JP2014053112A - Flat battery - Google Patents

Flat battery Download PDF

Info

Publication number
JP2014053112A
JP2014053112A JP2012195636A JP2012195636A JP2014053112A JP 2014053112 A JP2014053112 A JP 2014053112A JP 2012195636 A JP2012195636 A JP 2012195636A JP 2012195636 A JP2012195636 A JP 2012195636A JP 2014053112 A JP2014053112 A JP 2014053112A
Authority
JP
Japan
Prior art keywords
positive electrode
groove
sealing
flat battery
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012195636A
Other languages
Japanese (ja)
Other versions
JP6058951B2 (en
Inventor
Kenji Tsuda
健司 津田
Koji Yamaguchi
浩司 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2012195636A priority Critical patent/JP6058951B2/en
Publication of JP2014053112A publication Critical patent/JP2014053112A/en
Application granted granted Critical
Publication of JP6058951B2 publication Critical patent/JP6058951B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)

Abstract

PROBLEM TO BE SOLVED: To materialize a structure capable of preventing a connection part between an outer can and a sealing can from being loosened even when the outer can is deformed under a high temperature environment, in a flat battery in which the bottom of the outer can is a plane.SOLUTION: A flat battery (1) includes a bottomed and cylindrical positive electrode can (10) having a cylindrical peripheral wall part (12) extending in the direction of a cylinder axis, and a bottom (11) covering one end side of the peripheral wall part (12), a negative electrode can (20) which has a cylindrical peripheral wall part (22) extending in the direction of the cylinder axis, is disposed so as to cover the opening of the positive electrode can (10), and to the peripheral wall part (22) of which the peripheral wall part (12) is connected, and a positive electrode material (41) disposed in a space formed by the positive electrode can (10) and the negative electrode can (20). A groove part (11a) is formed on the inner surface of the bottom (11) of the positive electrode can (10). The groove part (11a) is formed on the outside of the positive electrode material (41) viewing from the direction of the cylinder axis.

Description

本発明は、コイン形電池等の扁平形電池に関する。   The present invention relates to a flat battery such as a coin battery.

従来より、有底筒状の外装缶と、該外装缶の開口を覆うように配置され、外周側で該外装缶に接続される封口缶とを備えた扁平形電池は知られている。このような扁平形電池としては、例えば特許文献1、2に開示されるように、外装缶の底部の外周部分が中央部分よりも外装缶の開口側に位置するように、該底部を段状に形成したものが知られている。   2. Description of the Related Art Conventionally, a flat battery including a bottomed cylindrical outer can and a sealing can that is disposed so as to cover the opening of the outer can and connected to the outer can on the outer peripheral side is known. As such a flat battery, for example, as disclosed in Patent Documents 1 and 2, the bottom portion is stepped so that the outer peripheral portion of the bottom portion of the outer can is positioned closer to the opening side of the outer can than the center portion. What is formed in the is known.

一般に、高温環境下で電池を使用した場合、電池内も高温になるため、電池の構成要素の膨張や電解液の気化等によって、電池内部の圧力が高くなり、電池が変形しやすくなる。   In general, when a battery is used in a high temperature environment, the inside of the battery also becomes high temperature, so that the pressure inside the battery increases due to expansion of the constituent elements of the battery, evaporation of the electrolyte, and the like, and the battery is easily deformed.

前記特許文献1、2に開示されている構成の電池では、外装缶の底部の中央部分が変形するだけで、該外装缶の底部の外周側や周壁部はほとんど変形しない。これにより、外装缶の底部の外周側で電池内の空間の封止性が低下する。   In the battery of the structure currently disclosed by the said patent documents 1, 2, only the center part of the bottom part of an armored can changes, and the outer peripheral side and peripheral wall part of the bottom part of this armored can hardly change. Thereby, the sealing property of the space in a battery falls on the outer peripheral side of the bottom part of an exterior can.

特開2008−262905号公報JP 2008-262905 A 国際公開WO02/013290号パンフレットInternational Publication WO02 / 013290 Pamphlet

ところで、前記特許文献1、2に開示されている構成の電池では、外装缶と封口缶との接続部分において、シール性等の観点から、外装缶の開口端部と封口缶の開口端部とが重なる領域が或る程度、必要になる。また、前記特許文献1、2に開示されているように、外装缶の底部を段状に形成する場合、外装缶の中央部分が外周部分よりも突出している分、電池の厚みが大きくなる。そのため、前記特許文献1、2のような構成では電池全体として小型化を図るのが難しくなる。   By the way, in the battery of the structure currently disclosed by the said patent documents 1 and 2, in terms of sealing property etc. in the connection part of an exterior can and a sealing can, the opening end part of an exterior can and the opening end part of a sealing can A certain area is required to overlap. Further, as disclosed in Patent Documents 1 and 2, when the bottom portion of the outer can is formed in a step shape, the thickness of the battery is increased because the central portion of the outer can protrudes from the outer peripheral portion. For this reason, it is difficult to reduce the size of the battery as a whole with the configurations as in Patent Documents 1 and 2.

そこで、外装缶の底部を平面状にした構成の電池が考案されている。このような電池では、外装缶の底部が平面であるため、前記特許文献1、2のような外装缶の底部の段差がなくなり、電池全体として、小型化を図ることができる。   Therefore, a battery having a configuration in which the bottom of the outer can is planar has been devised. In such a battery, since the bottom of the outer can is a flat surface, there is no step at the bottom of the outer can as in Patent Documents 1 and 2, and the entire battery can be reduced in size.

しかしながら、外装缶の底部を平面にした構成の電池を、例えば、高温環境下で使用した場合、電池の構成要素の膨張や電解液の気化等によって、外装缶の底部が筒軸方向に変形する。そうすると、外装缶の底部の変形に伴い、外装缶の底部の内面とガスケットとの間の圧縮力が低下する。その結果、外装缶と封口缶との接続が緩む可能性がある。   However, when a battery having a configuration in which the bottom of the outer can is flat is used, for example, in a high-temperature environment, the bottom of the outer can is deformed in the cylinder axis direction due to expansion of the components of the battery, evaporation of the electrolyte, or the like. . Then, with the deformation of the bottom of the outer can, the compressive force between the inner surface of the bottom of the outer can and the gasket decreases. As a result, the connection between the outer can and the sealed can may be loosened.

そこで、本発明の目的は、上記問題点に鑑み、外装缶の底部が平面である扁平形電池において、高温環境下で外装缶が変形した場合であっても、外装缶と封口缶との接続部分が緩むのを防止可能な構成を実現することにある。   Therefore, in view of the above problems, an object of the present invention is to connect the outer can and the sealing can even in the case where the outer can is deformed in a high-temperature environment in a flat battery whose bottom is flat. The object is to realize a configuration capable of preventing the portion from loosening.

本発明の一実施形態にかかる扁平形電池は、筒軸方向に延びる筒状の外装缶側壁部と該外装缶側壁部の一端側を覆う底部とを有する有底筒状の外装缶と、前記筒軸方向に延びる筒状の封口缶側壁部を有し、前記外装缶の開口を覆うように配置されるとともに、前記封口缶側壁部が前記外装缶側壁部に接続される封口缶と、前記外装缶と前記封口缶とによって形成される空間内に配置される電極材と、を備え、前記外装缶の底部の内面には、溝部が形成されていて、前記溝部は、前記筒軸方向から見て前記電極材よりも外側に形成されている(第1の構成)。   A flat battery according to an embodiment of the present invention includes a bottomed cylindrical outer can having a cylindrical outer can side wall extending in the cylinder axis direction and a bottom covering one end of the outer can side wall; A sealing can having a cylindrical sealing can side wall extending in the cylinder axis direction, arranged to cover the opening of the outer can, and the sealing can side wall being connected to the outer can side wall; and An electrode material disposed in a space formed by the outer can and the sealing can, and a groove portion is formed on the inner surface of the bottom portion of the outer can, and the groove portion extends from the cylinder axis direction. It is formed outside the electrode material as viewed (first configuration).

この構成により、高温環境下の扁平形電池は、外装缶の底部の内面に設けた溝部によって、外装缶の筒軸方向から見て、外装缶の底部の溝部よりも内側部分が変形する一方、外装缶の底部の溝部よりも外側の部分はあまり変形しない。すなわち、外装缶の底部の外周側はほとんど変形しない。このため、封口缶と外装缶との接続部分が緩むのを防止できる。また、溝部は、前記筒軸方向から見て電極材よりも外側に形成されているので、外装缶と電極材とを安定して接触させることができる。   With this configuration, the flat battery in a high-temperature environment is deformed by the groove provided on the inner surface of the bottom of the outer can, and the inner part of the outer can can be deformed when viewed from the cylindrical axis direction of the outer can. The portion outside the groove at the bottom of the outer can does not deform much. That is, the outer peripheral side of the bottom of the outer can is hardly deformed. For this reason, it can prevent that the connection part of a sealing can and an exterior can loosens. Moreover, since the groove part is formed in the outer side rather than the electrode material seeing from the said cylinder axial direction, an exterior can and an electrode material can be made to contact stably.

前記第1の構成において、前記溝部は、前記筒軸方向から見て、前記封口缶側壁部よりも内側に形成されている(第2の構成)。   The said 1st structure WHEREIN: The said groove part is formed inside the said sealing can side wall part seeing from the said cylinder axial direction (2nd structure).

この構成により、扁平形電池の封止性が低下することを防止できる。すなわち、溝部を、外装缶の筒軸方向から見て封口缶側壁部よりも外側に形成した場合、外装缶の底部の溝部よりも内側が変形を生じると、封口缶の内側の空間と外側の空間とが繋がるため、封止性が大きく低下する。これに対し、上述の構成のように、溝部を、外装缶の筒軸方向から見て、封口缶側壁部よりも内側に形成した場合、外装缶の底部の変形は封口缶側壁部の内方で生じるため、封口缶と外装缶とによって形成される空間の封止性を確保することができる。   With this configuration, it is possible to prevent the sealing performance of the flat battery from being lowered. That is, when the groove is formed on the outer side of the side wall of the sealed can as viewed from the cylinder axis direction of the outer can, if the inner side of the groove on the bottom of the outer can is deformed, the inner space and the outer side of the outer can Since the space is connected, the sealing performance is greatly reduced. On the other hand, when the groove portion is formed on the inner side of the sealing can side wall portion as seen from the cylindrical axis direction of the outer can as in the configuration described above, the deformation of the bottom portion of the outer can is inward of the sealing can side wall portion. Therefore, the sealing property of the space formed by the sealed can and the outer can can be ensured.

前記第1または第2の構成において、前記外装缶側壁部と前記封口缶側壁部との間に配置される側壁部と、前記封口缶側壁部と前記外装缶の底部との間に配置されるベース部とを有するガスケットをさらに備え、前記溝部は、前記筒軸方向から見て前記ガスケットの前記ベース部よりも内側に形成されている(第3の構成)。   In the first or second configuration, the side wall portion is disposed between the outer can side wall portion and the sealed can side wall portion, and is disposed between the sealed can side wall portion and the bottom portion of the outer can. A gasket having a base portion is further provided, and the groove portion is formed inside the base portion of the gasket as viewed from the cylinder axis direction (third configuration).

