JP2014049526A - Electromagnetic wave absorber - Google Patents

Electromagnetic wave absorber Download PDF

Info

Publication number
JP2014049526A
JP2014049526A JP2012189611A JP2012189611A JP2014049526A JP 2014049526 A JP2014049526 A JP 2014049526A JP 2012189611 A JP2012189611 A JP 2012189611A JP 2012189611 A JP2012189611 A JP 2012189611A JP 2014049526 A JP2014049526 A JP 2014049526A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
semi
insulator
wave absorber
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012189611A
Other languages
Japanese (ja)
Other versions
JP5965786B2 (en
Inventor
Toshio Sugimae
寿雄 杉前
Tatsuya Noiri
達也 野杁
Takeshi Sano
武司 佐野
Kiyohiro Inoue
清博 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koatsu Gas Kogyo Co Ltd
Original Assignee
Koatsu Gas Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koatsu Gas Kogyo Co Ltd filed Critical Koatsu Gas Kogyo Co Ltd
Priority to JP2012189611A priority Critical patent/JP5965786B2/en
Publication of JP2014049526A publication Critical patent/JP2014049526A/en
Application granted granted Critical
Publication of JP5965786B2 publication Critical patent/JP5965786B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lighter electromagnetic wave absorber capable of absorbing electromagnetic waves having low frequencies of 1 GHz or lower.SOLUTION: An electromagnetic wave absorber which is light and absorbs electromagnetic waves having low frequencies, includes a conductor having a volume resistivity of 1 Ω m or less and a semi-insulating material formed by a resin including at least one type of a dielectric body chosen from water, glycols, and a ferroelectric substance and having a volume resistivity of 1 kΩ m or more and 10 GΩ or less, and generates electromotive force having an absolute value of 10 mV or more when the conductor and the semi-insulating material are made contacted with each other.

Description

本発明は、有害な電磁波を吸収する電磁波吸収体に関する。   The present invention relates to an electromagnetic wave absorber that absorbs harmful electromagnetic waves.

近年、電磁波の利用が進むに伴い、不要な電磁波による電磁波障害や電子機器の誤作動等が大きな問題となっている。この問題に対しては、電磁波シールド材を用いて外部電磁波の侵入防止と発生電磁波の外部への伝搬防止を行う方法や、電磁波吸収体を用いて電磁波そのものを吸収する方法が用いられている。電磁波シールド材は、電磁波の透過防止には有効であるが、反射波に対する対策が必要となる。一方、電磁波吸収体は、吸収した電磁波を熱エネルギーに変換するもので、吸収した電磁波を実質的に消滅させることができる。   In recent years, with the progress of the use of electromagnetic waves, electromagnetic interference due to unnecessary electromagnetic waves, malfunction of electronic devices, and the like have become major problems. In order to solve this problem, a method of preventing the intrusion of an external electromagnetic wave and preventing the propagation of the generated electromagnetic wave to the outside using an electromagnetic wave shielding material, or a method of absorbing the electromagnetic wave itself using an electromagnetic wave absorber is used. The electromagnetic wave shielding material is effective for preventing transmission of electromagnetic waves, but measures against reflected waves are required. On the other hand, the electromagnetic wave absorber converts the absorbed electromagnetic wave into thermal energy, and can substantially eliminate the absorbed electromagnetic wave.

電磁波吸収体は、1930年代、オランダのNaamlooze Vennootschap Machinerieenがフランスの特許を取ったのが始まりである。第二次世界大戦中に潜水艦で実用化された。ゴムシートにカーボニル鉄材を分散させたものと抵抗シートとプラスチック誘電体を重ねたものであった。その後、背面導体板からλ/4離れた場所に面抵抗が377オームの抵抗シートを設ける1/4波長型の電波吸収体が米国で開発された。1953年にピラミッド型電波吸収体が開発された。   The electromagnetic wave absorber was first started in the 1930s by the French company Naamlouze Vennotschach Machinerieen who obtained a French patent. It was put into practical use on a submarine during World War II. A rubber sheet was obtained by dispersing a carbonyl iron material, and a resistor sheet and a plastic dielectric were stacked. Thereafter, a quarter-wave type wave absorber was developed in the United States in which a sheet having a sheet resistance of 377 ohms was provided at a distance of λ / 4 from the back conductor plate. In 1953, a pyramidal wave absorber was developed.

