JP2014051447A - Manufacturing method of sulfoxide group-containing palladium supported silica - Google Patents

Manufacturing method of sulfoxide group-containing palladium supported silica Download PDF

Info

Publication number
JP2014051447A
JP2014051447A JP2012195992A JP2012195992A JP2014051447A JP 2014051447 A JP2014051447 A JP 2014051447A JP 2012195992 A JP2012195992 A JP 2012195992A JP 2012195992 A JP2012195992 A JP 2012195992A JP 2014051447 A JP2014051447 A JP 2014051447A
Authority
JP
Japan
Prior art keywords
group
palladium
sulfoxide
silica
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012195992A
Other languages
Japanese (ja)
Other versions
JP5986853B2 (en
Inventor
Kiyoomi Kaneda
清臣 金田
Hiroshi Matsuzawa
啓史 松澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Fujifilm Wako Pure Chemical Corp
Original Assignee
Wako Pure Chemical Industries Ltd
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wako Pure Chemical Industries Ltd, Osaka University NUC filed Critical Wako Pure Chemical Industries Ltd
Priority to JP2012195992A priority Critical patent/JP5986853B2/en
Publication of JP2014051447A publication Critical patent/JP2014051447A/en
Application granted granted Critical
Publication of JP5986853B2 publication Critical patent/JP5986853B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst for a partial hydrogenation reaction, capable of obtaining a partial hydrogenated substrate with a yield equal to or higher than conventional methods which compensate the shortcomings of a Lindlar agent and having no need to use a poisoning agent such as dimethyl sulfoxide.SOLUTION: A sulfoxide group-containing palladium supported silica is obtained by contacting a palladium supported silica and a compound represented by the general formula [1], where R represents an alkylene group having 1 to 6 carbon atoms, Rto Rrepresent each independently a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and Rrepresents an alkyl group having 1 to 3 carbon atoms, in a hydrophobic solvent under the presence of water.

Description

本発明は、選択的還元反応に適したパラジウム触媒の製造方法に関する。   The present invention relates to a method for producing a palladium catalyst suitable for a selective reduction reaction.

高選択的で且つ副生成物を生成せずにクリーンにアルケンを合成する方法として、アルキンの水素化反応が知られている。アルケンやアルキンのような不飽和結合を持つ化合物は、白金族元素(ニッケル、パラジウム、白金)などの金属触媒により、水素雰囲気下で容易に還元され、不飽和結合に水素原子が付加する。しかし、アルキンから生成したアルケンは容易にアルカンまで還元されてしまう。そのため、アルキンから高収率、高選択的にアルケンを得ることは従来難しいとされてきた。   As a method for synthesizing alkenes with high selectivity and without generating byproducts, hydrogenation reaction of alkynes is known. A compound having an unsaturated bond such as an alkene or alkyne is easily reduced in a hydrogen atmosphere by a metal catalyst such as a platinum group element (nickel, palladium, platinum), and a hydrogen atom is added to the unsaturated bond. However, alkenes produced from alkynes are easily reduced to alkanes. Therefore, it has been conventionally difficult to obtain alkenes with high yield and high selectivity from alkynes.

現在では、アルキンの水素化反応でアルケンを選択的に得る方法として、Lindlar試薬が一般的に用いられている。この試薬を用いる方法によれば、アルキンの水素化反応において、アルキン消失後のアルケンの逐次水素化反応を抑制し、アルケンを高選択的に得る事ができる。しかしながら、該Lindlar試薬は、有毒な鉛を使用し、キノリンを通常基質と等量若しくはそれ以上必要とし、更に、末端アルキン、即ち一置換アルキンからアルケンへの部分水素化反応ができない等の問題を有していた。   Currently, a Lindlar reagent is generally used as a method for selectively obtaining an alkene by an alkyne hydrogenation reaction. According to the method using this reagent, in the alkyne hydrogenation reaction, the sequential hydrogenation reaction of the alkene after disappearance of the alkyne can be suppressed, and the alkene can be obtained with high selectivity. However, the Lindlar reagent uses toxic lead, requires quinoline in an amount equal to or more than that of a normal substrate, and further cannot cause a partial hydrogenation reaction from a terminal alkyne, that is, a monosubstituted alkyne to an alkene. Had.

このような状況から、Lindlar試薬の欠点を補った方法が種々報告されている。例えば、パラジウム(Pd)をポリエチレンイミンに担持させたPd−PEI触媒を用いてアルキンの部分水素化反応を行う方法が報告されている(非特許文献1,2)。該方法によれば、末端、内部アルキン以外に分子内に硫黄原子や窒素原子を含む化合物であっても高収率でアルケンを取得することができる。   Under such circumstances, various methods have been reported that compensate for the disadvantages of the Lindlar reagent. For example, a method of performing a partial hydrogenation reaction of an alkyne using a Pd-PEI catalyst in which palladium (Pd) is supported on polyethyleneimine has been reported (Non-Patent Documents 1 and 2). According to this method, alkenes can be obtained in a high yield even for compounds containing a sulfur atom or a nitrogen atom in the molecule in addition to the terminal and internal alkynes.

また、Pdナノ粒子のコロイド溶液を均一系触媒として用いてアルキンの部分水素化反応を行う方法が報告されている(非特許文献3)。該方法によれば種々のZ−アルケンが91.5〜99.7%という高収率で得ることができる。   In addition, a method for performing a partial hydrogenation reaction of alkyne using a colloidal solution of Pd nanoparticles as a homogeneous catalyst has been reported (Non-patent Document 3). According to this method, various Z-alkenes can be obtained with a high yield of 91.5 to 99.7%.

更に、ピリジン構造を核とした分子鎖構造を持つポリアミノアミドデンドロンにPdナノ粒子を担持させた触媒を用いてアルキンの部分水素化反応を行う方法が報告されている(非特許文献4)。該方法によれば、96〜97%の収率でアルケンが得られている。   Furthermore, a method of performing a partial hydrogenation reaction of alkyne using a catalyst in which Pd nanoparticles are supported on a polyaminoamide dendron having a molecular chain structure with a pyridine structure as a nucleus has been reported (Non-patent Document 4). According to this method, alkenes are obtained in a yield of 96 to 97%.

H. Sajiki, S. Mori, T. Ohkubo, T. Ikawa, A. Kume, T. Maegawa, Y. Monguchi, Chem. Eur. J. 2008, 14, 5109.H. Sajiki, S. Mori, T. Ohkubo, T. Ikawa, A. Kume, T. Maegawa, Y. Monguchi, Chem. Eur. J. 2008, 14, 5109. S. Mori, T. Ohkubo, T. Ikawa, A. Kume, T. Maegawa, Y. Monguchi, H. Sajiki, J. Mol. Cat. A: Chem. 2009, 307, 77.S. Mori, T. Ohkubo, T. Ikawa, A. Kume, T. Maegawa, Y. Monguchi, H. Sajiki, J. Mol. Cat. A: Chem. 2009, 307, 77. J. Hori, K. Murata, T. Sugai, H. Shinohara, R. Noyori, N. Arai, N. Kurono, T. Ohkuma, Adv. Syn. Catal. 2009, 351, 3143.J. Hori, K. Murata, T. Sugai, H. Shinohara, R. Noyori, N. Arai, N. Kurono, T. Ohkuma, Adv. Syn. Catal. 2009, 351, 3143. T.Mizugaki, M. Murata, S. Fukubayashi, T. Mitsudome, K. Jitsukawa, K. Kaneda, Chem. Commun. 2008, 241.T. Mizugaki, M. Murata, S. Fukubayashi, T. Mitsudome, K. Jitsukawa, K. Kaneda, Chem. Commun. 2008, 241.

上記の如き方法によれば、Lindlar試薬の欠点を補い、有毒な鉛を使用せずに高選択に基質の部分水素化反応を行うことができる。しかし、これらの方法においては、最適時間を経過するとアルケン等の部分水素化された化合物が更に水素化(還元)されてしまう問題や、被毒化剤を要するため、その除去に手間を要する等の問題を有していた。特に被毒化剤として用いられるジメチルスルホキシドは、皮膚吸収性を有するため取り扱いに注意する必要があり、また、保存状態や反応によっては臭気を発するため、除去の手間以外に操作者への負担の問題もあった。   According to the method as described above, the partial hydrogenation reaction of the substrate can be carried out with high selectivity without using the toxic lead, making up for the disadvantages of the Lindlar reagent. However, in these methods, there is a problem that a partially hydrogenated compound such as an alkene is further hydrogenated (reduced) after an optimum time has elapsed, and a poisoning agent is required. Had a problem. In particular, dimethyl sulfoxide, which is used as a poisoning agent, must be handled with care because it absorbs the skin. Also, since it emits an odor depending on the storage condition and reaction, there is a problem of burden on the operator in addition to the trouble of removal. There was also.

本発明者らは、Lindlar試薬の欠点を補った従来の方法と同等又はそれ以上の収率で部分水素化された基質を取得でき、且つジメチルスルホキシド等の被毒化剤を用いる必要のない部分水素化反応用の触媒について鋭意研究してきた。その過程で、スルホキシド基を含有するシリカにパラジウム金属を担持させ、得られた触媒を用いてアルキン誘導体の還元を試みたところ、該方法では、アルカン誘導体まで還元されてしまい、目的のアルケン誘導体を高収率に得ることはできなかった。しかし、パラジウム金属を担持したシリカに、スルホキシド基を導入し、得られた触媒をアルキン誘導体の還元に用いたところ、被毒化剤を用いることなく、アルキン誘導体からアルケン誘導体への水素化を高効率に進められることを見出し、本発明を完成するに至った。即ち、パラジウム金属を担持したシリカに、スルホキシド基を有する化合物を反応させると、スルホキシド基がパラジウム金属を覆う状態となって被毒化作用を発揮することを見出し、本発明を完成するに至った。   The present inventors can obtain a partially hydrogenated substrate in a yield equivalent to or higher than the conventional method that compensates for the disadvantages of the Lindlar reagent, and does not require the use of a poisoning agent such as dimethyl sulfoxide. We have been intensively researching about catalysts for chemical reaction. In the process, palladium metal was supported on silica containing a sulfoxide group, and reduction of the alkyne derivative was attempted using the obtained catalyst. In this method, the alkane derivative was reduced to the target alkene derivative. A high yield could not be obtained. However, when a sulfoxide group is introduced into silica carrying palladium metal and the resulting catalyst is used for reduction of an alkyne derivative, hydrogenation from an alkyne derivative to an alkene derivative is highly efficient without using a poisoning agent. As a result, the present invention has been completed. That is, when a compound having a sulfoxide group is reacted with silica carrying palladium metal, the sulfoxide group covers the palladium metal and exerts a poisoning action, and the present invention has been completed.

本発明は、「パラジウム担持シリカと下記一般式[1]で示される化合物

Figure 2014051447
(式中、Rは炭素数1〜6のアルキレン基を表し、R1〜R3は、それぞれ独立して、水素原子又は炭素数1〜3のアルキル基を表し、R4は炭素数1〜3のアルキル基を表す。)
とを、水の存在下疎水性溶媒中で接触させることを特徴とする、スルホキシド基含有パラジウム担持シリカの製造方法」、「パラジウム担持シリカと下記一般式[1]で示される化合物
Figure 2014051447
(式中、Rは炭素数1〜6のアルキレン基を表し、R1〜R3は、それぞれ独立して、水素原子又は炭素数1〜3のアルキル基を表し、R4は炭素数1〜3のアルキル基を表す。)
とを、水の存在下疎水性溶媒中で接触させることにより得られる、スルホキシド基含有パラジウム担持シリカ」及び「シリカ、パラジウム、及び下記一般式[1]で示される化合物
Figure 2014051447
(式中、Rは炭素数1〜6のアルキレン基を表し、R1〜R3は、それぞれ独立して、水素原子又は炭素数1〜3のアルキル基を表し、R4は炭素数1〜3のアルキル基を表す。)
から得られるものであって、パラジウムの周りを一般式[1]で示される化合物中のスルホキシド基が覆い、一般式[1]で示される化合物中の−Si(OR1)(OR2)(OR3)基がシリカと結合していることを特徴とする、スルホキシド基含有パラジウム担持シリカ」に関する。 The present invention relates to “palladium-supported silica and a compound represented by the following general formula [1].
Figure 2014051447
(In the formula, R represents an alkylene group having 1 to 6 carbon atoms, R 1 to R 3 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and R 4 represents 1 to C carbon atoms. 3 represents an alkyl group.)
In the presence of water in a hydrophobic solvent, a method for producing a sulfoxide group-containing palladium-supported silica "," palladium-supported silica and a compound represented by the following general formula [1]
Figure 2014051447
(In the formula, R represents an alkylene group having 1 to 6 carbon atoms, R 1 to R 3 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and R 4 represents 1 to C carbon atoms. 3 represents an alkyl group.)
And a sulfoxide group-containing palladium-supported silica obtained by contacting with a silica in the presence of water and a compound represented by the following general formula [1]
Figure 2014051447
(In the formula, R represents an alkylene group having 1 to 6 carbon atoms, R 1 to R 3 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and R 4 represents 1 to C carbon atoms. 3 represents an alkyl group.)
In which the sulfoxide group in the compound represented by the general formula [1] is covered around the palladium, and —Si (OR 1 ) (OR 2 ) (in the compound represented by the general formula [1]) is obtained. This relates to a sulfoxide group-containing palladium-supported silica, characterized in that the OR 3 ) group is bonded to silica.

本発明の製造方法により得られるスルホキシド基含有パラジウム担持シリカを還元触媒として用いれば、従来の方法と同等又はそれ以上の高い収率でアルキン誘導体からアルケン誘導体を製造することができ、また、最高収率でアルケン誘導体が得られる時間(最適反応時間)を経過した後であってもその収率がほとんど低下することがないため、最適反応時間でアルケン誘導体を取り出す必要がなく、より簡便に高い収率でアルケン誘導体を得ることができる。
更に、本発明の製造方法により得られるスルホキシド基含有パラジウム担持シリカを還元触媒として用いた場合、従来法のように、ジメチルスルホキシド等の被毒化剤を除去する手間を必要とせず、より簡便な方法を可能とする。被毒化剤を用いる必要がないため、操作者が被毒化剤の取り扱いに注意をする必要がなく、臭気等の不快感もなく操作を行うことを可能とする、
更にまた、本発明の製造方法により得られるスルホキシド基含有パラジウム担持シリカは、固体触媒であるため不均一系触媒として使用することができ、回収、再利用等の点でも優れた触媒である。
When the sulfoxide group-containing palladium-supported silica obtained by the production method of the present invention is used as a reduction catalyst, an alkene derivative can be produced from an alkyne derivative with a yield equivalent to or higher than that of the conventional method, and the highest yield is obtained. Even after the time for obtaining the alkene derivative (optimum reaction time) has passed, the yield is hardly reduced, so there is no need to take out the alkene derivative at the optimum reaction time, and the yield can be increased more easily. Alkene derivatives can be obtained at a high rate.
Furthermore, when the sulfoxide group-containing palladium-supported silica obtained by the production method of the present invention is used as a reduction catalyst, there is no need to remove a poisoning agent such as dimethyl sulfoxide as in the conventional method, and a simpler method. Is possible. Since it is not necessary to use a poisoning agent, it is not necessary for the operator to pay attention to the handling of the poisoning agent, and it is possible to perform the operation without discomfort such as odor.
Furthermore, since the sulfoxide group-containing palladium-supported silica obtained by the production method of the present invention is a solid catalyst, it can be used as a heterogeneous catalyst, and is excellent in terms of recovery and reuse.

