JP2014053185A5 - - Google Patents

Download PDF

Info

Publication number
JP2014053185A5
JP2014053185A5 JP2012197414A JP2012197414A JP2014053185A5 JP 2014053185 A5 JP2014053185 A5 JP 2014053185A5 JP 2012197414 A JP2012197414 A JP 2012197414A JP 2012197414 A JP2012197414 A JP 2012197414A JP 2014053185 A5 JP2014053185 A5 JP 2014053185A5
Authority
JP
Japan
Prior art keywords
amorphous
ultrafine
metal
wound
jet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012197414A
Other languages
Japanese (ja)
Other versions
JP2014053185A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2012197414A priority Critical patent/JP2014053185A/en
Priority claimed from JP2012197414A external-priority patent/JP2014053185A/en
Publication of JP2014053185A publication Critical patent/JP2014053185A/en
Publication of JP2014053185A5 publication Critical patent/JP2014053185A5/ja
Pending legal-status Critical Current

Links

Claims (25)

単一種類又は複数種類の金属粉、又は合金粉、又はそれらの混合粉からなる、原料金属粉を搬送ガスを用いて所要の燃焼ガスと混合し、燃焼ガスの燃焼発熱を利用して該原料金属粉を加熱・溶解すると同時に、該溶解原料金属をノズルを通して前記燃焼ガス及び前記搬送ガスと混合させつつ不活性ガスの噴射雰囲気中に噴出せしめ、該不活性ガスの噴射雰囲気中において、直径2〜100μm程度の極微細溶解液滴の噴流を創製し、該極微細溶解液滴の噴流の周囲から斜交しつつ吹き込む冷媒噴流にて当該極微細溶解液滴中の各液滴を、所望の冷却速度で急冷して該原料金属極微細溶解液滴の全て、又は必要な一部をアモルファス化させるとともに、該原料金属極微細溶解液滴の全て、又はその一部を、噴射流動中に該原料金属微細アモルファス粒噴流へと転化せしめ、該原料金属微細アモルファス粒噴流、又は、該原料金属微細アモルファス粒噴流と該原料金属極微細溶解液滴噴流との混合噴流を、予め所要温度に加熱済みの基材上に吹き付け、該混合噴流中に含まれる、前記原料金属極微細アモルファス粒、又は、該原料金属極微細アモルファス粒と前記原料金属極微細溶解液滴との混合体を、前記基材上に衝突かつ堆積せしめるとともに、その基材上に衝突かつ堆積した前記極微細アモルファス粒、又は、該極微細アモルファス粒と前記極微細溶解液滴を連結せしめて得られた前記極微細アモルファス粒のみからなる純アモルファス板状連結体、又は、前記極微細アモルファス粒もしくは前記極微細溶解液滴が凝固した極微細アモルファス粒及び前記極微細溶解液滴が凝固して生じる極微細結晶粒からなる準アモルファス板状連結体であって、当該原料金属の純アモルファス板状連結体が前記基材に複合された純アモルファス複合体、もしくは、当該原料金属のアモルファス部位と結晶化部位が所望割合で混合された準アモルファス板状連結体が前記基材に複合された準アモルファス複合体を得、前記純アモルファス複合体より純アモルファス板状連結体を剥離させて純アモルファス薄板、又は、前記準アモルファス複合体より準アモルファス板状連結体を剥離させて準アモルファス薄板よりなるアモルファス薄板を得る超急冷遷移制御噴射法により製造された所望板厚のアモルファス薄板をレーザーによる溶断加工、もしくは金型による剪断加工等により、所望の外輪郭形状に外形創形されかつ所望の内輪郭形状に内形創形された前記各所望内外輪郭形状のアモルファス創形薄板が所望枚数積層され、前記積層されたアモルファス創形薄板が溶接により相互に固定されていることを特徴とする燃料電池用セパレータ。   A raw material metal powder composed of a single type or a plurality of types of metal powders, alloy powders, or a mixed powder thereof is mixed with a required combustion gas using a carrier gas, and the raw material is generated using the combustion heat of combustion gas At the same time that the metal powder is heated and melted, the melted raw metal is mixed with the combustion gas and the carrier gas through a nozzle and jetted into an inert gas jetting atmosphere. In the inert gas jetting atmosphere, the diameter 2 Create a jet of ultrafine dissolved droplets of about ~ 100 μm, and make each droplet in the ultrafine dissolved droplets as desired by a refrigerant jet blown obliquely from the periphery of the jet of ultrafine dissolved droplets The raw metal ultrafine dissolution droplets are amorphized by rapidly cooling at a cooling rate, and all or a part of the raw metal ultrafine dissolution droplets are injected into the jet flow. Raw metal fine amorph Substrate that has been preheated to a required temperature, the raw material metal fine amorphous particle jet, or a mixed jet of the raw metal fine amorphous particle jet and the raw metal ultrafine dissolved droplet jet The raw material metal ultrafine amorphous particles, or a mixture of the raw material metal ultrafine amorphous particles and the raw material metal ultrafine dissolved droplets, sprayed onto the base material, collides with the base material. And the ultrafine amorphous particles collided and deposited on the base material, or the ultrafine amorphous particles obtained by connecting the ultrafine amorphous particles and the ultrafine dissolved droplets. Amorphous plate-like connection body, or the ultrafine amorphous particles or the ultrafine amorphous particles solidified by the ultrafine dissolution droplets and the ultrafine dissolution droplets solidified. A quasi-amorphous plate-like linking body composed of ultrafine crystal grains, which is a pure amorphous composite in which a pure amorphous plate-like linking body of the raw material metal is combined with the base material, or an amorphous portion and a crystal of the raw material metal To obtain a quasi-amorphous composite in which a quasi-amorphous plate-like joined body mixed with a desired ratio is combined with the base material, and to remove the pure amorphous plate-like joined body from the pure amorphous composite, Alternatively, an amorphous thin plate having a desired plate thickness manufactured by a super-quenching transition control injection method for obtaining an amorphous thin plate made of a quasi-amorphous thin plate by peeling a quasi-amorphous plate-like connector from the quasi-amorphous composite, or fusing by laser, or The outer shape is formed into the desired outer contour shape by shearing with a mold, etc., and the desired inner contour shape is obtained. Fuel cell separator, characterized in that the amorphous Sokatachi sheet of the respective desired inner and outer contour which is shaped Sokatachi desired number are stacked, the stacked amorphous Sokatachi thin plate are fixed to each other by welding. 