この構成により、封口缶側壁部と外装缶の底部との間に挟まれるガスケットのベース部において、封口缶と外装缶とによって形成される空間の封止性が、溝部によって低下するのを防止できる。すなわち、溝部はガスケットのベース部よりも内側に位置するため、溝部によって前記空間と外部とが繋がるのを防止できる。   With this configuration, in the base portion of the gasket sandwiched between the side wall portion of the sealing can and the bottom portion of the outer can, it is possible to prevent the sealing performance of the space formed by the sealing can and the outer can from being lowered by the groove portion. . That is, since the groove part is located inside the base part of the gasket, it is possible to prevent the space and the outside from being connected by the groove part.

前記第1から第3の構成のうちいずれか一つの構成において、前記溝部の深さは、前記外装缶の底部の厚みの半分以下である(第4の構成)。   In any one of the first to third configurations, the depth of the groove is not more than half the thickness of the bottom of the outer can (fourth configuration).

この構成により、外装缶の溝部よりも内側の変形を許容しつつ、外装缶が溝部で裂けるのを抑制することができる。   With this configuration, the outer can can be prevented from tearing at the groove while allowing deformation inside the groove of the outer can.

前記第1から第4の構成のうちいずれか一つの構成において、前記外装缶および前記封口缶は、それぞれ、有底円筒状であり、前記溝部は、前記筒軸方向から見て円環状に形成されている(第5の構成)。   In any one of the first to fourth configurations, the outer can and the sealing can each have a bottomed cylindrical shape, and the groove is formed in an annular shape when viewed from the cylinder axis direction. (Fifth configuration).

この構成により、溝部よりも内側を全体的に変形させることができるとともに、外装缶の溝部よりも外側の変形を抑制することができる。その結果、外装缶が高温環境下で変形した場合であっても、封口缶と外装缶との接続部分が緩むのをより確実に防止できる。   With this configuration, the inside of the groove portion can be deformed as a whole, and deformation outside the groove portion of the outer can can be suppressed. As a result, even when the outer can is deformed in a high temperature environment, it is possible to more reliably prevent the connection portion between the sealed can and the outer can from being loosened.

前記第5の構成において、前記外装缶の底部の中心から前記底部の半径の0.75倍以上の位置に形成されている(第6の構成)。   In the fifth configuration, the outer can is formed at a position not less than 0.75 times the radius of the bottom portion from the center of the bottom portion (sixth configuration).

この構成により、外装缶が高温環境下で変形した場合の封止性の低下を効果的に抑制することができる。   With this configuration, it is possible to effectively suppress a decrease in sealing performance when the outer can is deformed in a high temperature environment.

本発明によれば、外装缶の底部が平面状の扁平形電池において、高温環境下で外装缶が変形した場合であっても、該外装缶と封口缶との接続部分が緩むのを防止可能な構成を実現することができる。   According to the present invention, in a flat battery with a flat bottom of the outer can, it is possible to prevent the connection portion between the outer can and the sealing can from being loosened even when the outer can is deformed in a high temperature environment. Can be realized.

図1は、第1実施形態に係る扁平形電池の概略構成を示す断面図である。FIG. 1 is a cross-sectional view showing a schematic configuration of the flat battery according to the first embodiment. 図2は、第1実施形態に係る扁平形電池の概略構成を拡大して示す拡大断面図である。FIG. 2 is an enlarged cross-sectional view showing an enlarged schematic configuration of the flat battery according to the first embodiment. 図3は、溝部の位置に対する中央部のたわみ量および封止部のたわみ量の関係を示すグラフである。FIG. 3 is a graph showing the relationship between the deflection amount of the central portion and the deflection amount of the sealing portion with respect to the position of the groove portion. 図4は、溝部の位置に対する中央部のたわみ量および封止部のたわみ量の関係を示すグラフである。FIG. 4 is a graph showing the relationship between the deflection amount of the central portion and the deflection amount of the sealing portion with respect to the position of the groove portion. 図5は、溝部の位置に対する中央部のたわみ量および封止部のたわみ量の関係を示すグラフである。FIG. 5 is a graph showing the relationship between the deflection amount of the central portion and the deflection amount of the sealing portion with respect to the position of the groove portion. 図6は、溝部の位置に対する中央部のたわみ量および封止部のたわみ量の関係を示すグラフである。FIG. 6 is a graph showing the relationship between the deflection amount of the central portion and the deflection amount of the sealing portion with respect to the position of the groove portion. 図7は、扁平形電池の内圧が高い場合において、(a)溝部を扁平形電池の内側に設けた場合の正極缶の底部の変形と、(b)溝部を扁平形電池1の外側に設けた場合の正極缶の底部の変形との相違について説明するための図である。7A and 7B show (a) deformation of the bottom of the positive electrode can when the groove is provided inside the flat battery and (b) the groove is provided outside the flat battery 1 when the internal pressure of the flat battery is high. It is a figure for demonstrating the difference with the deformation | transformation of the bottom part of the positive electrode can in the case of. 図8は、扁平形電池の内圧が高い場合において、(a)溝部を扁平形電池の内側に設けた場合の正極缶の底部に生じる応力分布と、(b)溝部を扁平形電池の外側に設けた場合の正極缶の底部に生じる応力分布との相違について説明するための図である。FIG. 8 shows (a) the stress distribution generated at the bottom of the positive electrode can when the groove is provided inside the flat battery, and (b) the groove on the outside of the flat battery when the internal pressure of the flat battery is high. It is a figure for demonstrating the difference with the stress distribution which arises in the bottom part of the positive electrode can at the time of providing. 図9は、扁平形電池に設けられた溝部の幅に対する中央部のたわみ量および封止部のたわみ量の関係を示すグラフである。FIG. 9 is a graph showing the relationship between the deflection amount of the central portion and the deflection amount of the sealing portion with respect to the width of the groove portion provided in the flat battery. 図10は、第1実施形態に係る扁平形電池の製造方法を説明するための図である。FIG. 10 is a diagram for explaining the method of manufacturing the flat battery according to the first embodiment. 図11は、第1実施形態に係る扁平形電池の製造方法を説明するための図である。FIG. 11 is a view for explaining the method of manufacturing the flat battery according to the first embodiment. 図12は、第1実施形態に係る扁平形電池の製造方法を説明するための図である。FIG. 12 is a view for explaining the method of manufacturing the flat battery according to the first embodiment. 図13は、他の実施形態に係る溝部111aの断面形状を示す拡大断面図である。FIG. 13 is an enlarged cross-sectional view showing a cross-sectional shape of the groove 111a according to another embodiment. 図14は、他の実施形態に係る溝部112aの断面形状を示す拡大断面図である。FIG. 14 is an enlarged cross-sectional view showing a cross-sectional shape of the groove 112a according to another embodiment. 図15は、他の実施形態に係る溝部113aの断面形状を示す拡大断面図である。FIG. 15 is an enlarged cross-sectional view showing a cross-sectional shape of the groove 113a according to another embodiment.

以下、図面を参照し、本発明の実施形態を詳しく説明する。図中の同一または相当部分については同一の符号を付してその説明は繰り返さない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The same or corresponding parts in the drawings are denoted by the same reference numerals and description thereof will not be repeated.

[第1実施形態]
まず、第1実施形態について、説明する。
[First Embodiment]
First, the first embodiment will be described.

<1:全体構成>
図1は、本発明の一実施形態である扁平形電池1の概略構成を示す断面図である。この扁平形電池1は、有底円筒状の正極缶10(外装缶)と、該正極缶10の開口を覆う負極缶20(封口缶)と、正極缶10の外周側と負極缶20の外周側との間に配置されるガスケット30と、正極缶10及び負極缶20の間に形成される空間内に収納される発電要素40とを備えている。扁平形電池1は、正極缶10と負極缶20とを合わせることによって、全体が扁平なコイン状に形成されている。扁平形電池1の正極缶10及び負極缶20の間に形成される空間内には、発電要素40以外に、非水電解液(図示省略)も封入されている。
<1: Overall configuration>
FIG. 1 is a cross-sectional view showing a schematic configuration of a flat battery 1 according to an embodiment of the present invention. The flat battery 1 includes a bottomed cylindrical positive electrode can 10 (exterior can), a negative electrode can 20 (sealing can) covering the opening of the positive electrode can 10, an outer peripheral side of the positive electrode can 10, and an outer periphery of the negative electrode can 20. And a power generation element 40 housed in a space formed between the positive electrode can 10 and the negative electrode can 20. The flat battery 1 is formed in a flat coin shape as a whole by combining the positive electrode can 10 and the negative electrode can 20 together. In the space formed between the positive electrode can 10 and the negative electrode can 20 of the flat battery 1, in addition to the power generation element 40, a non-aqueous electrolyte (not shown) is also enclosed.

正極缶10は、ステンレスなどの金属材料からなり、プレス成形によって有底円筒状に形成されている。正極缶10は、円形状の底部11と、その外周に該底部11と連続して形成される円筒状の周壁部12(外装缶側壁部)とを備えている。正極缶10の底部11の内面には、後述する溝部11aが設けられている。周壁部12は、縦断面視で、底部11に対して筒軸方向に延びるように設けられている。正極缶10は、後述するように、負極缶20との間にガスケット30を挟んだ状態で、周壁部12の開口端側が内側に折り曲げられて、該負極缶20の外周部に対してかしめられている。   The positive electrode can 10 is made of a metal material such as stainless steel, and is formed into a bottomed cylindrical shape by press molding. The positive electrode can 10 includes a circular bottom portion 11 and a cylindrical peripheral wall portion 12 (exterior can side wall portion) formed continuously with the bottom portion 11 on the outer periphery thereof. On the inner surface of the bottom 11 of the positive electrode can 10, a groove 11 a described later is provided. The peripheral wall portion 12 is provided so as to extend in the cylinder axis direction with respect to the bottom portion 11 in a longitudinal sectional view. As described later, the positive electrode can 10 is crimped to the outer peripheral portion of the negative electrode can 20 by bending the opening end side of the peripheral wall portion 12 inward with the gasket 30 sandwiched between the positive electrode can 10 and the negative electrode can 20. ing.

負極缶20も、正極缶10と同様、ステンレスなどの金属材料からなり、プレス成形によって有底円筒状に形成されている。負極缶20は、円形状の平面部21と、その外周に該平面部21と連続して形成される円筒状の周壁部22(封口缶側壁部)とを備えている。この周壁部22は、縦断面視で、平面部21に対して筒軸方向に延びるように設けられている。周壁部22は、該周壁部22の基端部22aに対して径が段状に大きくなる拡径部22bを有している。すなわち、周壁部22には、基端部22aと拡径部22bとの間に段部22cが形成されている。図1に示すように、この段部22cに対して、正極缶10の周壁部12の開口端側が折り曲げられてかしめられている。これにより、正極缶10と負極缶20とが、それらの周壁部12、22で接続されている。   Similarly to the positive electrode can 10, the negative electrode can 20 is made of a metal material such as stainless steel and is formed in a bottomed cylindrical shape by press molding. The negative electrode can 20 includes a circular flat surface portion 21 and a cylindrical peripheral wall portion 22 (sealing can side wall portion) formed continuously with the flat surface portion 21 on the outer periphery thereof. The peripheral wall portion 22 is provided so as to extend in the cylinder axis direction with respect to the flat portion 21 in a longitudinal sectional view. The peripheral wall portion 22 has an enlarged diameter portion 22b whose diameter increases stepwise with respect to the base end portion 22a of the peripheral wall portion 22. That is, the peripheral wall portion 22 is formed with a step portion 22c between the base end portion 22a and the enlarged diameter portion 22b. As shown in FIG. 1, the open end side of the peripheral wall portion 12 of the positive electrode can 10 is bent and caulked with respect to the step portion 22c. Thereby, the positive electrode can 10 and the negative electrode can 20 are connected by the surrounding wall parts 12 and 22.