実施例1で得られた、スルホキシド基含有Pd担持シリカ触媒を透過型電子顕微鏡でその構造を確認した結果を表す。The result of having confirmed the structure of the sulfoxide group containing Pd carrying | support silica catalyst obtained in Example 1 with the transmission electron microscope is represented. 実施例2で得られた、スルホキシド基含有Pd担持シリカ触媒により部分水素化反応を行った時のアルケン量とアルカン量を表す。The amount of alkenes and the amount of alkanes when the partial hydrogenation reaction was performed with the sulfoxide group-containing Pd-supported silica catalyst obtained in Example 2 are shown.

[パラジウム担持シリカ]
本発明に係るパラジウム担持シリカは、パラジウムを担持しているシリカである。その担持方法は、吸着等による物理的担持であっても、イオン結合等による化学的担持であってもよいが、物理的担持が好ましい。
[Palladium-supported silica]
The palladium-supported silica according to the present invention is a silica supporting palladium. The loading method may be physical loading by adsorption or the like, or chemical loading by ionic bond or the like, but physical loading is preferable.

上記シリカとしては、担体として用いることが可能な多孔性のシリカをいい、例えばシリカゲル、具体的には、例えばMCM−41(例えばC. T. Kresge, et. al., Nature 359, (1992), p.710等に記載の方法により合成可能)、SBA−15(例えばD.Zhao, et. al., Science 279, (1998), p.548等に記載の方法により合成可能)、SBA−16(例えばD. Zhao, et. al., J. Am. Chem. Soc., 120, (1998), p.6024−6046等に記載の方法により合成可能)、FSM−16(例えばS. Inagaki et. al., J. Chem. Soc. Chem. Commun., (1993), p.680等に記載の方法により合成可能)等のメソポーラスシリカ、ヒュームドシリカ、多孔質ガラス等のアモルファス(非晶質)シリカ、例えばシリカライト等の結晶性シリカ等が挙げられ、中でもアモルファスシリカが好ましい。尚、これらのシリカは、市販のものを用いてもよいし、適宜合成したものを用いてもよい。   The above silica refers to porous silica that can be used as a support. For example, silica gel, specifically, MCM-41 (for example, CT Kresge, et. Al., Nature 359, (1992), p. Synthesized by the method described in 710 etc.), SBA-15 (eg, synthesized by the method described in D. Zhao, et. Al., Science 279, (1998), p.548 etc.), SBA-16 (eg D. Zhao, et. Al., J. Am. Chem. Soc., 120, (1998), p. 6024-6046, etc.), FSM-16 (for example, S. Inagaki et. Al , J. Chem. Soc. Chem. Commun., (1993), p.680 etc.) and other mesoporous silica, fumed silica, porous glass, etc. Examples thereof include crystalline silica such as silicalite, among which amorphous silica is preferable. In addition, these silicas may use a commercially available thing and what was synthesize | combined suitably may be used.

市販されているアモルファスシリカの代表例としては、例えばCARiACT−Q−3(商品名:平均細孔径3nm)、CARiACT−Q−6(商品名:平均細孔径6nm)、CARiACT−Q−10(商品名:平均細孔径10nm)、CARiACT−Q−15(商品名:平均細孔径15nm)、CARiACT−Q−30(商品名:平均細孔径30nm)等のCARiACTシリーズ(富士シリシア化学(株)製)、例えばアエロジル(商品名)、アエロジル200(商品名)、アエロジル300(商品名)、アエロジル380(商品名)、アエロジルA300(商品名)、アエロジルbs−50(商品名)、アエロジルE300(商品名)、アエロジルK7(商品名)、アエロジルM−300(商品名)等のアエロジルシリーズ(エボニックデグサ社製)、例えばワコーシルC−200(商品名)、ワコーシルC−300(商品名)等のワコーシルシリーズ(和光純薬工業(株)製)、例えばワコーゲルC−100(商品名)、ワコーゲルC−200(商品名)、ワコーゲルC−300(商品名)、ワコーゲルC−300HG(商品名)、ワコーゲルC−400HG(商品名)、ワコーゲルC−500HG(商品名)等のワコーゲルシリーズ(和光純薬工業(株)製)等が挙げられ、中でもCARiACT−Q−3(商品名:平均細孔径3nm)、CARiACT−Q−6(商品名:平均細孔径6nm)、CARiACT−Q−10(商品名:平均細孔径10nm)、CARiACT−Q−15(商品名:平均細孔径15nm)、CARiACT−Q−30(商品名:平均細孔径30nm)等のCARiACTシリーズ(富士シリシア化学(株)製)が好ましく、CARiACT−Q−30(商品名:平均細孔径30nm)が特に好ましい。   Representative examples of commercially available amorphous silica include CARiACT-Q-3 (trade name: average pore diameter 3 nm), CARiACT-Q-6 (trade name: average pore diameter 6 nm), CARiACT-Q-10 (product). Name: average pore diameter 10 nm), CARiACT-Q-15 (trade name: average pore diameter 15 nm), CARiACT-Q-30 (trade name: average pore diameter 30 nm), etc. CARiACT series (manufactured by Fuji Silysia Chemical Co., Ltd.) For example, Aerosil (trade name), Aerosil 200 (trade name), Aerosil 300 (trade name), Aerosil 380 (trade name), Aerosil A300 (trade name), Aerosil bs-50 (trade name), Aerosil E300 (trade name) ), Aerosil K7 (trade name), Aerosil M-300 (trade name) and other Aerosil series ( Wonicsil series (manufactured by Wako Pure Chemical Industries, Ltd.) such as Wakosil C-200 (trade name), Wakosil C-300 (trade name), for example, Wako Gel C-100 (trade name), Wakogel series (Wakogel C-200 (trade name), Wakogel C-300 (tradename), Wakogel C-300HG (tradename), Wakogel C-400HG (tradename), Wakogel C-500HG (tradename), etc.) Wako Pure Chemical Industries, Ltd.), among others, CARiACT-Q-3 (trade name: average pore diameter 3 nm), CARiACT-Q-6 (trade name: average pore diameter 6 nm), CARiACT-Q-10 (Trade name: average pore diameter 10 nm), CARiACT-Q-15 (trade name: average pore diameter 15 nm), CARiACT-Q-30 (trade name: flat CARiACT series (manufactured by Fuji Silysia Chemical Co., Ltd.) is preferably a pore diameter of 30nm), etc., CARiACT-Q-30 (trade name: an average pore diameter of 30nm) is particularly preferred.

市販されているメソポーラスシリカの代表例としては、例えばSilica, mesostructured, MCM−41 type(商品名:平均細孔径2.3−2.7 nm)、Silica, mesostructured, HMS(商品名:平均細孔径3.9 nm)、Silica, mesostructured, MSU−H(商品名:平均細孔径7.1nm)等のAldrich社製、例えばTMPS−1.5(商品名:平均細孔径1.5nm)、TMPS−4(商品名:平均細孔径4nm)等のTMPSシリーズ(太陽化学(株)製)等が挙げられる。   Representative examples of commercially available mesoporous silica include, for example, Silica, mesostructured, MCM-41 type (trade name: average pore diameter 2.3-2.7 nm), Silica, mesostructured, HMS (trade name: average pore diameter 3.9 nm), Silica, mesostructured, MSU-H (trade name: average pore diameter 7.1 nm), etc. manufactured by Aldrich, for example TMPS-1.5 (trade name: average pore diameter 1.5 nm), TMPS-4 (trade name: average pore diameter) TMPS series (manufactured by Taiyo Kagaku Co., Ltd.) and the like.

上記パラジウム担持シリカ中のパラジウムは、パラジウムの粒径が0.3〜10nm、好ましくは1〜10nm、より好ましくは2〜8 nmであればよく、Pd(0)、Pd(I)、Pd(II)が挙げられるが、Pd(0)又はPd(II)が好ましく、Pd(0)がより好ましい。担持させるために用いられる本発明に係るパラジウムは、具体的には、例えば金属パラジウム、例えば酸化パラジウム、硫化パラジウム、塩化パラジウム、臭化パラジウム、ヨウ化パラジウム、水酸化パラジウム、硝酸パラジウム、硫酸パラジウム、シアン化パラジウム、酢酸パラジウム等のパラジウム化合物、例えばビス(アセチルアセトナト)パラジウム、ジアンミンジクロロパラジウム、ジアンミンジニトロパラジウム、テトラアンミンパラジウム塩化物、テトラアンミンパラジウム臭化物、テトラアンミン硝酸パラジウム、テトラクロロパラジウム酸、テトラクロロパラジウム酸アンモニウム、テトラクロロパラジウム酸ナトリウム、テトラクロロパラジウム酸カリウム、テトラクロロパラジウム酸リチウム、ヘキサクロロパラジウム酸、ヘキサクロロパラジウム酸アンモニウム、ヘキサクロロパラジウム酸ナトリウム、ヘキサクロロパラジウム酸カリウム、テトラシアノパラジウム酸カリウム、テトラチオシアナトパラジウム酸カリウム、テトラキストリフェニルホスフィンパラジウム、テトラブロモパラジウム酸ナトリウム、テトラブロモパラジウム酸カリウム、ヘキサブロモパラジウム酸ナトリウム、ヘキサブロモパラジウム酸カリウム、ビス(アセトニトリル)ジクロロパラジウム等のパラジウム錯体が挙げられ、パラジウム錯体が好ましく、中でも、テトラアンミンパラジウム塩化物、テトラアンミン硝酸パラジウム、テトラクロロパラジウム酸ナトリウムが好ましい。   Palladium in the palladium-supported silica may have a palladium particle size of 0.3 to 10 nm, preferably 1 to 10 nm, more preferably 2 to 8 nm. Pd (0), Pd (I), Pd (II) Pd (0) or Pd (II) is preferable, and Pd (0) is more preferable. The palladium according to the present invention used for supporting is specifically, for example, metal palladium such as palladium oxide, palladium sulfide, palladium chloride, palladium bromide, palladium iodide, palladium hydroxide, palladium nitrate, palladium sulfate, Palladium compounds such as palladium cyanide and palladium acetate, such as bis (acetylacetonato) palladium, diamminedichloropalladium, diamminedinitropalladium, tetraamminepalladium chloride, tetraamminepalladium bromide, tetraamminepalladium nitrate, tetrachloropalladium acid, tetrachloropalladium acid Ammonium, sodium tetrachloropalladate, potassium tetrachloropalladate, lithium tetrachloropalladate, hexachloropalladium Acid, ammonium hexachloropalladate, sodium hexachloropalladate, potassium hexachloropalladate, potassium tetracyanopalladate, potassium tetrathiocyanatopalladate, tetrakistriphenylphosphine palladium, sodium tetrabromopalladate, potassium tetrabromopalladate, hexa Examples include palladium complexes such as sodium bromopalladate, potassium hexabromopalladate, bis (acetonitrile) dichloropalladium, and palladium complexes are preferable, and tetraamminepalladium chloride, tetraamminepalladium nitrate, and sodium tetrachloropalladate are particularly preferable.

本発明に係るパラジウム担持シリカ中のパラジウム量は、通常0.1〜50重量%、好ましくは0.1〜10重量%、より好ましくは0.1〜5重量%、更に好ましくは0.5〜5重量%である。尚、上記パラジウム量は、誘導結合プラズマ−発光分光法(ICP−AES法)等の方法等により測定されればよい。   The amount of palladium in the palladium-supported silica according to the present invention is usually 0.1 to 50% by weight, preferably 0.1 to 10% by weight, more preferably 0.1 to 5% by weight, and still more preferably 0.5 to 5% by weight. The amount of palladium may be measured by a method such as inductively coupled plasma-emission spectroscopy (ICP-AES method).

本発明に係るパラジウム担持シリカの製造方法としては、例えば適当な溶媒に上記本発明に係るパラジウムを溶解又は懸濁させ、該溶液に上記シリカを混合して、通常1〜30時間、好ましくは1〜20時間、10〜40℃、好ましくは20〜30℃でパラジウムを含浸させ、次いで、当該シリカを乾燥させ、その後担持されたパラジウムをアルコール、ホウ素化合物又は水素化アルミニウムリチウム、水素等で還元することによりパラジウム担持シリカが得られる。なお、パラジウム化合物をイオン結合によりシリカに担持させる場合には、溶媒のpHを8〜12、好ましくは9〜10に調整する以外は、上記と同様に反応させればよい。   As a method for producing palladium-supported silica according to the present invention, for example, the palladium according to the present invention is dissolved or suspended in a suitable solvent, and the silica is mixed in the solution, usually for 1 to 30 hours, preferably 1 Impregnated with palladium at 10 to 40 ° C., preferably 20 to 30 ° C. for -20 hours, then dried the silica, and then reduced the supported palladium with alcohol, boron compound or lithium aluminum hydride, hydrogen, etc. As a result, palladium-supported silica is obtained. When the palladium compound is supported on silica by ionic bonding, the reaction may be performed in the same manner as described above except that the pH of the solvent is adjusted to 8 to 12, preferably 9 to 10.

本発明に係るパラジウム担持シリカの製造方法における、上記本発明に係るパラジウムは、1種類を単独で用いてもよいし、複数種を適宜組み合わせて用いてもよい。また、該パラジウムの量は、溶媒中の濃度が0.1〜10mM、好ましくは0.1〜1mMとなるように添加すればよい。溶媒中の濃度を上記濃度として上記シリカにパラジウムを担持させることにより、パラジウム粒子をナノ粒子として本発明に係る担体に担持させることができる。   In the method for producing palladium-supported silica according to the present invention, the palladium according to the present invention may be used singly or in appropriate combination of a plurality of types. The amount of palladium may be added so that the concentration in the solvent is 0.1 to 10 mM, preferably 0.1 to 1 mM. By supporting palladium on the silica with the concentration in the solvent as the above concentration, the palladium particles can be supported on the carrier according to the present invention as nanoparticles.

パラジウム担持シリカの製造方法で用いられる溶媒としては、具体的には、例えば水、例えばメタノール、エタノール、プロパノール、イソプロパノール等のアルコール系溶媒、アセトニトリル、アセトン等の水溶性有機溶媒等が挙げられ、これらの溶媒は、1種類のものを単独で用いてもよいし、複数種のものを適宜組み合わせて用いてもよい。パラジウム化合物をイオン結合により担持させる場合には、溶媒のpHを8〜12、好ましくは9〜10に調整する必要があるため、水又は水とアルコール系溶媒の組みあわせが好ましく、水が特に好ましい。尚、これらの溶媒の使用量としては、例えばシリカ1gに対して、通常1〜1000mL、好ましくは1〜100 mLである。   Specific examples of the solvent used in the method for producing palladium-supporting silica include water, alcohol solvents such as methanol, ethanol, propanol, and isopropanol, and water-soluble organic solvents such as acetonitrile and acetone. One kind of solvent may be used alone, or a plurality of kinds of solvents may be used in appropriate combination. When the palladium compound is supported by ionic bonds, it is necessary to adjust the pH of the solvent to 8 to 12, preferably 9 to 10. Therefore, water or a combination of water and an alcohol solvent is preferable, and water is particularly preferable. . In addition, as the usage-amount of these solvents, it is 1-1000 mL normally with respect to 1 g of silica, for example, Preferably it is 1-100 mL.

