JP2014055098A - Particulate composition including nitrate, production method of the same, glass, and preservation method of nitrate - Google Patents

Particulate composition including nitrate, production method of the same, glass, and preservation method of nitrate Download PDF

Info

Publication number
JP2014055098A
JP2014055098A JP2013165370A JP2013165370A JP2014055098A JP 2014055098 A JP2014055098 A JP 2014055098A JP 2013165370 A JP2013165370 A JP 2013165370A JP 2013165370 A JP2013165370 A JP 2013165370A JP 2014055098 A JP2014055098 A JP 2014055098A
Authority
JP
Japan
Prior art keywords
particulate composition
nitrate
test
hydrophobic silica
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013165370A
Other languages
Japanese (ja)
Other versions
JP5660170B2 (en
Inventor
Hironobu Ogata
宏宣 緒方
Hirotaka Hayashi
寛崇 林
Naoki Matsumoto
直樹 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Chemical Industry Co Ltd
Original Assignee
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakai Chemical Industry Co Ltd filed Critical Sakai Chemical Industry Co Ltd
Priority to JP2013165370A priority Critical patent/JP5660170B2/en
Publication of JP2014055098A publication Critical patent/JP2014055098A/en
Application granted granted Critical
Publication of JP5660170B2 publication Critical patent/JP5660170B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/36Nitrates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/36Nitrates
    • C01F11/44Concentrating; Crystallisating; Dehydrating; Preventing the absorption of moisture or caking
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/02Pretreated ingredients
    • C03C1/026Pelletisation or prereacting of powdered raw materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Silicon Compounds (AREA)
  • Glass Compositions (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Catalysts (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Cosmetics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a material including strontium nitrate or barium nitrate in which safety is high, handling is easy, and a requirement to become a non-dangerous material in Fire Defense Law is satisfied.SOLUTION: Provided are a particulate composition that includes: strontium nitrate and/or barium nitrate; and hydrophobic silica, and does not correspond to a dangerous material by a burning test and a falling ball type impact sensibility testing of a dangerous material first category of Japanese Fire Defense Law, a production method of the same, glass obtained from the particulate composition, and a preservation method of strontium nitrate and/or barium nitrate.

Description

本発明は、硝酸塩を含有する粒子状組成物、その製造方法、該粒子状組成物から形成されたガラス、及び硝酸塩の保存方法に関する。 The present invention relates to a particulate composition containing nitrate, a method for producing the same, a glass formed from the particulate composition, and a method for storing nitrate.

硝酸ストロンチウムや硝酸バリウムは、火薬や発炎筒の原料として用いられている。また硝酸ストロンチウムに関しては、自動車のエアバッグのガス発生剤としても使用されている(例えば特許文献1)。 Strontium nitrate and barium nitrate are used as raw materials for gunpowder and flame tubes. Strontium nitrate is also used as a gas generating agent for automobile airbags (for example, Patent Document 1).

硝酸ストロンチウムや硝酸バリウムは、可燃物を酸化して、激しい燃焼や爆発を起こすおそれがあることから、日本国の消防法においては酸化性固体として危険物に指定されている物質である。このような危険物は、それを取り扱う作業員を危険に曝すこととなり、安全性の問題がある。また工場などで取り扱う際には防火あるいは防爆設備の設置や保有空地の確保が必要となり、コスト面でも不利である。法令上も、危険物は製造、運搬、貯蔵等の面において厳しい規制を受ける。 Strontium nitrate and barium nitrate are substances that are designated as hazardous materials as oxidizable solids in the Japanese Fire Service Act because they can oxidize combustible materials and cause severe combustion and explosion. Such dangerous goods endanger the workers who handle them, and there is a safety problem. In addition, when handling in factories, it is necessary to install fireproof or explosion-proof equipment and secure an open space, which is disadvantageous in terms of cost. In accordance with laws and regulations, dangerous goods are subject to strict regulations in terms of manufacturing, transportation and storage.

また、硝酸ストロンチウムや硝酸バリウムは、火薬用途に限らず、セラミックスやガラスの原料としても期待されている材料である。セラミックスやガラスの原料として用いる場合には、その酸化性は成形・取扱いの際における安全を脅かすおそれがある。このように、セラミックスやガラスの原料としては、危険性を排除した、より安全性の高い材料への改質が求められている。 In addition, strontium nitrate and barium nitrate are not only used for explosives but are also expected as raw materials for ceramics and glass. When used as a raw material for ceramics and glass, its oxidizability may threaten safety during molding and handling. Thus, as a raw material for ceramics and glass, there is a demand for reforming the material into a safer material that eliminates danger.

これまでにも、硝酸ストロンチウムや硝酸バリウムを改質する方法として、微粒子珪酸を適量含有させることにより、粒子の固結を防止する方法が開示されている(特許文献2)。しかしながら、一般的な微粒子珪酸では爆発や燃焼の危険性を減少させるには不十分であった。 So far, as a method for modifying strontium nitrate or barium nitrate, a method for preventing particle consolidation by containing an appropriate amount of fine particle silicic acid has been disclosed (Patent Document 2). However, general particulate silicic acid has been insufficient to reduce the risk of explosion and combustion.

爆発や燃焼の危険性を低減させる従来の方法としては、アルキルベンゼンスルホン酸を添加する方法がある。界面活性剤であるアルキルベンゼンスルホン酸は家庭用及び業務用の合成洗剤(洗濯用、台所用)として使用され、また染色助剤、農薬乳化剤、精錬剤、分散剤や化粧品としても使用されている。一方で河川や下水処理場での発泡や、他の一般的な界面活性剤に比べて生分解性が低いといった問題があり、工業的な生産において排水処理を考慮した場合、添加剤としては適さない。 As a conventional method for reducing the risk of explosion or combustion, there is a method of adding alkylbenzenesulfonic acid. Alkyl benzene sulfonic acid, which is a surfactant, is used as a synthetic detergent for household and commercial use (for laundry and kitchen use), and is also used as a dyeing assistant, agricultural chemical emulsifier, refining agent, dispersant and cosmetics. On the other hand, there are problems such as foaming in rivers and sewage treatment plants and low biodegradability compared to other general surfactants, which are suitable as additives when wastewater treatment is considered in industrial production. Absent.

また粒子を粗大化させることで危険性を低減させることも可能であるが、工業的な大量・連続生産には不向きであり、各種用途での使用の面でも均一混合が難しいといった問題がある。 In addition, although it is possible to reduce the risk by coarsening the particles, it is not suitable for industrial mass production and continuous production, and there is a problem that uniform mixing is difficult in terms of use in various applications.

特開平11−228133号公報Japanese Patent Laid-Open No. 11-228133 特開2002−362921号公報Japanese Patent Laid-Open No. 2002-362921

本発明の目的の一つは、安全性が高く、取り扱い易い、硝酸ストロンチウム又は硝酸バリウムを含有する材料を提供することにある。具体的には、消防法上、危険物に該当しない、安全性の高い硝酸ストロンチウム又は硝酸バリウムを含有する材料を提供することにある。 One object of the present invention is to provide a material containing strontium nitrate or barium nitrate that is highly safe and easy to handle. Specifically, an object of the present invention is to provide a material containing strontium nitrate or barium nitrate that does not fall under the category of hazardous materials and is highly safe.

すなわち本発明の第1の態様は、硝酸ストロンチウム及び/又は硝酸バリウムと、疎水性シリカとを含有し、日本国消防法の危険物第一類の燃焼試験及び落球式打撃感度試験で危険物に該当しない粒子状組成物に関する。前記疎水性シリカは、好ましくは、そのBET比表面積が50〜400m/gである。 That is, the first aspect of the present invention contains strontium nitrate and / or barium nitrate and hydrophobic silica, and is classified as a dangerous substance in the fire test and the falling ball hitting sensitivity test of the first class of dangerous goods of the Japanese Fire Service Act. It relates to a particulate composition not applicable. The hydrophobic silica preferably has a BET specific surface area of 50 to 400 m 2 / g.

上記粒子状組成物は、好ましくは国連勧告・試験マニュアル「Recommendation on the TRANSPORT OF DANGEROUS GOODS −Manual of Tests and Criteria− Third revised edition」に準拠した、国連勧告によるCLASS 5−Division 5.1(酸化性固体)の燃焼試験で危険物に該当しないものである。 The particulate composition is preferably a CLASS oxidization 5 test according to the UN recommendation 5 according to the UN recommendation and test manual "Recommendation on the TRANSPORT OF DANGEROUS GOODS-Manual of Tests and Criteria- Third revised edition". Solid) combustion test does not fall under dangerous goods.