ガスケット30は、ポリフェニレンサルファイド(PPS)を主成分としており、PPSにオレフィン系エラストマーを含有した樹脂組成物からなる。ガスケット30は、正極缶10の周壁部12と負極缶20の周壁部22との間に挟みこまれるように配置される。具体的には、ガスケット30は、図1に示すように、リング状のベース部31と、該ベース部31の外周縁から突出する外筒壁32(側壁部)と、該ベース部31の内周縁から外筒壁32と同じ方向で且つベース部31の内周に向かって斜めに延びる連結部33と、該連結部33からから該外筒壁32と同じ方向に伸びる内筒壁34とを備えている。本実施形態では、ガスケット30は、ベース部31、外筒壁32、連結部33及び内筒壁34が一体で形成されている。   The gasket 30 is mainly composed of polyphenylene sulfide (PPS), and is made of a resin composition containing an olefin elastomer in PPS. The gasket 30 is disposed so as to be sandwiched between the peripheral wall portion 12 of the positive electrode can 10 and the peripheral wall portion 22 of the negative electrode can 20. Specifically, as shown in FIG. 1, the gasket 30 includes a ring-shaped base portion 31, an outer cylindrical wall 32 (side wall portion) protruding from the outer peripheral edge of the base portion 31, and an inner portion of the base portion 31. A connecting portion 33 extending obliquely from the periphery in the same direction as the outer cylindrical wall 32 and toward the inner periphery of the base portion 31, and an inner cylindrical wall 34 extending from the connecting portion 33 in the same direction as the outer cylindrical wall 32 I have. In the present embodiment, the gasket 30 includes a base portion 31, an outer cylindrical wall 32, a connecting portion 33, and an inner cylindrical wall 34 that are integrally formed.

ガスケット30は、図1に示すように、ベース部31が、後述する正極リング44のフランジ部44bとともに、負極缶20の周壁部22の開口端と正極缶10の底部11の外周部分との間に挟み込まれている。   As shown in FIG. 1, the gasket 30 has a base portion 31 between the opening end of the peripheral wall portion 22 of the negative electrode can 20 and the outer peripheral portion of the bottom portion 11 of the positive electrode can 10 together with a flange portion 44 b of the positive electrode ring 44 described later. It is sandwiched between.

また、ガスケット30は、負極缶20の拡径部22bを覆うように配置されている。すなわち、ガスケット30は、負極缶20の拡径部22bが、ガスケット30の外筒壁32と内筒壁34との間に位置づけられるように、負極缶20の拡径部22bに配置される。   Further, the gasket 30 is disposed so as to cover the enlarged diameter portion 22 b of the negative electrode can 20. That is, the gasket 30 is disposed on the enlarged diameter portion 22b of the negative electrode can 20 such that the enlarged diameter portion 22b of the negative electrode can 20 is positioned between the outer cylindrical wall 32 and the inner cylindrical wall 34 of the gasket 30.

これにより、ガスケット30の外筒壁32は、正極缶10の周壁部12と負極缶20の周壁部22との間に挟みこまれる。ガスケット30のベース部31及び外筒壁32は、正極缶10と負極缶20との間に挟みこまれた状態で、該正極缶10と負極缶20との隙間をシールできるような厚みを有している。   Thereby, the outer cylindrical wall 32 of the gasket 30 is sandwiched between the peripheral wall portion 12 of the positive electrode can 10 and the peripheral wall portion 22 of the negative electrode can 20. The base portion 31 and the outer cylindrical wall 32 of the gasket 30 have such a thickness that can seal the gap between the positive electrode can 10 and the negative electrode can 20 while being sandwiched between the positive electrode can 10 and the negative electrode can 20. doing.

このように、正極缶10の周壁部12と負極缶20の周壁部22との間にガスケット30を配置することにより、該正極缶10と負極缶20とをそれらの外周側で絶縁することができる。また、正極缶10の周壁部12と負極缶20の周壁部22との間にガスケット30を挟みこんだ状態で、該正極缶10の周壁部12を折り曲げて負極缶20の周壁部22にかしめることにより、該ガスケット30によって正極缶10の周壁部12と負極缶20の周壁部22との間を封止することができる。すなわち、ガスケット30は、正極缶10の周壁部12と負極缶20の段部22cとの間に挟みこまれる外筒壁32、及び、負極缶20の周壁部22の開口端と正極缶10の底部11との間に挟みこまれるベース部31が、それぞれ、シールとして機能する。   Thus, by arranging the gasket 30 between the peripheral wall portion 12 of the positive electrode can 10 and the peripheral wall portion 22 of the negative electrode can 20, the positive electrode can 10 and the negative electrode can 20 can be insulated on the outer peripheral side thereof. it can. In addition, with the gasket 30 sandwiched between the peripheral wall portion 12 of the positive electrode can 10 and the peripheral wall portion 22 of the negative electrode can 20, the peripheral wall portion 12 of the positive electrode can 10 is folded and connected to the peripheral wall portion 22 of the negative electrode can 20. By tightening, the gasket 30 can seal between the peripheral wall portion 12 of the positive electrode can 10 and the peripheral wall portion 22 of the negative electrode can 20. That is, the gasket 30 includes the outer cylindrical wall 32 sandwiched between the peripheral wall portion 12 of the positive electrode can 10 and the step portion 22 c of the negative electrode can 20, and the opening end of the peripheral wall portion 22 of the negative electrode can 20 and the positive electrode can 10. The base portions 31 sandwiched between the bottom portion 11 each function as a seal.

また、ガスケット30のベース部31と正極缶10の底部11との間に、後述する正極リング44のフランジ部44bを配置することで、該フランジ部44bをガスケット30のベース部31と正極缶10の底部11とによって挟み込むことができる。これにより、正極リング44のフランジ部44bを、正極缶10の底部11に溶接することなく、該正極缶10に対して固定することができる。   Further, a flange portion 44b of the positive electrode ring 44 described later is disposed between the base portion 31 of the gasket 30 and the bottom portion 11 of the positive electrode can 10, so that the flange portion 44b is connected to the base portion 31 of the gasket 30 and the positive electrode can 10. Between the bottom portion 11 and the bottom portion 11. Thereby, the flange portion 44 b of the positive electrode ring 44 can be fixed to the positive electrode can 10 without welding to the bottom portion 11 of the positive electrode can 10.

発電要素40は、正極活物質等を円盤状に成形した正極材(電極材)41と、負極活物質の金属リチウムまたはリチウム合金を円盤状に形成した負極材42と、不織布製のセパレータ43とを備えている。図1に示すように、正極缶10の内方には正極材41が位置付けられている一方、負極缶20の内方には負極材42が位置付けられている。正極材41と負極材42との間にはセパレータ43が配置されている。   The power generation element 40 includes a positive electrode material (electrode material) 41 in which a positive electrode active material or the like is formed into a disk shape, a negative electrode material 42 in which metal lithium or a lithium alloy as a negative electrode active material is formed in a disk shape, a nonwoven fabric separator 43, It has. As shown in FIG. 1, the positive electrode material 41 is positioned inside the positive electrode can 10, while the negative electrode material 42 is positioned inside the negative electrode can 20. A separator 43 is disposed between the positive electrode material 41 and the negative electrode material 42.

正極材41は、正極活物質として二酸化マンガンを含有している。この正極材41は、次のようにして形成される。まず、二酸化マンガンに、黒鉛、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体及びヒドロキシプロピルセルロースを混合して正極合剤を調整する。所定の金型内に正極リング44をセットした後に、前記正極合剤を金型内に充填して加圧成形し、成形された部材を加熱して円盤状に形成する。これにより、正極材41が得られる。   The positive electrode material 41 contains manganese dioxide as a positive electrode active material. The positive electrode material 41 is formed as follows. First, graphite, tetrafluoroethylene-hexafluoropropylene copolymer and hydroxypropylcellulose are mixed with manganese dioxide to prepare a positive electrode mixture. After the positive electrode ring 44 is set in a predetermined mold, the positive electrode mixture is filled in the mold and subjected to pressure molding, and the molded member is heated to form a disk shape. Thereby, the positive electrode material 41 is obtained.

正極材41には、該正極材41を保持するように、該正極材41の底面及び側面のそれぞれ一部を覆う正極リング44が装着されている。この正極リング44は、所定の剛性及び導電性を有するステンレス鋼等によって構成されている。正極リング44は、正極材41の側面に接する円筒部44aと、円筒部44aの一端側から該円筒部44aの外方に向かって延びてガスケット30のベース部31の底面に接する円環状のフランジ部44bとが一体形成されたものである。このような構成の正極リング44によって、該正極リング44内の正極材41の径方向への変形を規制することができる。   A positive electrode ring 44 is attached to the positive electrode material 41 so as to hold each of the bottom surface and side surfaces of the positive electrode material 41 so as to hold the positive electrode material 41. The positive ring 44 is made of stainless steel or the like having predetermined rigidity and conductivity. The positive electrode ring 44 includes a cylindrical portion 44 a that contacts the side surface of the positive electrode material 41, and an annular flange that extends from one end side of the cylindrical portion 44 a toward the outside of the cylindrical portion 44 a and contacts the bottom surface of the base portion 31 of the gasket 30. The part 44b is integrally formed. With the positive electrode ring 44 having such a configuration, deformation of the positive electrode material 41 in the positive electrode ring 44 in the radial direction can be restricted.

セパレータ43は、ポリブチレンテレフタート製の繊維を素材とする不織布を用いて構成される。このセパレータ43は、扁平形電池1内で非水電解液によって含浸されている。なお、セパレータ43の厚みは、例えば、約0.3〜0.4mm程度である。   The separator 43 is configured using a non-woven fabric made of a polybutylene terephthalate fiber. The separator 43 is impregnated with a non-aqueous electrolyte in the flat battery 1. In addition, the thickness of the separator 43 is about 0.3-0.4 mm, for example.

非水電解液は、プロピレンカーボネイトと1,2−ジメトキシエタンとを混合した溶液にLiClOを溶解した溶液である。 The non-aqueous electrolyte is a solution in which LiClO 4 is dissolved in a solution obtained by mixing propylene carbonate and 1,2-dimethoxyethane.

(1.1:溝部の構成)
正極缶10の底部11に設けられた溝部11aについて図1及び図2を用いて以下で詳細に説明する。
(1.1: Configuration of groove)
The groove 11a provided on the bottom 11 of the positive electrode can 10 will be described in detail below with reference to FIGS.

正極缶10の底部11の内面には、該正極缶10の筒軸方向から見て、略円形状の溝部11aが形成されている。図1及び図2に示すように、溝部11aの断面形状は、略矩形状である。   A substantially circular groove portion 11 a is formed on the inner surface of the bottom portion 11 of the positive electrode can 10 when viewed from the cylinder axis direction of the positive electrode can 10. As shown in FIG.1 and FIG.2, the cross-sectional shape of the groove part 11a is a substantially rectangular shape.