パラジウム担持シリカの製造方法でパラジウムの還元のために用いられるアルコールとしては、例えばメタノール、エタノール、プロパノール、イソプロパノール等のアルコールが挙げられ、中でもエタノールが好ましい。用いられるアルコールの量は、特に限定されないが、例えばシリカ1gに対して、通常1〜100mL、好ましくは1〜50 mLである。また、パラジウム担持シリカの製造方法でパラジウムの還元のために用いられるホウ素化合物としては、例えば水素化ホウ素ナトリウム、水素化ホウ素カリウム、シアノ水素化ホウ素ナトリウム、水素化トリエチルホウ素リチウム、水素化トリ(sec−ブチル)ホウ素リチウム、水素化トリ(sec−ブチル)ホウ素カリウム、水素化ホウ素リチウム等が挙げられ、中でも水素化ホウ素ナトリウム、水素化ホウ素カリウムが好ましく、水素化ホウ素カリウムがより好ましい。用いられるホウ素化合物又は水素化アルミニウムリチウムの量は、特に限定されないが、例えばパラジウム1mmolに対して、通常1〜50mmol、好ましくは1〜10mmolである。水素を用いる場合には、水素雰囲気下で還元することによりなされればよい。尚、上記アルコール、ホウ素化合物、水素化アルミニウムリチウム、水素等の還元剤は、パラジウム担持シリカ中のパラジウム量が0.1〜1重量%である場合には、上記アルコールを用いるのが好ましく、1重量%を超える場合には、ホウ素化合物、水素化アルミニウムリチウム又は水素を用いるのが好ましく、ホウ素化合物を用いるのがより好ましい。また、還元の際には、70〜90℃、好ましくは80〜90℃に加温し、1〜4時間、好ましくは1〜3時間撹拌することによりなされるのが好ましい。また、アルゴン等の不活性雰囲気下で還元されることが好ましい。   Examples of the alcohol used for the reduction of palladium in the method for producing palladium-supported silica include alcohols such as methanol, ethanol, propanol, and isopropanol, with ethanol being preferred. The amount of alcohol to be used is not particularly limited, but is usually 1 to 100 mL, preferably 1 to 50 mL, with respect to 1 g of silica, for example. Examples of the boron compound used for the reduction of palladium in the method for producing palladium on silica include sodium borohydride, potassium borohydride, sodium cyanoborohydride, lithium triethylborohydride, trihydride (sec -Butyl) lithium boron, tri (sec-butyl) boron borohydride, lithium borohydride, etc. are mentioned, Among them, sodium borohydride and potassium borohydride are preferable, and potassium borohydride is more preferable. The amount of the boron compound or lithium aluminum hydride to be used is not particularly limited, but is usually 1 to 50 mmol, preferably 1 to 10 mmol with respect to 1 mmol of palladium, for example. When hydrogen is used, the reduction may be performed under a hydrogen atmosphere. The reducing agent such as alcohol, boron compound, lithium aluminum hydride, hydrogen and the like preferably uses the alcohol when the palladium amount in the palladium-supported silica is 0.1 to 1% by weight, and 1% by weight. In the case of exceeding, it is preferable to use a boron compound, lithium aluminum hydride or hydrogen, and it is more preferable to use a boron compound. Further, the reduction is preferably performed by heating to 70 to 90 ° C., preferably 80 to 90 ° C., and stirring for 1 to 4 hours, preferably 1 to 3 hours. Further, it is preferably reduced under an inert atmosphere such as argon.

パラジウム担持シリカの製造方法におけるシリカの乾燥方法は、特に限定はされないが、真空下で乾燥するのが好ましく、通常1〜10時間、好ましくは5〜10時間乾燥させる。   The method for drying silica in the method for producing palladium-supported silica is not particularly limited, but is preferably dried under vacuum, and is usually dried for 1 to 10 hours, preferably 5 to 10 hours.

パラジウム担持シリカの製造方法は、具体的には例えば以下の如くなされる。即ち、例えばテトラアンミンパラジウム塩化物を水100mlに0.1〜1mMとなるように溶解し、シリカ1〜3gを添加する。その後、pHが9〜11となるようにアンモニア水を添加し、20〜40℃で10〜20時間撹拌下で反応させる。反応後、得られたパラジウム担持シリカをろ過し、洗浄後、10〜20℃で5〜10時間真空下で乾燥させる。その後得られたパラジウム担持シリカを1gに対して10〜30mLのエタノールを加え、アルゴン雰囲気下で80〜90℃で1〜3時間撹拌させる。得られた還元後のパラジウム担持シリカをエタノールで洗浄し、10〜20℃真空下で乾燥させることにより、パラジウム担持シリカを得ることができる。このようにして得られたパラジウム担持シリカは、担持されたパラジウムが0.5−10nmの粒子径を有するものであり、本発明のアルケン誘導体の製造方法に適したものである。   Specifically, the method for producing palladium-supported silica is, for example, as follows. That is, for example, tetraamminepalladium chloride is dissolved in 100 ml of water so as to be 0.1 to 1 mM, and 1 to 3 g of silica is added. Then, ammonia water is added so that pH may be 9-11, and it is made to react under stirring at 20-40 degreeC for 10-20 hours. After the reaction, the obtained palladium-supported silica is filtered, washed, and dried under vacuum at 10 to 20 ° C. for 5 to 10 hours. Thereafter, 10 to 30 mL of ethanol is added to 1 g of the palladium-supported silica obtained and stirred at 80 to 90 ° C. for 1 to 3 hours under an argon atmosphere. The obtained palladium-supported silica after reduction is washed with ethanol and dried at 10 to 20 ° C. under vacuum to obtain palladium-supported silica. The palladium-supported silica thus obtained is one in which the supported palladium has a particle size of 0.5 to 10 nm and is suitable for the method for producing an alkene derivative of the present invention.

[一般式[1]で示される化合物]
一般式[1]におけるRは、炭素数1〜6のアルキレン基を表し、炭素数1〜4のアルキレン基が好ましく、炭素数1〜3のアルキレン基がより好ましく、直鎖状でも分枝状でもよいが、直鎖状が好ましい。具体的には、例えばメチレン基、エチレン基、n−プロピレン基、イソプロピレン基、n−ブチレン基、イソブチレン基、sec−ブチレン基、tert−ブチレン基、n−ペンチレン基、イソペンチレン基、sec−ペンチレン基、tert−ペンチレン基、ネオペンチレン基、2−メチルブチレン基、1,2−ジメチルプロピレン基、1−エチルプロピレン基、n−ヘキシレン基、イソヘキシレン基、sec−ヘキシレン基、tert−ヘキシレン基、ネオヘキシレン基、2−メチルペンチレン基、1,2−ジメチルブチレン基、2,3−ジメチルブチレン基、1−エチルブチレン基等が挙げられ、中でもメチレン基、エチレン基、n−プロピレン基、n−ブチレン基等が好ましく、n−プロピレン基がより好ましい。
[Compound represented by the general formula [1]]
R in the general formula [1] represents an alkylene group having 1 to 6 carbon atoms, preferably an alkylene group having 1 to 4 carbon atoms, more preferably an alkylene group having 1 to 3 carbon atoms, and a linear or branched group. However, a straight chain is preferable. Specifically, for example, methylene group, ethylene group, n-propylene group, isopropylene group, n-butylene group, isobutylene group, sec-butylene group, tert-butylene group, n-pentylene group, isopentylene group, sec-pentylene. Group, tert-pentylene group, neopentylene group, 2-methylbutylene group, 1,2-dimethylpropylene group, 1-ethylpropylene group, n-hexylene group, isohexylene group, sec-hexylene group, tert-hexylene group, neohexylene group , 2-methylpentylene group, 1,2-dimethylbutylene group, 2,3-dimethylbutylene group, 1-ethylbutylene group, etc., among which methylene group, ethylene group, n-propylene group, n-butylene group Etc., and n-propylene group is more preferable.

一般式[1]におけるR1〜R4の炭素数1〜3のアルキル基は、直鎖状でも分枝状でもよく、具体的には、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基等が挙げられ、中でもメチル基、エチル基が好ましく、メチル基がより好ましい。 The alkyl group having 1 to 3 carbon atoms of R 1 to R 4 in the general formula [1] may be linear or branched, and specifically includes, for example, methyl group, ethyl group, n-propyl group, isopropyl Group, n-butyl group, and the like. Among them, a methyl group and an ethyl group are preferable, and a methyl group is more preferable.

一般式[1]におけるR1〜R3は、上記具体例の中でも、水素原子又はメチル基が好ましく、メチル基がより好ましい。 Among the above specific examples, R 1 to R 3 in the general formula [1] are preferably a hydrogen atom or a methyl group, and more preferably a methyl group.

一般式[1]におけるR4は、上記具体例の中でも、メチル基が好ましい。 R 4 in the general formula [1] is preferably a methyl group among the above specific examples.

一般式[1]で示される化合物としては、例えば、メチル−3−トリメトキシシリルプロピルスルホキシド、エチル−3−トリメトキシシリルプロピルスルホキシド、プロピル−3−トリメトキシシリルプロピルスルホキシド、メチル−3−モノメトキシジヒドロキシシリルプロピルスルホキシド、エチル−3−モノメトキシジヒドロキシシリルプロピルスルホキシド、プロピル−3−モノメトキシジヒドロキシシリルプロピルスルホキシド、メチルトリメトキシシリルメチルスルホキシド、メチル−2−トリメトキシシリルエチルスルホキシド、メチル−4−トリメトキシシリルブチルスルホキシド、メチル−5−トリメトキシシリルペンチルスルホキシド、メチル−6−トリメトキシシリルヘキシルスルホキシド、エチルトリメトキシシリルメチルスルホキシド、エチル−2−トリメトキシシリルエチルスルホキシド、エチル−4−トリメトキシシリルブチルスルホキシド、エチル−5−トリメトキシシリルペンチルスルホキシド、エチル−6−トリメトキシシリルヘキシルスルホキシド、プロピルトリメトキシシリルメチルスルホキシド、プロピル−2−トリメトキシシリルエチルスルホキシド、プロピル−4−トリメトキシシリルブチルスルホキシド、プロピル−5−トリメトキシシリルペンチルスルホキシド、プロピル−6−トリメトキシシリルヘキシルスルホキシド、メチルトリエトキシシリルメチルスルホキシド、メチル−2−トリエトキシシリルエチルスルホキシド、メチル−3−トリエトキシシリルプロピルスルホキシド、メチル−4−トリエトキシシリルブチルスルホキシド、メチル−5−トリエトキシシリルヘプチルスルホキシド、メチル−6−トリエトキシシリルヘキシルスルホキシド、メチルトリプロピルオキシシリルメチルスルホキシド、メチル−2−トリプロピルオキシシリルエチルスルホキシド、メチル−3−トリプロピルオキシシリルプロピルスルホキシド、メチル−4−トリプロピルオキシシリルブチルスルホキシド、メチル−5−トリプロピルオキシシリルヘプチルスルホキシド、メチル−6−トリプロピルオキシシリルヘキシルスルホキシド等が挙げられ、中でも、メチルトリメトキシシリルメチルスルホキシド、メチル−2−トリメトキシシリルエチルスルホキシド、メチル−3−トリメトキシシリルプロピルスルホキシド、メチル−4−トリメトキシシリルブチルスルホキシド、メチル−5−トリメトキシシリルペンチルスルホキシド、メチル−6−トリメトキシシリルヘキシルスルホキシドが好ましく、メチル−3−トリメトキシシリルプロピルスルホキシドがより好ましい。   Examples of the compound represented by the general formula [1] include methyl-3-trimethoxysilylpropyl sulfoxide, ethyl-3-trimethoxysilylpropyl sulfoxide, propyl-3-trimethoxysilylpropyl sulfoxide, and methyl-3-monomethoxy. Dihydroxysilylpropyl sulfoxide, ethyl-3-monomethoxydihydroxysilylpropyl sulfoxide, propyl-3-monomethoxydihydroxysilylpropyl sulfoxide, methyltrimethoxysilylmethyl sulfoxide, methyl-2-trimethoxysilylethyl sulfoxide, methyl-4-trimethoxy Silylbutyl sulfoxide, methyl-5-trimethoxysilylpentyl sulfoxide, methyl-6-trimethoxysilylhexyl sulfoxide, ethyltrimethoxysilane Methyl sulfoxide, ethyl-2-trimethoxysilylethyl sulfoxide, ethyl-4-trimethoxysilylbutyl sulfoxide, ethyl-5-trimethoxysilylpentyl sulfoxide, ethyl-6-trimethoxysilylhexyl sulfoxide, propyltrimethoxysilylmethyl sulfoxide Propyl-2-trimethoxysilylethyl sulfoxide, propyl-4-trimethoxysilylbutyl sulfoxide, propyl-5-trimethoxysilylpentyl sulfoxide, propyl-6-trimethoxysilylhexyl sulfoxide, methyltriethoxysilylmethyl sulfoxide, methyl- 2-triethoxysilylethyl sulfoxide, methyl-3-triethoxysilylpropyl sulfoxide, methyl-4-triethoxysilylbutyrate Sulphoxide, methyl-5-triethoxysilylheptyl sulfoxide, methyl-6-triethoxysilylhexyl sulfoxide, methyltripropyloxysilylmethyl sulfoxide, methyl-2-tripropyloxysilylethyl sulfoxide, methyl-3-tripropyloxysilylpropyl Examples include sulfoxide, methyl-4-tripropyloxysilylbutyl sulfoxide, methyl-5-tripropyloxysilyl heptyl sulfoxide, methyl-6-tripropyloxysilylhexyl sulfoxide, and the like. Among them, methyltrimethoxysilylmethyl sulfoxide, methyl- 2-trimethoxysilylethyl sulfoxide, methyl-3-trimethoxysilylpropyl sulfoxide, methyl-4-trimethoxysilylbutylsulfoxy And methyl-5-trimethoxysilylpentyl sulfoxide and methyl-6-trimethoxysilylhexyl sulfoxide are preferred, and methyl-3-trimethoxysilylpropyl sulfoxide is more preferred.