上記粒子状組成物は、好ましくは上記硝酸ストロンチウム又は硝酸バリウムを95.0〜99.8質量%含有するものである。 The particulate composition preferably contains 95.0 to 99.8% by mass of the strontium nitrate or barium nitrate.

上記粒子状組成物は、ガラス原料として好適に使用することができる。 The particulate composition can be suitably used as a glass raw material.

また上記粒子状組成物は、好ましくは上記疎水性シリカを0.1〜3.0質量%含有する(但し、粒子状組成物の全質量は100質量%である)ものである。 The particulate composition preferably contains 0.1 to 3.0% by mass of the hydrophobic silica (however, the total mass of the particulate composition is 100% by mass).

本発明の第2の態様は硝酸ストロンチウム及び/又は硝酸バリウムと、疎水性シリカとを混合する工程を含む粒子状組成物の製造方法に関する。 The 2nd aspect of this invention is related with the manufacturing method of the particulate composition including the process of mixing strontium nitrate and / or barium nitrate, and hydrophobic silica.

本発明の第3の態様は粒子状組成物から作製されるガラスに関する。 A third aspect of the present invention relates to glass made from a particulate composition.

本発明の第4の態様は疎水性シリカを混合する硝酸ストロンチウム及び/又は硝酸バリウムの保存方法に関する。 The fourth aspect of the present invention relates to a method for preserving strontium nitrate and / or barium nitrate mixed with hydrophobic silica.

本発明は、特定のシリカの作用により、本来消防法上の危険物である硝酸ストロンチウム及び/又は硝酸バリウムの燃焼性や爆発性を抑制させ危険性を低減することができ、日本国消防法上の危険物に該当しないものとすることができる。これにより、使用や保存、輸送等における安全性を高めることができる。また防爆設備等が不要となることから製造設備の面においてもコストダウンに寄与することができる。 The present invention can reduce the risk by suppressing the flammability and explosiveness of strontium nitrate and / or barium nitrate, which are inherently dangerous materials under the Fire Service Act, by the action of specific silica. May not fall under the category of dangerous goods. Thereby, the safety | security in use, a preservation | save, transportation, etc. can be improved. Further, since explosion-proof equipment or the like is not required, it can contribute to cost reduction in terms of manufacturing equipment.

(硝酸ストロンチウム及び硝酸バリウム)
本発明の粒子状組成物は硝酸ストロンチウム及び/又は硝酸バリウムを含有する。本発明で用いる硝酸ストロンチウムとしては特に制限はなく、合成したものを用いてもよいし、市販のものを用いてもよい。硝酸ストロンチウムを合成する方法としては、特に限定されないが、例えば水酸化ストロンチウムと硝酸の中和反応による方法や、炭酸ストロンチウムと硝酸を反応させることにより、硝酸ストロンチウムと炭酸に変換する方法、塩化ストロンチウムの濃厚溶液に硝酸ナトリウムを添加して反応させる方法などが挙げられる。
(Strontium nitrate and barium nitrate)
The particulate composition of the present invention contains strontium nitrate and / or barium nitrate. There is no restriction | limiting in particular as strontium nitrate used by this invention, What was synthesize | combined may be used and a commercially available thing may be used. The method for synthesizing strontium nitrate is not particularly limited. For example, a method of neutralizing strontium hydroxide and nitric acid, a method of converting strontium carbonate and nitric acid by reacting strontium carbonate and nitric acid, strontium chloride For example, a method in which sodium nitrate is added to the concentrated solution and reacted is used.

本発明で用いる硝酸バリウムについても特に制限はなく、合成したものを用いてもよいし、市販のものを用いてもよい。硝酸バリウムを合成する方法としては、特に限定されないが、例えば炭酸バリウム又は硫化バリウムに硝酸を作用させる方法などが挙げられる。 There is no restriction | limiting in particular also about the barium nitrate used by this invention, What was synthesize | combined may be used and a commercially available thing may be used. The method for synthesizing barium nitrate is not particularly limited, and examples thereof include a method of causing nitric acid to act on barium carbonate or barium sulfide.

(シリカ)
通常のシリカはその固体表面にシラノール基(Si−O−H)が存在することから、水との親和性が高い。このようなシリカは「親水性シリカ」と呼ばれている。これに対し、シラン処理、シランカップリング処理などの疎水化処理をシリカの表面に施すことにより、表面を疎水性に改質したものは「疎水性シリカ」と呼ばれている。本発明においては「疎水性シリカ」を用いる。
(silica)
Since ordinary silica has silanol groups (Si—O—H) on its solid surface, it has a high affinity for water. Such silica is called “hydrophilic silica”. On the other hand, the surface of the silica that has been subjected to hydrophobic treatment such as silane treatment or silane coupling treatment to make the surface hydrophobic is called “hydrophobic silica”. In the present invention, “hydrophobic silica” is used.

疎水化処理を施す前の原体シリカに制限はなく、公知の方法によって得られたシリカが使用される。例えば、ヒュームドシリカ、湿式シリカなどが代表的である。 There is no restriction | limiting in the original silica before performing a hydrophobization process, The silica obtained by the well-known method is used. For example, fumed silica, wet silica and the like are typical.

ヒュームドシリカとしては、珪素化合物や金属珪素を酸水素火炎中で燃焼させて得られる気相法シリカが挙げられる。 Examples of fumed silica include vapor phase method silica obtained by burning a silicon compound or metal silicon in an oxyhydrogen flame.

湿式シリカとしては、珪酸ソーダを中和することによって溶液中でシリカを析出させる沈殿法シリカが挙げられる。 Examples of wet silica include precipitated silica that precipitates silica in a solution by neutralizing sodium silicate.

また珪素のアルコキシドを含水有機溶媒中で加水分解させて得られる、ゾル−ゲル法シリカなども用いることができる。 Also, sol-gel silica obtained by hydrolyzing silicon alkoxide in a water-containing organic solvent can be used.

疎水性シリカは、親水性シリカの表面を、ジメチルジクロロシラン、ヘキサメチルジシラザン、オクチルシラン等のシラン、ビニルトリメトキシシラン等のシランカップリング剤、ジメチルポリシロキサン、メチルハイドロジェンポリシロキサン、脂肪酸等の表面処理剤によって処理することにより得られるものが好ましい。但し表面処理剤はこれに限定されるものではない。 Hydrophobic silica, the surface of hydrophilic silica, silane such as dimethyldichlorosilane, hexamethyldisilazane, octylsilane, silane coupling agents such as vinyltrimethoxysilane, dimethylpolysiloxane, methylhydrogenpolysiloxane, fatty acid, etc. What is obtained by processing with the surface treating agent of is preferable. However, the surface treatment agent is not limited to this.

本発明における疎水性シリカは、疎水化度が20%以上であるのが好ましく、30%以上であるのがより好ましく、50%以上であるのがさらに好ましい。また、親水性シリカは、疎水化度がほぼ0%を示すものである。ここで「疎水化度」とは、疎水性シリカを水中に分散させ、有機溶媒(例えばメタノール)を滴下することにより浮遊する疎水性シリカが全量沈んだ時点における有機溶媒−水混合溶液中の有機溶媒の質量分率(質量%)をいう。測定は、例えば、イオン交換水50mlに疎水性シリカ0.2gを加えマグネティックスターラーで攪拌しながらビュレットからメタノールを滴下することにより行うことができる。浮遊する疎水性シリカが徐々に沈降していき、その全量が沈んだ終点におけるメタノール−水混合溶液中のメタノールの質量分率(%)が「疎水化度」である。 The hydrophobic silica in the present invention preferably has a degree of hydrophobicity of 20% or more, more preferably 30% or more, and even more preferably 50% or more. Hydrophilic silica has a hydrophobization degree of almost 0%. Here, the “hydrophobic degree” means that the hydrophobic silica is dispersed in water and the organic solvent (for example, methanol) is added dropwise to the organic solvent in the organic solvent-water mixed solution at the time when the floating hydrophobic silica is completely precipitated. It refers to the mass fraction (% by mass) of the solvent. The measurement can be performed, for example, by adding 0.2 g of hydrophobic silica to 50 ml of ion exchange water and dropping methanol from the burette while stirring with a magnetic stirrer. The floating hydrophobic silica gradually settles, and the mass fraction (%) of methanol in the methanol-water mixed solution at the end point when the total amount of the silica is sinked is the “hydrophobization degree”.