単一種類又は複数種類の金属粉、又は合金粉、又はそれらの混合粉からなる、原料金属粉を搬送ガスを用いて所要の燃焼ガスと混合し、燃焼ガスの燃焼発熱を利用して該原料金属粉を加熱・溶解すると同時に、該溶解原料金属をノズルを通して前記燃焼ガス及び前記搬送ガスと混合させつつ不活性ガスの噴射雰囲気中に噴出せしめ、該不活性ガスの噴射雰囲気中において、直径2〜100μm程度の極微細溶解液滴の噴流を創製し、該極微細溶解液滴の噴流の周囲から斜交しつつ吹き込む冷媒噴流にて当該極微細溶解液滴中の各液滴を、所望の冷却速度で急冷して該原料金属極微細溶解液滴の全て、又は必要な一部をアモルファス化させるとともに、該原料金属極微細溶解液滴の全て、又はその一部を、噴射流動中に該原料金属微細アモルファス粒噴流へと転化せしめ、該原料金属微細アモルファス粒噴流、又は、該原料金属微細アモルファス粒噴流と該原料金属極微細溶解液滴噴流との混合噴流を、予め所要温度に加熱済みの耐食金属製薄板基材上に吹き付け、該混合噴流中に含まれる、前記原料金属極微細アモルファス粒、又は、該原料金属極微細アモルファス粒と前記原料金属極微細溶解液滴との混合体を、前記耐食金属製薄板基材上に衝突かつ堆積せしめるとともに、その耐食金属製薄板基材上に衝突かつ堆積した前記極微細アモルファス粒、又は、該極微細アモルファス粒と前記極微細溶解液滴を連結せしめて得られた前記極微細アモルファス粒のみからなる純アモルファス板状連結体、又は、前記極微細アモルファス粒もしくは前記極微細溶解液滴が凝固した極微細アモルファス粒及び前記極微細溶解液滴が凝固して生じる極微細結晶粒からなる準アモルファス板状連結体であって、当該原料金属の純アモルファス板状連結体が前記耐食金属製薄板基材に複合された純アモルファス複合体である純アモルファス複合薄板、もしくは、当該原料金属のアモルファス部位と結晶化部位が所望割合で混合された準アモルファス板状連結体が前記基材に複合された準アモルファス複合体である準アモルファス複合薄板を得、前記純アモルファス複合薄板、又は、前記準アモルファス複合薄板よりなるアモルファス複合薄板を得る超急冷遷移制御噴射法により製造された所望板厚のアモルファス複合薄板をレーザーによる溶断加工、もしくは金型による剪断加工等により、所望の外輪郭形状に外形創形されかつ所望の内輪郭形状に内形創形された前記各所望内外輪郭形状の純アモルファス創形複合薄板、又は、準アモルファス創形複合薄板よりなるアモルファス創形薄板が所望枚数積層され、前記積層されたアモルファス創形薄板が溶接により相互に固定されていることを特徴とする燃料電池用セパレータ。   A raw material metal powder composed of a single type or a plurality of types of metal powders, alloy powders, or a mixed powder thereof is mixed with a required combustion gas using a carrier gas, and the raw material is generated using the combustion heat of combustion gas At the same time that the metal powder is heated and melted, the melted raw metal is mixed with the combustion gas and the carrier gas through a nozzle and jetted into an inert gas jetting atmosphere. In the inert gas jetting atmosphere, the diameter 2 Create a jet of ultrafine dissolved droplets of about ~ 100 μm, and make each droplet in the ultrafine dissolved droplets as desired by a refrigerant jet blown obliquely from the periphery of the jet of ultrafine dissolved droplets The raw metal ultrafine dissolution droplets are amorphized by rapidly cooling at a cooling rate, and all or a part of the raw metal ultrafine dissolution droplets are injected into the jet flow. Raw metal fine amorph Corrosion-resistant metal that has been previously converted to a required temperature by converting the raw material metal fine amorphous particle jet, or a mixed jet of the raw metal fine amorphous particle jet and the raw metal ultrafine dissolved droplet jet, The raw metal ultrafine amorphous particles, or the mixture of the raw metal ultrafine amorphous particles and the raw metal ultrafine dissolved droplets, sprayed on the thin plate base material and contained in the mixed jet, Colliding and depositing on a thin metal plate substrate, and connecting the ultrafine amorphous particles collided and deposited on the corrosion-resistant metal thin plate substrate, or the ultrafine amorphous particles and the ultrafine dissolution droplets The obtained pure amorphous plate-like connector composed only of the ultrafine amorphous particles, or the ultrafine amorphous material obtained by solidifying the ultrafine amorphous particles or the ultrafine dissolution droplets. A quasi-amorphous plate-like linking body comprising ultrafine crystal grains produced by solidification of Rufus grains and the ultra-fine dissolution droplets, wherein the pure amorphous plate-like linking body of the raw metal is combined with the corrosion-resistant metal thin plate base material A pure amorphous composite thin plate, which is a pure amorphous composite, or a quasi-amorphous composite in which a quasi-amorphous plate-like connected body in which amorphous parts and crystallization parts of the raw metal are mixed in a desired ratio is composited with the base material Laser cutting of an amorphous composite thin plate with a desired thickness produced by a super-quenching transition controlled injection method to obtain a quasi-amorphous composite thin plate and obtain an amorphous composite thin plate composed of the pure amorphous composite thin plate or the quasi-amorphous composite thin plate The outer ring is formed into a desired outer contour shape by machining or shearing with a mold, and the desired inner ring A desired number of amorphous wound composite thin plates each having a desired inner / outer contour shape, or a semi-amorphous wound composite thin plate formed into an internal shape in the shape, are laminated, and the laminated amorphous creative thin plate Are fixed to each other by welding, a fuel cell separator. 単一種類又は複数種類の金属粉、又は合金粉、又はそれらの混合粉からなる、原料金属粉を搬送ガスを用いて所要の燃焼ガスと混合し、燃焼ガスの燃焼発熱を利用して該原料金属粉を加熱・溶解すると同時に、該溶解原料金属をノズルを通して前記燃焼ガス及び前記搬送ガスと混合させつつ不活性ガスの噴射雰囲気中に噴出せしめ、該不活性ガスの噴射雰囲気中において、直径2〜100μm程度の極微細溶解液滴の噴流を創製し、該極微細溶解液滴の噴流の周囲から斜交しつつ吹き込む冷媒噴流にて当該極微細溶解液滴中の各液滴を、所望の冷却速度で急冷して該原料金属極微細溶解液滴の全て、又は必要な一部をアモルファス化させるとともに、該原料金属極微細溶解液滴の全て、又はその一部を、噴射流動中に該原料金属微細アモルファス粒噴流へと転化せしめ、該原料金属微細アモルファス粒噴流、又は、該原料金属微細アモルファス粒噴流と該原料金属極微細溶解液滴噴流との混合噴流を、耐食金属製薄板素材をレーザーによる溶断加工、もしくは金型による剪断加工等により、所望の外輪郭形状に外形創形されかつ所望の内輪郭形状に内形創形され、さらに予め所要温度に加熱された所望内外輪郭形状の創形薄板素材製基材上に吹き付け、該混合噴流中に含まれる、前記原料金属極微細アモルファス粒、又は、該原料金属極微細アモルファス粒と前記原料金属極微細溶解液滴との混合体を、前記加熱済み創形薄板素材製基材上に衝突かつ堆積せしめるとともに、その加熱済み創形薄板素材上に衝突かつ堆積した前記極微細アモルファス粒、又は、該極微細アモルファス粒と前記極微細溶解液滴を連結せしめて得られた前記極微細アモルファス粒のみからなる純アモルファス板状連結体、又は、前記極微細アモルファス粒もしくは前記極微細溶解液滴が凝固した極微細アモルファス粒及び前記極微細溶解液滴が凝固して生じる極微細結晶粒からなる準アモルファス板状連結体であって、当該原料金属の純アモルファス板状連結体が前記創形薄板素材に複合された純アモルファス複合体である純アモルファス創形複合薄板、もしくは、当該原料金属のアモルファス部位と結晶化部位が所望割合で混合された準アモルファス板状連結体が前記創形薄板素材に複合された準アモルファス複合体である準アモルファス創形複合薄板を得、前記純アモルファス創形複合薄板、又は、前記準アモルファス創形複合薄板よりなるアモルファス創形複合薄板を得る超急冷遷移制御噴射法により製造された所望板厚、所望内外輪郭形状の純アモルファス創形複合薄板、又は、準アモルファス創形複合薄板よりなるアモルファス創形薄板が所望枚数積層され、前記積層されたアモルファス創形薄板が溶接により相互に固定されていることを特徴とする燃料電池用セパレータ。   