電磁波吸収体には、磁性損失を利用する磁性電磁波吸収体、誘電損失を利用する誘電性電磁波吸収体、抵抗損失を利用する導電性電磁波吸収体、およびλ/4型電磁波吸収体が知られている(例えば、非特許文献1)。磁性電磁波吸収体としては、例えば、フェライトの焼結体やゴムフェライトを用いたり、センダストやパーマロイ、ケイ素鋼板、Fe系アモルファス、Co系アモルファス、ナノグラニュラー膜等の軟磁性体を用いて吸収する方法が用いられているが(例えば特許文献1)、渦電流の発生という問題がある。また、それらの金属は重く、材料が高価であるという問題がある。また、誘電性電磁波吸収体としては、例えば、カーボンブラックやグラファイト等のカーボン粉末を混合したゴムカーボン等が使用されている(例えば、特許文献2)。また、導電性電磁波吸収体としては、例えば、カーボン粉末や金属繊維を分散させたものが使用されている(例えば、特許文献3)。また、λ/4型電磁波吸収体は、厚みを対象電磁波の波長の4分の1に設定することで、反射波同士が干渉によって打ち消し合うことでより高い電磁波吸収能が得られるが、厚みが厚くなるという問題がある。そこで、電磁波吸収体の誘電率や透磁率を変えて、波長を変える試みがなされているが、波長の変化には限界がある(例えば、特許文献4)。   Known electromagnetic wave absorbers include magnetic electromagnetic wave absorbers utilizing magnetic loss, dielectric electromagnetic wave absorbers utilizing dielectric loss, conductive electromagnetic wave absorbers utilizing resistance loss, and λ / 4 type electromagnetic wave absorbers. (For example, Non-Patent Document 1). As a magnetic electromagnetic wave absorber, for example, a ferrite sintered body or rubber ferrite is used, or a method of absorbing using a soft magnetic material such as Sendust, Permalloy, silicon steel plate, Fe-based amorphous, Co-based amorphous, or nanogranular film is used. Although used (for example, patent document 1), there exists a problem of generation | occurrence | production of an eddy current. In addition, these metals are heavy and the material is expensive. As the dielectric electromagnetic wave absorber, for example, rubber carbon mixed with carbon powder such as carbon black or graphite is used (for example, Patent Document 2). Moreover, as a conductive electromagnetic wave absorber, for example, carbon powder or metal fiber dispersed is used (for example, Patent Document 3). In addition, the λ / 4 type electromagnetic wave absorber can obtain a higher electromagnetic wave absorption ability by setting the thickness to ¼ of the wavelength of the target electromagnetic wave, and the reflected waves cancel each other out by interference. There is a problem of thickening. Thus, attempts have been made to change the wavelength by changing the dielectric constant or permeability of the electromagnetic wave absorber, but there is a limit to the change in wavelength (for example, Patent Document 4).

特開昭62−90909号公報JP 62-90909 A 特開2007−019287号公報JP 2007-019287 A 特開2000−278032号公報JP 2000-278032 A 特開2002−76681号公報JP 2002-76681 A

橋本修監修「新電波吸収体の最新技術と応用」シーエムシー発刊、1999年Supervised by Osamu Hashimoto, "Latest Technology and Applications of New Wave Absorber", published by CMMC, 1999