本発明における疎水性シリカは、上記の条件を満たす市販品を使用することができる。疎水性シリカの例としては、AEROSIL(R)(エボニックインダストリーズ社製、例えばAEROSIL(R)R972、R974、R104、R106、R202、R805、R812、R812S、R816、R7200、R8200、及びR9200)、CAB−O−SIL(R)(キャボット社製、例えばCAB−O−SIL(R)TG−C413、TG−3180、TG−7120、TG−818F、TG−820F、TG−C390、TG−C122、TG−C190、TG−C243、TS−382、TS−530、TS−610、TS−630、及びTS−720)、レオロシール(R)(株式会社トクヤマ製、例えばレオロシール(R)DM−10、DM−20、DM−30、MT−10及びMT−20)、WACKER(R)(旭化成ワッカーシリコーン株式会社製、WACKER(R)HDK−H15、HDK−H18、HDK−H20、及びHDK−H30)、ニップシール(R)(東ソー・シリカ株式会社製、ニップシール(R)SS−10、SS−30S、SS−30P、SS−50、及びSS−50F)等が挙げられる。 The hydrophobic silica in this invention can use the commercial item which satisfy | fills said conditions. Examples of hydrophobic silica include AEROSIL (R) (Evonik Industries, for example, AEROSIL (R) R972, R974, R104, R106, R202, R805, R812, R812S, R816, R7200, R8200, and R9200), CAB -O-SIL (R) (manufactured by Cabot, for example, CAB-O-SIL (R) TG-C413, TG-3180, TG-7120, TG-818F, TG-820F, TG-C390, TG-C122, TG -C190, TG-C243, TS-382, TS-530, TS-610, TS-630, and TS-720), Leoro Seal (R) (manufactured by Tokuyama Corporation, for example, Leoro Seal (R) DM-10, DM- 20, DM-30, MT-10 and MT-20), WAC ER (R) (Asahi Kasei Wacker Silicone Co., Ltd., WACKER (R) HDK-H15, HDK-H18, HDK-H20, and HDK-H30), Nip Seal (R) (Tosoh Silica Co., Ltd., Nip Seal (R) SS-10, SS-30S, SS-30P, SS-50, and SS-50F).

上記疎水性シリカは、そのBET比表面積が、好ましくは50〜400m/g、より好ましくは75〜300m/gである。BET比表面積は、窒素吸着BET1点法により測定した値をいう。測定手順はJIS Z 8830の規定に準ずる。 The hydrophobic silica has a BET specific surface area of preferably 50 to 400 m 2 / g, more preferably 75 to 300 m 2 / g. The BET specific surface area is a value measured by a nitrogen adsorption BET one-point method. The measurement procedure is in accordance with JIS Z 8830.

(粒子状組成物)
本発明の粒子状組成物は、硝酸ストロンチウム及び/又は硝酸バリウムと、疎水性シリカとを含有する。
(Particulate composition)
The particulate composition of the present invention contains strontium nitrate and / or barium nitrate and hydrophobic silica.

本発明の粒子状組成物は、特に限定されないが、硝酸ストロンチウム及び/又は硝酸バリウムと、疎水性シリカとをそれぞれ所要量加えて混合することで粒子状組成物を得ることができる。また、各成分の添加順については特に限定はない。混合するための手段としては特に限定されず、公知の回転固体混合機を適宜選択することができる。上記回転固体混合機としては、例えばリボン型、単軸ローター式、V型、ナウタ型、二重円錐型、円筒型などが挙げられる。
また、硝酸ストロンチウム及び/又は硝酸バリウムと、疎水性シリカとは均一に混合することが好ましく、硝酸ストロンチウム粒子及び/又は硝酸バリウム粒子の破砕が起こり難いソフトな混合が好ましい。硝酸ストロンチウム粒子及び/又は硝酸バリウム粒子の破砕が進むと、粒子状組成物の固結の発生や、疎水性シリカによる安全性の向上が期待できない場合がある。
Although the particulate composition of the present invention is not particularly limited, the particulate composition can be obtained by adding and mixing required amounts of strontium nitrate and / or barium nitrate and hydrophobic silica. Moreover, there is no limitation in particular about the addition order of each component. The means for mixing is not particularly limited, and a known rotating solid mixer can be appropriately selected. Examples of the rotating solid mixer include a ribbon type, a single-axis rotor type, a V type, a nauta type, a double cone type, and a cylindrical type.
In addition, strontium nitrate and / or barium nitrate and hydrophobic silica are preferably mixed uniformly, and soft mixing is preferred in which crushing of strontium nitrate particles and / or barium nitrate particles hardly occurs. When the strontium nitrate particles and / or barium nitrate particles are crushed, it may be impossible to expect the solidified composition of the particulate composition or the improvement of safety due to the hydrophobic silica.

粒子状組成物中の硝酸ストロンチウム又は硝酸バリウムの量は、特に限定されないが、好ましくは95〜99.8質量%、さらに好ましくは97〜99.5質量%である。 The amount of strontium nitrate or barium nitrate in the particulate composition is not particularly limited, but is preferably 95 to 99.8% by mass, more preferably 97 to 99.5% by mass.

粒子状組成物中の疎水性シリカの量は、特に限定されないが、好ましくは0.1〜3.0質量%、より好ましくは0.3〜2.0質量%、特に好ましくは0.4〜1.8質量%である。但し、硝酸ストロンチウム、硝酸バリウム、及び疎水性シリカの合計量は100質量%を超えることはない。上記疎水性シリカの量が3.0質量%を超えると、硝酸ストロンチウム又は硝酸バリウムと均一に混合されず、その結果、分離や容器への付着、粉塵発生等の問題を生じさせるおそれがある。特にガラス原料として使用される場合には、成分が均一に混合されていないとガラス組成に影響を及ぼすおそれがある。また疎水性シリカの量が少なすぎると、疎水性シリカによる安全性の向上が期待できない場合がある。 The amount of hydrophobic silica in the particulate composition is not particularly limited, but is preferably 0.1 to 3.0% by mass, more preferably 0.3 to 2.0% by mass, and particularly preferably 0.4 to 1.8% by mass. However, the total amount of strontium nitrate, barium nitrate, and hydrophobic silica does not exceed 100% by mass. When the amount of the hydrophobic silica exceeds 3.0% by mass, it is not uniformly mixed with strontium nitrate or barium nitrate, and as a result, problems such as separation, adhesion to a container, and generation of dust may occur. In particular, when used as a glass raw material, the glass composition may be affected unless the components are uniformly mixed. In addition, if the amount of hydrophobic silica is too small, the improvement of safety by hydrophobic silica may not be expected.

本発明の粒子状組成物は、日本国の消防法の危険物第一類の燃焼試験及び落球式打撃感度試験で危険物に該当しないものである。ここで、「日本国消防法の危険物第一類の燃焼試験及び落球式打撃感度試験」とは、以下の手順で行う試験である。 The particulate composition of the present invention does not correspond to a dangerous substance in the combustion test and the falling ball hitting sensitivity test of the first dangerous substance of the Fire Service Act of Japan. Here, the “combustion test and the falling ball hitting sensitivity test for dangerous goods No. 1 of the Japanese Fire Service Act” is a test performed in the following procedure.

(燃焼試験)
燃焼試験とは試験試料の酸化力の潜在的な危険性を分類する試験である。作業手順としては、まず試験試料を粉粒状にしたものと木粉とを質量比1:1及び4:1で、両者の合計が30gとなるように混合し、円錐状の堆積をつくる。この堆積の基部に1000℃に加熱したニクロム線を接触させ、この試験混合試料が燃焼するか確認するとともに、燃焼する場合にはその燃焼時間を測定する。
(Combustion test)
A combustion test is a test that classifies the potential danger of the oxidizing power of a test sample. As a work procedure, first, a powdered test sample and wood flour are mixed at a mass ratio of 1: 1 and 4: 1 so that the total of both becomes 30 g, thereby forming a conical deposit. A nichrome wire heated to 1000 ° C. is brought into contact with the base of the deposit to check whether or not the test mixed sample burns, and when burning, the burning time is measured.