A raw material metal powder composed of a single type or a plurality of types of metal powders, alloy powders, or a mixed powder thereof is mixed with a required combustion gas using a carrier gas, and the raw material is generated using the combustion heat of combustion gas At the same time that the metal powder is heated and melted, the melted raw metal is mixed with the combustion gas and the carrier gas through a nozzle and jetted into an inert gas jetting atmosphere. In the inert gas jetting atmosphere, the diameter 2 Create a jet of ultrafine dissolved droplets of about ~ 100 μm, and make each droplet in the ultrafine dissolved droplets as desired by a refrigerant jet blown obliquely from the periphery of the jet of ultrafine dissolved droplets The raw metal ultrafine dissolution droplets are amorphized by rapidly cooling at a cooling rate, and all or a part of the raw metal ultrafine dissolution droplets are injected into the jet flow. Raw metal fine amorph The raw material metal fine amorphous particle jet, or the mixed jet of the raw metal fine amorphous particle jet and the ultrafine melted droplet jet of the raw material metal, and the corrosion-resistant metal sheet material are fused by laser. Formed thin plate of desired inner / outer contour shape that has been formed into a desired outer contour shape by machining or shearing with a mold, and has been formed into a desired inner contour shape, and further heated to a required temperature in advance. The raw material metal ultrafine amorphous particles or a mixture of the raw material metal ultrafine amorphous particles and the raw material metal ultrafine dissolved droplets, sprayed on the raw material substrate and contained in the mixed jet, is heated. The ultrafine amorphous particles that collide and deposit on the substrate of the finished wound sheet material and collide and deposit on the heated wound sheet material, or the ultrafine amorphous particle And a pure amorphous plate-like linking body made only of the ultrafine amorphous particles obtained by connecting the ultrafine dissolution droplets, or the ultrafine amorphous particles or the ultrafine amorphous particles solidified by the ultrafine dissolution droplets And a quasi-amorphous plate-like linking body composed of ultrafine crystal grains formed by solidification of the ultra-fine dissolution droplets, wherein the pure amorphous plate-like linking body of the raw metal is combined with the wound thin plate material Pure amorphous wound composite thin plate that is a composite, or a quasi-amorphous composite in which a quasi-amorphous plate-like composite in which the amorphous part and crystallization part of the raw metal are mixed in a desired ratio is composited The quasi-amorphous wound composite thin plate is obtained, and consists of the pure amorphous wound composite thin plate or the quasi-amorphous wound composite thin plate Desired plate thickness, pure amorphous composite thin plate with desired inner / outer contour shape, or semi-amorphous composite thin plate manufactured by the ultra-quenching transition controlled injection method to obtain morphous composite thin plate A separator for a fuel cell, wherein the laminated amorphous wound thin plates are fixed to each other by welding. 請求項1乃至3に記載の超急冷遷移制御噴射法により製造された所望板厚、所望形状のアモルファス創形薄板が所望枚数積層され、前記積層されたアモルファス創形薄板が溶接により相互に固定されている燃料電池用セパレータであって、前記所望形状に創形された各アモルファス創形薄板は、
・ 所望の外輪郭形状が外形創形されかつ第1貫通孔及び第2貫通孔並びに両貫通孔に連通する所望内輪郭形状の第1貫通流路溝が内形創形された創形基板と、・ 前記第1貫通孔、第2貫通孔、第1貫通流路溝と同一形状に2つの貫通孔及び両貫通孔に連通する所望内輪郭形状の第2貫通流路溝を各々内形創形し、さらに前記第1第貫通孔及び第2貫通孔並びに第2貫通流路溝の外輪郭形状に対し所望幅の縁部を有する外輪郭形状が外形創形された創形スリット板が所望枚数積層された創形スリット板群と、
・ 前記創形スリット板の第2貫通流路溝を覆い得る外輪郭形状が外形創形されかつ前記第1貫通孔及び第2貫通孔と同一形状に2つの貫通孔が内形創形された創形カバー板が、
各々積層され、
前記創形基板、創形スリット板群及び創形カバー板が相互に溶接により固定されている、
ことを特徴とする燃料電池用セパレータ。
A desired number of amorphous shaped thin sheets having a desired thickness and a desired shape manufactured by the ultra-quenching transition controlled injection method according to claim 1 are laminated, and the laminated amorphous shaped thin sheets are fixed to each other by welding. Each of the fuel cell separators, each of the amorphous wound thin plates created in the desired shape,
A wound-shaped substrate in which a desired outer contour shape is externally formed and a first through-channel groove having a desired inner contour shape communicating with the first through-hole, the second through-hole, and both through-holes is formed internally; The two through holes in the same shape as the first through hole, the second through hole, and the first through channel groove, and the second through channel groove having a desired inner contour shape communicating with both the through holes are formed in the inner shape respectively. And a wound slit plate in which an outer contour shape having an edge with a desired width is formed with respect to the outer contour shape of the first through hole, the second through hole, and the second through channel groove. A group of wound slit plates stacked in number,
An outer contour shape capable of covering the second through-flow channel groove of the wound slit plate is formed in an outer shape, and two through holes are formed in the same shape as the first through hole and the second through hole. The wound cover plate
Each stacked,
The shaping substrate, the shaping slit plate group and the shaping cover plate are fixed to each other by welding,
A fuel cell separator.