また、溝部11aは、正極缶10の筒軸方向から見て、ガスケット30のベース部31よりも内側であって、かつ、正極材41よりも外側の領域に形成されている。このように、溝部11aを正極缶10の筒軸方向から見てガスケット30のベース部31よりも内側に形成することで、正極缶10の底部11の中央部分のみが変形を生じる一方、ガスケット30のベース部31が位置づけられる正極缶10の底部11の外周側はほとんど変形を生じない。これにより、高温環境下で正極缶10が変形した場合であっても、正極缶10と負極缶20との接続部分が緩むのを防止できる。よって、正極缶10が膨らんだ場合の封止性の低下を効果的に抑制できる。また、溝部11aが正極材41よりも外側の領域に形成されることで、正極缶10と正極材41とを安定して接触させることができる。したがって、溝部11aは、正極缶10の筒軸方向から見てガスケット30のベース部31よりも内側であって、かつ、正極材41よりも外側の領域に、形成されることが好ましい。   Further, the groove portion 11 a is formed in a region inside the base portion 31 of the gasket 30 and outside the positive electrode material 41 when viewed from the cylinder axis direction of the positive electrode can 10. Thus, by forming the groove portion 11a on the inner side of the base portion 31 of the gasket 30 when viewed from the cylinder axis direction of the positive electrode can 10, only the central portion of the bottom portion 11 of the positive electrode can 10 is deformed, while the gasket 30 is formed. The outer peripheral side of the bottom part 11 of the positive electrode can 10 where the base part 31 is positioned hardly deforms. Thereby, even if it is a case where the positive electrode can 10 deform | transforms in a high temperature environment, it can prevent that the connection part of the positive electrode can 10 and the negative electrode can 20 loosens. Therefore, it is possible to effectively suppress a decrease in sealing performance when the positive electrode can 10 swells. In addition, since the groove 11 a is formed in a region outside the positive electrode material 41, the positive electrode can 10 and the positive electrode material 41 can be stably brought into contact with each other. Therefore, the groove 11 a is preferably formed in a region inside the base portion 31 of the gasket 30 and outside the positive electrode material 41 when viewed from the cylinder axis direction of the positive electrode can 10.

特に、溝部11aの位置は、正極缶10の底部11の中心から該底部11の半径の0.75倍以上の位置が好ましい。この位置を、図1を用いて以下で説明する。   In particular, the position of the groove 11 a is preferably a position that is 0.75 times or more the radius of the bottom 11 from the center of the bottom 11 of the positive electrode can 10. This position will be described below with reference to FIG.

図1に示すように、断面視において、正極缶10の底部11の中心を通る筒軸を「P」(中心軸P、中心点P)とし、ガスケット30のベース部31の内周縁の位置を「Y」とし、正極缶10の底部11の外周縁の位置を「Z」とする。PZ間の距離をRとし、中心軸Pから(0.75R)の距離の位置を「X」とすると、溝部11aは、位置Xと位置Yとの間の領域に形成されるのが好ましい。図1の場合、溝部11aは、位置Yの近傍領域に形成されている。   As shown in FIG. 1, in a cross-sectional view, the cylinder axis passing through the center of the bottom portion 11 of the positive electrode can 10 is “P” (center axis P, center point P), and the position of the inner peripheral edge of the base portion 31 of the gasket 30 is It is assumed that “Y” and the position of the outer peripheral edge of the bottom 11 of the positive electrode can 10 is “Z”. When the distance between the PZs is R and the position at a distance of (0.75R) from the central axis P is “X”, the groove 11a is preferably formed in a region between the position X and the position Y. In the case of FIG. 1, the groove 11 a is formed in a region near the position Y.

溝部11aの幅は、例えば、正極缶10の底部11の直径が20mmの場合、0.1〜0.2mmである。   The width of the groove 11a is, for example, 0.1 to 0.2 mm when the diameter of the bottom 11 of the positive electrode can 10 is 20 mm.

溝部11aの深さは、正極缶10の厚みの半分以下が好ましい。溝部11aの深さが正極缶10の厚みの半分よりも大きくなると、正極缶10の膨れにより溝部11aの残肉部分が裂ける可能性がある。   The depth of the groove 11a is preferably equal to or less than half the thickness of the positive electrode can 10. If the depth of the groove 11a is larger than half the thickness of the positive electrode can 10, the remaining portion of the groove 11a may be torn due to the swelling of the positive electrode can 10.

(1.1.1:溝部の位置)
次に、溝部11aを、正極缶10の底部11の中心から底部11の半径の0.75倍以上の位置に形成することが好ましい点について、図3〜図6を用いて、説明する。なお、図3〜図6において、正極缶10の底部11の内面に溝部11aを設けた場合を内面溝といい、正極缶10の底部11の外面に溝部を設けた場合を外面溝という。
(1.1.1: Position of groove)
Next, it will be described with reference to FIGS. 3 to 6 that the groove 11a is preferably formed at a position not less than 0.75 times the radius of the bottom 11 from the center of the bottom 11 of the positive electrode can 10. 3 to 6, the case where the groove portion 11 a is provided on the inner surface of the bottom portion 11 of the positive electrode can 10 is referred to as an inner surface groove, and the case where the groove portion is provided on the outer surface of the bottom portion 11 of the positive electrode can 10 is referred to as an outer surface groove.

図3は、正極缶10の底部11の直径が20mmであり、正極缶10の底部11の厚みが0.2mmであり、溝部11aの溝幅が0.2mmである扁平形電池1において、扁平形電池1の内圧を1MPaとした場合(以下、「条件1」という。)の溝部11aの位置と封止部および中央部のたわみ量との関係を示すグラフである。   FIG. 3 shows a flat battery 1 in which the diameter of the bottom 11 of the positive electrode can 10 is 20 mm, the thickness of the bottom 11 of the positive electrode can 10 is 0.2 mm, and the groove width of the groove 11 a is 0.2 mm. 6 is a graph showing the relationship between the position of the groove 11a and the amount of deflection of the sealing part and the central part when the internal pressure of the battery 1 is 1 MPa (hereinafter referred to as “condition 1”).

図3において、破線の折れ線KS1で示すグラフ(菱形でプロットしたグラフ)は、溝部11aの位置と封止部のたわみ量との関係を示している。なお、「封止部のたわみ量」とは、図1のY点における正極缶10の筒軸方向の変形量である。つまり、「封止部のたわみ量」とは、変形のない状態の正極缶10のY点の位置と、正極缶10が変形した状態の正極缶のY点の位置との変位量である。また、「溝部11aの位置」は、正極缶10の中心点(図1のP点)から溝部11aの溝幅方向の中央までの距離である。   In FIG. 3, a graph indicated by a broken line KS1 (a graph plotted with rhombuses) indicates the relationship between the position of the groove 11a and the amount of deflection of the sealing portion. The “bending amount of the sealing portion” is the amount of deformation of the positive electrode can 10 in the cylinder axis direction at the point Y in FIG. That is, the “deflection amount of the sealing portion” is the amount of displacement between the position of the Y point of the positive electrode can 10 without deformation and the position of the Y point of the positive electrode can with the positive electrode can 10 deformed. The “position of the groove 11a” is a distance from the center point of the positive electrode can 10 (point P in FIG. 1) to the center of the groove 11a in the groove width direction.

図3において、実線の折れ線KC1で示すグラフ(正方形でプロットしたグラフ)は、溝部11aの位置と中央部のたわみ量との関係を示している。なお、「中央部のたわみ量」とは、図1のP点(中心軸Pの位置)における正極缶10の筒軸方向の変形量である。つまり、「中心部のたわみ量」とは、変形のない状態の正極缶10のP点の位置と、正極缶10が変形した状態の正極缶のP点の位置との変位量である。   In FIG. 3, a graph indicated by a solid broken line KC1 (a graph plotted by a square) indicates the relationship between the position of the groove 11a and the amount of deflection at the center. The “bending amount at the center” is the amount of deformation in the cylinder axis direction of the positive electrode can 10 at point P (position of the central axis P) in FIG. That is, the “bending amount of the central portion” is the amount of displacement between the position of the P point of the positive electrode can 10 without deformation and the position of the P point of the positive electrode can 10 with the positive electrode can 10 deformed.

なお、図3において、黒三角形で示した点(データ)は、正極缶10に溝部を設けない場合の封止部のたわみ量を示している。また、図3において、バツ印で示した点(データ)は、正極缶10に溝部を設けない場合の中央部のたわみ量を示している。   In FIG. 3, points (data) indicated by black triangles indicate the deflection amount of the sealing portion when the groove portion is not provided in the positive electrode can 10. In FIG. 3, points (data) indicated by crosses indicate the amount of deflection at the center when the positive electrode can 10 is not provided with a groove.

図3のグラフから分かるように、正極缶10の底部11に、溝部11aを中心点Pから7.5mm以上離れた位置に設けた場合、溝部11aを設けない場合(図3の黒三角形)に比べて、中央部のたわみ量は大きくなる。また、溝部11aを中心点Pから7.5mm以上離れた位置に設けた場合には、溝部11aを中心点Pから7.5mm未満の距離の位置に設けた場合に比べて、封止部のたわみ量は小さくなる。つまり、条件1の場合、溝部11aを、正極缶10の底部11の中心から該底部11の半径の75%以上離れた位置に設けることで、封止部の変形を抑制することができる。   As can be seen from the graph of FIG. 3, when the groove 11 a is provided at a position separated by 7.5 mm or more from the center point P at the bottom 11 of the positive electrode can 10, when the groove 11 a is not provided (black triangle in FIG. 3). In comparison, the amount of deflection at the center is increased. Further, when the groove portion 11a is provided at a position separated by 7.5 mm or more from the center point P, the sealing portion of the sealing portion is compared with the case where the groove portion 11a is provided at a position less than 7.5 mm from the center point P. The amount of deflection becomes smaller. In other words, in the case of Condition 1, the groove portion 11a is provided at a position that is separated from the center of the bottom portion 11 of the positive electrode can 10 by 75% or more of the radius of the bottom portion 11, whereby deformation of the sealing portion can be suppressed.

次に、条件1における正極缶10の底部11の厚みを変更した場合の溝部11aの位置と封止部および中央部のたわみ量との関係について、説明する。   Next, the relationship between the position of the groove portion 11a and the amount of deflection of the sealing portion and the central portion when the thickness of the bottom portion 11 of the positive electrode can 10 in Condition 1 is changed will be described.

図4は、正極缶10の底部11の厚みを0.3mmにした場合の溝部11aの位置と封止部および中央部のたわみ量との関係を示すグラフである。正極缶10の底部11の厚み以外の条件については、条件1と同じである(以下、この条件を「条件2」という。)。   FIG. 4 is a graph showing the relationship between the position of the groove 11a and the amount of deflection of the sealing part and the central part when the thickness of the bottom part 11 of the positive electrode can 10 is 0.3 mm. The conditions other than the thickness of the bottom 11 of the positive electrode can 10 are the same as the condition 1 (hereinafter, this condition is referred to as “condition 2”).

図4において、破線の折れ線KS2で示すグラフ(菱形でプロットしたグラフ)は、条件2における溝部11aの位置と封止部のたわみ量との関係を示している。なお、「封止部のたわみ量」および「溝部11aの位置」については、上記図3と同様の定義である。また、図4において、黒三角形で示した点(データ)およびバツ印で示した点(データ)も、上記図3で説明したものと同様である。また、図4において、実線の折れ線KC2で示すグラフ(正方形でプロットしたグラフ)は、条件2における溝部11aの位置と中央部のたわみ量との関係を示している。   In FIG. 4, a graph indicated by a broken line KS2 (a graph plotted with rhombuses) indicates the relationship between the position of the groove 11a and the amount of deflection of the sealing portion in Condition 2. The “deflection amount of the sealing portion” and the “position of the groove 11a” are the same definitions as those in FIG. In FIG. 4, the points (data) indicated by black triangles and the points (data) indicated by crosses are also the same as those described in FIG. Further, in FIG. 4, a graph indicated by a solid broken line KC2 (a graph plotted by a square) shows the relationship between the position of the groove 11a and the amount of deflection at the center in Condition 2.