このようにして測定した各混合試料の燃焼時間のうち時間の短い方の燃焼時間を、標準混合試料[標準物質(過塩素酸カリウム又は臭素酸カリウム)と木粉とを質量比1:1で混合したもの]の燃焼時間と比較する。試験混合試料の燃焼時間が、臭素酸カリウムの標準混合試料の燃焼時間以下のものを「ランク1」、臭素酸カリウムの標準混合試料の燃焼時間を超え過塩素酸カリウムの標準混合試料の燃焼時間以下のものを「ランク2」、過塩素酸カリウムの標準混合試料の燃焼時間を超えるものを「ランク3」とする。 The burning time of the shorter burning time of each of the mixed samples measured in this way is determined as the standard mixing sample [standard substance (potassium perchlorate or potassium bromate) and wood flour at a mass ratio of 1: 1. Compared with the combustion time of [mixed]. The burn time of the test mixed sample is less than the burn time of the standard mixed sample of potassium bromate “rank 1”, the burn time of the standard mixed sample of potassium perchlorate exceeds the burn time of the standard mixed sample of potassium bromate “Rank 2” is the following sample, and “Rank 3” is the sample that exceeds the combustion time of the standard mixed sample of potassium perchlorate.

(落球式打撃感度試験)
落球式打撃感度試験とは、試験試料の衝撃に対する敏感性を分類する試験である。作業手順としては、まず標準物質(塩素酸カリウム又は硝酸カリウム)と赤リンとの混合物に対し、それぞれ鋼球をある高さから落下させ、爆・不爆に応じて落下高さを上下させて50%爆点(50%の確率で爆発する高さ)を求める。試験試料と赤リンとの混合物に対して、それぞれの50%爆点から鋼球を落下させる同様の試験を10又は40回行い爆・不爆を評価する。本願明細書においては、標準物質として塩素酸カリウムを用いる場合を「塩素酸カリウム法」、硝酸カリウムを用いる場合を「硝酸カリウム法」と呼ぶ。
(Falling ball hitting sensitivity test)
The falling ball hitting sensitivity test is a test for classifying the sensitivity of a test sample to impact. The work procedure is as follows. First, a steel ball is dropped from a certain height against a mixture of standard material (potassium chlorate or potassium nitrate) and red phosphorus, and the drop height is raised or lowered according to the explosion or non-explosion. Find the% explosion point (height to explode with 50% probability). A similar test of dropping a steel ball from each 50% explosion point is performed 10 or 40 times on the mixture of the test sample and red phosphorus, and the explosion / non-explosion is evaluated. In the present specification, the case where potassium chlorate is used as a standard substance is called “potassium chlorate method”, and the case where potassium nitrate is used is called “potassium nitrate method”.

塩素酸カリウム法により50%爆点から鋼球を落下させる10回の試験を行い、10回全てで「爆」となった場合は「ランク1」とする。10回の試験で「爆」「不爆」の両方が生じた場合はさらに30回の試験を行い、合計40回の試験で「爆」が20回以上の場合は「ランク1」、「爆」が20回未満の場合は「ランク2」とする。最初の10回の試験で全て「不爆」となった場合は、さらに硝酸カリウム法での試験を行い評価する。 Ten tests are conducted to drop a steel ball from the 50% explosion point by the potassium chlorate method. If both “explosion” and “non-explosion” occur in 10 tests, perform 30 more tests. If “explosion” exceeds 20 times in a total of 40 tests, “rank 1”, “explosion” "Is less than 20 times," Rank 2 ". If all of the first 10 tests result in “non-explosive”, further test by the potassium nitrate method is performed.

硝酸カリウム法により50%爆点から鋼球を落下させる10回の試験で全て「爆」となった場合は「ランク2」、全て「不爆」となった場合は「ランク3」とする。10回の試験で「爆」「不爆」の両方が生じた場合はさらに30回の試験を行い、合計40回の試験で「爆」が20回以上の場合は「ランク2」、「爆」が20回未満の場合は「ランク3」とする。 If all of the 10 tests in which the steel ball is dropped from the 50% explosion point by the potassium nitrate method is “explosion”, it is “rank 2”, and if all are “non-explosion”, it is “rank 3”. If both “explosion” and “non-explosion” occur in 10 tests, 30 more tests are performed. If “explosion” exceeds 20 in a total of 40 tests, “rank 2”, “explosion” "Is less than 20 times," Rank 3 ".

(危険性評価)
燃焼試験及び落球式打撃感度試験の結果より、試験試料の危険物としての種別を決定する。燃焼試験又は落球式打撃感度試験で「ランク1」となったものは第1種酸化性固体、燃焼試験及び落球式打撃感度試験でともに「ランク2」となったものは第2種酸化性固体、燃焼試験又は落球式打撃感度試験の一方が「ランク2」で、かつもう一方が「ランク3」となったものは第3種酸化性固体、燃焼試験及び落球式打撃感度試験でともに「ランク3」となったものは非危険物と分類される。
(Danger assessment)
The classification of the test sample as a dangerous substance is determined based on the results of the combustion test and the falling ball hitting sensitivity test. Those that were ranked “Rank 1” in the combustion test or the falling ball impact sensitivity test were the first type oxidizable solid, and those that were both “rank 2” in the combustion test and the falling ball impact sensitivity test were the second type oxidizable solid. One of the combustion test or the falling ball hit sensitivity test is “rank 2” and the other is “rank 3”. Those marked “3” are classified as non-dangerous goods.

危険物としての種別が大きくなるほど消防法で定められる指定数量は大きくなり、同一敷地・同一設備で製造、運搬、貯蔵可能な数量も多くなる。危険物に該当しない場合には製造、運搬、貯蔵における消防法上の規制を受けない。 The larger the classification as dangerous goods, the larger the specified quantity stipulated by the Fire Service Act, and the more quantity that can be manufactured, transported and stored in the same site and equipment. If it does not fall under dangerous goods, it is not subject to regulations under the Fire Service Act in manufacturing, transportation or storage.

本発明の粒子状組成物は、国連勧告・試験マニュアル「Recommendation on the TRANSPORT OF DANGEROUS GOODS −Manual of Tests and Criteria− Third revised edition」に準拠した、国連勧告によるCLASS 5−Division 5.1(酸化性固体)の燃焼試験で危険物に該当しないものであることが好ましい。ここで、「国連勧告によるCLASS 5−Division 5.1(酸化性固体)の燃焼試験」とは、以下の通りである。 The particulate composition of the present invention is a CLASS oxidization test according to the UN recommendation 5 according to the UN recommendation and test manual “Recommendation on the TRANSPORT OF DANGEROUS GOODS-Manual of Tests and Criteria-Third revised edition”. It is preferable that it is not a hazardous material in a solid) combustion test. Here, the “combustion test of CLASS 5-Division 5.1 (oxidizing solid) according to the UN recommendation” is as follows.

(燃焼試験)
燃焼試験とは試験試料の酸化力の潜在的な危険性を分類する試験である。作業手順としては、試験試料を粉粒状にしたものとセルロースとを重量比1:1及び4:1で、両者の合計が30gとなるように混合し、円錐状の堆積をつくる。この堆積と断熱板の間に挟みこんだ点火装置で、完全に着火するか、あるいは全く着火しないことが明らかになるまで最大3分間印加させる。各試験混合試料が燃焼するか確認するとともに、燃焼する場合には各試験混合試料の平均燃焼時間を、標準物質(臭素酸カリウム)とセルロースとを重量比3:2、2:3、3:7で混合した標準混合試料の燃焼時間と比較する。
(Combustion test)
A combustion test is a test that classifies the potential danger of the oxidizing power of a test sample. As a work procedure, a test sample in powder form and cellulose are mixed at a weight ratio of 1: 1 and 4: 1 so that the total of both is 30 g, thereby forming a conical deposit. With an igniter sandwiched between the deposit and the heat insulating plate, it is applied for a maximum of 3 minutes until it becomes clear that it is completely ignited or not ignited at all. It is confirmed whether each test mixed sample burns, and when burning, the average burning time of each test mixed sample is set to a weight ratio of standard material (potassium bromate) to cellulose: 3: 2, 2: 3, 3: Compare with the burning time of the standard mixed sample mixed in 7.