請求項1乃至3に記載の超急冷遷移制御噴射法により製造された所望板厚、所望形状のアモルファス創形薄板が所望枚数積層され、前記積層されたアモルファス創形薄板が溶接により相互に固定されている燃料電池用セパレータであって、前記所望形状に創形された各アモルファス創形薄板は、
・ 所望の外輪郭形状が外形創形されかつ第1貫通孔及び第2貫通孔並びに両貫通孔に連通する所望内輪郭形状の第1貫通流路溝、さらに前記両貫通孔及び後述する第2創形スリット板の内輪郭形状と干渉しない位置に第3貫通孔並びに第4貫通孔が内形創形された第1の創形基板と、
・ 前記第1貫通孔、第2貫通孔、第1貫通流路溝と同一形状に2つの貫通孔及び両貫通孔に連通する所望内輪郭形状の第2貫通流路溝並びに前記第3貫通孔及び第4貫通孔と同一形状に2つの貫通孔が各々内形創形され、さらに前記内形創形された各貫通孔及び第2貫通溝の外輪郭形状に対し所望幅の縁部を有する外輪郭形状が外形創形された第1創形スリット板が所望枚数積層された第1創形スリット板群と、
・ 前記第1貫通孔、第2貫通孔、第3貫通孔及び第4貫通孔と同一形状に4つの貫通孔が内形創形され、かつ前記第1創形スリット板の外輪郭形状と同一形状に外輪郭形状が外形創形された創形隔離壁板と、
・ 前記第1貫通孔、第2貫通孔、第3貫通孔及び第4貫通孔と同一形状に4つの貫通孔並びに前記第3貫通孔と第4貫通孔に連通する所望内輪郭形状の第3貫通流路溝が内形創形され、さらに前記内形創形された4つの貫通孔及び第3貫通流路溝の外輪郭形状に対し所望幅の縁部を有する外輪郭形状が外形創形された第2創形スリット板が所望枚数積層された第2創形スリット板群と、
・ 前記第1貫通孔、第2貫通孔、第3貫通孔及び第4貫通孔と同一形状に4つの貫通孔と、さらに前記第3貫通孔及び第4貫通孔に連通しかつ前記第3貫通流路溝と同一形状の第4貫通流路溝が内形創形され、所望の外輪郭形状が外形創形された創形基板、
が各々積層され、
前記創形基板、創形スリット板群及び創形隔壁板が相互に溶接により固定されていることを特徴とする燃料電池用セパレータ。
A desired number of amorphous shaped thin sheets having a desired thickness and a desired shape manufactured by the ultra-quenching transition controlled injection method according to claim 1 are laminated, and the laminated amorphous shaped thin sheets are fixed to each other by welding. Each of the fuel cell separators, each of the amorphous wound thin plates created in the desired shape,
A desired outer contour shape is externally formed, and the first through hole, the second through hole, the first through flow channel groove having a desired inner contour shape communicating with both the through holes, the two through holes, and a second through-hole described later. A first shaping substrate in which the third through hole and the fourth through hole are formed in a position that does not interfere with the inner contour shape of the shaping slit plate;
The two through holes in the same shape as the first through hole, the second through hole, and the first through channel groove, the second through channel groove having a desired inner contour shape communicating with both the through holes, and the third through hole And two through-holes are formed in the same shape as the fourth through-hole, and each has an edge with a desired width with respect to each of the inner-shaped through-hole and the outer contour shape of the second through-groove. A first wound slit plate group in which a desired number of first wound slit plates having an outer contour shape are wound;
-Four through holes are formed in the same shape as the first through hole, the second through hole, the third through hole, and the fourth through hole, and the same as the outer contour shape of the first wound slit plate A wound-separating wall plate whose outer contour shape is externally wound in shape,
The fourth through hole having the same shape as the first through hole, the second through hole, the third through hole, and the fourth through hole, and the third having a desired inner contour shape that communicates with the third through hole and the fourth through hole. A through-flow channel is formed in an inner shape, and an outer contour shape having an edge portion having a desired width with respect to the outer contour shape of the four through-holes and the third through-flow channel formed in the inner shape is an outer shape. A second wound slit plate group in which a desired number of the second wound slit plates are laminated;
Four through-holes having the same shape as the first through-hole, second through-hole, third through-hole and fourth through-hole, and further in communication with the third through-hole and the fourth through-hole and the third through-hole. A shaped substrate in which a fourth through-flow channel having the same shape as the flow channel is formed in an inner shape, and a desired outer contour shape is formed in an outer shape,
Are stacked,
A fuel cell separator characterized in that the shaped substrate, the shaped slit plate group, and the shaped partition plate are fixed to each other by welding.
前記貫通流路溝の形成形状は、一条もしくは多数条からなるスネイクベンド状あることを特徴とする請求項4又は5に記載の燃料電池用セパレータ。   6. The fuel cell separator according to claim 4, wherein a shape of the through-flow passage groove is a snake bend formed of one or many lines. 前記第2貫通流路溝と第3貫通流路溝の主たる形成方向が略平行であることを特徴とする請求項4又は5に記載の燃料電池用セパレータ。   6. The fuel cell separator according to claim 4, wherein main formation directions of the second through flow channel groove and the third through flow channel groove are substantially parallel to each other. 前記第2貫通流路溝と第3貫通流路溝の主たる形成方向が傾斜していることを特徴とする請求項4又は5に記載の燃料電池用セパレータ。   6. The fuel cell separator according to claim 4, wherein main formation directions of the second through-flow channel groove and the third through-flow channel groove are inclined. 前記アモルファス創形薄板材が、前記純アモルファス複合体もしくは前記純アモルファス創形複合体、又は、前記準アモルファス複合体もしくは前記準アモルファス創形複合体が、超急冷遷移制御噴射直後で、少なくとも結晶化温度以下まで冷却された時点で圧延されてなるアモルファス創形薄板材であることを特徴とする請求項1〜5のいずれか1項に記載の燃料電池用セパレータ。   The amorphous wound thin plate material is at least crystallized immediately after the ultra-quenching transition control injection, the pure amorphous composite or the pure amorphous wound composite, or the quasi-amorphous composite or the quasi-amorphous wound composite. The separator for a fuel cell according to any one of claims 1 to 5, wherein the separator is a thin amorphous sheet material that is rolled when cooled to a temperature or lower. 前記アモルファス創形薄板材が、前記純アモルファス複合体もしくは前記純アモルファス創形複合体、又は、前記準アモルファス複合体もしくは前記準アモルファス創形複合体が、超急冷遷移制御噴射直後で、塑性流動性温度域まで冷却された時点で圧延されてなるアモルファス創形薄板材であることを特徴とする請求項1〜5のいずれか1項に記載の燃料電池用セパレータ。   