reducing thermal conductivity was hardly obtained. This is considered to be caused by densification due to sintering shrinkage of porous silica particles and carbonization of surface hydrocarbon groups.

この表面炭化水素基の低減によって熱伝導率を低減できるという結果は、2つの効果によるものである。一つは、表面炭化水素基が固体伝導の経路となっており、それを低減した効果である。もう一つは、図3の結果から明らかなように、表面炭化水素基の低減によりパッキング密度を低減できた効果によるものである。これは、炭化水素基が多孔質シリカ粒子表面に存在することで、粒子間の摩擦係数が低減され流動性が向上してパッキング密度が増大する傾向があるが、表面炭化水素基を減らすことで多孔質シリカ粒子の流動性も低下し、パッキング密度を有意に下げることができたと考えられる。しかし、パッキング密度を下げると、固体伝熱が低下する反面、輻射伝熱が増加する傾向があるが、この問題は輻射伝熱抑制効果のある炭素粒子を混合することにより解決できる。   The result that the thermal conductivity can be reduced by the reduction of the surface hydrocarbon groups is due to two effects. One is the effect of reducing the surface hydrocarbon group as a solid conduction path. The other is due to the effect of reducing the packing density by reducing the surface hydrocarbon groups, as is apparent from the results of FIG. This is because the presence of hydrocarbon groups on the surface of the porous silica particles tends to reduce the friction coefficient between the particles and improve the fluidity and increase the packing density, but by reducing the surface hydrocarbon groups. It is considered that the fluidity of the porous silica particles also decreased, and the packing density could be significantly reduced. However, when the packing density is lowered, the solid heat transfer is reduced, but the radiant heat transfer tends to increase. However, this problem can be solved by mixing carbon particles having an effect of suppressing the radiant heat transfer.

<試験3>
そこで、炭素粒子の種類の違いによる断熱性への影響を評価した。上記試験2において最も熱伝導率の低かった真空断熱材(熱処理温度450℃、炭素粒子7.5重量%)に対して、炭素粒子をカーボンブラック(東海カーボン製、#8500)に代えた以外は同様にして真空断熱材を作製した。その熱伝導率を測定したところ、熱伝導率は3.79mW/mKであり、炭素粒子としてグラファイトを使用した場合(熱伝導率2.87mW/mK)よりも熱伝導率低減効果は低かった。この熱伝導率の低減効果の違いは、炭素粒子の種類により輻射伝熱抑制の効果が異なるためと推察される。したがって、輻射伝熱抑制効果を定量的に反映するパラメータを決定することで、真空断熱材における性能保証・品質管理に有効な指標として活用できる。
<Test 3>
Then, the influence on the heat insulation by the difference in the kind of carbon particle was evaluated. Except that the carbon particles were replaced with carbon black (# 8500, manufactured by Tokai Carbon Co., Ltd.) with respect to the vacuum heat insulating material (heat treatment temperature 450 ° C., carbon particles 7.5% by weight) having the lowest thermal conductivity in Test 2 above. A vacuum heat insulating material was produced in the same manner. When the thermal conductivity was measured, the thermal conductivity was 3.79 mW / mK, and the thermal conductivity reduction effect was lower than when graphite was used as the carbon particles (thermal conductivity 2.87 mW / mK). The difference in the effect of reducing the thermal conductivity is presumed to be because the effect of suppressing radiant heat transfer differs depending on the type of carbon particles. Therefore, by determining a parameter that quantitatively reflects the radiant heat transfer suppression effect, it can be used as an effective index for performance assurance and quality control in a vacuum heat insulating material.

そこで、輻射伝熱の抑制効果を示すパラメータとして、赤外吸収係数を評価した。まず、赤外分光光度計により、上記試験3で使用した芯材粒子(多孔質シリカ粒子+グラファイト:試料5、及び多孔質シリカ粒子+カーボンブラック:試料6)の赤外吸収率を測定した。また、参考として、上記試験2で使用した不活性雰囲気熱処理の多孔質シリカ粒子(試料7)と、未処理多孔質シリカ粒子(試料8)の赤外吸収率も測定した。このときの周波数範囲は370〜7800cm-1であり、波長範囲は1.28〜27μmである。赤外域での透過率の高いKBr板の間に試料5〜8の粒子を挟み、赤外透過率を測定して吸収率に換算した。この赤外吸収率をそれぞれの粒子の密度で割った吸収係数(Specific Extinction)の波長依存性を図4に示す。 Therefore, the infrared absorption coefficient was evaluated as a parameter indicating the effect of suppressing radiant heat transfer. First, the infrared absorptivity of the core material particles (porous silica particles + graphite: sample 5 and porous silica particles + carbon black: sample 6) used in Test 3 was measured with an infrared spectrophotometer. For reference, the infrared absorptance of the porous silica particles (sample 7) of the inert atmosphere heat treatment used in Test 2 and the untreated porous silica particles (sample 8) was also measured. The frequency range at this time is 370 to 7800 cm −1 , and the wavelength range is 1.28 to 27 μm. The particles of Samples 5 to 8 were sandwiched between KBr plates having a high transmittance in the infrared region, and the infrared transmittance was measured and converted to an absorptivity. FIG. 4 shows the wavelength dependence of the absorption coefficient (Specific Extinction) obtained by dividing the infrared absorptance by the density of each particle.