図4のグラフから分かるように、正極缶10の底部11に、溝部11aを中心点Pから7.5mm以上離れた位置に設けた場合、溝部11aを設けない場合(図4の黒三角形)に比べて、中央部のたわみ量は大きくなる。また、溝部11aを中心点Pから7.5mm以上離れた位置に設けた場合には、溝部11aを中心点Pから7.5mm未満の距離の位置に設けた場合に比べて、封止部のたわみ量は小さくなる。条件2の場合、すなわち、正極缶10の底部11の厚みを変更した場合でも、溝部11aを、正極缶10の底部11の中心から該底部11の半径の75%以上離れた位置に設けることで、封止部の変形を抑制することができる。   As can be seen from the graph of FIG. 4, when the groove 11 a is provided at a position separated by 7.5 mm or more from the center point P at the bottom 11 of the positive electrode can 10, when the groove 11 a is not provided (black triangle in FIG. 4). In comparison, the amount of deflection at the center is increased. Further, when the groove portion 11a is provided at a position separated by 7.5 mm or more from the center point P, the sealing portion of the sealing portion is compared with the case where the groove portion 11a is provided at a position less than 7.5 mm from the center point P. The amount of deflection becomes smaller. In the case of condition 2, that is, even when the thickness of the bottom portion 11 of the positive electrode can 10 is changed, the groove portion 11a is provided at a position separated from the center of the bottom portion 11 of the positive electrode can 10 by 75% or more of the radius of the bottom portion 11. The deformation of the sealing part can be suppressed.

次に、条件2における正極缶10の外径を変更した場合の溝部11aの位置と封止部および中央部のたわみ量との関係について、説明する。   Next, the relationship between the position of the groove portion 11a and the amount of deflection at the sealing portion and the central portion when the outer diameter of the positive electrode can 10 is changed under Condition 2 will be described.

図5は、正極缶10の直径を24mmにした場合の溝部11aの位置と封止部および中央部のたわみ量との関係を示すグラフである。正極缶10の直径以外の条件については、条件2と同じである(以下、この条件を「条件3」という。)。   FIG. 5 is a graph showing the relationship between the position of the groove 11a and the amount of deflection of the sealing part and the central part when the diameter of the positive electrode can 10 is 24 mm. The conditions other than the diameter of the positive electrode can 10 are the same as the condition 2 (hereinafter, this condition is referred to as “condition 3”).

図5において、破線の折れ線KS3で示すグラフ(菱形でプロットしたグラフ)は、条件3における溝部11aの位置と封止部のたわみ量との関係を示している。なお、「封止部のたわみ量」および「溝部11aの位置」については、上記図3と同様の定義である。また、図5において、三角形で示した点(データ)およびバツ印で示した点(データ)についても、上記図3で説明したものと同様である。また、図5において、実線の折れ線KC3で示すグラフ(正方形でプロットしたグラフ)は、条件3における溝部11aの位置と中央部のたわみ量との関係を示している。   In FIG. 5, a graph indicated by a broken line KS3 (a graph plotted with rhombuses) indicates the relationship between the position of the groove 11a and the amount of deflection of the sealing portion in Condition 3. The “deflection amount of the sealing portion” and the “position of the groove 11a” are the same definitions as those in FIG. Further, in FIG. 5, the points (data) indicated by triangles and the points (data) indicated by crosses are the same as those described in FIG. In FIG. 5, a graph indicated by a solid broken line KC3 (a graph plotted by a square) shows the relationship between the position of the groove 11a and the amount of deflection at the center in Condition 3.

なお、図5において、横軸に括弧で示した数値は、正極缶10の半径に対する比率である。   In FIG. 5, the numerical value indicated in parentheses on the horizontal axis is the ratio to the radius of the positive electrode can 10.

図5のグラフから分かるように、正極缶10の底部11に、溝部11aを中心点Pから9mm以上離れた位置(正極缶10の底部11の中心から底部11の半径の75%離れた位置)に設けた場合、溝部11aを設けない場合に比べて、中央部のたわみ量は大きくなる。また、溝部11aを中心点Pから9mm以上離れた位置に設けた場合には、溝部11aを中心点Pから9mm未満の位置に設けた場合に比べて、封止部のたわみ量は小さくなる。条件3の場合、すなわち、正極缶10の外径を変更した場合でも、溝部11aを、正極缶10の底部11の中心から該底部11の半径の75%以上離れた位置に設けることで、封止部の変形を抑制することができる。   As can be seen from the graph of FIG. 5, a position where the groove 11 a is 9 mm or more away from the center point P at the bottom 11 of the positive electrode can 10 (a position 75% away from the center of the bottom 11 of the positive electrode can 10). In the case where the groove portion 11a is not provided, the amount of deflection at the center portion is larger than in the case where the groove portion 11a is not provided. Further, when the groove 11a is provided at a position 9 mm or more away from the center point P, the amount of deflection of the sealing portion is smaller than when the groove 11a is provided at a position less than 9 mm from the center point P. In the case of condition 3, that is, even when the outer diameter of the positive electrode can 10 is changed, the groove portion 11a is provided at a position separated from the center of the bottom portion 11 of the positive electrode can 10 by 75% or more of the radius of the bottom portion 11, thereby Deformation of the stop can be suppressed.

ここで、参考のため、正極缶10の底部11の外面に溝部を設けた場合における溝部の位置と封止部および中央部のたわみ量との関係について、図6を用いて説明する。さらに、封止部のたわみ量について、(1)正極缶10の底部11の外面に溝部を設けた場合、(2)正極缶10の底部11の内面に溝部11aを設けた場合、および、(3)正極缶の底部の外周側に段差を設けた構造の正極缶(以下、「段付正極缶」という。)を用いた場合について、比較する。図6において、破線の折れ線KS4で示すグラフ(菱形でプロットしたグラフ)は、正極缶10の底部11の外面に溝部を設けた場合における溝部の位置と封止部のたわみ量との関係を示している。なお、「封止部のたわみ量」および「溝部11aの位置」については、上記図3と同様の定義である。また、図6において、実線の折れ線KC4で示すグラフ(正方形でプロットしたグラフ)は、正極缶10の底部11の外面に溝部を設けた場合における溝部の位置と中央部のたわみ量との関係を示している。   Here, for reference, the relationship between the position of the groove portion and the amount of deflection of the sealing portion and the central portion when the groove portion is provided on the outer surface of the bottom portion 11 of the positive electrode can 10 will be described with reference to FIG. Further, regarding the amount of deflection of the sealing portion, (1) when a groove portion is provided on the outer surface of the bottom portion 11 of the positive electrode can 10, (2) when a groove portion 11a is provided on the inner surface of the bottom portion 11 of the positive electrode can 10, and ( 3) A case where a positive electrode can having a structure in which a step is provided on the outer peripheral side of the bottom portion of the positive electrode can (hereinafter referred to as “stepped positive electrode can”) is compared. In FIG. 6, a graph indicated by a broken line KS4 (a graph plotted with rhombuses) shows a relationship between the position of the groove and the amount of deflection of the sealing portion when the groove is provided on the outer surface of the bottom 11 of the positive electrode can 10. ing. The “deflection amount of the sealing portion” and the “position of the groove 11a” are the same definitions as those in FIG. In addition, in FIG. 6, a graph indicated by a solid broken line KC4 (a graph plotted by a square) shows the relationship between the position of the groove and the amount of deflection at the center when the groove is provided on the outer surface of the bottom 11 of the positive electrode can 10. Show.

図6は、溝部が正極缶10の底部11の外面に設けられた扁平形電池において、上記条件1と同一条件における溝部の位置と封止部および中央部のたわみ量との関係を示すグラフである。   FIG. 6 is a graph showing the relationship between the position of the groove and the amount of deflection of the sealing part and the central part under the same conditions as in the above condition 1 in the flat battery in which the groove is provided on the outer surface of the bottom 11 of the positive electrode can 10. is there.

また、図6の点PS1は、正極缶10の底部11の内面に、底部11の中心から8.75mmの位置に溝部11aを設けた場合の封止部のたわみ量を示す。   Further, a point PS1 in FIG. 6 indicates a deflection amount of the sealing portion when the groove portion 11a is provided on the inner surface of the bottom portion 11 of the positive electrode can 10 at a position of 8.75 mm from the center of the bottom portion 11.

また、図6の点PS5は、正極缶10の底部11の外面に底部11の中心から8.75mmの位置に溝部11aを設けた場合の封止部のたわみ量を示す点である。   Further, a point PS5 in FIG. 6 is a point indicating a deflection amount of the sealing portion when the groove portion 11a is provided on the outer surface of the bottom portion 11 of the positive electrode can 10 at a position of 8.75 mm from the center of the bottom portion 11.

また、図6の点PS6は、段付正極缶の内圧を1MPaとした場合の該段付正極缶の封止部のたわみ量を示す点である。なお、段付正極缶は、底部の外径が約20mmであり、底部に段差を形成するように突出した突出部分の外径が約17mmである。また、段付正極缶の突出量(段差)は、約0.4mmである。つまり、段付正極缶の底部の突出部分は、該底部の外周側に対して、約0.4mm突出している。   Further, a point PS6 in FIG. 6 is a point indicating the amount of deflection of the sealing portion of the stepped positive electrode can when the internal pressure of the stepped positive electrode can is 1 MPa. In addition, the stepped positive electrode can has an outer diameter of about 20 mm at the bottom, and an outer diameter of a protruding portion that protrudes so as to form a step at the bottom. Further, the protruding amount (step) of the stepped positive electrode can is about 0.4 mm. That is, the protruding portion at the bottom of the stepped positive electrode can protrudes about 0.4 mm from the outer peripheral side of the bottom.

また、図6において、三角形で示した点(データ)およびバツ印で示した点(データ)は、上記図3で説明したものと同様である。   In FIG. 6, the points (data) indicated by triangles and the points (data) indicated by crosses are the same as those described in FIG.

図6のグラフから、点PS1(正極缶10の底部11の内面に溝部11aを設けた場合)における封止部のたわみ量が点PS5(正極缶10の底部11の外面に溝部を設けた場合)に比べてかなり小さいことが分かる。つまり、正極缶10の底部11の内面に溝部11aを設けた場合、正極缶10の外面に溝部を設けた場合に比べて封止部のたわみ量を小さくできる。さらに、図6から、点PS1(内面溝の場合)における封止部のたわみ量は、点PS6(段付缶の場合)における封止部のたわみ量と同等であることが分かる。   From the graph of FIG. 6, the deflection amount of the sealing portion at the point PS1 (when the groove portion 11a is provided on the inner surface of the bottom portion 11 of the positive electrode can 10) is the point PS5 (when the groove portion is provided on the outer surface of the bottom portion 11 of the positive electrode can 10). You can see that it is considerably smaller than). That is, when the groove portion 11 a is provided on the inner surface of the bottom portion 11 of the positive electrode can 10, the deflection amount of the sealing portion can be reduced as compared with the case where the groove portion is provided on the outer surface of the positive electrode can 10. Furthermore, it can be seen from FIG. 6 that the amount of deflection of the sealing portion at the point PS1 (in the case of the inner surface groove) is equivalent to the amount of deflection of the sealing portion at the point PS6 (in the case of the stepped can).

つまり、正極缶10の底部11の内面に溝部11aを設けることで、封止部のたわみ量を、正極缶10の外面に溝部を設ける場合に比べて小さくして、段付缶と同等のレベルにまで抑制できる。   That is, by providing the groove portion 11a on the inner surface of the bottom portion 11 of the positive electrode can 10, the amount of deflection of the sealing portion is reduced compared to the case where the groove portion is provided on the outer surface of the positive electrode can 10, and the level is equivalent to that of the stepped can. Can be suppressed.