従来、電磁波吸収体には吸収周波数に合わせて予め選択された材料が使用され、所望の吸収周波数やその周波数における最大吸収量等の条件を満たすために、その厚さを変化させる方法が用いられている。近年、ハイブリッドカーや電気自動車が普及し始めているが、これらの自動車は400〜600Vの直流を用いている。しかし、この直流はスイッチングノイズが多く低周波ノイズの発生源となっている。しかしながら、発がん性への影響や電子機器の誤作動を与える1GHz近傍や人体に影響を及ぼす可能性にある10MHz以下の低周波数の電磁波に対する電磁波吸収体は、薄さや軽量性を満足していない。例えば、λ/4型電磁波吸収体では、100MHzでも50cm程度の厚さが必要であり、それ以下の周波数では、それ以上の厚さが必要であり、実用に供することは困難である。ハイブリッドカーや電気自動車の車体の軽量化のためにも、低周波数、例えば1GHz以下、更には、10MHz以下の電磁波を吸収することのできるより軽量の電磁波吸収体が必要とされている。   Conventionally, a material selected in advance according to the absorption frequency is used for the electromagnetic wave absorber, and a method of changing the thickness is used in order to satisfy a desired absorption frequency and a maximum absorption amount at the frequency. ing. In recent years, hybrid cars and electric cars have begun to spread, but these cars use 400 to 600V direct current. However, this direct current has a lot of switching noise and is a source of low frequency noise. However, an electromagnetic wave absorber for an electromagnetic wave having a low frequency of 10 MHz or less, which has an influence on carcinogenicity and malfunction of an electronic device in the vicinity of 1 GHz or a human body, does not satisfy thinness and lightness. For example, a λ / 4 type electromagnetic wave absorber requires a thickness of about 50 cm even at 100 MHz, and at a frequency lower than that, a thickness greater than that is required, making it difficult to put to practical use. In order to reduce the weight of hybrid vehicles and electric vehicles, there is a need for lighter electromagnetic wave absorbers that can absorb electromagnetic waves at low frequencies, for example, 1 GHz or less, and further 10 MHz or less.

そこで、本発明は、1GHz以下の低周波数の電磁波を吸収することのできるより軽量の電磁波吸収体を提供することを目的とした。   Accordingly, an object of the present invention is to provide a lighter electromagnetic wave absorber that can absorb an electromagnetic wave having a low frequency of 1 GHz or less.

上記課題を解決するため、本発明者らは鋭意検討した結果、少なくとも1種の誘電体を含む樹脂からなる半絶縁体と導電体とを含み、接触により該半絶縁体と該導電体との間に所定以上の起電力が発生する材料が、低周波数の電磁波を吸収することができることを見出して本発明を完成させたものである。すなわち、本発明の電磁波吸収体は、体積抵抗率が1Ω・m以下の導電体と、少なくとも1種の誘電体を含む樹脂から成り体積抵抗率が1kΩ・m以上10GΩ以下の半絶縁体とを含み、該導電体と該半絶縁体を接触させると、絶対値が10mV以上である起電力を発生することを特徴とする。   In order to solve the above-mentioned problems, the present inventors have intensively studied. As a result, the present invention includes a semi-insulator made of a resin containing at least one dielectric and a conductor, and the semi-insulator and the conductor are brought into contact with each other by contact. The present invention has been completed by finding that a material that generates an electromotive force of a predetermined value or more in the meantime can absorb low-frequency electromagnetic waves. That is, the electromagnetic wave absorber of the present invention comprises a conductor having a volume resistivity of 1 Ω · m or less and a semi-insulator composed of a resin containing at least one dielectric and having a volume resistivity of 1 kΩ · m to 10 GΩ. In addition, when the conductor and the semi-insulator are brought into contact with each other, an electromotive force having an absolute value of 10 mV or more is generated.

本願発明によれば、1GHz以下の低周波数の電磁波を吸収することのできるより軽量な電磁波吸収体を提供することが可能となる。   According to the present invention, it is possible to provide a lighter electromagnetic wave absorber that can absorb an electromagnetic wave having a low frequency of 1 GHz or less.