図4の結果において、波長の短い近赤外領域ではカーボンブラック(試料6)の吸収係数が高いものの、抑えるべき30℃付近の温度に対する輻射スペクトルのピーク付近よりも長波長領域ではグラファイト(試料5)の吸収係数が高くなるという結果を得た。さらに、試料5〜8の赤外吸収率スペクトルに対して、ロッセランド(Rosseland)平均の演算処理を加えることで、輻射伝熱λの下記計算式(1)におけるロッセランド吸収係数Ksを密度で割った値を求め、当該値を本発明における「赤外線吸収係数」とした。その結果を表2に示す。なお、下記計算式(1)において、nは屈折率、σはステファンボルツマン定数、Tは温度、ρ’は相対密度、ρは固体密度である。また、参考試料7,8を芯材として上記試験2と同様にして作製した真空断熱材の熱伝導率も測定した。その結果も表2に示す。 In the result of FIG. 4, although the absorption coefficient of carbon black (sample 6) is high in the near-infrared region where the wavelength is short, graphite (sample 5) is used in the longer wavelength region than the vicinity of the peak of the radiation spectrum with respect to a temperature near 30 ° C. to be suppressed. ), The absorption coefficient is high. Further, with respect to the infrared absorption spectrum of the sample 5-8, the addition of arithmetic processing Rosserando (Rosseland) average, divided by Rosserando absorption coefficient Ks in the following equation of radiative heat transfer lambda r (1) at a density The value was determined and used as the “infrared absorption coefficient” in the present invention. The results are shown in Table 2. In the following calculation formula (1), n is a refractive index, σ is a Stefan-Boltzmann constant, T is a temperature, ρ ′ is a relative density, and ρ s is a solid density. Moreover, the thermal conductivity of the vacuum heat insulating material produced by using the reference samples 7 and 8 as a core material in the same manner as in Test 2 was also measured. The results are also shown in Table 2.

Figure 2014055606
Figure 2014055606

Figure 2014055606
Figure 2014055606

表2の結果からも明らかなように、炭素粒子としてグラファイトを使用した方が、カーボンブラックを使用した場合よりも赤外線吸収係数が高く、熱伝導率は低かった。これにより、グラファイトの方がカーボンブラックよりも輻射伝熱抑制効果が高いことが確認された。また、優れた断熱性を備える真空断熱材とするには、赤外線吸収係数が110m/kg以上であることが好ましいことも確認された。
As is clear from the results in Table 2, the infrared absorption coefficient was higher and the thermal conductivity was lower when graphite was used as the carbon particles than when carbon black was used. As a result, it was confirmed that graphite had a higher effect of suppressing radiant heat transfer than carbon black. It was also confirmed that an infrared absorption coefficient of 110 m 2 / kg or more is preferable for a vacuum heat insulating material having excellent heat insulating properties.

Claims (9)