(危険性評価)
各試験混合試料の平均燃焼時間が、臭素酸カリウムとセルロースとの混合重量比3:2の標準混合試料の燃焼時間以下のものは「容器等級1」、混合重量比3:2の標準混合試料の燃焼時間を超え、混合重量比2:3の標準混合試料の燃焼時間以下のものは「容器等級2」、混合重量比2:3の標準混合試料の燃焼時間を超え、混合重量比3:7の標準混合試料の燃焼時間以下のものは「容器等級3」と分類される。臭素酸カリウムとセルロースとの混合重量比3:7の標準混合試料の燃焼時間を超えるものはCLASS 5−Division 5.1(酸化性固体)に該当しない。
(Danger assessment)
The average burning time of each test mixed sample is less than the burning time of the standard mixed sample with a mixing weight ratio of 3: 3 of potassium bromate and cellulose, and the standard mixed sample with a mixing weight ratio of 3: 2 The combustion time of the standard mixed sample with a mixing weight ratio of 2: 3 is less than the burning time of the standard mixed sample with a mixing weight ratio of 2: 3, and the burning time of the standard mixed sample with a mixing weight ratio of 2: 3 is exceeded and the mixing weight ratio of Those with a burning time of 7 standard mixed samples or less are classified as “container grade 3”. What exceeds the burning time of a standard mixed sample having a mixing weight ratio of 3: 7 of potassium bromate and cellulose does not correspond to CLASS 5-Division 5.1 (oxidizing solid).

(ガラス)
本発明は上記粒子状組成物を原料として含有するガラスにも関する。ガラスの製造において、その調合原料の選定は重要であり、硝酸ストロンチウム及び/又は硝酸バリウムを用いる場合は原料の溶解性が良く、清澄性の点でも優れている。本発明のガラスを製造する方法としては、特に限定されないが、公知の方法(例えば溶融法)を用いる事ができる。すなわち、本発明のガラスが酸化物基準で表わされた所定の組成となるように珪砂、アルミナ、ホウ酸、及び本願発明の硝酸ストロンチウム及び/又は硝酸バリウム、並びに他の必要な成分を含有するガラス原料を、石英または白金等からなる坩堝へ充填する。その後、電気炉、ガス炉等の溶融炉で加熱溶融する。溶融後、必要に応じ清澄、撹拌を行いガラスを均質化させ、その後成形型に溶融ガラスを流しこみ急冷することによって成形、徐冷炉において徐冷する。
(Glass)
The present invention also relates to a glass containing the above particulate composition as a raw material. In the production of glass, selection of the raw material for preparation is important, and when strontium nitrate and / or barium nitrate is used, the raw material has good solubility and is excellent in terms of clarity. Although it does not specifically limit as a method to manufacture the glass of this invention, A well-known method (for example, melting method) can be used. That is, the glass of the present invention contains silica sand, alumina, boric acid, strontium nitrate and / or barium nitrate of the present invention, and other necessary components so as to have a predetermined composition expressed on an oxide basis. A glass material is filled into a crucible made of quartz or platinum. Thereafter, it is heated and melted in a melting furnace such as an electric furnace or a gas furnace. After melting, clarification and stirring are performed as necessary to homogenize the glass, and then the molten glass is poured into a mold and rapidly cooled to form and slowly cool in a slow cooling furnace.

徐冷炉から取り出したガラスは必要に応じて切断、研削、研磨を行うことで、各種基板材、構造部材、透過光学系材料を得ることができる。 The glass taken out from the slow cooling furnace can be cut, ground, and polished as necessary to obtain various substrate materials, structural members, and transmission optical system materials.

(保存方法)
本発明は、硝酸ストロンチウム及び/又は硝酸バリウムの保存方法にも関する。
硝酸ストロンチウムや硝酸バリウムは、可燃物を酸化して、激しい燃焼や爆発を起こすおそれがある。
硝酸ストロンチウムや硝酸バリウムを保存する際に、疎水性シリカを混合することにより、上記の激しい燃焼や爆発の危険性を低減することができ、安全性の高い硝酸ストロンチウム及び/又は硝酸バリウムとして取り扱うことができる。
本発明の保存方法により保存された硝酸ストロンチウムや硝酸バリウムは、ガラス原料として好適に使用することができる。
(Preservation method)
The present invention also relates to a method for preserving strontium nitrate and / or barium nitrate.
Strontium nitrate and barium nitrate can oxidize combustibles and cause severe combustion and explosion.
When storing strontium nitrate and barium nitrate, mixing with hydrophobic silica can reduce the risk of the above intense combustion and explosion, and handle it as highly safe strontium nitrate and / or barium nitrate Can do.
Strontium nitrate and barium nitrate stored by the storage method of the present invention can be suitably used as a glass raw material.

以下に本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。なお下記実施例・比較例において、特に断りの無い限り、「%」は「質量%」を意味する。 The present invention will be described below in more detail based on examples, but the present invention is not limited only to these examples. In Examples and Comparative Examples below, “%” means “% by mass” unless otherwise specified.

(燃焼試験)
日本国の消防法又は国連勧告・試験マニュアルに準拠した上述の方法に従い、燃焼試験を行った。
(Combustion test)
A combustion test was conducted according to the above-mentioned method in accordance with the Japanese Fire Service Act or the UN Recommendation / Test Manual.

(落球式打撃感度試験)
日本国の消防法に準拠した上述の方法に従い、落球式打撃感度試験を行った。
(Falling ball hitting sensitivity test)
In accordance with the method described above in accordance with the Japanese Fire Service Law, a falling ball hitting sensitivity test was conducted.

(硝酸ストロンチウムを含有する粒子の評価)
(実施例1)
硝酸ストロンチウム500kgに対し、疎水性シリカとしての添加量が粒子総質量の0.5質量%となるようAEROSIL R972(表面処理疎水性シリカ、疎水化度35%、比表面積110m/g、エボニックインダストリーズ社製)を2.51kg加え、リボンブレンダーで混合することにより粒子状組成物1を作製した。得られた粒子状組成物1について、危険物第一類の燃焼試験と落球式打撃感度試験を行った。消防法上の危険物としての確認試験の結果、および国連勧告の危険物としての確認試験の結果を表1に示す。
(Evaluation of particles containing strontium nitrate)
Example 1
AEROSIL R972 (surface-treated hydrophobic silica, hydrophobization degree 35%, specific surface area 110 m 2 / g, Evonik Industries, so that the amount added as hydrophobic silica is 0.5% by mass with respect to 500 kg of strontium nitrate. A particulate composition 1 was prepared by adding 2.51 kg of the same) and mixing with a ribbon blender. About the obtained particulate composition 1, the burning test of the dangerous goods 1st class and the falling ball type impact sensitivity test were done. Table 1 shows the results of confirmation tests as dangerous goods under the Fire Service Act and the results of confirmation tests as dangerous goods as recommended by the United Nations.

(実施例2)
AEROSIL R972の添加量を粒子総質量の0.75質量%に変更した以外は実施例1と同様にして、粒子状組成物2を作製した。得られた粒子状組成物2について、危険物第一類の燃焼試験と落球式打撃感度試験を行った。消防法上の危険物としての確認試験の結果を表1に示す。
(Example 2)
A particulate composition 2 was produced in the same manner as in Example 1 except that the amount of AEROSIL R972 added was changed to 0.75% by mass of the total mass of the particles. The obtained particulate composition 2 was subjected to a dangerous substance first class combustion test and a falling ball hitting sensitivity test. Table 1 shows the results of confirmation tests as dangerous goods under the Fire Service Law.

(実施例3)
AEROSIL R972の添加量を粒子総質量の1.0質量%に変更した以外は実施例1と同様にして、粒子状組成物3を作製した。得られた粒子状組成物3について、危険物第一類の燃焼試験と落球式打撃感度試験を行った。消防法上の危険物としての確認試験の結果を表1に示す。
(Example 3)
A particulate composition 3 was produced in the same manner as in Example 1 except that the amount of AEROSIL R972 added was changed to 1.0% by mass of the total particle mass. The obtained particulate composition 3 was subjected to a first dangerous substance combustion test and a falling ball hitting sensitivity test. Table 1 shows the results of confirmation tests as dangerous goods under the Fire Service Law.

(実施例4)
疎水性シリカの種類をニップシールSS−30P(表面処理疎水性シリカ、疎水化度60%、比表面積125m/g、東ソー・シリカ株式会社製)に変更した以外は実施例1と同様にして、粒子状組成物4を作製した。得られた粒子状組成物4について、危険物第一類の燃焼試験を行った。その結果を表1に示す。
Example 4
Except for changing the type of hydrophobic silica to nip seal SS-30P (surface-treated hydrophobic silica, hydrophobization degree 60%, specific surface area 125 m 2 / g, manufactured by Tosoh Silica Co., Ltd.), the same as in Example 1, A particulate composition 4 was produced. The obtained particulate composition 4 was subjected to a first hazardous material combustion test. The results are shown in Table 1.