以上の通り、図3〜図6から分かるように、扁平形電池1の正極缶10の底部11の内面において、溝部11aを、正極缶10の底部11の中心から底部11の半径の0.75倍以上の位置に形成することで、封止部のたわみ量は抑制されるが、中央部のたわみ量は、大きくなる。   As described above, as can be seen from FIG. 3 to FIG. 6, on the inner surface of the bottom portion 11 of the positive electrode can 10 of the flat battery 1, the groove portion 11 a is 0.75 of the radius of the bottom portion 11 from the center of the bottom portion 11 of the positive electrode can 10. By forming at a position more than double, the deflection amount of the sealing portion is suppressed, but the deflection amount of the central portion is increased.

次に、図7および図8を用いて、溝部を正極缶10の底部11の内面に設ける場合と、溝部を正極缶10の底部11の外面に設ける場合とにおける正極缶10の底部11の変形の違いについて、説明する。   Next, using FIG. 7 and FIG. 8, deformation of the bottom 11 of the positive electrode can 10 when the groove is provided on the inner surface of the bottom 11 of the positive electrode can 10 and when the groove is provided on the outer surface of the bottom 11 of the positive electrode can 10. The difference will be explained.

図7は、扁平形電池1の内圧を高くした場合(例えば、扁平形電池1の内圧を1MPaにした場合)において、正極缶10の底部11の一部(図1の位置P〜位置Zまでの領域)の変形状態を示した図である。具体的には、図7(a)は、正極缶10の底部11の内面に溝部11aを設けた構成の正極缶10の底部11の一部(図1の位置P〜位置Zまでの領域)の変形状態を、図7(b)は、正極缶10の底部11の外面に溝部11bを設けた構成の正極缶10の底部11の一部(図1の位置P〜位置Zまでの領域)の変形状態を、それぞれ示している。   FIG. 7 shows a part of the bottom 11 of the positive electrode can 10 (from position P to position Z in FIG. 1) when the internal pressure of the flat battery 1 is increased (for example, when the internal pressure of the flat battery 1 is 1 MPa). It is the figure which showed the deformation | transformation state of (region). Specifically, FIG. 7A shows a part of the bottom 11 of the positive electrode can 10 having a configuration in which the groove 11a is provided on the inner surface of the bottom 11 of the positive electrode can 10 (region from position P to position Z in FIG. 1). 7B shows a part of the bottom 11 of the positive electrode can 10 having a structure in which the groove 11b is provided on the outer surface of the bottom 11 of the positive electrode can 10 (region from position P to position Z in FIG. 1). Each of the deformation states is shown.

また、図8(a)、(b)に、扁平形電池1の内圧を高くした場合(例えば、扁平形電池1の内圧を1MPaにした場合)に、正極缶10の底部11において応力が高い部分(破線)を示す。   8A and 8B, when the internal pressure of the flat battery 1 is increased (for example, when the internal pressure of the flat battery 1 is 1 MPa), the stress is high at the bottom 11 of the positive electrode can 10. A part (broken line) is shown.

なお、図7および図8における2点鎖線は、変形前の底部11の内面および外面の位置を示す。   7 and 8 indicate the positions of the inner surface and the outer surface of the bottom portion 11 before deformation.

図7(a)、(b)から分かるように、図7(a)の場合の中心部のたわみ量C1は、図7(b)の場合の中心部のたわみ量C2とほぼ同等であるが、図7(a)の場合の封止部のたわみ量S1は、図7(b)の場合の封止部のたわみ量S2に比べて、かなり小さい。つまり、正極缶10の底部11の内面に溝部11aを設けた場合には、扁平形電池1の底部11の外側に溝部11bを設けた場合に比べて、封止部のたわみ量をかなり小さくすることができる。   As can be seen from FIGS. 7A and 7B, the deflection amount C1 at the center in the case of FIG. 7A is substantially equal to the deflection amount C2 at the center in the case of FIG. 7B. The deflection amount S1 of the sealing portion in the case of FIG. 7 (a) is considerably smaller than the deflection amount S2 of the sealing portion in the case of FIG. 7 (b). That is, when the groove portion 11 a is provided on the inner surface of the bottom portion 11 of the positive electrode can 10, the deflection amount of the sealing portion is considerably reduced as compared with the case where the groove portion 11 b is provided outside the bottom portion 11 of the flat battery 1. be able to.

このような変形の違いは、以下の理由によるものと考えられる。正極缶10の底部11の内面に溝部11aが形成されている場合、扁平形電池1の内圧が高くなると、正極缶10の底部11は、溝部11aの開口部が開く方向に変形を生じやすい。そのため、正極缶10の底部11において、溝部11aよりも外側の部分の変形量は抑制される。一方、底部11において、溝部11aよりも内側の部分の変形量は大きくなる。このことは、図8(a)に示すように、扁平形電池1の内圧を高くした場合、溝部11aの内側の領域AR1に、応力が高い領域が存在することからも裏付けされる。   Such a difference in deformation is considered to be due to the following reason. When the groove part 11a is formed in the inner surface of the bottom part 11 of the positive electrode can 10, if the internal pressure of the flat battery 1 becomes high, the bottom part 11 of the positive electrode can 10 is easily deformed in the direction in which the opening part of the groove part 11a opens. Therefore, in the bottom 11 of the positive electrode can 10, the deformation amount of the portion outside the groove 11a is suppressed. On the other hand, in the bottom part 11, the deformation amount of the part inside the groove part 11a becomes large. As shown in FIG. 8A, this is supported by the fact that when the internal pressure of the flat battery 1 is increased, a region having a high stress exists in the region AR1 inside the groove 11a.

一方、正極缶10の底部11の外面に溝部11bが形成されている場合、扁平形電池1の内圧が高くなると、正極缶10の底部11は、溝部11bの開口部が閉じる方向に変形を生じやすい。そのため、底部11の内面の溝部11bの残肉部分の領域全体が変形する。その結果、底部11において、溝部11bよりも外側の部分の変形量を抑制することができない。このことは、図8(b)に示すように、扁平形電池1の内圧を高くした場合、正極缶10の底部11において溝部11aよりも内面側の領域AR2に、応力が高い領域が存在することからも明らかである。   On the other hand, when the groove part 11b is formed in the outer surface of the bottom part 11 of the positive electrode can 10, if the internal pressure of the flat battery 1 becomes high, the bottom part 11 of the positive electrode can 10 will deform | transform in the direction which the opening part of the groove part 11b closes. Cheap. Therefore, the entire region of the remaining portion of the groove 11b on the inner surface of the bottom 11 is deformed. As a result, in the bottom part 11, the deformation amount of the part outside the groove part 11b cannot be suppressed. As shown in FIG. 8B, when the internal pressure of the flat battery 1 is increased, there is a region where stress is high in the region AR <b> 2 on the inner surface side of the groove portion 11 a in the bottom portion 11 of the positive electrode can 10. It is clear from that.

(1.1.2:溝部の幅)
図9を用いて、溝部11aの幅と、中央部のたわみ量および封止部のたわみ量との関係について、説明する。
(1.1.2: Groove width)
The relationship between the width of the groove 11a, the amount of deflection at the center and the amount of deflection of the sealing portion will be described with reference to FIG.

図9は、正極缶10の底部11の直径が20mmであり、正極缶10の底部11の厚みが0.2mmであり、溝部11aの位置が正極缶10の中心から8.7mmの位置である扁平形電池1において、扁平形電池1の内圧を1MPaとした場合(以下、「条件5」という。)の溝部11aの幅と封止部および中央部のたわみ量との関係を示すグラフである。なお、「封止部のたわみ量」および「中央部のたわみ量」については、上記図3と同様の定義である。   In FIG. 9, the diameter of the bottom 11 of the positive electrode can 10 is 20 mm, the thickness of the bottom 11 of the positive electrode can 10 is 0.2 mm, and the position of the groove 11 a is 8.7 mm from the center of the positive electrode can 10. In the flat battery 1, it is a graph which shows the relationship between the width | variety of the groove part 11a, and the deflection amount of a sealing part and a center part when the internal pressure of the flat battery 1 is 1 MPa (henceforth "condition 5"). . The “deflection amount of the sealing portion” and the “deflection amount of the central portion” are the same definitions as those in FIG.

図9において、折れ線KC5で示すグラフ(正方形でプロットしたグラフ)は、条件5における溝部11aの幅(溝幅)と中央部のたわみ量との関係を示している。   In FIG. 9, a graph indicated by a broken line KC5 (a graph plotted as a square) shows the relationship between the width (groove width) of the groove 11a and the amount of deflection at the center in Condition 5.

図9から分かるように、溝部11aの溝幅が大きくなる程、封止部のたわみ量が小さくなり、かつ、中央部のたわみ量が大きくなる傾向にある。   As can be seen from FIG. 9, as the groove width of the groove 11a increases, the amount of deflection of the sealing portion tends to decrease and the amount of deflection of the central portion tends to increase.

以上のような構成の溝部11aを、正極缶10の底部11の底部11の内面に設けることで、高温環境下での扁平形電池1の使用によって、扁平形電池1の内圧が高くなった場合でも、中央部のたわみ量は大きくなるが、封止部の変形量を抑制できる。これにより、溝部11aよりも外側の領域(封止部)は大きく変形しないため、正極缶10の周壁部12における負極缶20の段部22cとの接続部分が変形するのを効果的に防止することができる。したがって、上述の構成により、高温環境下で扁平形電池1を使用した場合に、正極缶10と負極缶20との接続部分が緩むのを効果的に防止することができる。   When the groove 11a having the above configuration is provided on the inner surface of the bottom 11 of the bottom 11 of the positive electrode can 10, the use of the flat battery 1 under a high temperature environment increases the internal pressure of the flat battery 1. However, although the amount of deflection at the center increases, the amount of deformation of the sealing portion can be suppressed. Thereby, since the area | region (sealing part) outside the groove part 11a does not deform | transform large, it is effectively prevented that the connection part with the step part 22c of the negative electrode can 20 in the surrounding wall part 12 of the positive electrode can 10 deform | transforms. be able to. Therefore, with the above-described configuration, when the flat battery 1 is used in a high temperature environment, it is possible to effectively prevent the connection portion between the positive electrode can 10 and the negative electrode can 20 from being loosened.

<2:扁平形電池の製造方法>
次に、扁平形電池1の製造方法を、図10から図12を用いて説明する。なお、扁平形電池1を組み立てる際は、図10から図12に示すように、図1の状態とは上下逆の状態で組み立て作業を行う。
<2: Manufacturing method of flat battery>
Next, a method for manufacturing the flat battery 1 will be described with reference to FIGS. When assembling the flat battery 1, as shown in FIGS. 10 to 12, the assembling work is performed upside down from the state of FIG. 1.