実施例1、比較例1a,1bにおける電磁波シールド効果と周波数との関係を示すグラフである。It is a graph which shows the relationship between the electromagnetic wave shielding effect and frequency in Example 1 and Comparative Examples 1a and 1b. 実施例2、比較例1a、比較例2における電磁波シールド効果と周波数との関係を示すグラフである。It is a graph which shows the relationship between the electromagnetic wave shielding effect and frequency in Example 2, Comparative example 1a, and Comparative example 2. 実施例3、比較例3における電磁波シールド効果と周波数との関係を示すグラフである。It is a graph which shows the relationship between the electromagnetic wave shielding effect in Example 3, and the comparative example 3, and a frequency. 実施例4、比較例4における電磁波シールド効果と周波数との関係を示すグラフである。It is a graph which shows the relationship between the electromagnetic wave shielding effect in Example 4, and the comparative example 4, and a frequency. 実施例5、比較例5における電磁波シールド効果と周波数との関係を示すグラフである。It is a graph which shows the relationship between the electromagnetic wave shielding effect in Example 5, and the comparative example 5, and a frequency. 実施例5、比較例6における電磁波シールド効果と周波数との関係を示すグラフである。It is a graph which shows the relationship between the electromagnetic wave shielding effect in Example 5, and the comparative example 6, and a frequency. 実施例7、比較例1aにおける電磁波シールド効果と周波数との関係を示すグラフである。It is a graph which shows the relationship between the electromagnetic wave shielding effect and frequency in Example 7 and Comparative Example 1a. 比較例8における電磁波シールド効果と周波数との関係を示すグラフである。It is a graph which shows the relationship between the electromagnetic wave shielding effect in Comparative Example 8, and a frequency. 比較例8における電磁波シールド効果と周波数との関係を示すグラフである。It is a graph which shows the relationship between the electromagnetic wave shielding effect in Comparative Example 8, and a frequency. 実施例6、比較例9における電磁波シールド効果と周波数との関係を示すグラフである。It is a graph which shows the relationship between the electromagnetic wave shielding effect in Example 6, and the comparative example 9, and a frequency.

以下、本発明の実施の形態について詳細に説明する。
本発明の電磁波吸収体は、体積抵抗率が1Ω・m以下の導電体と、少なくとも1種の誘電体を含む樹脂から成り体積抵抗率が1kΩ・m以上10GΩ以下の半絶縁体とを含み、該導電体と該半絶縁体を接触させると、絶対値が10mV以上である起電力を発生することを特徴とするものである。
Hereinafter, embodiments of the present invention will be described in detail.
The electromagnetic wave absorber of the present invention includes a conductor having a volume resistivity of 1 Ω · m or less and a semi-insulator having a volume resistivity of 1 kΩ · m to 10 GΩ, which is made of a resin containing at least one dielectric. When the conductor and the semi-insulator are brought into contact with each other, an electromotive force having an absolute value of 10 mV or more is generated.

(導電体)
本発明に用いる導電体は、その体積抵抗率が1Ω・m以下、好ましくは1mΩ・m以下、より好ましくは0.1mΩ・m以下の材料である。具体的には、ポリエチレンジオキシチオフェン(PEDOT)、ポリアニリン、ポリアセチレン、ポリピロール等の導電性ポリマー、金、銀、銅、アルミニウム、マグネシウム、タングステン、コバルト、亜鉛、ニッケル、鉄、白金、スズ、クロム、鉛、チタン、マンガン等の金属、黄銅、ステンレスなど、それら金属の合金、導電性酸化亜鉛等の金属酸化物、カーボン材料、合成繊維の表面を導電化処理した有機導電性繊維等を用いることができる。また、複数の異種の導電体を組み合わせても良い。
(conductor)
The conductor used in the present invention is a material having a volume resistivity of 1 Ω · m or less, preferably 1 mΩ · m or less, more preferably 0.1 mΩ · m or less. Specifically, conductive polymers such as polyethylenedioxythiophene (PEDOT), polyaniline, polyacetylene, polypyrrole, gold, silver, copper, aluminum, magnesium, tungsten, cobalt, zinc, nickel, iron, platinum, tin, chromium, Metals such as lead, titanium and manganese, alloys of these metals such as brass, stainless steel, metal oxides such as conductive zinc oxide, carbon materials, organic conductive fibers obtained by conducting conductive treatment on the surface of synthetic fibers, etc. it can. A plurality of different kinds of conductors may be combined.

導電体の形状・形態は特に限定されず、例えば、フィルム状、シート状、メッシュ状、ハニカム状、粉末状、繊維状のものを用いることができる。好ましい導電体は、ステンレス繊維、カーボン繊維、金属を表面にスッパタリングした有機導電性繊維である。   The shape and form of the conductor are not particularly limited, and for example, a film, sheet, mesh, honeycomb, powder, or fiber can be used. Preferred conductors are stainless steel fibers, carbon fibers, and organic conductive fibers with a metal sputtered on the surface.