The amorphous wound thin plate material is plastic fluidity immediately after the ultra-quenching transition control injection, the pure amorphous composite or the pure amorphous wound composite, or the quasi-amorphous composite or the quasi-amorphous wound composite. The separator for a fuel cell according to any one of claims 1 to 5, wherein the separator is a thin amorphous sheet material that is rolled when cooled to a temperature range. 前記溶接がスポット溶接、ビーム溶接、もしくはシーム溶接の単独もしくはこれらを組み合わせた複合溶接であることを特徴とする請求項1〜5のいずれか1項に記載の燃料電池用セパレータ。   6. The fuel cell separator according to claim 1, wherein the welding is spot welding, beam welding, or seam welding alone or in combination. 前記ビーム溶接が、レーザービーム溶接もしくは電子ビーム溶接であることを特徴とする請求項11に記載の燃料電池用セパレータ。   12. The fuel cell separator according to claim 11, wherein the beam welding is laser beam welding or electron beam welding. 前記スポット溶接が、レーザービーム溶接であることを特徴とする請求項11に記載の燃料電池用セパレータ。   12. The fuel cell separator according to claim 11, wherein the spot welding is laser beam welding. 前記アモルファス創形薄板の板厚が60〜600μmであることを特徴とする請求項1〜5のいずれか1項に記載の燃料電池用セパレータ。   The separator for a fuel cell according to any one of claims 1 to 5, wherein a thickness of the amorphous wound thin plate is 60 to 600 µm. 前記アモルファス創形薄板の板厚が好ましくは150〜550μmであることを特徴とする請求項1〜5のいずれか1項に記載の燃料電池用セパレータ。   6. The fuel cell separator according to claim 1, wherein a thickness of the amorphous wound thin plate is preferably 150 to 550 μm. 前記アモルファス創形薄板の板厚がさらに好ましくは200〜500μmであることを特徴とする請求項1〜5のいずれか1項に記載の燃料電池用セパレータ。   6. The fuel cell separator according to claim 1, wherein a thickness of the amorphous wound thin plate is more preferably 200 to 500 μm. 前記創形スリット板群が、1枚もしくは複数枚の耐食金属製薄板材よりなる創形スリット板と該創形スリット板の片面もしくは両面にアモルファス材製創形スリット板が積層されて構成されていることを特徴とする請求項4又は5に記載の燃料電池用セパレータ。   The wound-shaped slit plate group is formed by laminating a wound-shaped slit plate made of one or a plurality of corrosion-resistant metal thin plates and an amorphous-made wound slit plate on one or both sides of the wound-shaped slit plate. The fuel cell separator according to claim 4, wherein the fuel cell separator is a fuel cell separator. 前記創形スリット板群が1枚もしくは複数枚の耐食金属製薄板材よりなり、さらに前記アモルファス材製創形基板、アモルファス材製創形カバー板もしくはアモルファス材製創形隔壁板が積層されていることを特徴とする請求項17に記載の燃料電池用セパレータ。   The wound-shaped slit plate group is made of one or a plurality of corrosion-resistant metal thin plates, and the amorphous material-made substrate, the amorphous material-made cover plate, or the amorphous material-made partition wall plate is laminated. The fuel cell separator according to claim 17. 前記各所望形状のアモルファス創形薄板は、耐食金属製薄板に超急冷遷移制御噴射法により遷移制御噴射された所望厚さのアモルファス層で被覆されていることを特徴とする請求項2〜3のいずれか1項に記載の燃料電池用セパレータ。   The amorphous wound thin plate of each desired shape is covered with an amorphous layer having a desired thickness that is subjected to transition control injection by a super-quenching transition control injection method on a corrosion-resistant metal thin plate. The fuel cell separator according to any one of the preceding claims. 前記耐食金属製薄板の厚さが100〜2000μmであることを特徴とする請求項19に記載の燃料電池用セパレータ。   20. The fuel cell separator according to claim 19, wherein the thickness of the corrosion-resistant metal thin plate is 100 to 2000 [mu] m. 燃料電池用セパレータの製造方法であって、単一種類又は複数種類の金属粉、又は合金粉、又はそれらの混合粉からなる、原料金属粉を搬送ガスを用いて所要の燃焼ガスと混合し、燃焼ガスの燃焼発熱を利用して該原料金属粉を加熱・溶解すると同時に、該溶解原料金属をノズルを通して前記燃焼ガス及び前記搬送ガスと混合させつつ不活性ガスの噴射雰囲気中に噴出せしめ、該不活性ガスの噴射雰囲気中において、直径2〜100μm程度の極微細溶解液滴の噴流を創製し、該極微細溶解液滴の噴流の周囲から斜交しつつ吹き込む冷媒噴流にて当該極微細溶解液滴中の各液滴を、所望の冷却速度で急冷して該原料金属極微細溶解液滴の全て、又は必要な一部をアモルファス化させるとともに、該原料金属極微細溶解液滴の全て、又はその一部を、噴射流動中に該原料金属微細アモルファス粒噴流へと転化せしめ、該原料金属微細アモルファス粒噴流、又は、該原料金属微細アモルファス粒噴流と該原料金属極微細溶解液滴噴流との混合噴流を、予め所要温度に加熱済みの基材上に吹き付け、該混合噴流中に含まれる、前記原料金属極微細アモルファス粒、又は、該原料金属極微細アモルファス粒と前記原料金属極微細溶解液滴との混合体を、前記基材上に衝突かつ堆積せしめるとともに、その基材上に衝突かつ堆積した前記極微細アモルファス粒又は該極微細アモルファス粒と前記極微細溶解液滴を連結せしめて得られた前記極微細アモルファス粒のみからなる純アモルファス板状連結体、又は、前記極微細アモルファス粒もしくは前記極微細溶解液滴が凝固した極微細アモルファス粒及び前記極微細溶解液滴が凝固して生じる極微細結晶粒からなる準アモルファス板状連結体であって、当該原料金属の純アモルファス板状連結体が前記基材に複合された純アモルファス複合体、もしくは、当該原料金属のアモルファス部位と結晶化部位とが所望割合で混合された準アモルファス板状連結体が前記基材に複合された準アモルファス複合体を得た後、前記純アモルファス複合体より純アモルファス板状連結体を剥離させて純アモルファス薄板を、又は、前記準アモルファス複合体より準アモルファス板状連結体を剥離させて準アモルファス薄板よりなるアモルファス薄板を得る超急冷遷移制御噴射法により製造された所望板厚のアモルファス薄板をレーザーによる溶断加工もしくは金型による剪断加工等により所望の外輪郭形状に外形創形しさらに所望の内輪郭形状に内形創形する創形工程、次いで前記創形工程を経た各所望内外輪郭形状のアモルファス創形薄板を所望枚数積層する積層工程、さらに前記所望枚数積層されたアモルファス創形薄板を溶接により相互に固定する工程、を経ること特徴とする燃料電池用セパレータの製造方法。   A method for producing a separator for a fuel cell, comprising a single type or a plurality of types of metal powders, alloy powders, or mixed powders thereof, and mixing raw metal powders with a required combustion gas using a carrier gas, The raw material metal powder is heated and melted using the combustion heat of the combustion gas, and at the same time, the melted raw material metal is mixed with the combustion gas and the carrier gas through a nozzle and injected into an inert gas injection atmosphere. In a jet atmosphere of inert gas, create a jet of ultra-fine dissolved droplets with a diameter of about 2 to 100 μm, and use the ultra-fine melted jet that blows obliquely from the periphery of the jet of ultra-fine dissolved droplets. Each of the droplets in the droplet is rapidly cooled at a desired cooling rate to amorphize all or a part of the raw metal ultrafine dissolution droplets, Or one of them Is converted into the raw material metal fine amorphous particle jet during the jet flow, or the raw material metal fine amorphous particle jet or the mixed jet of the raw metal fine amorphous particle jet and the raw metal ultrafine dissolved droplet jet , Sprayed onto a substrate heated to a required temperature in advance, and contained in the mixed jet, the raw metal ultrafine amorphous particles, or the raw metal ultrafine amorphous particles and the