多孔質シリカ粒子と、炭素粒子とを混合し、非通気性の封止フィルムによって真空封止してなる真空断熱材であって、
前記多孔質シリカ粒子は、表面に炭化水素基を有する多孔質シリカ粒子であって、熱処理により前記炭化水素基の存在量が低減されていることを特徴とする、真空断熱材
A porous heat insulating material obtained by mixing porous silica particles and carbon particles and vacuum-sealing with a non-breathable sealing film,
The porous silica particle is a porous silica particle having a hydrocarbon group on its surface, wherein the abundance of the hydrocarbon group is reduced by heat treatment,
前記熱処理を350〜550℃の範囲で行う、請求項1に記載の真空断熱材。   The vacuum heat insulating material of Claim 1 which performs the said heat processing in the range of 350-550 degreeC. 前記多孔質シリカ粒子は、タッピング嵩密度が0.1g/cm3以下であり、且つパッキング密度が0.125g/cm3以下である、請求項1または請求項2に記載の真空断熱材。 The porous silica particles are a tapping bulk density of 0.1 g / cm 3 or less, and packing density of 0.125 g / cm 3 or less, the vacuum heat insulating material according to claim 1 or claim 2. 前記炭素粒子がグラファイト粒子である、請求項1ないし請求項3のいずれかに記載の真空断熱材。   The vacuum heat insulating material according to any one of claims 1 to 3, wherein the carbon particles are graphite particles. 前記炭素粒子の混合量が2.5〜12.5重量%である、請求項1ないし請求項4のいずれかに記載の真空断熱材。   The vacuum heat insulating material in any one of Claims 1 thru | or 4 whose mixing amount of the said carbon particle is 2.5-12.5 weight%. 前記炭素粒子の平均粒子径が20μm以下である、請求項1ないし請求項5のいずれかに記載の真空断熱材。   The vacuum heat insulating material in any one of Claims 1 thru | or 5 whose average particle diameter of the said carbon particle is 20 micrometers or less. 赤外線吸収係数が110m2/kg以上である、請求項1ないし請求項6のいずれかに記載の真空断熱材。 The vacuum heat insulating material in any one of Claims 1 thru | or 6 whose infrared absorption coefficient is 110 m < 2 > / kg or more. 多孔質シリカ粒子と、炭素粒子とを混合し、非通気性の封止フィルムによって真空封止する真空断熱材の製造方法であって、
前記多孔質シリカ粒子は表面に炭化水素基を有する多孔質シリカ粒子であって、前記炭素粒子と混合する前に、予め熱処理により前記炭化水素基の存在量を低減する工程を有することを特徴とする、真空断熱材の製造方法。
A method for producing a vacuum heat insulating material, in which porous silica particles and carbon particles are mixed and vacuum-sealed with a non-breathable sealing film,
The porous silica particle is a porous silica particle having a hydrocarbon group on its surface, and has a step of reducing the abundance of the hydrocarbon group by heat treatment in advance before mixing with the carbon particle. A method for manufacturing a vacuum heat insulating material.
前記熱処理を350〜550℃の範囲で行う、請求項8に記載の真空断熱材の製造方法。

The manufacturing method of the vacuum heat insulating material of Claim 8 which performs the said heat processing in 350-550 degreeC.

JP2012199530A 2012-09-11 2012-09-11 Manufacturing method of vacuum insulation Active JP6095922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012199530A JP6095922B2 (en) 2012-09-11 2012-09-11 Manufacturing method of vacuum insulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012199530A JP6095922B2 (en) 2012-09-11 2012-09-11 Manufacturing method of vacuum insulation

Publications (2)

Publication Number Publication Date
JP2014055606A true JP2014055606A (en) 2014-03-27
JP6095922B2 JP6095922B2 (en) 2017-03-15

Family

ID=50613109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012199530A Active JP6095922B2 (en) 2012-09-11 2012-09-11 Manufacturing method of vacuum insulation

Country Status (1)

Country Link
JP (1) JP6095922B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018123027A (en) * 2017-02-01 2018-08-09 国立大学法人 名古屋工業大学 Silica/graphite-based uncalcinated solidified body, and method for producing the same
CN110610028A (en) * 2019-08-15 2019-12-24 复旦大学 Stealthy cape to heat radiation

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06345418A (en) * 1993-01-13 1994-12-20 Basf Ag Sio2 aerogel containing carbon particle
JP2001021094A (en) * 1999-07-06 2001-01-26 Dainippon Printing Co Ltd Heat-insulating composite sheet and heat-insulating member
JP2002310383A (en) * 2001-04-16 2002-10-23 Matsushita Refrig Co Ltd Vacuum heat insulation material, vacuum heat insulation material manufacturing method, note type computer, refrigerating appliance, electric water heater, and over- range
JP3558980B2 (en) * 2000-11-16 2004-08-25 松下冷機株式会社 Vacuum insulation material, method for manufacturing vacuum insulation material, refrigerator-freezer and refrigerator, notebook computer, electric water heater, microwave oven
JP2004347091A (en) * 2003-05-26 2004-12-09 Mitsubishi Chemicals Corp Heat insulation material and heat insulation body using this material
JP2005036975A (en) * 2003-06-27 2005-02-10 Matsushita Electric Ind Co Ltd Heat insulation material, method for manufacturing the same, and device using the heat insulation material
JP2009041649A (en) * 2007-08-08 2009-02-26 Panasonic Corp Vacuum heat insulating material and its manufacturing method
JP2009114010A (en) * 2007-11-05 2009-05-28 Jgc Catalysts & Chemicals Ltd Spherical silica particles and method for producing the same
JP2013530325A (en) * 2010-05-31 2013-07-25 ワッカー ケミー アクチエンゲゼルシャフト Insulator having a layered structure