(半絶縁体)
本発明に用いる半絶縁体は、少なくとも1種の誘電体を含む樹脂である。半絶縁体の体積抵抗率は1kΩ・m以上10GΩ・m以下、好ましくは10kΩ・m〜1GΩ・m、より好ましくは100kΩ・m〜1GΩ・mである。
(Semi-insulator)
The semi-insulator used in the present invention is a resin containing at least one dielectric. The volume resistivity of the semi-insulator is 1 kΩ · m to 10 GΩ · m, preferably 10 kΩ · m to 1 GΩ · m, more preferably 100 kΩ · m to 1 GΩ · m.

半絶縁体に用いる樹脂は、ポリ塩化ビニル、塩素化ポリエチレン、塩素化ポリプロピレン、ポリエチレン、ポリプロピレン、ポリ酢酸ビニル、酢酸ビニル系共重合体、(メタ)アクリル共重合体、スチレンアクリル樹脂、ポリフッ化ビニリデン、ポリイソプレン、アクリロニトリル系重合体、スチレン−ブタジエンゴム、ブタジエンゴム、天然ゴム、イソプレンゴム、ポリスチレン、スチレンアクリル共重合体、ポリエステル、ポリウレタン、ポリアミド等の高分子を用いることができる。好ましくは、アクリロニトリル系重合体である。   The resin used for the semi-insulator is polyvinyl chloride, chlorinated polyethylene, chlorinated polypropylene, polyethylene, polypropylene, polyvinyl acetate, vinyl acetate copolymer, (meth) acrylic copolymer, styrene acrylic resin, polyvinylidene fluoride Polymers such as polyisoprene, acrylonitrile polymers, styrene-butadiene rubber, butadiene rubber, natural rubber, isoprene rubber, polystyrene, styrene acrylic copolymer, polyester, polyurethane, and polyamide can be used. An acrylonitrile-based polymer is preferable.

アクリロニトリル系重合体としては、ポリアクリロニトリル、アクリロニトリル−(メタ)アクリル酸エステル共重合体、アクリロニトリル−スチレン−(メタ)アクリル酸エステル共重合体、アクリロニトリル−ブタジエン共重合体、アクリロニトリル−ブタジエン−スチレン共重合体、アクリロニトリル−スチレン共重合体等を挙げることができる。   Examples of acrylonitrile polymers include polyacrylonitrile, acrylonitrile- (meth) acrylic acid ester copolymer, acrylonitrile-styrene- (meth) acrylic acid ester copolymer, acrylonitrile-butadiene copolymer, acrylonitrile-butadiene-styrene copolymer. Examples thereof include mer and acrylonitrile-styrene copolymer.

また、樹脂の半絶縁体中における含有率は、50〜99.99重量%、好ましくは80〜99重量%である。50重量%より少ないと起電力が小さくなるからである。また、すべて高分子とすると起電力が発生しにくくなるからである。   The content of the resin in the semi-insulator is 50 to 99.99% by weight, preferably 80 to 99% by weight. This is because if the amount is less than 50% by weight, the electromotive force becomes small. Moreover, it is because it becomes difficult to generate an electromotive force if all are made of a polymer.

また、樹脂には、ガラス転移点が電磁波吸収体の使用温度以下である高分子を用いる。ガラス転移点が使用温度より高い高分子を用いると起電力が小さくなるからである。   Further, as the resin, a polymer having a glass transition point equal to or lower than the use temperature of the electromagnetic wave absorber is used. This is because the electromotive force is reduced when a polymer having a glass transition point higher than the operating temperature is used.