一般式[1]で示される化合物は、例えば以下の如く調製される。即ち、下記一般式[1’]で示される化合物と

Figure 2014051447
(式中、R及びR1〜R3は、上記と同じ。)
下記一般式[2]で示される化合物と
Figure 2014051447
(式中、R4は上記と同じ。Xは、ハロゲン原子を表す。)
金属アルコキシドを反応させ、通常1〜10時間、0〜20℃で反応させ、得られた下記一般式[1’’]で示されるスルフィド化合物を酸化することにより得られる。
Figure 2014051447
(式中、R及びR1〜R4は、上記と同じ。) The compound represented by the general formula [1] is prepared as follows, for example. That is, a compound represented by the following general formula [1 ′]
Figure 2014051447
(In the formula, R and R 1 to R 3 are the same as above.)
A compound represented by the following general formula [2]:
Figure 2014051447
(In the formula, R 4 is the same as above. X represents a halogen atom.)
It is obtained by reacting a metal alkoxide, usually reacting at 0 to 20 ° C. for 1 to 10 hours, and oxidizing the obtained sulfide compound represented by the following general formula [1 ″].
Figure 2014051447
(In the formula, R and R 1 to R 4 are the same as above.)

一般式[1’]で示される化合物は、具体的には、メルカプトメチルトリメトキシシラン、2−メルカプトエチルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン、4−メルカプトブチルトリメトキシシラン、5−メルカプトペンチルトリメトキシシラン、6−メルカプトヘキシルトリメトキシシラン、メルカプトメチルモノメトキシジヒドロキシシラン、メルカプトエチルモノメトキシジヒドロキシシラン、3−メルカプトプロピルモノメトキシジヒドロキシシラン、4−メルカプトブチルモノメトキシジヒドロキシシラン、5−メルカプトペンチルモノメトキシジヒドロキシシラン、6−メルカプトヘキシルモノメトキシジヒドロキシシラン、メルカプトメチルトリエトキシシラン、2−メルカプトエチルトリエトキシシラン、3−メルカプトプロピルトリエトキシシラン、4−メルカプトブチルトリエトキシシラン、5−メルカプトペンチルトリエトキシシラン、6−メルカプトヘキシルトリエトキシシラン、メルカプトメチルトリプロピルオキシシラン、2−メルカプトエチルトリプロピルオキシシラン、3−メルカプトプロピルトリプロピルオキシシラン等が挙げられ、中でも3−メルカプトプロピルトリメトキシシランが好ましい。尚、一般式[1’]で示される化合物は、自体公知の方法により合成しても、市販のものを用いてもよい。   Specific examples of the compound represented by the general formula [1 ′] include mercaptomethyltrimethoxysilane, 2-mercaptoethyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 4-mercaptobutyltrimethoxysilane, and 5-mercapto. Pentiltrimethoxysilane, 6-mercaptohexyltrimethoxysilane, mercaptomethylmonomethoxydihydroxysilane, mercaptoethylmonomethoxydihydroxysilane, 3-mercaptopropylmonomethoxydihydroxysilane, 4-mercaptobutylmonomethoxydihydroxysilane, 5-mercaptopentylmono Methoxydihydroxysilane, 6-mercaptohexyl monomethoxydihydroxysilane, mercaptomethyltriethoxysilane, 2-mercaptoethyltriethoxy Lan, 3-mercaptopropyltriethoxysilane, 4-mercaptobutyltriethoxysilane, 5-mercaptopentyltriethoxysilane, 6-mercaptohexyltriethoxysilane, mercaptomethyltripropyloxysilane, 2-mercaptoethyltripropyloxysilane, Examples include 3-mercaptopropyltripropyloxysilane, and 3-mercaptopropyltrimethoxysilane is particularly preferable. The compound represented by the general formula [1 '] may be synthesized by a method known per se or a commercially available product may be used.

金属アルコキシドとしては、例えばカリウムメトキシド、カリウムエトキシド、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムイソプロポキシドが挙げられ、中でもナトリウムメトキシド、ナトリウムエトキシドが好ましく、ナトリウムメトキシドがより好ましい。   Examples of the metal alkoxide include potassium methoxide, potassium ethoxide, sodium methoxide, sodium ethoxide, and sodium isopropoxide. Among them, sodium methoxide and sodium ethoxide are preferable, and sodium methoxide is more preferable.

金属アルコキシドの使用量は、通常、一般式[1’]で示される化合物1mmolに対して通常1〜10mmolである。   The amount of the metal alkoxide to be used is usually 1 to 10 mmol with respect to 1 mmol of the compound represented by the general formula [1 ′].

一般式[2]におけるXで示されるハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、中でもヨウ素が好ましい。   Examples of the halogen atom represented by X in the general formula [2] include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Among them, iodine is preferable.

一般式[2]で示される化合物は、ヨウ化メチル、ヨウ化エチル、ヨードプロパン等が挙げられるが、中でもヨウ化メチルが好ましい。一般式[2]の使用量は、一般式[1’]で示される化合物1mmolに対して通常1〜10mmolである。   Examples of the compound represented by the general formula [2] include methyl iodide, ethyl iodide, iodopropane, and the like. Among them, methyl iodide is preferable. The usage-amount of General formula [2] is 1-10 mmol normally with respect to 1 mmol of compounds shown by General formula [1 '].

一般式[1’’]で示されるスルフィド化合物の具体例は、上記一般式[1]で示される化合物のスルホキシド基をスルフィド基に置換したもの全てが挙げられる。   Specific examples of the sulfide compound represented by the general formula [1 ″] include all compounds in which the sulfoxide group of the compound represented by the general formula [1] is substituted with a sulfide group.

一般式[1’’]で示されるスルフィド化合物の酸化方法としては、自体公知の方法に準じてスルフィドをスルホキシド基に酸化すればよく、例えば過ヨウ素酸ナトリウム等の酸化剤を用いて酸化すればよい。その使用量や反応時間、反応温度等も通常この分野で用いられる方法に準じて適宜設定すればよい。   As a method for oxidizing the sulfide compound represented by the general formula [1 ″], the sulfide may be oxidized to a sulfoxide group according to a method known per se. For example, by oxidizing using an oxidizing agent such as sodium periodate. Good. The amount used, reaction time, reaction temperature, and the like may be appropriately set according to the method usually used in this field.

[スルホキシド基含有パラジウム担持シリカ]
本発明のスルホキシド基含有パラジウム担持シリカは、上記シリカ、上記一般式[1]で示される化合物、及び上記パラジウムから得られるものであって、パラジウムの周りを一般式[1]で示される化合物中のスルホキシド基が覆い、一般式[1]で示される化合物中の−Si(OR1)(OR2)(OR3)基がシリカと結合している構造を有するものである。即ち、パラジウムを中心として、一般式[1]で示される化合物がスルホキシド基をパラジウム側にしてパラジウムの周りを覆い、更に一般式[1]で示される化合物の周りをシリカが覆う構造を有するもの、言い換えれば、パラジウム、一般式[1]で示される化合物、シリカの三層構造を有するものである。尚、本発明のスルホキシド基含有パラジウム担持シリカ中のスルホキシド基は、パラジウムと配位結合している。
[Sulfoxide group-containing palladium-supported silica]
The sulfoxide group-containing palladium-supported silica of the present invention is obtained from the above silica, the compound represented by the above general formula [1], and the above palladium, and around the palladium, the compound represented by the general formula [1] In which the —Si (OR 1 ) (OR 2 ) (OR 3 ) group in the compound represented by the general formula [1] is bonded to silica. That is, the compound represented by the general formula [1], centering on palladium, has a structure in which the sulfoxide group is placed on the palladium side so that the palladium is covered, and the compound represented by the general formula [1] is covered by silica. In other words, it has a three-layer structure of palladium, a compound represented by the general formula [1], and silica. The sulfoxide group in the sulfoxide group-containing palladium-supported silica of the present invention is coordinated to palladium.

[スルホキシド基含有パラジウム担持シリカの製造方法]
本発明のスルホキシド基含有パラジウム担持シリカの製造方法としては、上記本発明に係るパラジウム担持シリカと、上記一般式[1]で示される化合物とを、水の存在下疎水性溶媒中で、要すれば撹拌しながら接触させることによりなされる。
[Method of producing sulfoxide group-containing palladium-supported silica]
As a method for producing the sulfoxide group-containing palladium-supported silica of the present invention, the palladium-supported silica according to the present invention and the compound represented by the general formula [1] are required in a hydrophobic solvent in the presence of water. For example, by contacting with stirring.

より具体的には、例えば適当な疎水性溶媒中に、本発明に係るパラジウム担持シリカと一般式[1]で示される化合物(スルホキシド基を有するシランカップリング剤)と水を添加混合し、通常1〜20時間、好ましくは5〜15時間、通常50〜100℃、好ましくは60〜90℃で、要すれば撹拌しながら反応させることにより得られる。   More specifically, for example, in a suitable hydrophobic solvent, the palladium-supported silica according to the present invention, the compound represented by the general formula [1] (a silane coupling agent having a sulfoxide group) and water are added and mixed. The reaction time is 1 to 20 hours, preferably 5 to 15 hours, usually 50 to 100 ° C., preferably 60 to 90 ° C. If necessary, it is obtained by reacting with stirring.

一般式[1]で示される化合物の使用量は、本発明に係るパラジウム担持シリカ1mmolに対して通常10〜100mmol、好ましくは10〜50mmolである。   The amount of the compound represented by the general formula [1] to be used is generally 10 to 100 mmol, preferably 10 to 50 mmol, with respect to 1 mmol of the palladium-supported silica according to the present invention.

上記反応の際に用いられる疎水性溶媒としては、例えばペンタン、ヘキサン、シクロヘキサン、ヘプタン、オクタン、イソオクタン、ノナン、デカン等の脂肪族炭化水素系溶媒、ジエチルエーテル、ベンゼン、トルエン、キシレン等が挙げられるが、ペンタン、ヘキサン、シクロヘキサン、ヘプタン、オクタン、イソオクタン、ノナン、デカン等の脂肪族炭化水素系溶媒が好ましく、中でもヘプタンがより好ましい。これらの溶媒は、1種単独で用いても、複数種を適宜組み合わせて用いてもよい。上記溶媒の使用量は、パラジウムを担持した、シリカ1gに対して、通常1〜1000mL、好ましくは1〜100mLである。   Examples of the hydrophobic solvent used in the above reaction include aliphatic hydrocarbon solvents such as pentane, hexane, cyclohexane, heptane, octane, isooctane, nonane, decane, diethyl ether, benzene, toluene, xylene, and the like. However, aliphatic hydrocarbon solvents such as pentane, hexane, cyclohexane, heptane, octane, isooctane, nonane and decane are preferred, and heptane is more preferred. These solvents may be used individually by 1 type, or may be used in combination of multiple types as appropriate. The usage-amount of the said solvent is 1-1000mL normally with respect to 1g of silica which carry | supported palladium, Preferably it is 1-100mL.

上記反応の際に用いられる水の使用量は、本発明に係るパラジウム担持シリカ中のパラジウム1mmolに対して通常10〜1000mmol、好ましくは50〜100mmolである。   The amount of water used in the above reaction is usually 10 to 1000 mmol, preferably 50 to 100 mmol, with respect to 1 mmol of palladium in the palladium-supported silica according to the present invention.

本発明のスルホキシド基含有パラジウム担持シリカの製造方法は、具体的には例えば以下の如くなされる。
即ち、パラジウムを担持したシリカ1g(パラジウム量として約0.05mmol)をn−ヘプタン10〜50mL中に懸濁した後、水1〜10mmol、及び、一般式[1]で示される化合物0.5〜5mmolを添加混合し、通常10〜20時間、50〜100℃で撹拌しながら反応させることにより得られる。反応後、必要に応じて沈殿物をろ過し、アセトン等で洗浄してもよい。
The method for producing the sulfoxide group-containing palladium-supported silica of the present invention is specifically as follows, for example.
That is, after suspending 1 g of palladium-supported silica (about 0.05 mmol as the amount of palladium) in 10 to 50 mL of n-heptane, 1 to 10 mmol of water and 0.5 to 5 mmol of the compound represented by the general formula [1] were added. It is obtained by adding and mixing, and usually reacting with stirring at 50 to 100 ° C. for 10 to 20 hours. After the reaction, if necessary, the precipitate may be filtered and washed with acetone or the like.

[スルホキシド基含有パラジウム担持シリカを用いた還元方法]
本発明の製造方法により得られたスルホキシド基含有パラジウム担持シリカを用いた基質の還元方法は、被毒化剤を用いないこと以外は、自体公知の還元方法と同様に行えばよい。即ち、上記スルホキシド基パラジウム担持シリカの存在下で、基質を水素源と反応させて還元することによりなされる。
[Reduction method using sulfoxide group-containing palladium-supported silica]
The substrate reduction method using the sulfoxide group-containing palladium-supported silica obtained by the production method of the present invention may be carried out in the same manner as a reduction method known per se, except that a poisoning agent is not used. That is, the reduction is performed by reacting the substrate with a hydrogen source in the presence of the sulfoxide group palladium-supported silica.

上記基質は特に限定はされないが、アルキン誘導体が好ましい。即ち、本発明に係るスルホキシド基含有パラジウム担持シリカを触媒としてアルキン誘導体の還元反応を行うと、アルカン誘導体への還元がほとんどなく、部分水素化されたアルケン誘導体を選択的に得ることができる。   The substrate is not particularly limited, but an alkyne derivative is preferable. That is, when the reduction reaction of the alkyne derivative is carried out using the sulfoxide group-containing palladium-supported silica according to the present invention as a catalyst, there is almost no reduction to the alkane derivative, and a partially hydrogenated alkene derivative can be selectively obtained.

上記アルキン誘導体としては、例えば下記一般式[3]

Figure 2014051447
(式中、R11は、アルキル基、アルコキシ基、ハロゲン原子、アミノ基及びニトロ基から選ばれる基を置換として有するアリール基、置換基を有さないアリール基、或いはアルキル基を表し、R12は、水素原子、アルキル基、ヒドロキシアルキル基、アルコキシカルボニル基を表す)で示される化合物が挙げられる。
一般式[3]におけるR11で示されるアリール基の置換基であるアルキル基としては、通常炭素数1〜6、好ましくは炭素数1〜3であり、直鎖状、分枝状及び環状のうちのいずれのアルキル基でもよく、具体的には、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、シクロブチル基、n−ペンチル基、イソペンチル基、sec−ペンチル基、tert−ペンチル基、ネオペンチル基、2−メチルブチル基、1,2−ジメチルプロピル基、1−エチルプロピル基、シクロペンチル基、n−ヘキシル基、イソヘキシル基、sec−ヘキシル基、tert−ヘキシル基、ネオヘキシル基、2−メチルペンチル基、1,2−ジメチルブチル基、2,3−ジメチルブチル基、1−エチルブチル基、シクロヘキシル基等が挙げられ、中でもメチル基、エチル基、n−プロピル基、イソプロピル基等が好ましく、メチル基が特に好ましい。 Examples of the alkyne derivative include the following general formula [3]
Figure 2014051447
(Wherein, R 11 is an alkyl group, an alkoxy group, an aryl group having a halogen atom, a group selected from amino and nitro group as a substituent, an aryl group having no substituent, or an alkyl group, R 12 Represents a hydrogen atom, an alkyl group, a hydroxyalkyl group, or an alkoxycarbonyl group).
The alkyl group that is a substituent of the aryl group represented by R 11 in the general formula [3] usually has 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms, and is linear, branched or cyclic. Any alkyl group may be used. Specifically, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, cyclobutyl group, n-pentyl group, isopentyl group, sec-pentyl group, tert-pentyl group, neopentyl group, 2-methylbutyl group, 1,2-dimethylpropyl group, 1-ethylpropyl group, cyclopentyl group, n-hexyl group, isohexyl group , Sec-hexyl group, tert-hexyl group, neohexyl group, 2-methylpentyl group, 1,2-dimethylbutyl group, 2,3-dimethyl A butyl group, a 1-ethylbutyl group, a cyclohexyl group and the like can be mentioned, among which a methyl group, an ethyl group, an n-propyl group, an isopropyl group and the like are preferable, and a methyl group is particularly preferable.