raw metal ultrafine dissolved droplets The mixture is collided and deposited on the base material, and the ultrafine amorphous particles collided and deposited on the base material or the ultrafine amorphous particles and the ultrafine dissolved droplets are connected to each other. Pure amorphous plate-like connector comprising only ultrafine amorphous particles, or ultrafine amorphous material obtained by solidifying the ultrafine amorphous particles or the ultrafine dissolved droplets A semi-amorphous plate-like linking body comprising ultrafine crystal grains produced by solidification of the slag and the ultrafine dissolution droplets, wherein the pure amorphous plate-like linking body of the raw material metal is combined with the base material. After obtaining a composite, or a quasi-amorphous composite in which a quasi-amorphous plate-like connected body in which an amorphous part and a crystallization part of the raw material metal are mixed in a desired ratio is obtained, the pure amorphous composite Ultra-rapid transition control injection method to obtain a pure amorphous thin plate by peeling a pure amorphous plate-like connected body from the body or to obtain an amorphous thin plate made of a quasi-amorphous thin plate by peeling a quasi-amorphous plate-like connected body from the quasi-amorphous composite The desired outer contour of the amorphous thin plate produced by the above method can be cut by laser cutting or shearing by a mold. Forming step, forming an inner shape into a desired inner contour shape, then laminating a desired number of amorphous forming thin plates of each desired inner and outer contour shape through the forming step, and further, the desired step A process for producing a separator for a fuel cell, comprising: a step of fixing a plurality of laminated amorphous wound thin plates to each other by welding. 燃料電池用セパレータの製造方法であって、単一種類又は複数種類の金属粉、又は合金粉、又はそれらの混合粉からなる、原料金属粉を搬送ガスを用いて所要の燃焼ガスと混合し、燃焼ガスの燃焼発熱を利用して該原料金属粉を加熱・溶解すると同時に、該溶解原料金属をノズルを通して前記燃焼ガス及び前記搬送ガスと混合させつつ不活性ガスの噴射雰囲気中に噴出せしめ、該不活性ガスの噴射雰囲気中において、直径2〜100μm程度の極微細溶解液滴の噴流を創製し、該極微細溶解液滴の噴流の周囲から斜交しつつ吹き込む冷媒噴流にて当該極微細溶解液滴中の各液滴を、所望の冷却速度で急冷して該原料金属極微細溶解液滴の全て、又は必要な一部をアモルファス化させるとともに、該原料金属極微細溶解液滴の全て、又はその一部を、噴射流動中に該原料金属微細アモルファス粒噴流へと転化せしめ、該原料金属微細アモルファス粒噴流、又は、該原料金属微細アモルファス粒噴流と該原料金属極微細溶解液滴噴流との混合噴流を、予め所要温度に加熱済みの耐食金属製薄板基材上に吹き付け、該混合噴流中に含まれる、前記原料金属極微細アモルファス粒、又は、前記原料金属極微細アモルファス粒と該原料金属極微細溶解液滴との混合体を、前記耐食金属製薄板基材上に衝突かつ堆積せしめるとともに、その耐食金属製薄板基材上に衝突かつ堆積した前記極微細アモルファス粒、又は、該極微細アモルファス粒と前記極微細溶解液滴を連結せしめて得られた前記極微細アモルファス粒のみからなる純アモルファス板状連結体、又は、前記極微細アモルファス粒もしくは前記極微細溶解液滴が凝固した極微細アモルファス粒及び前記極微細溶解液滴が凝固して生じる極微細結晶粒からなる準アモルファス板状連結体であって、当該原料金属の純アモルファス板状連結体前記基材に複合された純アモルファス複合体である純アモルファス複合薄板、もしくは、当該原料金属のアモルファス部位と結晶化部位とが所望割合で混合された準アモルファス板状連結体が前記耐食金属製薄板基材に複合された準アモルファス複合体である準アモルファス複合薄板を得た後、前記純アモルファス複合薄板、又は、前記準アモルファス複合薄板よりなるアモルファス複合薄板を得る超急冷遷移制御噴射法により製造する工程、得られた前記所望板厚のアモルファス複合薄板をレーザーによる溶断加工もしくは金型による剪断加工等により所望の外輪郭形状に外形創形しさらに所望の内輪郭形状に内形創形する創形工程、次いで前記創形工程を経た各所望内外輪郭形状のアモルファス創形薄板を所望枚数積層する積層工程、さらに前記所望枚数積層されたアモルファス創形薄板を溶接により相互に固定する工程、を経ること特徴とする燃料電池用セパレータの製造方法。   A method for producing a separator for a fuel cell, comprising a single type or a plurality of types of metal powders, alloy powders, or mixed powders thereof, and mixing raw metal powders with a required combustion gas using a carrier gas, The raw material metal powder is heated and melted using the combustion heat of the combustion gas, and at the same time, the melted raw material metal is mixed with the combustion gas and the carrier gas through a nozzle and injected into an inert gas injection atmosphere. In a jet atmosphere of inert gas, create a jet of ultra-fine dissolved droplets with a diameter of about 2 to 100 μm, and use the ultra-fine melted jet that blows obliquely from the periphery of the jet of ultra-fine dissolved droplets. Each of the droplets in the droplet is rapidly cooled at a desired cooling rate to amorphize all or a part of the raw metal ultrafine dissolution droplets, Or one of them Is converted into the raw material metal fine amorphous particle jet during the jet flow, or the raw material metal fine amorphous particle jet or the mixed jet of the raw metal fine amorphous particle jet and the raw metal ultrafine dissolved droplet jet The raw material metal ultrafine amorphous particles or the raw material metal ultrafine amorphous particles and the raw metal ultrafine dissolution contained in the mixed jet are sprayed on a corrosion-resistant metal thin plate substrate that has been heated to a required temperature in advance. The mixture with droplets collides and deposits on the corrosion-resistant metal thin plate substrate, and collides and deposits on the corrosion-resistant metal thin plate substrate, or the ultrafine amorphous particles and A pure amorphous plate-like connected body composed only of the ultrafine amorphous particles obtained by connecting the ultrafine dissolution droplets, or the ultrafine amorphous particles Is a quasi-amorphous plate-like connecting body composed of ultrafine amorphous particles solidified by the ultrafine dissolution droplets and ultrafine crystal grains generated by solidification of the ultrafine dissolution droplets, and a pure amorphous plate shape of the raw metal A pure amorphous composite thin plate, which is a pure amorphous composite composited with the base material, or a quasi-amorphous plate-like connected body in which an amorphous part and a crystallization part of the raw material metal are mixed in a desired ratio is the corrosion-resistant metal. After obtaining a quasi-amorphous composite thin plate that is a quasi-amorphous composite