本発明に用いる少なくとも1種の誘電体としては、比誘電率が20以上の物質を用いることができる。具体的には、水;メタノールやエタノール等のアルコール類;エチレングリコール、ジエチレングリコールやプロピレングリコール等のグリコール類;グリセリン;強誘電体を挙げることができる。強誘電体の具体例としては、硫酸グアニジンアルミニウム等のグアニジン類;チタン酸バリウム、チタン酸ジルコン酸バリウム、チタン酸鉛、ニオブ酸カリウム等のペロフスカイト類;硫酸トリグリシン等のグリシン類;ヨウ化硫化アンチモン、ロッシェル塩、重水素ロッシェル塩等のロッシェル塩類;リン酸二水素カリウム等のリン酸二水素アルカリ類等を挙げることができる。好ましい誘電体は、水、グリコール類、およびロッシェル塩類である。   As the at least one dielectric used in the present invention, a substance having a relative dielectric constant of 20 or more can be used. Specific examples include water; alcohols such as methanol and ethanol; glycols such as ethylene glycol, diethylene glycol and propylene glycol; glycerin; and ferroelectrics. Specific examples of ferroelectrics include guanidines such as guanidine aluminum sulfate; perovskites such as barium titanate, barium zirconate titanate, lead titanate and potassium niobate; glycines such as triglycine sulfate; Rochelle salts such as antimony, Rochelle salt and deuterium Rochelle salt; alkali dihydrogen phosphates such as potassium dihydrogen phosphate; Preferred dielectrics are water, glycols, and Rochelle salts.

誘電体の半絶縁体中の含有率は、0.5〜50重量%、好ましくは2〜30重量%、より好ましくは2〜10重量%である。0.5重量%より少ないと起電力が発生しにくくなり、50重量%より多いと、起電力が低下するからである。   The content of the dielectric in the semi-insulator is 0.5 to 50% by weight, preferably 2 to 30% by weight, more preferably 2 to 10% by weight. This is because when the amount is less than 0.5% by weight, an electromotive force is hardly generated, and when the amount is more than 50% by weight, the electromotive force decreases.

本発明において、導電体と半絶縁体を接触させると、絶対値が10mV以上である起電力を発生する必要がある。好ましくは起電力の絶対値が20mV以上である。起電力の絶対値が10mVより小さいと、低周波数の電磁波に対する吸収能が低下するからである。なお、本発明において、電体と半絶縁体を接触させると、絶対値が10mV以上である起電力を発生するとは、導電体と半絶縁体を接触させた複合体に対向する1対の電極を設けた場合、その1対の電極間に絶対値が10mV以上の電位差が発生することをいう。ここで、導電体と半絶縁体を接触させるとは、必要に応じて圧力を加えて面状に積層することをいう。また、本発明の起電力は、室温(20±5℃)における測定値を用いている。   In the present invention, when the conductor and the semi-insulator are brought into contact with each other, it is necessary to generate an electromotive force having an absolute value of 10 mV or more. Preferably, the absolute value of the electromotive force is 20 mV or more. This is because if the absolute value of the electromotive force is less than 10 mV, the ability to absorb low-frequency electromagnetic waves decreases. In the present invention, when an electric body and a semi-insulator are brought into contact with each other, an electromotive force having an absolute value of 10 mV or more is generated. Is provided, a potential difference having an absolute value of 10 mV or more is generated between the pair of electrodes. Here, bringing the conductor and the semi-insulator into contact refers to laminating in a planar shape by applying pressure as necessary. Moreover, the measured value in room temperature (20 +/- 5 degreeC) is used for the electromotive force of this invention.

また、本発明では、導電体と半絶縁体を接触させた複合体の電気抵抗は、100kΩ〜1GΩ、好ましくは500kΩ〜500MΩである。100kΩより小さいと起電力が発生しにくいからである。また、1GΩより大きくても起電力が発生しにくいからである。   In the present invention, the electrical resistance of the composite in which the conductor and the semi-insulator are in contact is 100 kΩ to 1 GΩ, preferably 500 kΩ to 500 MΩ. This is because if it is less than 100 kΩ, an electromotive force is hardly generated. Moreover, even if it is larger than 1 GΩ, an electromotive force is hardly generated.

起電力の絶対値を10mV以上にするためには、半絶縁体に含有させる誘電体の種類やその含有率を変化させることにより行うことができる。   In order to make the absolute value of the electromotive force 10 mV or more, it can be performed by changing the kind of dielectric material contained in the semi-insulator and its content.

半絶縁体は、例えば以下の方法で作製することができる。
ブレンダーやニーダーを用いて、樹脂と誘電体をブレンドし、プレスや押し出し成形する溶融法、エマルジョンや溶液の樹脂と誘電体を攪拌機でブレンドし、水や溶剤を飛ばして成形するキャスト法、印刷法、塗布法等を用いて作製することができる。
The semi-insulator can be manufactured, for example, by the following method.
Blending resin and dielectric using a blender or kneader, pressing or extrusion molding, blending emulsion or solution resin and dielectric with a stirrer, casting by blowing water or solvent, printing method It can be produced using a coating method or the like.