一般式[3]におけるR11で示されるアリール基の置換基であるアルコキシ基としては、アルコキシ基としては、直鎖状でも分枝状或いは環状でもよく、通常炭素数1〜6、好ましくは炭素数1〜3のものが挙げられ、具体的には、例えばメトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基、n−ペンチルオキシ基、イソペンチルオキシ基、sec−ペンチルオキシ基、tert−ペンチルオキシ基、ネオペンチルオキシ基、n−ヘキシルオキシ基、イソヘキシルオキシ基、sec−ヘキシルオキシ基、tert−ヘキシルオキシ基、ネオヘキシルオキシ基、シクロプロポキシ基、シクロブトキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基等が挙げられる。 The alkoxy group which is a substituent of the aryl group represented by R 11 in the general formula [3] may be linear, branched or cyclic, and usually has 1 to 6 carbon atoms, preferably carbon. Specifically, for example, methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, n -Pentyloxy group, isopentyloxy group, sec-pentyloxy group, tert-pentyloxy group, neopentyloxy group, n-hexyloxy group, isohexyloxy group, sec-hexyloxy group, tert-hexyloxy group, Examples thereof include a neohexyloxy group, a cyclopropoxy group, a cyclobutoxy group, a cyclopentyloxy group, and a cyclohexyloxy group.

一般式[3]におけるR11で示されるアリール基の置換基であるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、中でも臭素原子が好ましい。 Examples of the halogen atom that is a substituent of the aryl group represented by R 11 in the general formula [3] include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and among them, a bromine atom is preferable.

一般式[3]におけるR11で示される、アルキル基、アルコキシ基、ハロゲン原子、アミノ基及びニトロ基から選ばれる基を置換基として有するアリール基及び置換基を有さないアリール基におけるアリール基としては、例えばフェニル基、ナフチル基等が挙げられ、中でもフェニル基が好ましい。 As an aryl group in an aryl group having no substituent and an aryl group having a substituent selected from an alkyl group, an alkoxy group, a halogen atom, an amino group, and a nitro group represented by R 11 in the general formula [3] Examples thereof include a phenyl group and a naphthyl group, and among them, a phenyl group is preferable.

一般式[3]におけるR11で示される、アルキル基、アルコキシ基、ハロゲン原子、アミノ基及びニトロ基から選ばれる基を置換として有するアリール基の具体例としては、例えば、メチルフェニル基、エチルフェニル基、プロピルフェニル基、ブチルフェニル基、ペンチルフェニル基、ヘキシルフェニル基、メトキシフェニル基、エトキシフェニル基、プロポキシフェニル基、ブトキシフェニル基、ペンチルオキシフェニル基、ヘキシルオキシフェニル基、クロロフェニル基、フルオロフェニル基、ヨードフェニル基、ブロモフェニル基、アミノフェニル基、ニトロフェニル基、メチルナフチル基、エチルナフチル基、プロピルナフチル基、ブチルナフチル基、ペンチルナフチル基、ヘキシルナフチル基、メトキシナフチル基、エトキシナフチル基、プロポキシナフチル基、ブトキシナフチル基、ペンチルオキシナフチル基、ヘキシルオキシナフチル基、クロロナフチル基、フルオロナフチル基、ヨードナフチル基、ブロモナフチル基、アミノナフチル基、ニトロナフチル基等が挙げられる。 Specific examples of the aryl group having a substituent selected from an alkyl group, an alkoxy group, a halogen atom, an amino group, and a nitro group represented by R 11 in the general formula [3] include, for example, a methylphenyl group, an ethylphenyl group, and the like. Group, propylphenyl group, butylphenyl group, pentylphenyl group, hexylphenyl group, methoxyphenyl group, ethoxyphenyl group, propoxyphenyl group, butoxyphenyl group, pentyloxyphenyl group, hexyloxyphenyl group, chlorophenyl group, fluorophenyl group , Iodophenyl group, bromophenyl group, aminophenyl group, nitrophenyl group, methylnaphthyl group, ethylnaphthyl group, propylnaphthyl group, butylnaphthyl group, pentylnaphthyl group, hexylnaphthyl group, methoxynaphthyl group, ethoxynaphth Examples thereof include a til group, propoxynaphthyl group, butoxynaphthyl group, pentyloxynaphthyl group, hexyloxynaphthyl group, chloronaphthyl group, fluoronaphthyl group, iodonaphthyl group, bromonaphthyl group, aminonaphthyl group, nitronaphthyl group and the like.

一般式[3]におけるR11で示されるアルキル基としては、通常炭素数1〜10、好ましくは炭素数1〜6、より好ましくは1〜3であり、直鎖状、分枝状及び環状のうちのいずれのアルキル基でもよく、具体的には、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、シクロブチル基、n−ペンチル基、イソペンチル基、sec−ペンチル基、tert−ペンチル基、ネオペンチル基、2−メチルブチル基、1,2−ジメチルプロピル基、1−エチルプロピル基、シクロペンチル基、n−ヘキシル基、イソヘキシル基、sec−ヘキシル基、tert−ヘキシル基、ネオヘキシル基、2−メチルペンチル基、1,2−ジメチルブチル基、2,3−ジメチルブチル基、1−エチルブチル基、シクロヘキシル基、n−ヘプチル基、イソヘプチル基、sec−ヘプチル基、tert−ヘプチル基、ネオヘプチル基、シクロヘプチル基、n−オクチル基、イソオクチル基、sec−オクチル基、tert−オクチル基、ネオオクチル基、2−エチルヘキシル基、シクロオクチル基、n−ノニル基、イソノニル基、sec−ノニル基、tert−ノニル基、ネオノニル基、シクロノニル基、n−デシル基、イソデシル基、sec−デシル基、tert−デシル基、ネオデシル基、シクロデシル基等が挙げられる。 The alkyl group represented by R 11 in the general formula [3] usually has 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms, more preferably 1 to 3 carbon atoms, linear, branched and cyclic. Any alkyl group may be used. Specifically, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, cyclobutyl group, n-pentyl group, isopentyl group, sec-pentyl group, tert-pentyl group, neopentyl group, 2-methylbutyl group, 1,2-dimethylpropyl group, 1-ethylpropyl group, cyclopentyl group, n-hexyl group, isohexyl group , Sec-hexyl group, tert-hexyl group, neohexyl group, 2-methylpentyl group, 1,2-dimethylbutyl group, 2,3-dimethyl Butyl, 1-ethylbutyl, cyclohexyl, n-heptyl, isoheptyl, sec-heptyl, tert-heptyl, neoheptyl, cycloheptyl, n-octyl, isooctyl, sec-octyl, tert -Octyl group, neooctyl group, 2-ethylhexyl group, cyclooctyl group, n-nonyl group, isononyl group, sec-nonyl group, tert-nonyl group, neononyl group, cyclononyl group, n-decyl group, isodecyl group, sec- A decyl group, a tert-decyl group, a neodecyl group, a cyclodecyl group, etc. are mentioned.

一般式[3]におけるR12で示されるアルキル基としては、上記R11で示されるアルキル基と同じものが挙げられる。 Examples of the alkyl group represented by R 12 in the general formula [3] include the same alkyl groups represented by R 11 described above.

一般式[3]におけるR12で示されるヒドロキシアルキル基としては、通常炭素数1〜6、より好ましくは1〜3であり、直鎖状、環状のいずれでもよく、例えばヒドロキシメチル基、1−ヒドロキシエチル基、2−ヒドロキシエチル基、1−ヒドロキシ−n−プロピル基、2−ヒドロキシ−n−プロピル基、3−ヒドロキシ−n−プロピル基、1−ヒドロキシイソプロピル基、2−ヒドロキシイソプロピル基、1−ヒドロキシ−n−ブチル基、2−ヒドロキシ−n−ブチル基、3−ヒドロキシ−n−ブチル基、4−ヒドロキシ−n−ブチル基、1−ヒドロキシイソブチル基、2−ヒドロキシイソブチル基、3−ヒドロキシイソブチル基、1−ヒドロキシ−sec−ブチル基、2−ヒドロキシ−sec−ブチル基、3−ヒドロキシ−sec−ブチル基、4−ヒドロキシ−sec−ブチル基、1−ヒドロキシ−tert−ブチル基、1−ヒドロキシシクロブチル基、2−ヒドロキシシクロブチル基、3−ヒドロキシシクロブチル基、5−ヒドロキシ−n−ペンチル基、6−ヒドロキシ−n−ヘキシル基等が挙げられる。 The hydroxyalkyl group represented by R 12 in the general formula [3] usually has 1 to 6 carbon atoms, more preferably 1 to 3 carbon atoms, and may be linear or cyclic. For example, a hydroxymethyl group, 1- Hydroxyethyl group, 2-hydroxyethyl group, 1-hydroxy-n-propyl group, 2-hydroxy-n-propyl group, 3-hydroxy-n-propyl group, 1-hydroxyisopropyl group, 2-hydroxyisopropyl group, 1 -Hydroxy-n-butyl group, 2-hydroxy-n-butyl group, 3-hydroxy-n-butyl group, 4-hydroxy-n-butyl group, 1-hydroxyisobutyl group, 2-hydroxyisobutyl group, 3-hydroxy Isobutyl group, 1-hydroxy-sec-butyl group, 2-hydroxy-sec-butyl group, 3-hydroxy-sec-butyl group Tyl group, 4-hydroxy-sec-butyl group, 1-hydroxy-tert-butyl group, 1-hydroxycyclobutyl group, 2-hydroxycyclobutyl group, 3-hydroxycyclobutyl group, 5-hydroxy-n-pentyl group , 6-hydroxy-n-hexyl group and the like.

一般式[3]におけるR12で示されるアルコキシカルボニル基としては、通常炭素数2〜7、より好ましくは2〜4であり、直鎖状、分枝状、環状のいずれでもよく、メトキシカルボニル基、エトキシカルボニル基、n−プロポキシカルボニル基、イソプロポキシカルボニル基、n−ブトキシカルボニル基、イソブトキシカルボニル基、sec−ブトキシカルボニル基、tert−ブトキシカルボニル基、n−ペンチルオキシカルボニル基、イソペンチルオキシカルボニル基、sec−ペンチルオキシカルボニル基、tert−ペンチルオキシカルボニル基、ネオペンチルオキシカルボニル基、n−ヘキシルオキシカルボニル基、イソヘキシルオキシカルボニル基、sec−ヘキシルオキシカルボニル基、tert−ヘキシルオキシカルボニル基、ネオヘキシルオキシカルボニル基、シクロプロポキシカルボニル基、シクロブトキシカルボニル基、シクロペンチルオキシカルボニル基、シクロヘキシルオキシカルボニル基等が挙げられる。 The alkoxycarbonyl group represented by R 12 in the general formula [3] usually has 2 to 7 carbon atoms, more preferably 2 to 4 carbon atoms, which may be linear, branched or cyclic, and is a methoxycarbonyl group. , Ethoxycarbonyl group, n-propoxycarbonyl group, isopropoxycarbonyl group, n-butoxycarbonyl group, isobutoxycarbonyl group, sec-butoxycarbonyl group, tert-butoxycarbonyl group, n-pentyloxycarbonyl group, isopentyloxycarbonyl Group, sec-pentyloxycarbonyl group, tert-pentyloxycarbonyl group, neopentyloxycarbonyl group, n-hexyloxycarbonyl group, isohexyloxycarbonyl group, sec-hexyloxycarbonyl group, tert-hexyloxycarbonyl group, neo Hexyloxycarbo Nyl group, cyclopropoxycarbonyl group, cyclobutoxycarbonyl group, cyclopentyloxycarbonyl group, cyclohexyloxycarbonyl group and the like can be mentioned.