(実施例5)
疎水性シリカの種類をニップシールSS−50F(表面処理疎水性シリカ、疎水化度60%、比表面積82m/g、東ソー・シリカ株式会社製)に変更した以外は実施例1と同様にして、粒子状組成物5を作製した。得られた粒子状組成物5について、危険物第一類の燃焼試験を行った。その結果を表1に示す。
(Example 5)
Except for changing the type of hydrophobic silica to nip seal SS-50F (surface-treated hydrophobic silica, hydrophobization degree 60%, specific surface area 82 m 2 / g, manufactured by Tosoh Silica Co., Ltd.), the same as in Example 1, A particulate composition 5 was produced. The obtained particulate composition 5 was subjected to a first hazardous material combustion test. The results are shown in Table 1.

(実施例6)
疎水性シリカの種類をニップシールSS−30Pに、その添加量を粒子総質量の1.0質量%に変更した以外は実施例1と同様にして、粒子状組成物6を作製した。得られた粒子状組成物6について、危険物第一類の燃焼試験を行った。その結果を表1に示す。
(Example 6)
A particulate composition 6 was prepared in the same manner as in Example 1 except that the type of hydrophobic silica was changed to Nipseal SS-30P and the addition amount was changed to 1.0% by mass of the total particle mass. The obtained particulate composition 6 was subjected to a combustion test of the first hazardous material. The results are shown in Table 1.

(実施例7)
疎水性シリカの種類をニップシールSS−50Fに、その添加量を粒子総質量の1.0質量%に変更した以外は実施例1と同様にして、粒子状組成物7を作製した。得られた粒子状組成物7について、危険物第一類の燃焼試験を行った。その結果を表1に示す。
(Example 7)
A particulate composition 7 was produced in the same manner as in Example 1 except that the type of hydrophobic silica was changed to Nipseal SS-50F and the addition amount was changed to 1.0 mass% of the total particle mass. The obtained particulate composition 7 was subjected to a first hazardous material combustion test. The results are shown in Table 1.

(比較例1)
シリカを用いない以外は実施例1と同様にして、比較粒子状組成物1を作製した。得られた比較粒子状組成物1について、危険物第一類の燃焼試験と落球式打撃感度試験を行った。消防法上の危険物としての確認試験の結果を表2に示す。
(Comparative Example 1)
Comparative particulate composition 1 was produced in the same manner as in Example 1 except that silica was not used. The obtained comparative particulate composition 1 was subjected to a first dangerous substance combustion test and a falling ball hitting sensitivity test. Table 2 shows the results of confirmation tests as dangerous goods under the Fire Service Law.

(比較例2)
シリカの種類をAEROSIL 200(親水性シリカ、疎水化度0%、比表面積200m/g、エボニックインダストリーズ社製)に変更した以外は実施例1と同様にして、比較粒子状組成物2を作製した。得られた比較粒子状組成物2について、危険物第一類の燃焼試験と落球式打撃感度試験を行った。消防法上の危険物としての確認試験の結果を表2に示す。
(Comparative Example 2)
Comparative particulate composition 2 was prepared in the same manner as in Example 1 except that the type of silica was changed to AEROSIL 200 (hydrophilic silica, hydrophobization degree 0%, specific surface area 200 m 2 / g, manufactured by Evonik Industries). did. The obtained comparative particulate composition 2 was subjected to a dangerous substance first class combustion test and a falling ball hitting sensitivity test. Table 2 shows the results of confirmation tests as dangerous goods under the Fire Service Law.

(比較例3)
シリカの種類をニップシールLP(親水性シリカ、疎水化度0%、比表面積210m/g、東ソー・シリカ株式会社製)に変更した以外は実施例1と同様にして、比較粒子状組成物3を作製した。得られた比較粒子状組成物3について、危険物第一類の燃焼試験と落球式打撃感度試験を行った。消防法上の危険物としての確認試験の結果を表2に示す。
(Comparative Example 3)
Comparative particulate composition 3 in the same manner as in Example 1 except that the type of silica was changed to nip seal LP (hydrophilic silica, hydrophobization degree 0%, specific surface area 210 m 2 / g, manufactured by Tosoh Silica Co., Ltd.) Was made. The obtained comparative particulate composition 3 was subjected to a first dangerous substance combustion test and a falling ball hitting sensitivity test. Table 2 shows the results of confirmation tests as dangerous goods under the Fire Service Law.

(比較例4)
シリカの種類をニップシールLPに、その添加量を粒子総質量の3.0質量%に変更した以外は実施例1と同様にして、比較粒子状組成物4を作製した。得られた比較粒子状組成物4について、危険物第一類の燃焼試験と落球式打撃感度試験を行った。消防法上の危険物としての確認試験の結果を表2に示す。
(Comparative Example 4)
Comparative particulate composition 4 was prepared in the same manner as in Example 1 except that the type of silica was changed to nip seal LP and the addition amount was changed to 3.0% by mass of the total particle mass. The obtained comparative particulate composition 4 was subjected to a first dangerous substance combustion test and a falling ball hitting sensitivity test. Table 2 shows the results of confirmation tests as dangerous goods under the Fire Service Law.

(比較例5)
シリカの種類をMK Silica FINES(硝子原料高純度シリカ、疎水化度0%、平均粒径40μm、共立マテリアル株式会社製)に、その添加量を粒子総質量の30質量%に変更した以外は実施例1と同様にして、比較粒子状組成物5を作製した。得られた比較粒子状組成物5について、危険物第一類の燃焼試験と落球式打撃感度試験を行った。消防法上の危険物としての確認試験の結果を表2に示す。
(Comparative Example 5)
Implemented except that the type of silica was changed to MK Silica FINES (glass raw material high-purity silica, hydrophobization degree 0%, average particle size 40 μm, manufactured by Kyoritsu Materials Co., Ltd.), and the addition amount was changed to 30% by mass of the total particle mass Comparative particulate composition 5 was produced in the same manner as in Example 1. The obtained comparative particulate composition 5 was subjected to a dangerous substance first class combustion test and a falling ball hitting sensitivity test. Table 2 shows the results of confirmation tests as dangerous goods under the Fire Service Law.

(比較例6)
シリカの種類をMK Silica 20/250(硝子原料高純度シリカ、疎水化度0%、平均粒径120μm、共立マテリアル株式会社製)に、その添加量を粒子総質量の30質量%に変更した以外は実施例1と同様にして比較粒子状組成物6を作製した。得られた比較粒子状組成物6について、危険物第一類の燃焼試験と落球式打撃感度試験を行った。消防法上の危険物としての確認試験の結果を表2に示す。
(Comparative Example 6)
The type of silica was changed to MK Silica 20/250 (glass raw material high purity silica, hydrophobization degree 0%, average particle size 120 μm, manufactured by Kyoritsu Material Co., Ltd.), and the addition amount was changed to 30% by mass of the total particle mass Produced a comparative particulate composition 6 in the same manner as in Example 1. The obtained comparative particulate composition 6 was subjected to a first dangerous substance combustion test and a falling ball hitting sensitivity test. Table 2 shows the results of confirmation tests as dangerous goods under the Fire Service Law.

Figure 2014055098
Figure 2014055098

Figure 2014055098
Figure 2014055098

表1の結果より、硝酸ストロンチウムと疎水性シリカとを含有する本発明の粒子状組成物(実施例1〜7)は、消防法上の第一類酸化性固体の確認試験における燃焼試験においてはいずれもランク3の条件を満たし、酸化力の潜在的な危険性が低いことが分かった。また、実施例1においては、国連勧告のCLASS 5−Division 5.1(酸化性固体)の確認試験においても同様に酸化力の潜在的な危険性が低いことが分かった。さらに消防法上の第一類酸化性固体の確認試験に基づく落球式打撃感度試験によっても、衝撃に対する敏感性が低いことが分かった。一方、表2の結果より、疎水性シリカを含有しない粒子組成物(比較例1〜6)では危険性を排除する効果は認められなかった。このように、上記結果から、本発明の粒子状組成物は、危険性が排除され、より安全性が高い点で優れていることが明らかとなった。 From the results of Table 1, the particulate compositions of the present invention (Examples 1 to 7) containing strontium nitrate and hydrophobic silica were used in the combustion test in the confirmation test of the first kind of oxidizable solid under the Fire Service Act. All met the requirements of rank 3 and were found to have a low potential risk of oxidizing power. In Example 1, it was also found that the potential risk of oxidizing power was low in the confirmation test of CLASS 5-Division 5.1 (oxidizing solid) recommended by the United Nations. Furthermore, the ball-ball hitting sensitivity test based on the confirmation test for the first kind of oxidizable solids under the Fire Service Law revealed that the sensitivity to impact was low. On the other hand, from the results shown in Table 2, the particle composition containing no hydrophobic silica (Comparative Examples 1 to 6) did not show the effect of eliminating the danger. Thus, from the above results, it became clear that the particulate composition of the present invention is superior in terms of eliminating safety and higher safety.