compounded with a thin plate base material, the ultra-acute transition control injection method is used to obtain the pure amorphous composite thin plate or an amorphous composite thin plate made of the quasi-amorphous composite thin plate. The manufacturing process, the obtained amorphous composite thin plate of the desired thickness is fusing by laser or shearing by mold Forming the outer shape to the desired outer contour shape by construction, etc., and then creating the inner shape to the desired inner contour shape, and then laminating the desired number of amorphous forming thin plates of each desired inner and outer contour shape through the above-mentioned shaping step A method for producing a separator for a fuel cell, comprising: a laminating step, and a step of fixing the desired number of amorphous shaped thin plates to each other by welding. 燃料電池用セパレータの製造方法であって、単一種類又は複数種類の金属粉、又は合金粉、又はそれらの混合粉からなる、原料金属粉を搬送ガスを用いて所要の燃焼ガスと混合し、燃焼ガスの燃焼発熱を利用して該原料金属粉を加熱・溶解すると同時に、該溶解原料金属をノズルを通して前記燃焼ガス及び前記搬送ガスと混合させつつ不活性ガスの噴射雰囲気中に噴出せしめ、該不活性ガスの噴射雰囲気中において、直径2〜100μm程度の極微細溶解液滴の噴流を創製し、該極微細溶解液滴の噴流の周囲から斜交しつつ吹き込む冷媒噴流にて当該極微細溶解液滴中の各液滴を、所望の冷却速度で急冷して該原料金属極微細溶解液滴の全て、又は必要な一部をアモルファス化させるとともに、該原料金属極微細溶解液滴の全て、又はその一部を、噴射流動中に該原料金属微細アモルファス粒噴流へと転化せしめ、該原料金属微細アモルファス粒噴流、又は、該原料金属微細アモルファス粒噴流と該原料金属極微細溶解液滴噴流との混合噴流を、予め耐食金属製薄板素材をレーザーによる溶断加工、もしくは金型による剪断加工等により、所望の外輪郭形状に外形創形しさらに所望の内輪郭形状に内形創形された所望内外輪郭形状の創形薄板素材を形成し、次いで所望温度に加熱した該創形薄板素材製基材上に吹き付け、該混合噴流中に含まれる、前記原料金属極微細アモルファス粒、又は、前記原料金属極微細アモルファス粒と該原料金属極微細溶解液滴との混合体を、前記加熱済み創形薄板素材上に衝突かつ堆積せしめるとともに、その加熱済み創形薄板素材上に衝突かつ堆積した前記極微細アモルファス粒、又は、該極微細アモルファス粒と前記極微細溶解液滴を連結せしめて得られた極微細アモルファス粒のみからなる純アモルファス板状連結体、又は、前記極微細アモルファス粒もしくは前記極微細溶解液滴が凝固した極微細アモルファス粒、及び前記極微細溶解液滴が凝固して生じる極微細結晶粒からなる準アモルファス板状連結体であって、当該原料金属の純アモルファス板状連結体が前記創形薄板素材に複合された純アモルファス創形複合体である純アモルファス創形複合薄板、もしくは、当該原料金属のアモルファス部位と結晶化部位とが所望割合で混合された準アモルファス板状連結体が前記創形薄板素材に複合された準アモルファス創形複合体である準アモルファス創形複合薄板を得、前記純アモルファス創形複合薄板、又は、前記準アモルファス創形複合薄板よりなるアモルファス創形薄板を得る超急冷遷移制御噴射法により製造する工程、得られた前記所望板厚で所望内外輪郭形状のアモルファス創形薄板を所望枚数積層する積層工程、さらに前記所望枚数積層されたアモルファス創形薄板を溶接により相互に固定する工程、を経ること特徴とする燃料電池用セパレータの製造方法。   A method for producing a separator for a fuel cell, comprising a single type or a plurality of types of metal powders, alloy powders, or mixed powders thereof, and mixing raw metal powders with a required combustion gas using a carrier gas, The raw material metal powder is heated and melted using the combustion heat of the combustion gas, and at the same time, the melted raw material metal is mixed with the combustion gas and the carrier gas through a nozzle and injected into an inert gas injection atmosphere. In a jet atmosphere of inert gas, create a jet of ultra-fine dissolved droplets with a diameter of about 2 to 100 μm, and use the ultra-fine melted jet that blows obliquely from the periphery of the jet of ultra-fine dissolved droplets. Each of the droplets in the droplet is rapidly cooled at a desired cooling rate to amorphize all or a part of the raw metal ultrafine dissolution droplets, Or one of them Is converted into the raw material metal fine amorphous particle jet during the jet flow, or the raw material metal fine amorphous particle jet or the mixed jet of the raw metal fine amorphous particle jet and the raw metal ultrafine dissolved droplet jet The desired inner / outer contour shape is formed in advance to the desired outer contour shape by cutting the corrosion-resistant metal thin plate material by laser cutting or shearing using a mold, etc. Forming the shaped thin plate material, and then spraying onto the shaped thin plate material base material heated to a desired temperature, and contained in the mixed jet, the raw metal ultrafine amorphous particles, or the raw metal ultrafine amorphous material The mixture of the grains and the raw metal ultrafine dissolution droplets collides and deposits on the heated wound thin sheet material, and collides and deposits on the heated wound thin sheet material. In addition, the ultrafine amorphous particles, or a pure amorphous plate-like linking body composed only of ultrafine amorphous particles obtained by linking the ultrafine amorphous particles and the ultrafine dissolution droplets, or the ultrafine amorphous particles or A quasi-amorphous plate-like linking body comprising ultrafine amorphous particles solidified by the ultrafine dissolution droplets and ultrafine crystal grains produced by solidification of the ultrafine dissolution droplets, the pure amorphous plate shape of the raw metal Pure amorphous wound composite thin plate, which is a pure amorphous wound composite in which the connected body is composited with the wound thin sheet material, or a quasi-amorphous plate in which amorphous parts and crystallization parts of the raw metal are mixed in a desired ratio To obtain a quasi-amorphous wound composite thin plate, which is a quasi-amorphous wound composite in which a ligature is combined with the wound thin plate material, Manufacturing process by ultra-quenching transition controlled injection method to obtain an amorphous wound composite sheet or an amorphous wound thin sheet comprising the quasi-amorphous wound composite sheet, an amorphous wound having a desired inner and outer contour shape with the obtained desired sheet thickness A fuel cell separator manufacturing method comprising: a laminating step of laminating a desired number of shaped thin plates; and a step of fixing the amorphous shaped thin plates laminated with the desired number of sheets together by welding. 前記燃料電池用セパレータの製造方法は、使用するアモルファス創形薄板材が、超急冷遷移制御噴射法による前記遷移制御噴射工程直後で、結晶化温度以下まで冷却された前記純アモルファス複合体もしくは前記純アモルファス創形複合体、又は、前記準アモルファス複合体もしくは前記準アモルファス創形複合体を得た後、圧延工程を経ることを特徴とする請求項21〜23に記載の燃料電池用セパレータの製造方法。   