一般式[3]で示されるアルキン誘導体の具体例としては、例えば、プロピン、1−ブチン、2−ブチン、1−ペンチン、2−ペンチン、1−ヘキシン、2−ヘキシン、3−ヘキシン、1−ヘプチン、2−ヘプチン、3−ヘプチン、1−オクチン、2−オクチン、3−オクチン、4−オクチン、1−ノニン、2−ノニン、3−ノニン、4−ノニン、1−デシン、2−デシン、3−デシン、4−デシン、5−デシン等の直鎖状アルキン化合物;1−フェニルエチン、1−フェニル−1−プロピン、1−フェニル−2−プロピン、1−フェニル−1−ブチン、1−フェニル−2−ブチン、1−フェニル−3−ブチン、1−フェニル−1−ペンチン、1−フェニル−2−ペンチン、1−フェニル−3−ペンチン、1−フェニル−4−ペンチン、1−フェニル−1−ヘキシン、1−フェニル−2−ヘキシン、1−フェニル−3−ヘキシン、1−フェニル−4−ヘキシン、1−フェニル−5−ヘキシン、1−フェニル−1−ヘプチン、1−フェニル−2−ヘプチン、1−フェニル−3−ヘプチン、1−フェニル−4−ヘプチン、1−フェニル−5−ヘプチン、1−フェニル−6−ヘプチン、1−フェニル−1−オクチン、1−フェニル−2−オクチン、1−フェニル−3−オクチン、1−フェニル−4−オクチン、1−フェニル−5−オクチン、1−フェニル−6−オクチン、1−フェニル−7−オクチン等のフェニルアルキン化合物;1−フェニル−1−プロピン酸メチル、1−フェニル−1−プロピン酸エチル、1−フェニル−1−プロピン酸プロピル、1−フェニル−1−ブチン酸メチル、1−フェニル−1−ペンチン酸メチル、1−フェニル−1−ヘキシン酸メチル、1−フェニル−1−ヘプチン酸メチル、1−フェニル−1−オクチン酸メチル、1−フェニル−1−ブチン酸エチル、1−フェニル−1−ペンチン酸エチル、1−フェニル−1−ヘキシン酸エチル、1−フェニル−1−ヘプチン酸エチル、1−フェニル−1−オクチン酸エチル等のフェニルアルキン酸エステル;エチノール、プロピノール、2−プロピノール、1−ブチノール、2−ブチノール、3−ブチノール、1−ペンチノール、2−ペンチノール、3−ペンチノール、4−ペンチノール、1−ヘキシノール、2−ヘキシノール、3−ヘキシノール、4−ヘキシノール、5−ヘキシノール、1−ヘプチノール、2−ヘプチノール、3−ヘプチノール、4−ヘプチノール、5−ヘプチノール、6−ヘプチノール、1−オクチノール、2−オクチノール、3−オクチノール、4−オクチノール、5−オクチノール、6−オクチノール、7−オクチノール、1−ノニノール、2−ノニノール、3−ノニノール、4−ノニノール、5−ノニノール、6−ノニノール、7−ノニノール、8−ノニノール、1−デシノール、2−デシノール、3−デシノール、4−デシノール、5−デシノール、6−デシノール、7−デシノール、8−デシノール、9−デシノール等のアルキンアルコール;メチルフェニルエチン、エチルフェニルエチン、プロピルフェニルエチン、ブチルフェニルエチン、ペンチルフェニルエチン、ヘキシルフェニルエチン、メトキシフェニルエチン、エトキシフェニルエチン、プロポキシフェニルエチン、ブトキシフェニルエチン、ペンチルオキシフェニルエチン、ヘキシルオキシフェニルエチン、アミノフェニルエチン、1−アミノフェニル−1−プロピン、1−アミノフェニル−2−プロピン、1−アミノフェニル−1−ブチン、1−アミノフェニル−2−ブチン、ブロモフェニルエチン、1−ブロモフェニル−1−プロピン、1−ブロモフェニル−2−プロピン、1−ブロモフェニル−1−ブチン、1−ブロモフェニル−2−ブチン、クロロフェニルエチン、クロロフェニルエチン、1−クロロフェニル−1−プロピン、1−クロロフェニル−2−プロピン、1−クロロフェニル−1−ブチン、1−クロロフェニル−2−ブチン、フルオロフェニルエチン、フルオロフェニルエチン、1−フルオロフェニル−1−プロピン、1−フルオロフェニル−2−プロピン、1−フルオロフェニル−1−ブチン、1−フルオロフェニル−2−ブチン、ヨードフェニルエチン、ヨードフェニルエチン、1−ヨードフェニル−1−プロピン、1−ヨードフェニル−2−プロピン、1−ヨードフェニル−1−ブチン、1−ヨードフェニル−2−ブチン、ニトロフェニルエチン、1−ニトロフェニル−1−プロピン、1−ニトロフェニル−2−プロピン、1−ニトロフェニル−1−ブチン、1−ニトロフェニル−2−ブチン等の置換基を有するフェニルアルキン化合物;1−シクロヘキセニルエチン、1−シクロヘキセニル−1−プロピン、1−シクロヘキセニル−2−プロピン、1−シクロヘキセニル−1−ブチン、1−シクロヘキセニル−2−ブチン等の環状アルケニルアルキン化合物等が挙げられる。   Specific examples of the alkyne derivative represented by the general formula [3] include, for example, propyne, 1-butyne, 2-butyne, 1-pentyne, 2-pentyne, 1-hexyne, 2-hexyne, 3-hexyne, 1- Heptin, 2-heptin, 3-heptin, 1-octyne, 2-octyne, 3-octyne, 4-octyne, 1-nonine, 2-nonine, 3-nonine, 4-nonine, 1-decyne, 2-decyne, Linear alkyne compounds such as 3-decyne, 4-decyne, 5-decyne; 1-phenylethyne, 1-phenyl-1-propyne, 1-phenyl-2-propyne, 1-phenyl-1-butyne, Phenyl-2-butyne, 1-phenyl-3-butyne, 1-phenyl-1-pentyne, 1-phenyl-2-pentyne, 1-phenyl-3-pentyne, 1-phenyl-4-pentyne, 1-phenyl- 1-hexyne, 1-phenyl-2-hex Syn, 1-phenyl-3-hexyne, 1-phenyl-4-hexyne, 1-phenyl-5-hexyne, 1-phenyl-1-heptin, 1-phenyl-2-heptin, 1-phenyl-3-heptin, 1-phenyl-4-heptin, 1-phenyl-5-heptin, 1-phenyl-6-heptin, 1-phenyl-1-octyne, 1-phenyl-2-octyne, 1-phenyl-3-octyne, 1-phenyl-1-octyne Phenyl alkyne compounds such as phenyl-4-octyne, 1-phenyl-5-octyne, 1-phenyl-6-octyne and 1-phenyl-7-octyne; methyl 1-phenyl-1-propinate, 1-phenyl-1 -Ethyl propinate, propyl 1-phenyl-1-propinate, methyl 1-phenyl-1-butyrate, methyl 1-phenyl-1-pentinate, methyl 1-phenyl-1-hexynoate, 1-phenyl Methyl 1-heptinate, methyl 1-phenyl-1-octinate, ethyl 1-phenyl-1-butyrate, ethyl 1-phenyl-1-pentinate, ethyl 1-phenyl-1-hexynoate, 1- Phenyl alkyne esters such as ethyl phenyl-1-heptinate and ethyl 1-phenyl-1-octinate; ethinol, propinol, 2-propinol, 1-butynol, 2-butynol, 3-butynol, 1-pentynol, 2- Pentinol, 3-pentynol, 4-pentinol, 1-hexinol, 2-hexynol, 3-hexynol, 4-hexynol, 5-hexynol, 1-heptinol, 2-heptinol, 3-heptinol, 4-heptinol, 5-heptinol, 6-heptinol, 1-octinol, 2-octinol, 3-octinol, 4-octinol, 5-octinol , 6-octinol, 7-octinol, 1-noninol, 2-noninol, 3-noninol, 4-noninol, 5-noninol, 6-noninol, 7-noninol, 8-noninol, 1-decinol, 2-decinol Alkyne alcohols such as 3-decinol, 4-decinol, 5-decinol, 6-decinol, 7-decinol, 8-decinol, 9-decinol; methylphenylethine, ethylphenylethyne, propylphenylethyne, butylphenylethyne, pentyl Phenylethine, hexylphenylethyne, methoxyphenylethyne, ethoxyphenylethine, propoxyphenylethyne, butoxyphenylethyne, pentyloxyphenylethyne, hexyloxyphenylethyne, aminophenylethyne, 1-aminophenyl-1-propyne, 1- Minophenyl-2-propyne, 1-aminophenyl-1-butyne, 1-aminophenyl-2-butyne, bromophenylethyne, 1-bromophenyl-1-propyne, 1-bromophenyl-2-propyne, 1-bromophenyl -1-butyne, 1-bromophenyl-2-butyne, chlorophenylethyne, chlorophenylethyne, 1-chlorophenyl-1-propyne, 1-chlorophenyl-2-propyne, 1-chlorophenyl-1-butyne, 1-chlorophenyl-2- Butyne, fluorophenylethyne, fluorophenylethyne, 1-fluorophenyl-1-propyne, 1-fluorophenyl-2-propyne, 1-fluorophenyl-1-butyne, 1-fluorophenyl-2-butyne, iodophenylethyne, Iodophenylethyne, 1-iodophenyl-1-propyne 1-iodophenyl-2-propyne, 1-iodophenyl-1-butyne, 1-iodophenyl-2-butyne, nitrophenylethyne, 1-nitrophenyl-1-propyne, 1-nitrophenyl-2-propyne, 1 A phenylalkyne compound having a substituent such as nitrophenyl-1-butyne and 1-nitrophenyl-2-butyne; 1-cyclohexenylethyne, 1-cyclohexenyl-1-propyne, 1-cyclohexenyl-2-propyne, Examples thereof include cyclic alkenyl alkyne compounds such as 1-cyclohexenyl-1-butyne and 1-cyclohexenyl-2-butyne.

上記一般式[3]で示される化合物を基質として上記還元方法を行うと、下記一般式[4]で示されるアルケン誘導体を得ることができる

Figure 2014051447
(式中、R11及びR12は上記と同じ)。 When the above reduction method is performed using the compound represented by the general formula [3] as a substrate, an alkene derivative represented by the following general formula [4] can be obtained.
Figure 2014051447
(Wherein R 11 and R 12 are the same as above).

上記還元方法におけるスルホキシド基含有パラジウム担持シリカの使用量は、パラジウムのmol量が、基質1molに対して、通常1×10−7〜1倍、好ましくは1×10−5〜0.1倍、より好ましくは1×10−4〜1×10−2倍となるような量であればよい。 The amount of palladium supported silica containing sulfoxide groups in the above reduction method is such that the molar amount of palladium is usually 1 × 10 −7 to 1 times, preferably 1 × 10 −5 to 0.1 times, more preferably 1 mol of the substrate. May be an amount that is 1 × 10 −4 to 1 × 10 −2 times.

上記還元方法における水素源としては、例えば水素ガス、例えばメチルヒドラジン、エチルヒドラジン等のヒドラジン類、例えばギ酸アンモニウム等が挙げられ、なかでも、水素ガスが好ましい。また、これら水素源の使用量としては特に限定されないが、例えば原料基質1molに対して、通常1〜100mol、好ましくは2〜50mol、より好ましくは2〜20molとなるような量に設定される。   Examples of the hydrogen source in the reduction method include hydrogen gas, for example, hydrazines such as methyl hydrazine and ethyl hydrazine, such as ammonium formate, and hydrogen gas is preferable. The amount of these hydrogen sources to be used is not particularly limited. For example, the amount is usually set to 1 to 100 mol, preferably 2 to 50 mol, more preferably 2 to 20 mol with respect to 1 mol of the raw material substrate.

上記還元方法は、通常20〜50℃、好ましくは20〜40℃で、1〜30時間、好ましくは5〜15時間なされる。   The reduction method is usually 20 to 50 ° C., preferably 20 to 40 ° C., for 1 to 30 hours, preferably 5 to 15 hours.

上記還元方法は、溶媒中で反応させてもよく、該溶媒は、通常この分野で用いられるものであれば特に限定はされず、その使用量も通常用いられる範囲で適宜設定されればよい。   The above-mentioned reduction method may be reacted in a solvent, and the solvent is not particularly limited as long as it is usually used in this field, and the amount used may be appropriately set within the range usually used.

上記還元方法は、具体的には例えば以下の如くなされる。即ち、反応容器中の空気を水素で置換した後、基質を含むn−ヘキサン等の溶媒1〜10mLを反応容器に加える。その後、該溶媒にパラジウムを1〜10μmol含む上記スルホキシド基含有パラジウム担持シリカ1〜100mg、0.1〜1mmolの基質を加え、20〜40℃で5〜15時間反応させる。反応後、ろ過により本発明に係る触媒を除去し、反応溶媒を蒸発させることにより反応生成物を得ることができる。   The above reduction method is specifically performed as follows, for example. That is, after the air in the reaction vessel is replaced with hydrogen, 1 to 10 mL of a solvent such as n-hexane containing the substrate is added to the reaction vessel. Thereafter, 1 to 100 mg of the above sulfoxide group-containing palladium-supporting silica containing 1 to 10 μmol of palladium and 0.1 to 1 mmol of the substrate are added to the solvent and reacted at 20 to 40 ° C. for 5 to 15 hours. After the reaction, the reaction product can be obtained by removing the catalyst according to the present invention by filtration and evaporating the reaction solvent.

以下に、実施例を挙げて本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.

実施例1 スルホキシド基含有Pd担持シリカ触媒(Pd/SiO 2 −Sulfoxide)の製造方法
(1) メチル−トリメトキシシリルプロピルスルホキシド(MeSOPrTMS)の合成

Figure 2014051447

MPTMS(メルカプトプロピルトリメトキシシラン、東京化成工業(株)製) 19.6 g(100 mmol)とナトリウムメトキシドを28%含有するメタノール溶液 20g(NaOMeとして100mmol)の混合溶液を100 mL三つ口フラスコに加え、滴下ロートを装着し反応容器内をアルゴン置換した後、氷冷した。滴下ロートを用いてヨウ化メチル(和光純薬工業(株)製) 16.6 g(110 mmol)を滴下した。滴下終了後、室温で1時間撹拌した後、反応管内を真空引きし、メタノールを蒸発させた。生成物をヨウ化メチレン(CH2Cl2)で抽出してろ過によりナトリウムメトキシド(NaOMe)およびヨウ化ナトリウム(NaI)を分離し、液相をエバポレーターにより濃縮後、減圧蒸留し、メチルトリメトキシシリルプロピルスルフィド(MeSPrTMS、沸点:95℃, 4mmHg)を得た(収率:80%)。
次いで、100 mLナス型フラスコに、得られたMeSPrTMS2.26 g(10 mmol)、メタノール20 mL、2,6−ターシャルブチル−p−クレゾール(和光純薬工業(株)製) 0.01 gを加え、アルゴン置換した後、反応器を氷冷し、過ヨウ素酸ナトリウム(NaIO4、和光純薬工業(株)製)2.4 g(12 mmol)を加え、氷浴中で24時間撹拌した。得られた液体を濾過後、エバポレーターにより濃縮し、メチル−トリメトキシシリルプロピルスルホキシド(MeSOPrTMS)を得た(収率:62%) Example 1 Method for producing sulfoxide group-containing Pd-supported silica catalyst (Pd / SiO 2 -Sulfoxide) (1) Synthesis of methyl-trimethoxysilylpropyl sulfoxide (MeSOPrTMS)
Figure 2014051447

MPTMS (Mercaptopropyltrimethoxysilane, manufactured by Tokyo Chemical Industry Co., Ltd.) 19.6 g (100 mmol) and a mixed solution of 20 g of methanol solution containing 28% sodium methoxide (100 mmol as NaOMe) in a 100 mL three-necked flask In addition, a dropping funnel was attached and the inside of the reaction vessel was purged with argon, followed by ice cooling. 16.6 g (110 mmol) of methyl iodide (manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise using a dropping funnel. After completion of the dropwise addition, the mixture was stirred at room temperature for 1 hour, and then the inside of the reaction tube was evacuated to evaporate methanol. The product is extracted with methylene iodide (CH 2 Cl 2 ), and sodium methoxide (NaOMe) and sodium iodide (NaI) are separated by filtration. The liquid phase is concentrated by an evaporator and distilled under reduced pressure. Silylpropyl sulfide (MeSPrTMS, boiling point: 95 ° C., 4 mmHg) was obtained (yield: 80%).
Next, to the 100 mL eggplant-shaped flask was added MeSPrTMS2.26 g (10 mmol), methanol 20 mL, 2,6-tert-butyl-p-cresol (manufactured by Wako Pure Chemical Industries, Ltd.) 0.01 g. After replacing with argon, the reactor was ice-cooled, 2.4 g (12 mmol) of sodium periodate (NaIO 4 , manufactured by Wako Pure Chemical Industries, Ltd.) was added, and the mixture was stirred in an ice bath for 24 hours. The obtained liquid was filtered and then concentrated by an evaporator to obtain methyl-trimethoxysilylpropyl sulfoxide (MeSOPrTMS) (yield: 62%)