ステップ1では、正極缶10の底部11の内面に、底部11の中心から該底部11の半径の75%以上離れた位置(図1の位置Xより外側の領域)であって、かつ、ガスケット30のベース部31(正極缶10側の接触面)よりも内側の領域(図1の位置Yより内側の領域)に、溝部11aを形成する。なお、負極缶の底部11が円形である場合、溝部11aは、円環状に形成することが好ましい。また、溝部11aは、楕円状に形成する、あるいは、円環状または楕円状に破線になるように形成してもよい。   In Step 1, the gasket 30 is located on the inner surface of the bottom 11 of the positive electrode can 10 at a position 75% or more away from the center of the bottom 11 (the region outside the position X in FIG. 1) and more than 75% of the radius of the bottom 11. The groove portion 11a is formed in a region inside the base portion 31 (contact surface on the side of the positive electrode can 10) (region inside the position Y in FIG. 1). In addition, when the bottom part 11 of a negative electrode can is circular, it is preferable to form the groove part 11a in a ring shape. Moreover, you may form the groove part 11a so that it may become an ellipse shape, or it may become an annular | circular shape or an elliptical shape with a broken line.

なお、溝部11aを形成するタイミングは、例えば、周壁部12を形成した後であってもよいし、また、周壁部12を形成する前であってもよい。   In addition, the timing which forms the groove part 11a may be after forming the surrounding wall part 12, for example, and may be before forming the surrounding wall part 12. FIG.

ステップ2では、図10に示すように、負極缶20を平面部21が底面になるように配置し、該負極缶20の周壁部22の開口端部にガスケット30を装着する。   In step 2, as shown in FIG. 10, the negative electrode can 20 is disposed such that the flat surface portion 21 is the bottom surface, and the gasket 30 is attached to the open end of the peripheral wall portion 22 of the negative electrode can 20.

ステップ3では、負極缶20の内面に負極材42を導電性接着剤等で固定した後、該負極材42の上にセパレータ43及び正極材41を重ねて配置する(図11参照)。   In Step 3, after the negative electrode material 42 is fixed to the inner surface of the negative electrode can 20 with a conductive adhesive or the like, the separator 43 and the positive electrode material 41 are disposed on the negative electrode material 42 (see FIG. 11).

ステップ4では、負極缶20内に非水電解液を注入し、該負極缶20に対して正極缶10を被せる(図12参照)。このとき、負極缶20の周壁部22と正極缶10の周壁部12との間にガスケット30を挟みこんだ状態で、該周壁部12の開口端側を、負極缶20の段部22cを覆うように正極缶10の内側に折り曲げてかしめる。これにより、ガスケット30は、正極缶10の周壁部12と負極缶20の周壁部22との間に挟みこまれた状態となる。   In step 4, a non-aqueous electrolyte is injected into the negative electrode can 20, and the negative electrode can 20 is covered with the positive electrode can 10 (see FIG. 12). At this time, with the gasket 30 sandwiched between the peripheral wall portion 22 of the negative electrode can 20 and the peripheral wall portion 12 of the positive electrode can 10, the open end side of the peripheral wall portion 12 is covered with the step portion 22 c of the negative electrode can 20. As shown in FIG. As a result, the gasket 30 is sandwiched between the peripheral wall portion 12 of the positive electrode can 10 and the peripheral wall portion 22 of the negative electrode can 20.

すなわち、上述のような製造方法によって、ガスケット30は、外筒壁32が負極缶20の段部22cと正極缶10の周壁部12の開口端側との間に挟みこまれる。また、ベース部31も負極缶20の周壁部22の開口端と正極缶10の底部11との間に挟みこまれる。   In other words, the outer cylindrical wall 32 of the gasket 30 is sandwiched between the step portion 22 c of the negative electrode can 20 and the open end side of the peripheral wall portion 12 of the positive electrode can 10 by the manufacturing method as described above. Further, the base portion 31 is also sandwiched between the open end of the peripheral wall portion 22 of the negative electrode can 20 and the bottom portion 11 of the positive electrode can 10.

以上により、図1に示すような構成の扁平形電池1が得られる。   As described above, the flat battery 1 having the configuration as shown in FIG. 1 is obtained.

なお、ステップ1は、ステップ4において正極缶10を負極缶20に被せる作業よりも前であれば、どのタイミングで実行してもよい。   Note that step 1 may be executed at any timing as long as it is prior to the operation of covering positive electrode can 10 on negative electrode can 20 in step 4.

≪第1実施形態の効果≫
以上の構成を有する扁平形電池1では、正極缶10の底部11の内面に溝部11aを設けることにより、高温環境下で、該底部11の溝部11aよりも内側が大きく変形する一方、該底部11の溝部11aよりも外側はほとんど変形を生じない。これにより、負極缶20の周壁部22の段部22cにかしめられる正極缶10の周壁部12もほとんど変形を生じない。このため、扁平形電池1では、正極缶10と負極缶20とのかしめ部分が緩むのを防止できる。よって、上述の構成により、高温環境下でも扁平形電池1内の非水電解液が漏れないような構成を実現できる。
<< Effects of First Embodiment >>
In the flat battery 1 having the above configuration, by providing the groove portion 11a on the inner surface of the bottom portion 11 of the positive electrode can 10, the inside of the bottom portion 11 is greatly deformed in the high temperature environment while the bottom portion 11 is deformed. The outer side of the groove 11a hardly deforms. Accordingly, the peripheral wall portion 12 of the positive electrode can 10 that is caulked to the step portion 22 c of the peripheral wall portion 22 of the negative electrode can 20 hardly deforms. For this reason, in the flat battery 1, it can prevent that the caulking part of the positive electrode can 10 and the negative electrode can 20 loosens. Therefore, the above-described configuration can realize a configuration in which the nonaqueous electrolyte solution in the flat battery 1 does not leak even under a high temperature environment.

しかも、上述の構成により、従来構成のように正極缶の底部を段状に形成する必要がなくなるため、その分、扁平形電池1の高さ(厚み)を小さくすることができる。   In addition, the above-described configuration eliminates the need to form the bottom of the positive electrode can in a step shape as in the conventional configuration, and accordingly, the height (thickness) of the flat battery 1 can be reduced.

また、溝部11aを、正極缶10の底部11の内面に、正極缶10の筒軸方向から見てガスケット30のベース部31よりも内側であって、かつ、正極材41よりも外側の領域に形成する。これにより、正極缶10が膨らんだ場合の封止性能の低下を効果的に抑制できる。また、溝部11aを正極材41よりも外側の領域に形成することで、正極缶10と正極材41とを安定して電気的に接触させることができる。なお、正極リングのフランジ部44bをガスケット30のベース部31と正極缶10の底部11との間に挟み込むことによって、正極缶10と正極材41とをより安定して電気的に接触させることができる   Further, the groove portion 11 a is formed on the inner surface of the bottom portion 11 of the positive electrode can 10 on the inner side of the base portion 31 of the gasket 30 when viewed from the cylinder axis direction of the positive electrode can 10 and on the outer side of the positive electrode material 41. Form. Thereby, the fall of the sealing performance when the positive electrode can 10 swells can be suppressed effectively. In addition, by forming the groove 11 a in a region outside the positive electrode material 41, the positive electrode can 10 and the positive electrode material 41 can be stably brought into electrical contact. In addition, the positive electrode can 10 and the positive electrode material 41 can be more stably brought into electrical contact by sandwiching the flange portion 44b of the positive electrode ring between the base portion 31 of the gasket 30 and the bottom portion 11 of the positive electrode can 10. it can

さらに、溝部11aを、正極缶10の底部11の中心から底部11の半径の0.75倍以上の位置に形成することで、正極缶10が膨らんだ場合の封止性の低下を効果的に抑制できる。   Furthermore, by forming the groove 11a at a position not less than 0.75 times the radius of the bottom 11 from the center of the bottom 11 of the positive electrode can 10, it is possible to effectively reduce the sealing performance when the positive electrode can 10 swells. Can be suppressed.

[他の実施形態]
以上、本発明の実施形態を説明したが、上述した実施形態は本発明を実施するための例示に過ぎない。よって、本発明は上述した実施形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。
[Other Embodiments]
As mentioned above, although embodiment of this invention was described, embodiment mentioned above is only the illustration for implementing this invention. Therefore, the present invention is not limited to the above-described embodiment, and can be implemented by appropriately modifying the above-described embodiment without departing from the spirit thereof.

上記実施形態では、溝部11aを、正極缶10の底部11の内面において、ガスケット30のベース部31よりも内側であって、かつ、正極材41よりも外側の領域に形成している。しかしながら、溝部11aを、正極材41よりも外側の位置であればどこに設けてもよい。なお、溝部11aを、正極缶10の筒軸方向から見て、負極缶20の拡径部22bよりも内側、すなわち負極缶20の周壁部22よりも内側に形成するのが好ましい。これにより、負極缶20と正極缶10との間で封止性が低下するのを防止できる。すなわち、溝部が負極缶20の拡径部22bよりも外側に位置していると、正極缶10の底部11が溝部よりも内側で変形した際に、該正極缶10と負極缶20の拡径部22bとの間に隙間が生じる。これに対し、上述のように、溝部11aを、負極缶20の拡径部22bよりも内側に形成することで、正極缶10の底部11の変形によって該正極缶10と負極缶20との封止性が影響を受けることを防止できる。   In the above embodiment, the groove 11 a is formed in the inner surface of the bottom 11 of the positive electrode can 10 in the region inside the base portion 31 of the gasket 30 and outside the positive electrode material 41. However, the groove 11 a may be provided anywhere as long as it is located outside the positive electrode material 41. In addition, it is preferable to form the groove part 11a inside the diameter-enlarged part 22b of the negative electrode can 20, that is, inside the peripheral wall part 22 of the negative electrode can 20, as viewed from the cylinder axis direction of the positive electrode can 10. Thereby, it can prevent that sealing performance falls between the negative electrode can 20 and the positive electrode can 10. That is, when the groove portion is located outside the enlarged diameter portion 22b of the negative electrode can 20, when the bottom portion 11 of the positive electrode can 10 is deformed inside the groove portion, the diameter of the positive electrode can 10 and the negative electrode can 20 is increased. A gap is generated between the portion 22b. On the other hand, as described above, the groove portion 11a is formed on the inner side of the enlarged diameter portion 22b of the negative electrode can 20, so that the positive electrode can 10 and the negative electrode can 20 are sealed by deformation of the bottom portion 11 of the positive electrode can 10. The stopping property can be prevented from being affected.

上記実施形態では、溝部11aを、正極缶10の底部11の内面に、正極缶10の筒軸方向から見て略円形状に形成しているが、この限りではなく、溝部を略円形状以外の形状に形成してもよい。   In the above embodiment, the groove portion 11a is formed in a substantially circular shape on the inner surface of the bottom portion 11 of the positive electrode can 10 when viewed from the cylinder axis direction of the positive electrode can 10, but this is not restrictive, and the groove portion is not substantially circular. You may form in this shape.

上記実施形態では、正極材41を正極リング44によって保持している。しかしながら、正極リング44を設けずに、正極材41を正極缶10内に直接、配置してもよい。   In the above embodiment, the positive electrode material 41 is held by the positive electrode ring 44. However, the positive electrode material 41 may be disposed directly in the positive electrode can 10 without providing the positive electrode ring 44.

上記各実施形態では、ガスケット30を、正極缶10及び負極缶20とは別部材として形成している。しかしながら、ガスケット30を負極缶20にモールド成形してもよい。   In the above embodiments, the gasket 30 is formed as a separate member from the positive electrode can 10 and the negative electrode can 20. However, the gasket 30 may be molded into the negative electrode can 20.

上記実施形態では、正極材41の正極活物質として二酸化マンガンを含有した材料を用いていて、負極材42の負極活物質として金属リチウムまたはリチウム合金を用いている。しかしながら、正極活物質または負極活物質として機能する材料であれば、これ以外のものを正極材41及び負極材42として用いてもよい。   In the above embodiment, a material containing manganese dioxide is used as the positive electrode active material of the positive electrode material 41, and metallic lithium or a lithium alloy is used as the negative electrode active material of the negative electrode material 42. However, any other material that functions as a positive electrode active material or a negative electrode active material may be used as the positive electrode material 41 and the negative electrode material 42.