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06345418A (en) * 1993-01-13 1994-12-20 Basf Ag Sio2 aerogel containing carbon particle
JP2001021094A (en) * 1999-07-06 2001-01-26 Dainippon Printing Co Ltd Heat-insulating composite sheet and heat-insulating member
JP3558980B2 (en) * 2000-11-16 2004-08-25 松下冷機株式会社 Vacuum insulation material, method for manufacturing vacuum insulation material, refrigerator-freezer and refrigerator, notebook computer, electric water heater, microwave oven
JP2002310383A (en) * 2001-04-16 2002-10-23 Matsushita Refrig Co Ltd Vacuum heat insulation material, vacuum heat insulation material manufacturing method, note type computer, refrigerating appliance, electric water heater, and over- range
JP2004347091A (en) * 2003-05-26 2004-12-09 Mitsubishi Chemicals Corp Heat insulation material and heat insulation body using this material
JP2005036975A (en) * 2003-06-27 2005-02-10 Matsushita Electric Ind Co Ltd Heat insulation material, method for manufacturing the same, and device using the heat insulation material
JP2009041649A (en) * 2007-08-08 2009-02-26 Panasonic Corp Vacuum heat insulating material and its manufacturing method
JP2009114010A (en) * 2007-11-05 2009-05-28 Jgc Catalysts & Chemicals Ltd Spherical silica particles and method for producing the same
JP2013530325A (en) * 2010-05-31 2013-07-25 ワッカー ケミー アクチエンゲゼルシャフト Insulator having a layered structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018123027A (en) * 2017-02-01 2018-08-09 国立大学法人 名古屋工業大学 Silica/graphite-based uncalcinated solidified body, and method for producing the same
CN110610028A (en) * 2019-08-15 2019-12-24 复旦大学 Stealthy cape to heat radiation
CN110610028B (en) * 2019-08-15 2022-12-20 复旦大学 Thermal stealth cloak aiming at thermal radiation

Also Published As

Publication number Publication date
JP6095922B2 (en) 2017-03-15

Similar Documents

Publication Publication Date Title
Liu et al. Vacancies-engineered and heteroatoms-regulated N-doped porous carbon aerogel for ultrahigh microwave absorption
US20150147514A1 (en) Vacuum heat-insulating material and method for manufacturing vacuum heat-insulating material
US20190148696A1 (en) Microporous insulators
Rajpalke et al. Bi-induced band gap reduction in epitaxial InSbBi alloys
US20180327322A1 (en) Coating formed on graphite substrate and method for producing the same
Lo et al. Low thermal conductivity of porous Al2O3 foams for SOFC insulation
Zhang et al. Structure, microwave dielectric properties, and low‐temperature sintering of acceptor/donor codoped Li2Ti1− x (Al0. 5Nb0. 5) xO3 ceramics
Singh et al. A highly porous, light weight 3D sponge like graphene aerogel for electromagnetic interference shielding applications
Chen et al. Enhanced electromagnetic interference shielding properties of silicon carbide composites with aligned graphene nanoplatelets
JP6095922B2 (en) Manufacturing method of vacuum insulation
Qian et al. Multifunctional epoxy‐based electronic packaging material MDCF@ LDH/EP for electromagnetic wave absorption, thermal management, and flame retardancy
Gao et al. Highly improved microwave absorbing and mechanical properties in cold sintered ZnO by incorporating graphene oxide
Liang et al. Phase transition engineering of Cu2S to widen the temperature window of improved thermoelectric performance
Yao et al. Multifunctional metamaterial microwave blackbody with high‐frequency compatibility, temperature insensitivity, and structural scalability
Yang et al. Microwave dielectric properties of B and N co-doped SiC nanopowders prepared by combustion synthesis
Chaubey et al. Microstructural and thermal investigations of HfO 2 nanoparticles
Hosseini et al. Synthesis, characterization and X‐ray shielding properties of polypyrrole/lead nanocomposites
JP5397031B2 (en) Manufacturing method for high performance insulation
Gómez et al. Effect of morphology on the permeability, mechanical and thermal properties of polypropylene/SiO2 nanocomposites
Anwar et al. Controlling the electrical resistivity of porous silicon carbide ceramics and their applications: A review
Kiiko et al. Production and thermophysical properties of BeO ceramics with the addition of nanocrystalline titanium dioxide
KR101933142B1 (en) Magnesium oxide, thermally conductive filler, thermally conductive resin composition comprising same, and method for producing magnesium oxide
Zhu et al. Effect of TiO 2 addition on the microstructure and electrical properties of ZnO-based linear resistance ceramics
Charvadeh et al. Growth, characterization and investigation of gas-sensing performance of graphene and copper-doped zinc oxide prepared by sol–gel method
Zhou et al. Fabrication of thermal conductivity enhanced polymer composites with three‐dimensional networks based on natural cotton

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170215

R150 Certificate of patent or registration of utility model

Ref document number: 6095922

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250