(2)Pd担持シリカ(Pd/SiO2)の調製
濃アンモニア水(28 wt%) 5mLをフラスコに取り、塩化パラジウム(PdCl2)0.2 gを加え、100 oCで30分よく撹拌し、塩化パラジウムを溶解させた。得られた淡黄色透明溶液をろ過し、溶け残った塩化パラジウムを除去した。ろ液に50 mLのエタノールを注ぐと白色のPd(NH34Cl2・H2Oが析出するのでこれをろ過し、真空下1時間乾燥させ、Pd(NH34Cl2を得た。
100 mLナス型フラスコに、得られたPd(NH34Cl2・H2O0.0131 g(0.05 mmol)を加えて脱イオン蒸留水50 mLに溶解させ、SiO2[CARiACT Q−30(200−350 mesh), 富士シリシア化学(株)製]1.0 gを加えた後、溶液を撹拌しながら濃アンモニア水をピペットを用いて滴下し、pHを10に調整した。フラスコに栓をし、そのまま空気雰囲気下で30 oCにて12時間撹拌した。得られたスラリーをろ過し、ろ液が中性になるまで脱イオン蒸留水約1Lを用いて洗浄後、デシケーターにて30oC、6時間真空乾燥させることにより、白色粉末のPd担持シリカ (PdIISiO2, 0.95 g)を得た。
次いで、調製したPd担持シリカを100 mL枝付きナスフラスコに加え、還流管、ガスバック付き三方コックを装着し、30分間ポンプにより真空引きした後、反応管内をアルゴン置換し、エタノール 20 mLを加え、85 oCで2時間加熱撹拌した。得られた粉末を吸引ろ過、エタノール 200 mLで洗浄後、デシケーターにて30oC、2時間真空乾燥し、茶色味を帯びた灰色粉末であるPd/SiO2(0.85g、Pd含量:0.047 mmol/g)を得た。
(2) Preparation of Pd-supported silica (Pd / SiO 2 ) Take 5 mL of concentrated aqueous ammonia (28 wt%) in a flask, add 0.2 g of palladium chloride (PdCl 2 ), and stir well at 100 ° C for 30 minutes. Palladium was dissolved. The resulting pale yellow transparent solution was filtered to remove undissolved palladium chloride. When 50 mL of ethanol is poured into the filtrate, white Pd (NH 3 ) 4 Cl 2 • H 2 O precipitates, which is filtered and dried under vacuum for 1 hour to obtain Pd (NH 3 ) 4 Cl 2 . It was.
In 100 mL eggplant type flask, dissolved in the resulting Pd (NH 3) 4 Cl 2 · H 2 O0.0131 g (0.05 mmol) were added deionized distilled water 50 mL, SiO 2 [CARiACT Q -30 ( 200-350 mesh), manufactured by Fuji Silysia Chemical Co., Ltd.], 1.0 g was added, and concentrated aqueous ammonia was added dropwise using a pipette while the solution was stirred to adjust the pH to 10. The flask was stoppered and stirred as it was at 30 ° C. for 12 hours in an air atmosphere. The obtained slurry was filtered, washed with about 1 L of deionized distilled water until the filtrate became neutral, and then vacuum-dried at 30 ° C. for 6 hours in a desiccator to obtain white powder of Pd-supported silica ( Pd II SiO 2 , 0.95 g) was obtained.
Next, add the prepared Pd-supported silica to a 100 mL eggplant flask with a branch, attach a reflux tube and a three-way cock with a gas back, evacuate with a pump for 30 minutes, purge the reaction tube with argon, and add 20 mL of ethanol. And stirred at 85 ° C. for 2 hours. The obtained powder was suction filtered, washed with 200 mL of ethanol, and vacuum-dried in a desiccator at 30 ° C. for 2 hours. Pd / SiO 2 (0.85 g, Pd content: 0.047 mmol) as a brownish gray powder / G) was obtained.

(3)スルホキシド基含有Pd/SiO2
更に、得られたPd/SiO2(1.0 g, Pd含量:0.047 mmol/g)を100 mL枝付きナスフラスコに加え、ガスバック付き三方コックを装着し、30分間ポンプにより真空引きした後、反応管内をアルゴン置換し、n−ヘプタン 20 mL、水0.090 g(5 mmol)を加え1時間室温にて撹拌した。続いて(1)で合成したMeSOPrTMS 0.226 g(1 mmol)を加えた後、80oCにて12時間撹拌した。得られた沈殿を吸引ろ過し、20 mLのアセトンで5回洗浄後、真空乾燥させ、触媒を得た(スルホキシド基含有Pd/SiO2)。
得られたスルホキシド基含有Pd/SiO2を透過型電子顕微鏡でその構造を確認した結果を図1の左図に示す。右図には、構造の模式図を示す。
図1の左図より、上記スルホキシド基含有Pd/SiO2は、パラジウムにスルホキシド基が結合し、その周りをシリカゲルが覆うという構造になっていると推測された。
(3) Pd / SiO 2 containing sulfoxide groups
Furthermore, the obtained Pd / SiO 2 (1.0 g, Pd content: 0.047 mmol / g) was added to a 100 mL eggplant-shaped eggplant flask, fitted with a three-way cock with a gas bag, and evacuated with a pump for 30 minutes. The inside of the tube was purged with argon, 20 mL of n-heptane and 0.090 g (5 mmol) of water were added, and the mixture was stirred at room temperature for 1 hour. Subsequently, 0.226 g (1 mmol) of MeSOPrTMS synthesized in (1) was added, followed by stirring at 80 ° C. for 12 hours. The resulting precipitate was filtered by suction, washed 5 times with 20 mL of acetone, and then vacuum-dried to obtain a catalyst (sulfoxide group-containing Pd / SiO 2 ).
The result of confirming the structure of the obtained sulfoxide group-containing Pd / SiO 2 with a transmission electron microscope is shown in the left figure of FIG. The right figure shows a schematic diagram of the structure.
From the left figure of FIG. 1, it was speculated that the sulfoxide group-containing Pd / SiO 2 had a structure in which a sulfoxide group was bonded to palladium, and the periphery thereof was covered with silica gel.

実施例2 スルホキシド基含有Pd/SiO 2 によるアルキンの部分水素化反応
シュレンク管に、実施例1で得たスルホキシド基含有Pd/SiO20.050 g(Pd含量:2.3 μmol)を加え、ガスバック付き三方コックを装着した。反応器内を30分間ポンプにて真空引きした後、反応器内を水素で置換−脱気の繰り返しにより3回水素置換し、最後に水素を充填した。反応器内にn−ヘキサン5 mL、1−フェニル−1−プロピン 0.5 mmolを加え、30 oCにて反応時間を10〜180分に設定し、水素化反応を行った。ろ過により所定時間の反応物から触媒を除去し、ろ液をエバポレーターにより蒸発させて生成物を回収した。シリカゲルカラムクロマトグラフィー(WAKOGEL C−200、展開溶媒n−hexane:AcOEt)により、残留物から純粋な生成物を得た。生成物の同定はガスクロマトグラフィー(GC)、GC−MS、NMRを用い、定量は内部標準としてナフタレンを用いて、GCにて行った。その結果を図2に示す。尚、図2中−◆−は、アルケンの収率(化合物2)を、−●−は、アルカン(化合物3)の収率を表す。
また、120分と180分の際の化合物2及び3の収率を下記表1に示す。
Example 2 Partial hydrogenation reaction of alkyne with sulfoxide group-containing Pd / SiO 2 To the Schlenk tube, 0.050 g (Pd content: 2.3 μmol) of sulfoxide group-containing Pd / SiO 2 obtained in Example 1 was added, and three-way with gas back A cock was attached. The inside of the reactor was evacuated with a pump for 30 minutes, and then the inside of the reactor was replaced with hydrogen three times by repeated substitution and degassing with hydrogen, and finally, hydrogen was charged. 5 mL of n-hexane and 0.5 mmol of 1-phenyl-1-propyne were added to the reactor, and the reaction time was set to 10 to 180 minutes at 30 ° C. to carry out a hydrogenation reaction. The catalyst was removed from the reaction product for a predetermined time by filtration, and the filtrate was evaporated by an evaporator to recover the product. A pure product was obtained from the residue by silica gel column chromatography (WAKOGEL C-200, developing solvent n-hexane: AcOEt). The product was identified by gas chromatography (GC), GC-MS, and NMR, and quantification was performed by GC using naphthalene as an internal standard. The result is shown in FIG. In FIG. 2,-♦-represents the yield of alkene (compound 2), and-●-represents the yield of alkane (compound 3).
The yields of compounds 2 and 3 at 120 minutes and 180 minutes are shown in Table 1 below.

Figure 2014051447
Figure 2014051447

上記結果より、スルホキシド基含有Pd/SiO2を用いると高選択的に部分水素化反応が進行し、94%の収率でアルケンを得られることが判った。また基質の消失後、反応時間を延長してもアルカンへの水素化反応はほとんど進行しないことも判った。 From the above results, it was found that when sulfoxide group-containing Pd / SiO 2 was used, the partial hydrogenation reaction proceeded with high selectivity, and the alkene could be obtained with a yield of 94%. It was also found that after the disappearance of the substrate, the hydrogenation reaction to alkane hardly progressed even if the reaction time was extended.

比較例1 スルホキシド基含有シリカにパラジウム金属を担持させた触媒の製造方法
(1)スルホキシド基含有シリカの製造方法
SiO2(1.0 g)を100 mL枝付きナスフラスコに加え、ガススバック付き三方コックを装着し、30分間ポンプにより真空引きした後、反応管内をアルゴン置換し、n−ヘプタン 20 mL、水0.090 g(5 mmol)を加え1時間室温にて撹拌した。続いて(1)で合成したMeSOPrTMS 0.226 g(1 mmol)を加えた後、80oCにて12時間撹拌した。得られた沈殿を吸引ろ過し、20 mLのアセトンで5回洗浄後、真空乾燥させ、スルホキシド基含有シリカを得た。
(2)スルホキシド基含有シリカにパラジウム金属を担持させた触媒の製造方法
100 mLナス型フラスコにPd(NH34Cl2・H2O0.0131 g(0.05 mmol)を加えて脱イオン蒸留水50 mLに溶解させ、得られたスルホキシド含有シリカ1.0 gを加えた。フラスコに栓をし、そのまま空気雰囲気下で30 oCにて12時間撹拌した。得られたスラリーをろ過し、ろ液が中性になるまで脱イオン蒸留水約1Lを用いて洗浄後、デシケーターにて30oC、6時間真空乾燥させることにより、黄色粉末のPd担持スルホキシド含有シリカ0.95 gを得た。
次いで、調製したPd担持スルホキシド含有シリカを100 mL枝付きナスフラスコに加え、還流管、ガスバック付き三方コックを装着し、30分間ポンプにより真空引きした後、反応管内をアルゴン置換し、エタノール 20 mLを加え、85 oCで2時間加熱撹拌した。得られた粉末を吸引ろ過、エタノール 200 mLで洗浄後、デシケーターにて30oC、2時間真空乾燥し、茶色味を帯びた灰色粉末であるスルホキシド基含有シリカにパラジウム金属を担持させた触媒を得た。
Comparative Example 1 Method for producing a catalyst in which palladium metal is supported on sulfoxide group-containing silica (1) Method for producing sulfoxide group-containing silica
Add SiO 2 (1.0 g) to a 100 mL eggplant flask with a branch, attach a three-way cock with a gas back, and evacuate with a pump for 30 minutes. Then, the reaction tube is purged with argon, 20 mL of n-heptane, 0.090 g of water ( 5 mmol) was added and stirred at room temperature for 1 hour. Subsequently, 0.226 g (1 mmol) of MeSOPrTMS synthesized in (1) was added, followed by stirring at 80 ° C. for 12 hours. The resulting precipitate was filtered by suction, washed 5 times with 20 mL of acetone, and then vacuum-dried to obtain sulfoxide group-containing silica.
(2) Method for producing a catalyst in which palladium metal is supported on silica containing sulfoxide groups
Pd (NH 3 ) 4 Cl 2 · H 2 O (0.0131 g, 0.05 mmol) was added to a 100 mL eggplant-shaped flask and dissolved in 50 mL of deionized distilled water, and 1.0 g of the resulting sulfoxide-containing silica was added. The flask was stoppered and stirred as it was at 30 ° C. for 12 hours in an air atmosphere. The resulting slurry was filtered, washed with about 1 L of deionized distilled water until the filtrate became neutral, and then vacuum-dried at 30 ° C for 6 hours in a desiccator, containing yellow powdered Pd-supported sulfoxide 0.95 g of silica was obtained.
Next, add the prepared Pd-supported sulfoxide-containing silica to a 100 mL eggplant flask with a branch, attach a reflux tube and a three-way cock with a gas back, evacuate with a pump for 30 minutes, purge the inside of the reaction tube with argon, and add 20 mL of ethanol. And heated and stirred at 85 ° C. for 2 hours. The obtained powder was suction filtered, washed with 200 mL of ethanol, and then vacuum-dried at 30 ° C for 2 hours with a desiccator to prepare a catalyst in which palladium metal was supported on silica containing sulfoxide groups, which was a brownish gray powder. Obtained.

比較例2〜3 スルホキシド基含有シリカにパラジウム金属を担持させた触媒によるアルキンの還元方法
スルホキシド基含有Pd/SiO20.050 gの代わりに比較例1で得たスルホキシド基含有シリカにパラジウム金属を担持させた触媒0.2g(1μmol)を用い、反応時間を10分又は25分とした以外は、実施例1と同様にして1−フェニル−1−プロピンの水素化反応を行った。その結果を以下に示す。
Comparative Examples 2-3 Reduction Method of Alkyne by Catalyst with Palladium Metal Supported on Sulphoxide Group-Containing Silica Palladium Metal was Supported on Sulphoxide Group-Containing Silica Obtained in Comparative Example 1 Instead of 0.050 g of Pd / SiO 2 Containing Sulphoxide Group The hydrogenation reaction of 1-phenyl-1-propyne was carried out in the same manner as in Example 1 except that 0.2 g (1 μmol) of the catalyst was used and the reaction time was 10 minutes or 25 minutes. The results are shown below.

Figure 2014051447
Figure 2014051447

表2の結果より、スルホキシド基含有シリカにパラジウム金属を担持させた触媒では、本発明の製造方法で得られた触媒(パラジウム担持シリカにスルホキシド基を導入した触媒)のようにアルキン誘導体を水素化してアルケン誘導体を高効率に得ることは難しいことが判った。
これは、触媒の構造の違いによるものと考えられた。即ち、本発明の製造方法によれば、スルホキシド基含有化合物のスルホキシド基がまずパラジウムと結合した後、トリメトキシシリル基がシリカと結合するため、パラジウムはスルホキシド基でほぼ完全に覆われた触媒になっていると推測された。一方、スルホキシド基含有シリカにパラジウム金属を担持させた場合では、スルホキシド基がシリカに担持されて自由に動けないため、パラジウムは、スルホキシド基で完全には覆われていないと推測された。
From the results shown in Table 2, in the catalyst in which palladium metal is supported on sulfoxide group-containing silica, the alkyne derivative is hydrogenated like the catalyst obtained by the production method of the present invention (the catalyst in which sulfoxide group is introduced into palladium-supported silica). Thus, it was found difficult to obtain the alkene derivative with high efficiency.
This was thought to be due to the difference in the structure of the catalyst. That is, according to the production method of the present invention, since the sulfoxide group of the sulfoxide group-containing compound is first bonded to palladium, and then the trimethoxysilyl group is bonded to silica, the palladium is almost completely covered with the sulfoxide group. It was speculated that On the other hand, when palladium metal was supported on sulfoxide group-containing silica, the sulfoxide group was supported on silica and could not move freely, so it was assumed that palladium was not completely covered with sulfoxide groups.