上記実施形態では、正極缶10を外装缶としていて、負極缶20を封口缶としているが、逆に正極缶が封口缶で、負極缶が外装缶であってもよい。   In the above embodiment, the positive electrode can 10 is used as an outer can and the negative electrode can 20 is used as a sealed can. Conversely, the positive electrode can may be a sealed can and the negative electrode can may be an outer can.

上記実施形態では、正極缶10の底部11の内面に形成する溝部11aの断面が略矩形状である場合について説明した。しかしながら、溝部11aの断面の形状は、これに限定されることはない。例えば、図13に示すように、半円と矩形とを組み合わせたような断面を有する溝部111aを、底部11に形成してもよい。また、図14や図15に示すように、三角形状の断面を有する溝部112aや矩形状の断面を有する溝部113aを、正極缶10の底部11に形成してもよい。なお、溝部の断面形状としては、応力集中を考慮すると、図14に示す三角形状の断面よりも図15に示す矩形状の断面の方が好ましい。また、これらの溝部111a〜113aの深さt1も、上記実施形態と同様、正極缶10の厚みの半分以下であることが好ましい。また、溝部111a〜113aも、上記実施形態と同様、正極缶10の底部11の内面において、正極缶10の筒軸方向から見てガスケット30のベース部31よりも内側であって、かつ、正極材41よりも外側の領域に形成されることが好ましい。   In the above embodiment, the case where the cross section of the groove portion 11a formed on the inner surface of the bottom portion 11 of the positive electrode can 10 is substantially rectangular has been described. However, the shape of the cross section of the groove 11a is not limited to this. For example, as shown in FIG. 13, a groove 111 a having a cross section that combines a semicircle and a rectangle may be formed in the bottom 11. Further, as shown in FIGS. 14 and 15, a groove portion 112 a having a triangular cross section or a groove portion 113 a having a rectangular cross section may be formed in the bottom portion 11 of the positive electrode can 10. Note that the cross-sectional shape of the groove portion is preferably the rectangular cross-section shown in FIG. 15 rather than the triangular cross-section shown in FIG. 14 in consideration of stress concentration. Moreover, it is preferable that the depth t1 of these groove parts 111a-113a is also below half of the thickness of the positive electrode can 10 similarly to the said embodiment. Similarly to the above-described embodiment, the grooves 111 a to 113 a are also on the inner surface of the bottom 11 of the positive electrode can 10, inside the base portion 31 of the gasket 30 as viewed from the cylinder axis direction of the positive electrode can 10, and It is preferably formed in a region outside the material 41.

また、上記実施形態における扁平形電池の製造方法の実行順序は、必ずしも、上記実施形態の記載に制限されるものではなく、発明の要旨を逸脱しない範囲で、実行順序を入れ替えることができるものである。   Moreover, the execution order of the manufacturing method of the flat battery in the said embodiment is not necessarily restrict | limited to description of the said embodiment, and can change an execution order in the range which does not deviate from the summary of invention. is there.

本発明による扁平形電池は、高温環境下で使用される機器の電池として利用可能である。   The flat battery according to the present invention can be used as a battery for equipment used in a high temperature environment.

1:扁平形電池、10:正極缶(外装缶)、11:底部、11a、111a、112a、113a:溝部、12:周壁部(外装缶側壁部)、20:負極缶(封口缶)、21:平面部、22:周壁部(封口缶側壁部)、30:ガスケット、31:ベース部、32:外筒壁、40:発電要素、41:正極材(電極材)、P:筒軸 1: flat battery, 10: positive electrode can (exterior can), 11: bottom, 11a, 111a, 112a, 113a: groove, 12: peripheral wall (external can side wall), 20: negative electrode can (sealing can), 21 : Plane part, 22: Peripheral wall part (sealing can side wall part), 30: Gasket, 31: Base part, 32: Outer cylinder wall, 40: Power generation element, 41: Positive electrode material (electrode material), P: Cylinder shaft

Claims (6)

筒軸方向に延びる筒状の外装缶側壁部と該外装缶側壁部の一端側を覆う底部とを有する有底筒状の外装缶と、
前記筒軸方向に延びる筒状の封口缶側壁部を有し、前記外装缶の開口を覆うように配置されるとともに、前記封口缶側壁部が前記外装缶側壁部に接続される封口缶と、
前記外装缶と前記封口缶とによって形成される空間内に配置される電極材と、
を備え、
前記外装缶の底部の内面には、溝部が形成されていて、
前記溝部は、前記筒軸方向から見て前記電極材よりも外側に形成されている、
扁平形電池。
A bottomed cylindrical outer can having a cylindrical outer can side wall extending in the cylinder axis direction and a bottom covering one end of the outer can side wall;
A sealing can having a cylindrical sealing can side wall extending in the cylinder axis direction, arranged to cover the opening of the outer can, and the sealing can side wall being connected to the outer can side wall,
An electrode material disposed in a space formed by the outer can and the sealed can;
With
On the inner surface of the bottom of the outer can, a groove is formed,
The groove is formed on the outer side than the electrode material as viewed from the cylinder axis direction.
Flat battery.
前記溝部は、前記筒軸方向から見て、前記封口缶側壁部よりも内側に形成されている、
請求項1に記載の扁平形電池。
The groove is formed on the inner side of the sealing can side wall as viewed from the cylinder axis direction.
The flat battery according to claim 1.
前記外装缶側壁部と前記封口缶側壁部との間に配置される側壁部と、前記封口缶側壁部と前記外装缶の底部との間に配置されるベース部とを有するガスケットをさらに備え、
前記溝部は、前記筒軸方向から見て前記ガスケットのベース部よりも内側に形成されている、
請求項1または2に記載の扁平形電池。
A gasket having a side wall disposed between the outer can side wall and the sealed can side wall; and a base disposed between the sealed can side wall and the bottom of the outer can.
The groove is formed on the inner side than the base of the gasket as viewed from the cylinder axis direction.
The flat battery according to claim 1 or 2.
前記溝部の深さは、前記外装缶の底部の厚みの半分以下である、
請求項1から3のいずれか一つに記載の扁平形電池。
The depth of the groove is less than or equal to half the thickness of the bottom of the outer can.
The flat battery according to any one of claims 1 to 3.
前記外装缶および前記封口缶は、それぞれ、有底円筒状であり、
前記溝部は、前記筒軸方向から見て円環状に形成されている、
請求項1から4のいずれか一つに記載の扁平形電池。
Each of the outer can and the sealed can is a bottomed cylindrical shape,
The groove is formed in an annular shape when viewed from the cylinder axis direction.
The flat battery according to any one of claims 1 to 4.
前記溝部は、前記外装缶の底部の中心から前記底部の半径の0.75倍以上の位置に形成されている、
請求項5に記載の扁平形電池。
The groove is formed at a position of 0.75 times or more the radius of the bottom from the center of the bottom of the outer can.
The flat battery according to claim 5.
JP2012195636A 2012-09-06 2012-09-06 Flat battery Active JP6058951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012195636A JP6058951B2 (en) 2012-09-06 2012-09-06 Flat battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012195636A JP6058951B2 (en) 2012-09-06 2012-09-06 Flat battery

Publications (2)

Publication Number Publication Date
JP2014053112A true JP2014053112A (en) 2014-03-20
JP6058951B2 JP6058951B2 (en) 2017-01-11

Family

ID=50611440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012195636A Active JP6058951B2 (en) 2012-09-06 2012-09-06 Flat battery

Country Status (1)

Country Link
JP (1) JP6058951B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020009206A1 (en) * 2018-07-04 2020-01-09 マクセルホールディングス株式会社 Coin-type battery and manufacturing method for same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6629000B2 (en) 2015-07-31 2020-01-15 ナブテスコ株式会社 Eccentric oscillating gear device and its manufacturing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5510228U (en) * 1978-07-05 1980-01-23
JPS5512595U (en) * 1978-07-13 1980-01-26
JPS6065970U (en) * 1983-10-12 1985-05-10 日本電池株式会社 flat sealed battery
JPS60140361U (en) * 1984-02-28 1985-09-17 日本電池株式会社 sealed battery
WO2002013290A1 (en) * 2000-08-09 2002-02-14 Matsushita Electric Industrial Co., Ltd. Coin-shaped battery
JP2002175789A (en) * 2000-12-06 2002-06-21 Matsushita Electric Ind Co Ltd Flat battery and manufacturing method of the same
JP2011187407A (en) * 2010-03-11 2011-09-22 Hitachi Maxell Energy Ltd Flat battery and tire pressure detecting device equipped with it

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5510228U (en) * 1978-07-05 1980-01-23
JPS5512595U (en) * 1978-07-13 1980-01-26
JPS6065970U (en) * 1983-10-12 1985-05-10 日本電池株式会社 flat sealed battery
JPS60140361U (en) * 1984-02-28 1985-09-17 日本電池株式会社 sealed battery
WO2002013290A1 (en) * 2000-08-09 2002-02-14 Matsushita Electric Industrial Co., Ltd. Coin-shaped battery
JP2002175789A (en) * 2000-12-06 2002-06-21 Matsushita Electric Ind Co Ltd Flat battery and manufacturing method of the same
JP2011187407A (en) * 2010-03-11 2011-09-22 Hitachi Maxell Energy Ltd Flat battery and tire pressure detecting device equipped with it

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020009206A1 (en) * 2018-07-04 2020-01-09 マクセルホールディングス株式会社 Coin-type battery and manufacturing method for same
CN112335101A (en) * 2018-07-04 2021-02-05 麦克赛尔控股株式会社 Coin-shaped battery and method for manufacturing same
JPWO2020009206A1 (en) * 2018-07-04 2021-07-15 マクセルホールディングス株式会社 Coin-type battery and its manufacturing method
JP7213250B2 (en) 2018-07-04 2023-01-26 マクセル株式会社 Coin-shaped battery and its manufacturing method
CN112335101B (en) * 2018-07-04 2023-03-28 麦克赛尔株式会社 Coin-shaped battery and method for manufacturing same

Also Published As

Publication number Publication date
JP6058951B2 (en) 2017-01-11

Similar Documents

Publication Publication Date Title
JP6005172B2 (en) Prismatic secondary battery
JP5681005B2 (en) Flat battery
JP7379380B2 (en) sealed battery
JP5867376B2 (en) Sealed battery
JP5455719B2 (en) Flat battery and tire air pressure detecting device having the same
JP6693042B2 (en) Storage element
JPWO2016104734A1 (en) Electricity storage element
JP6094503B2 (en) Secondary battery
KR20170039894A (en) Secondary battery
JP2018081780A (en) battery
JP6058951B2 (en) Flat battery
CN106133945B (en) Electricity storage device
WO2013187479A1 (en) Flat cell
CN113767510A (en) Cylindrical battery
JP6146536B2 (en) Power storage device
JP2007273110A (en) Flat battery
JP2013149435A (en) Battery
US20170279087A1 (en) Flat battery
JP2011187289A (en) Flat battery
JP5933361B2 (en) Flat battery
JP6403827B2 (en) Flat battery
JP2014235941A (en) Flat battery
JP2011192391A (en) Flat battery
JP2014170671A (en) Square storage element
WO2023054134A1 (en) Electricity storage device and method for manufacturing electricity storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161208

R150 Certificate of patent or registration of utility model

Ref document number: 6058951

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250