The method for producing the separator for a fuel cell includes the pure amorphous composite or the pure sheet in which the amorphous wound thin plate material used is cooled to a crystallization temperature or less immediately after the transition control injection step by a super quench transition control injection method. 24. The method for producing a fuel cell separator according to claim 21, wherein the amorphous wound composite, or the quasi-amorphous composite or the quasi-amorphous wound composite is subjected to a rolling process. . 前記燃料電池用セパレータの製造方法は、使用するアモルファス創形薄板材が、超急冷遷移制御噴射法による前記遷移制御噴射工程直後で、塑性流動性温度域まで冷却された前記純アモルファス複合体もしくは前記純アモルファス創形複合体、又は、前記準アモルファス複合体もしくは前記準アモルファス創形複合体を得た後、圧延工程を経ることを特徴とする請求項21〜23に記載の燃料電池用セパレータの製造方法。   The method for producing the separator for a fuel cell includes the pure amorphous composite in which the amorphous wound thin plate material to be used is cooled to a plastic fluidity temperature range immediately after the transition control injection step by a super quench transition control injection method, or 24. The production of a fuel cell separator according to claim 21, wherein a pure amorphous wound composite, or the quasi-amorphous composite or the quasi-amorphous wound composite is subjected to a rolling process. Method.
JP2012197414A 2012-09-07 2012-09-07 Separator for fuel cell and manufacturing method thereof Pending JP2014053185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012197414A JP2014053185A (en) 2012-09-07 2012-09-07 Separator for fuel cell and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012197414A JP2014053185A (en) 2012-09-07 2012-09-07 Separator for fuel cell and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2014053185A JP2014053185A (en) 2014-03-20
JP2014053185A5 true JP2014053185A5 (en) 2014-06-05

Family

ID=50611495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012197414A Pending JP2014053185A (en) 2012-09-07 2012-09-07 Separator for fuel cell and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2014053185A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112481566B (en) * 2020-11-16 2021-08-31 太原钢铁(集团)有限公司 Heat treatment method for nickel-based alloy plate

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273314A (en) * 2003-03-10 2004-09-30 Daido Steel Co Ltd Fuel cell metal separator, manufacturing method of the same, and fuel cell
JP4484105B2 (en) * 2004-10-26 2010-06-16 国立大学法人東北大学 Molded product comprising metal glass laminate and method for producing the same
JP4889271B2 (en) * 2005-09-26 2012-03-07 国立大学法人東北大学 Metal glass composite material and member for electronic and electrical equipment using the same
JP5260878B2 (en) * 2007-01-17 2013-08-14 株式会社中山製鋼所 Method for forming amorphous film by thermal spraying
JP4579317B2 (en) * 2008-07-15 2010-11-10 株式会社中山製鋼所 Amorphous film forming apparatus and method
JP5321014B2 (en) * 2008-11-26 2013-10-23 日産自動車株式会社 Welding apparatus for metal separator for fuel cell and welding method for metal separator for fuel cell
JP2010129459A (en) * 2008-11-28 2010-06-10 Nissan Motor Co Ltd Fuel cell, manufacturing device of fuel cell, and manufacturing method of fuel cell
WO2012053570A1 (en) * 2010-10-20 2012-04-26 株式会社中山製鋼所 Ni-BASED AMORPHOUS ALLOY WITH HIGH DUCTILITY, HIGH CORROSION RESISTANCE AND EXCELLENT DELAYED FRACTURE RESISTANCE

Similar Documents

Publication Publication Date Title
CN108650883B (en) Method for additive manufacturing of three-dimensional objects from metallic glass
CN104607823B (en) A kind of manufacture method of spherical self-melting alloy solder
EP2326443B1 (en) Method of producing objects containing nano metal or composite metal
US9067282B2 (en) Remanufacturing cast iron component with steel outer layer and remanufactured component
US20160083304A1 (en) Additive manufacturing of ceramic turbine components by partial transient liquid phase bonding using metal binders
KR102483849B1 (en) Manufacturing device and method for manufacturing a metal clad plate in a short-term process
CN110773838B (en) Additive manufacturing method of metal multilayer dot matrix sandwich board
US10870174B2 (en) Method for producing a plastic-metal hybrid component
CN111992717B (en) Method for preparing metal gradient material by selective laser melting
JP6721138B1 (en) Method for producing water atomized metal powder
JP2003183804A (en) Spray forming method utilizing pseudoalloy composite
US20160090653A1 (en) Method For Producing A Metal Foam And Method For Producing Particles Suitable For Said Method
JP2016108668A (en) Composite member and manufacturing method of composite member
CN107043931A (en) A kind of material high flux preparation method and device based on solid deposited
US20080299412A1 (en) Method for Manufacturing Metal Components and Metal Component
JP2019516012A (en) Aluminum, cobalt, chromium and nickel FCC materials and products made therefrom
US6810939B2 (en) Spray formed articles made of boron steel and method for making the same
JP2014053185A5 (en)
WO2019084446A1 (en) Systems and methods for additive manufacturing and products made therefrom
WO2020218207A1 (en) Method for producing finely patterned molded product by metal spraying
JP6721137B1 (en) Method for producing water atomized metal powder
JP5872844B2 (en) Method for producing composite material and composite material
JPS5924556A (en) Continuous strip molding method for amorphous metal
CN113953528B (en) Method for preparing high-entropy reinforced amorphous alloy composite material
US20210222275A1 (en) Bulk metallic glass-based alloys for additive manufacturing