比較例4〜5 Pd/SiO 2 によるアルキンの還元方法(被毒化剤なし)
触媒としてPd/SiO2を用い、水素化反応を下記表中の所定時間とした以外は実施例2と同様の方法により、1−フェニル−1−プロピンの部分水素化反応を行い、実施例2と同様に生成物の定量を行った(比較例4)。
また、同様に、ジメチルスルホキシドを被毒化剤として基質の2mol%又は0.6mol%添加した場合についても実験を行い、生成物の定量を行った(比較例5〜7)。これらの結果を以下に示す。
Comparative Examples 4 to 5 Reduction method of alkyne with Pd / SiO 2 (no poisoning agent)
A partial hydrogenation reaction of 1-phenyl-1-propyne was carried out in the same manner as in Example 2 except that Pd / SiO 2 was used as a catalyst and the hydrogenation reaction was carried out for a predetermined time in the following table. The product was quantified in the same manner as in (Comparative Example 4).
Similarly, an experiment was conducted for the case where dimethyl sulfoxide was added as a poisoning agent and 2 mol% or 0.6 mol% of the substrate was added, and the product was quantified (Comparative Examples 5 to 7). These results are shown below.

Figure 2014051447
Figure 2014051447

比較例4の結果より、被毒化剤がない状態でPd/SiO2を用いてアルキンの水素化反応を行った場合、反応時間15分ではアルケンの収率は72%であったが、反応時間を延長すると、逐次水素化反応の進行によりアルケンへの還元選択率は急激に低下してアルカンへ水素化されることが判った。一方、比較例5の結果より、被毒化剤であるジメチルスルホキシドを添加すると効率よくアルケン誘導体が得られることが示された。しかし、この場合、ジメチルスルホキシドを除いた後に化合物の収率を測定しており、臭いの問題や操作の手間の問題があった。また、比較例6、7は、実施例2で用いたスルホキシド基含有Pd/SiO2中のスルホキシド基(パラジウム1 mmolに対して6 mmol)と等量のジメチルスルホキシド(パラジウム1mmolに対して6 mmol)を用いて反応を行っている。しかし、この場合、高い選択性でアルケンを得ることはできなかった。即ち、ジメチルスルホキシド等の被毒剤を用いる場合、これらの使用量を適宜設定する必要があり、また、スルホキシド基含有Pd/SiO2のスルホキシド基の使用量と比較すると、より多い量のスルホキシド基(ジメチルスルホキシド)を用いないと高い選択性でアルキンからアルケンへ還元することができないことが判った。 From the result of Comparative Example 4, when the alkyne hydrogenation reaction was carried out using Pd / SiO 2 in the absence of a poisoning agent, the alkene yield was 72% at a reaction time of 15 minutes. It was found that the reduction selectivity to alkene rapidly decreased with the progress of sequential hydrogenation reaction and hydrogenated to alkane. On the other hand, from the results of Comparative Example 5, it was shown that the addition of dimethyl sulfoxide, which is a poisoning agent, yields an alkene derivative efficiently. However, in this case, the yield of the compound was measured after removing dimethyl sulfoxide, and there were problems of odor and troublesome operation. In Comparative Examples 6 and 7, sulfoxide group-containing Pd / SiO 2 used in Example 2 was equivalent to sulfoxide group (6 mmol with respect to 1 mmol of palladium) and dimethyl sulfoxide (6 mmol with respect to 1 mmol of palladium). ) Is used for the reaction. However, in this case, alkenes could not be obtained with high selectivity. That is, when a poisoning agent such as dimethyl sulfoxide is used, it is necessary to appropriately set the amount of these used, and a larger amount of sulfoxide groups than the amount of sulfoxide groups used in the sulfoxide group-containing Pd / SiO 2. It was found that alkyne to alkene could not be reduced with high selectivity unless (dimethyl sulfoxide) was used.

実施例3〜18 スルホキシド基含有Pd/SiO 2 による種々のアルキンの部分水素化反応
基質として1−フェニル−1−プロピン0.5mmolの代わりに表4中の各種基質0.5mmolを用い、反応温度及び反応時間を表4記載の所定時間とした以外は、実施例2と同様の方法により、各種アルキンの部分水素化反応を行った。
該反応により得られた対応のアルケン化合物(式2)の収率を下記表4及び表5に示す。
Examples 3 to 18 Partial hydrogenation reaction of various alkynes with sulfoxide group-containing Pd / SiO 2 Instead of 0.5 mmol of 1-phenyl-1-propyne as the substrate, 0.5 mmol of various substrates in Table 4 were used, and the reaction temperature and reaction Various alkyne partial hydrogenation reactions were performed in the same manner as in Example 2 except that the time was set to the predetermined time shown in Table 4.
The yields of the corresponding alkene compounds (formula 2) obtained by the reaction are shown in Tables 4 and 5 below.

Figure 2014051447
Figure 2014051447

Figure 2014051447
Figure 2014051447

上記結果より、本発明の方法により得られた触媒を用いて種々のアルケン誘導体の水素還元行った結果、いずれもアルケン誘導体を効率的に製造できることが判った。   From the above results, it was found that as a result of hydrogen reduction of various alkene derivatives using the catalyst obtained by the method of the present invention, any of the alkene derivatives can be produced efficiently.

図2中の−◆−は、実施例2におけるアルケンの収率(化合物2)を、−●−は、実施例2におけるアルカン(化合物3)の収率を表す。   In FIG. 2,-♦-represents the yield of alkene (Compound 2) in Example 2, and-●-represents the yield of alkane (Compound 3) in Example 2.

Claims (7)

パラジウム担持シリカと下記一般式[1]で示される化合物
Figure 2014051447
(式中、Rは炭素数1〜6のアルキレン基を表し、R1〜R3は、それぞれ独立して、水素原子又は炭素数1〜3のアルキル基を表し、R4は炭素数1〜3のアルキル基を表す。)
とを、水の存在下疎水性溶媒中で接触させることを特徴とする、スルホキシド基含有パラジウム担持シリカの製造方法。
Palladium-supported silica and a compound represented by the following general formula [1]
Figure 2014051447
(In the formula, R represents an alkylene group having 1 to 6 carbon atoms, R 1 to R 3 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and R 4 represents 1 to C carbon atoms. 3 represents an alkyl group.)
In a hydrophobic solvent in the presence of water, a process for producing palladium-supported silica containing a sulfoxide group.
パラジウム担持シリカが、粒子径0.3〜10nmのパラジウム金属を物理的に担持したシリカである、請求項1又は2に記載の製造方法。 The production method according to claim 1 or 2, wherein the palladium-supporting silica is silica on which palladium metal having a particle diameter of 0.3 to 10 nm is physically supported. R1〜R3が全てメチル基である、請求項1又は2に記載の製造方法。 The production method according to claim 1 or 2, wherein R 1 to R 3 are all methyl groups. Rが炭素数1〜3のアルキレン基である、請求項1〜3の何れかに記載の製造方法。 The manufacturing method in any one of Claims 1-3 whose R is a C1-C3 alkylene group. 疎水性溶媒が、ペンタン、ヘキサン、シクロヘキサン、ヘプタン、オクタン、イソオクタン、ノナン、デカン、ジエチルエーテル、ベンゼン、トルエン、キシレンから選ばれる1種以上の溶媒である、請求項1〜4の何れかに記載の製造方法。 The hydrophobic solvent is one or more solvents selected from pentane, hexane, cyclohexane, heptane, octane, isooctane, nonane, decane, diethyl ether, benzene, toluene, and xylene. Manufacturing method. パラジウム担持シリカと下記一般式[1]で示される化合物
Figure 2014051447
(式中、Rは炭素数1〜6のアルキレン基を表し、R1〜R3は、それぞれ独立して、水素原子又は炭素数1〜3のアルキル基を表し、R4は炭素数1〜3のアルキル基を表す。)
とを、水の存在下疎水性溶媒中で接触させることにより得られる、スルホキシド基含有パラジウム担持シリカ。
Palladium-supported silica and a compound represented by the following general formula [1]
Figure 2014051447
(In the formula, R represents an alkylene group having 1 to 6 carbon atoms, R 1 to R 3 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and R 4 represents 1 to C carbon atoms. 3 represents an alkyl group.)
And sulfoxide group-containing palladium-supported silica obtained by contacting with a sulfoxide group in a hydrophobic solvent in the presence of water.
シリカ、パラジウム、及び下記一般式[1]で示される化合物
Figure 2014051447
(式中、Rは炭素数1〜6のアルキレン基を表し、R1〜R3は、それぞれ独立して、水素原子又は炭素数1〜3のアルキル基を表し、R4は炭素数1〜3のアルキル基を表す。)
から得られるものであって、パラジウムの周りを一般式[1]で示される化合物中のスルホキシド基が覆い、一般式[1]で示される化合物中の−Si(OR1)(OR2)(OR3)基がシリカと結合していることを特徴とする、スルホキシド基含有パラジウム担持シリカ。
Silica, palladium, and a compound represented by the following general formula [1]
Figure 2014051447
(In the formula, R represents an alkylene group having 1 to 6 carbon atoms, R 1 to R 3 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and R 4 represents 1 to C carbon atoms. 3 represents an alkyl group.)
The sulfoxide group in the compound represented by the general formula [1] covers the periphery of palladium, and —Si (OR 1 ) (OR 2 ) (in the compound represented by the general formula [1] is obtained. A palladium-supported silica containing a sulfoxide group, wherein an OR 3 ) group is bonded to silica.
JP2012195992A 2012-09-06 2012-09-06 Method for producing palladium-supported silica containing sulfoxide groups Active JP5986853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012195992A JP5986853B2 (en) 2012-09-06 2012-09-06 Method for producing palladium-supported silica containing sulfoxide groups

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012195992A JP5986853B2 (en) 2012-09-06 2012-09-06 Method for producing palladium-supported silica containing sulfoxide groups

Publications (2)

Publication Number Publication Date
JP2014051447A true JP2014051447A (en) 2014-03-20
JP5986853B2 JP5986853B2 (en) 2016-09-06

Family

ID=50610287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012195992A Active JP5986853B2 (en) 2012-09-06 2012-09-06 Method for producing palladium-supported silica containing sulfoxide groups

Country Status (1)

Country Link
JP (1) JP5986853B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6005625B2 (en) * 2011-03-09 2016-10-12 和光純薬工業株式会社 Partial hydrogenation of alkyne derivatives
US10355313B2 (en) * 2014-10-03 2019-07-16 Silatronix, Inc. Functionalized silanes and electrolyte compositions and electrochemical devices containing them

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106732771B (en) * 2016-12-16 2019-02-05 洛阳师范学院 A kind of preparation method of hydrophobic nano silicon ball load palladium-based catalyst

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05132493A (en) * 1991-01-25 1993-05-28 Ciba Geigy Ag Silane-containing diphosphine, immobilized diphosphine and hydrogenation catalyst prepared therefrom
JP2009509015A (en) * 2005-09-21 2009-03-05 チバ ホールディング インコーポレーテッド Filled rubber compound with improved processability
WO2009110531A1 (en) * 2008-03-07 2009-09-11 独立行政法人産業技術総合研究所 Organic inorganic composite material and utilization thereof
JP2011092848A (en) * 2009-10-29 2011-05-12 Kazufumi Ogawa Catalyst, method of manufacturing the same, and vehicle using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05132493A (en) * 1991-01-25 1993-05-28 Ciba Geigy Ag Silane-containing diphosphine, immobilized diphosphine and hydrogenation catalyst prepared therefrom
JP2009509015A (en) * 2005-09-21 2009-03-05 チバ ホールディング インコーポレーテッド Filled rubber compound with improved processability
WO2009110531A1 (en) * 2008-03-07 2009-09-11 独立行政法人産業技術総合研究所 Organic inorganic composite material and utilization thereof
JP2011092848A (en) * 2009-10-29 2011-05-12 Kazufumi Ogawa Catalyst, method of manufacturing the same, and vehicle using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6005625B2 (en) * 2011-03-09 2016-10-12 和光純薬工業株式会社 Partial hydrogenation of alkyne derivatives
US10355313B2 (en) * 2014-10-03 2019-07-16 Silatronix, Inc. Functionalized silanes and electrolyte compositions and electrochemical devices containing them
US20190326643A1 (en) * 2014-10-03 2019-10-24 Silatronix, Inc. Functionalized silanes and electrolyte compositions and electrochemical devices containing them
US11444329B2 (en) 2014-10-03 2022-09-13 Silatronix, Inc. Functionalized silanes and electrolyte compositions and electrochemical devices containing them

Also Published As

Publication number Publication date
JP5986853B2 (en) 2016-09-06

Similar Documents

Publication Publication Date Title
Liang et al. Rh (III)-catalyzed synthesis of 1-aminoindole derivatives from 2-acetyl-1-arylhydrazines and diazo compounds in water
Vasilikogiannaki et al. cis-Semihydrogenation of alkynes with amine borane complexes catalyzed by gold nanoparticles under mild conditions
Fernández-Salas et al. Ruthenium catalysed C–H bond borylation
Cao et al. Photo-induced copper-catalyzed alkynylation and amination of remote unactivated C (sp3)-H bonds
JP5986853B2 (en) Method for producing palladium-supported silica containing sulfoxide groups
JP6005625B2 (en) Partial hydrogenation of alkyne derivatives
Khazipov et al. Preventing Pd–NHC bond cleavage and switching from nano-scale to molecular catalytic systems: amines and temperature as catalyst activators
JPWO2005094993A1 (en) Method for producing hydrogenation accelerator, hydrogenation catalyst and alkene compound
Mehra et al. Metal-free regioselective formation of C–N and C–O bonds with the utilization of diaryliodonium salts in water: Facile synthesis of N-arylquinolones and aryloxyquinolines
Rendón-Nava et al. Hydroxyl-functionalized triazolylidene-based PEPPSI complexes: metallacycle formation effect on the Suzuki coupling reaction
TW200932713A (en) Accelerated amide and ester reductions with amine boranes and additives
JP5425619B2 (en) Method for producing arylhydroxylamine
Harinath et al. NHC–Zn alkyl catalyzed cross-dehydrocoupling of amines and silanes
JPWO2015122502A1 (en) Process for producing optically active compound and novel metal-diamine complex
TWI518054B (en) Process and catalyst
WO2017019538A1 (en) Post treated silver catalysts for epoxidation
CN109912640A (en) A kind of preparation method of 2-Pyrrolidone class compound
Zhu et al. Synthesis of rare-earth metal complexes with a morpholine-functionalized β-diketiminato ligand and their catalytic activities towards C–O and C–N bond formation
JP6579545B2 (en) Method for synthesizing indole derivatives
RU2478627C2 (en) Method for preparing 2- and 4-(1,5,3-dithiazocynan-3-yl)phenols
WO2020073182A1 (en) Application of 4-mephnhli in catalyzing hydroboration reaction of imine and borane
CN109796422B (en) Application of photocatalytic reaction in preparation of oxazolidine structural compound
JP2019147788A (en) Propyl crosslinked diphosphine ligand for alkoxycarbonylation
TW201945373A (en) Optically active rare earth complex, asymmetric catalyst formed from said complex, and method for producing optically active organic compound using said asymmetric catalyst
JP5854345B2 (en) Method for producing dimer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160808

R150 Certificate of patent or registration of utility model

Ref document number: 5986853

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250