(硝酸バリウムを含有する粒子の評価)
(実施例8)
硝酸バリウム500kgに対し、疎水性シリカとしての添加量が粒子総質量の0.75質量%となるようAEROSIL R972を3.78kg加え、リボンブレンダーで混合することにより粒子状組成物8を作製した。得られた粒子状組成物8について、危険物第一類の落球式打撃感度試験を行った。その結果を表3に示す。
(Evaluation of particles containing barium nitrate)
(Example 8)
A particulate composition 8 was prepared by adding 3.78 kg of AEROSIL R972 to 500 kg of barium nitrate so that the amount added as hydrophobic silica was 0.75 mass% of the total particle mass, and mixing with a ribbon blender. The obtained particulate composition 8 was subjected to a falling ball-type impact sensitivity test of the first dangerous material. The results are shown in Table 3.

(実施例9)
AEROSIL R972の添加量を粒子総質量の1.0質量%に変更した以外は実施例8と同様にして、粒子状組成物9を作製した。得られた粒子状組成物9について、危険物第一類の燃焼試験を行った。その結果を表3に示す。
Example 9
A particulate composition 9 was produced in the same manner as in Example 8, except that the amount of AEROSIL R972 added was changed to 1.0% by mass of the total particle mass. The obtained particulate composition 9 was subjected to a first hazardous material combustion test. The results are shown in Table 3.

(実施例10)
AEROSIL R972の添加量を粒子総質量の1.5質量%に変更した以外は実施例8と同様にして、粒子状組成物10を作製した。得られた粒子状組成物10について、危険物第一類の燃焼試験と落球式打撃感度試験を行った。消防法上の危険物としての確認試験の結果を表3に示す。
(Example 10)
A particulate composition 10 was produced in the same manner as in Example 8, except that the amount of AEROSIL R972 added was changed to 1.5% by mass of the total particle mass. The obtained particulate composition 10 was subjected to a first dangerous substance combustion test and a falling ball hitting sensitivity test. Table 3 shows the results of confirmation tests as dangerous goods under the Fire Service Law.

(比較例7)
シリカを用いない以外は実施例8と同様にして、比較粒子状組成物7を作製した。得られた比較粒子状組成物7について、危険物第一類の燃焼試験と落球式打撃感度試験を行った。消防法上の危険物としての確認試験の結果を表3に示す。
(Comparative Example 7)
Comparative particulate composition 7 was produced in the same manner as in Example 8 except that silica was not used. The obtained comparative particulate composition 7 was subjected to a first dangerous substance combustion test and a falling ball hitting sensitivity test. Table 3 shows the results of confirmation tests as dangerous goods under the Fire Service Law.

(比較例8)
シリカの種類をAEROSIL 200に、その添加量を粒子総質量の30質量%に変更した以外は実施例8と同様にして、比較粒子状組成物8を作製した。得られた粒子状組成物8について、危険物第一類の燃焼試験と落球式打撃感度試験を行った。消防法上の危険物としての確認試験の結果を表3に示す。
(Comparative Example 8)
Comparative particulate composition 8 was produced in the same manner as in Example 8 except that the type of silica was changed to AEROSIL 200 and the addition amount was changed to 30% by mass of the total particle mass. The obtained particulate composition 8 was subjected to a first dangerous substance combustion test and a falling ball hitting sensitivity test. Table 3 shows the results of confirmation tests as dangerous goods under the Fire Service Law.

Figure 2014055098
Figure 2014055098

硝酸バリウムは通常、危険物第一類の第2種酸化性固体として分類される。表3の結果より、硝酸バリウムと疎水性シリカとを含有する本発明の粒子状組成物(実施例8〜10)は、消防法上の第一類酸化性固体としての酸化力の潜在的な危険性と、衝撃に対する敏感性を抑制し、危険性を低減した、より安全性の高い材料へ改質された点で優れている。疎水性シリカを含有しない粒子組成物(比較例7・8)では危険性を低減する効果は認められなかった。 Barium nitrate is usually classified as a second class oxidizable solid of the first class of dangerous goods. From the results of Table 3, the particulate compositions of the present invention (Examples 8 to 10) containing barium nitrate and hydrophobic silica have potential for oxidizing power as the first kind of oxidizable solid under the Fire Service Act. It is superior in that it has been improved to a safer material that has reduced danger and reduced sensitivity to shock and sensitivity. In the particle composition containing no hydrophobic silica (Comparative Examples 7 and 8), the effect of reducing the risk was not recognized.

硝酸ストロンチウム及び/又は硝酸バリウムと、疎水性シリカとを含有する、危険性を低減した粒子状組成物を原料として含有するガラスは、消防法上の規制を受けない製造工程で生産することが可能である。また硝酸ストロンチウム及び/又は硝酸バリウムと、疎水性シリカとを含有する粒子状組成物を原料として含有するガラスは、従来の硝酸ストロンチウム及び/又は硝酸バリウムを原料として含有するガラスと比較して、品質的に差異のないガラスを得ることができる。 Glass containing strontium nitrate and / or barium nitrate and hydrophobic silica as a raw material and a particulate composition with reduced risk can be produced in a manufacturing process that is not subject to fire regulations. It is. Further, the glass containing a particulate composition containing strontium nitrate and / or barium nitrate and hydrophobic silica as a raw material has a higher quality than a glass containing conventional strontium nitrate and / or barium nitrate as a raw material. Glass with no difference can be obtained.

(ガラスの作製例)
表4の調合原料(組成の数値は重量部)を良く混合し、白金坩堝に入れ白金の蓋を被せる。坩堝を電気炉に入れ、1500〜1680℃程度に加熱、溶融、撹拌し、均質化、清澄を行った後、鋳型に流し込み、ガラスが固化後、ガラスの徐冷点近くに加熱しておいた電気炉に移し、室温まで徐冷することによりガラス組成物を作製することができる。
(Example of glass production)
The prepared raw materials in Table 4 (composition values are parts by weight) are mixed well, placed in a platinum crucible and covered with a platinum lid. The crucible was put in an electric furnace, heated to about 1500 to 1680 ° C., melted, stirred, homogenized and clarified, poured into a mold, and after the glass solidified, it was heated near the annealing point of the glass. The glass composition can be produced by transferring to an electric furnace and gradually cooling to room temperature.

Figure 2014055098
Figure 2014055098

Claims (9)

硝酸ストロンチウム及び/又は硝酸バリウムと、
疎水性シリカと
を含有し、
日本国消防法の危険物第一類の燃焼試験及び落球式打撃感度試験で危険物に該当しない
粒子状組成物。
Strontium nitrate and / or barium nitrate;
Containing hydrophobic silica,
Particulate composition that does not fall under the category of dangerous goods in the fire test of the first class of dangerous goods under the Japanese Fire Service Act and the falling ball hitting sensitivity test.
国連勧告・試験マニュアル「Recommendation on the TRANSPORT OF DANGEROUS GOODS −Manual of Tests and Criteria− Third revised edition」に準拠した、国連勧告によるCLASS 5−Division 5.1(酸化性固体)の燃焼試験で危険物に該当しない請求項1記載の粒子状組成物。 PASS oxidization test according to UN recommendation according to UN recommendation and test manual “Recommendation on the TRANSPORT OF DANGEROUS GOODS-Manual of Tests and Criteria- Third revised edition”. The particulate composition according to claim 1, which is not applicable. 前記硝酸ストロンチウム又は硝酸バリウムを95.0〜99.8質量%含有する
請求項1又は2記載の粒子状組成物。
The particulate composition according to claim 1 or 2, comprising 95.0 to 99.8 mass% of the strontium nitrate or barium nitrate.
前記粒子状組成物は、ガラス原料として使用される
請求項1〜3のいずれか一項記載の粒子状組成物。
The particulate composition according to any one of claims 1 to 3, wherein the particulate composition is used as a glass raw material.
前記疎水性シリカを0.1〜3.0質量%含有する(但し、粒子状組成物の全質量は100質量%である)
請求項1〜4のいずれか一項記載の粒子状組成物。
0.1 to 3.0% by mass of the hydrophobic silica (however, the total mass of the particulate composition is 100% by mass)
The particulate composition according to any one of claims 1 to 4.
前記疎水性シリカは、そのBET比表面積が50〜400m/gである
請求項1〜5のいずれか一項記載の粒子状組成物。
The particulate composition according to any one of claims 1 to 5, wherein the hydrophobic silica has a BET specific surface area of 50 to 400 m 2 / g.
硝酸ストロンチウム及び/又は硝酸バリウムと、疎水性シリカとを混合する工程を含む請求項1〜6のいずれか一項記載の粒子状組成物の製造方法。 The manufacturing method of the particulate composition as described in any one of Claims 1-6 including the process of mixing strontium nitrate and / or barium nitrate, and hydrophobic silica. 請求項1〜6のいずれか一項記載の粒子状組成物から作製されるガラス。 Glass produced from the particulate composition according to any one of claims 1 to 6. 疎水性シリカを混合する
硝酸ストロンチウム及び/又は硝酸バリウムの保存方法。
A method for preserving strontium nitrate and / or barium nitrate mixed with hydrophobic silica.
JP2013165370A 2012-08-16 2013-08-08 Particulate composition containing nitrate and method for producing the same Active JP5660170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013165370A JP5660170B2 (en) 2012-08-16 2013-08-08 Particulate composition containing nitrate and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012180618 2012-08-16
JP2012180618 2012-08-16
JP2013165370A JP5660170B2 (en) 2012-08-16 2013-08-08 Particulate composition containing nitrate and method for producing the same

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2014087667A Division JP5692832B2 (en) 2012-08-16 2014-04-21 Method for preserving strontium nitrate and / or barium nitrate
JP2014087666A Division JP5692831B2 (en) 2012-08-16 2014-04-21 Glass manufacturing method

Publications (2)

Publication Number Publication Date
JP2014055098A true JP2014055098A (en) 2014-03-27
JP5660170B2 JP5660170B2 (en) 2015-01-28

Family

ID=50101299

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2013165370A Active JP5660170B2 (en) 2012-08-16 2013-08-08 Particulate composition containing nitrate and method for producing the same
JP2014087666A Active JP5692831B2 (en) 2012-08-16 2014-04-21 Glass manufacturing method
JP2014087667A Active JP5692832B2 (en) 2012-08-16 2014-04-21 Method for preserving strontium nitrate and / or barium nitrate

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2014087666A Active JP5692831B2 (en) 2012-08-16 2014-04-21 Glass manufacturing method
JP2014087667A Active JP5692832B2 (en) 2012-08-16 2014-04-21 Method for preserving strontium nitrate and / or barium nitrate

Country Status (5)

Country Link
JP (3) JP5660170B2 (en)
KR (2) KR101822704B1 (en)
CN (1) CN104053629B (en)
TW (1) TWI594949B (en)
WO (1) WO2014027617A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170013242A (en) 2014-05-30 2017-02-06 니폰 가가쿠 고교 가부시키가이샤 Powdered composition containing barium compound

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105001677B (en) * 2015-08-13 2019-03-19 重庆元和精细化工股份有限公司 A kind of strontium nitrate method of modifying
CN108603566B (en) * 2016-03-28 2019-09-27 阪东化学株式会社 Friction belt for power transmission
DE112017001585T5 (en) * 2016-03-28 2018-12-13 Bando Chemical Industries, Ltd. Friction transmission belt
CN112408400B (en) * 2020-11-04 2022-07-26 福建中闽大地纳米新材料有限公司 Water-saving and energy-saving precipitation production method of silicon dioxide
CN112961719B (en) * 2021-02-02 2022-03-25 蒲红 Metal welding and cutting gas and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5525166A (en) * 1993-02-05 1996-06-11 Standard Fireworks Ltd. Pryotechnic composition and device containing such composition
JP2002362921A (en) * 2001-06-06 2002-12-18 Sakai Chem Ind Co Ltd Method for preventing caking of strontium compound or barium compound and composition therefor
JP2004516223A (en) * 2000-12-22 2004-06-03 ニグ ヘミー ゲゼルシャフト ミット ベシュレンクテル ハフツング Propellant for gas generant
JP2008013434A (en) * 2007-09-03 2008-01-24 Nippon Electric Glass Co Ltd Nonalkali glass excellent in crack resistance
JP2014009122A (en) * 2012-06-29 2014-01-20 Nippon Electric Glass Co Ltd Glass material and process of producing glass

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8720996D0 (en) * 1987-09-07 1987-10-14 Glaverbel Fire hazard control
CN1544271A (en) * 2003-11-13 2004-11-10 西安北方庆华电器(集团)有限责任公 Gas generating powder used for gas generator of automobile safety airbag and preparation method thereof
CN101544467B (en) * 2009-04-28 2012-03-21 陕西彩虹电子玻璃有限公司 Crystal liquid substrate glass material and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5525166A (en) * 1993-02-05 1996-06-11 Standard Fireworks Ltd. Pryotechnic composition and device containing such composition
JP2004516223A (en) * 2000-12-22 2004-06-03 ニグ ヘミー ゲゼルシャフト ミット ベシュレンクテル ハフツング Propellant for gas generant
JP2002362921A (en) * 2001-06-06 2002-12-18 Sakai Chem Ind Co Ltd Method for preventing caking of strontium compound or barium compound and composition therefor
JP2008013434A (en) * 2007-09-03 2008-01-24 Nippon Electric Glass Co Ltd Nonalkali glass excellent in crack resistance
JP2014009122A (en) * 2012-06-29 2014-01-20 Nippon Electric Glass Co Ltd Glass material and process of producing glass

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170013242A (en) 2014-05-30 2017-02-06 니폰 가가쿠 고교 가부시키가이샤 Powdered composition containing barium compound

Also Published As

Publication number Publication date
KR101522151B1 (en) 2015-05-20
JP2014185076A (en) 2014-10-02
TWI594949B (en) 2017-08-11
KR20140129253A (en) 2014-11-06
TW201414676A (en) 2014-04-16
JP5660170B2 (en) 2015-01-28
JP5692831B2 (en) 2015-04-01
JP5692832B2 (en) 2015-04-01
CN104053629B (en) 2016-05-25
CN104053629A (en) 2014-09-17
KR20140076645A (en) 2014-06-20
KR101822704B1 (en) 2018-01-26
WO2014027617A1 (en) 2014-02-20
JP2014177397A (en) 2014-09-25

Similar Documents

Publication Publication Date Title
JP5692832B2 (en) Method for preserving strontium nitrate and / or barium nitrate
ES2863499T3 (en) Compositions in the form of particles for the formation of geopolymers, their use and procedures to form geopolymers with these
Focke et al. Review of gasless pyrotechnic time delays
RU1838273C (en) Molding composition
ES2355901T3 (en) PYROGENIC SILICONE AND SILICONE SEALING AGENT THAT CONTAINS THE SAME.
CN106046797A (en) Ceramic silicon rubber and preparation method thereof
Comet et al. Sulfates‐based nanothermites: an expanding horizon for metastable interstitial composites
US2399687A (en) Preparation of finely-divided silicon dioxide
JP2012149269A (en) Water-based coating material composition and heat-shielding coating material
US20080185556A1 (en) Oxygen generating composition
JPH0116794B2 (en)
ES2450765B1 (en) INERTIZATION OF STEEL POWDER THROUGH ITS STABILIZING INTEGRATION IN A CONSTRUCTION MATERIAL
JP5719824B2 (en) Method for producing metal oxide particles and method for producing resin composition for electronic device
Marmo et al. The effect of mixing combustible and inert dust on the minimum ignition energy
JP5265434B2 (en) Silica-containing organic composition and method for producing the same
RU2556563C1 (en) Binding agent
JP5426463B2 (en) Filler
RU2235064C2 (en) Method for preparing hydrophobic dispersed material
GB2101996A (en) Method for desensitizing particle-formed solid explosive substances and non-explosive chemical compositions formed thereby
RU2185864C1 (en) Fire-extinguishing composition and method of preparation thereof
Martin et al. Nanothermite with meringue-like morphology: from loose powder to ultra-porous objects
Groff et al. Increasing Sulfur Solubility for More Efficient Nuclear Waste Vitrification
WO2023155025A1 (en) Ceramic foam and method for manufacturing said ceramic foam from mining tailings
US979476A (en) Explosive.
ES2717438T3 (en) Flame-retardant and fire-resistant polymeric compositions based on lime

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140124

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20140128

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141117

R150 Certificate of patent or registration of utility model

Ref document number: 5660170

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250