(製造方法)
本発明の電磁波吸収体は、導電体の形状・形態に応じて様々な方法を用いて製造することができる。
例えば、導電体が板状形状の場合、半絶縁体を圧着したり、塗布したりすることにより積層して製造してもよい。導電体がフィルム状、メッシュ状、ハニカム状、不織布であっても同様である。
(Production method)
The electromagnetic wave absorber of the present invention can be produced using various methods depending on the shape and form of the conductor.
For example, when the conductor has a plate shape, the semi-insulator may be laminated and manufactured by pressure bonding or coating. The same applies if the conductor is a film, mesh, honeycomb, or nonwoven fabric.

また、導電体が粉末状や短繊維状の場合、導電体を半絶縁樹脂とブレンドして成形してもいいし、粉末状や短繊維状の導電体をバインダーで成型し、導電層を形成した後、その上に半絶縁体を塗布してもいい。   In addition, when the conductor is in the form of powder or short fiber, it may be molded by blending the conductor with a semi-insulating resin, or the conductive layer is formed by molding the powder or short fiber conductor with a binder. Then, a semi-insulator may be applied thereon.

また、塗布、印刷、蒸着等により絶縁性の紙や樹脂フィルム上に導電体層を形成し、その導電体層の上に半絶縁体層を形成してもよい。あるいは、塗布、印刷、圧着等により絶縁性の紙や樹脂フィルム上に半絶縁体層を形成し、その半絶縁体層の上に導電体層を形成してもよい。絶縁性の紙や樹脂フィルム上に導電体層または半絶縁体層を形成する場合、紙や樹脂フィルムの前面に形成してもよく、あるいは必要に応じて様々なパターン形状となるように形成してもよい。   Alternatively, a conductor layer may be formed on insulating paper or a resin film by coating, printing, vapor deposition, or the like, and a semi-insulator layer may be formed on the conductor layer. Alternatively, a semi-insulator layer may be formed on an insulating paper or resin film by coating, printing, pressure bonding, or the like, and a conductor layer may be formed on the semi-insulator layer. When forming a conductor layer or semi-insulator layer on insulating paper or resin film, it may be formed on the front surface of paper or resin film, or it may be formed in various pattern shapes as required. May be.

なお、導電体や半絶縁体は、1種に限定されず複数種を組み合わせて用いることもできる。また、従来の電磁波吸収体や電磁波シールド材と組み合わせて用いることもできる。   Note that the conductor and the semi-insulator are not limited to one type, and a plurality of types may be used in combination. Moreover, it can also be used in combination with a conventional electromagnetic wave absorber or electromagnetic wave shielding material.

(電磁波吸収特性の評価)
KEC(関西電子工業振興センター;京都府相楽郡精華町光台3丁目2−2)で開発された電磁波シールド効果測定装置を用いる方法(以下、KEC法という)により、本発明の電磁波吸収体の電磁波吸収特性を評価した。KEC法による電磁波シールド測定は、送信アンテナから発射した電磁波を受信アンテナで受信し、その間に試験体を挟み、電磁波の透過量を測定しているため、電磁波の反射と吸収の両方の効果の結果を測定するものである。
(Evaluation of electromagnetic wave absorption characteristics)
The electromagnetic wave absorber of the present invention can be obtained by a method (hereinafter referred to as the KEC method) using an electromagnetic shielding effect measuring device developed at KEC (Kansai Electronics Industry Promotion Center; The electromagnetic wave absorption characteristics were evaluated. The electromagnetic wave shield measurement by the KEC method receives the electromagnetic wave emitted from the transmitting antenna with the receiving antenna, puts the test piece between them, and measures the amount of electromagnetic wave transmitted, resulting in the effects of both reflection and absorption of the electromagnetic wave. Is to measure.

導電率が高い材料ほど、電磁波を反射する。したがって、一般にシールド材といわれているものは、導電性の材料を用いて電磁波を反射している。例えば、透磁率が高く、導電性が高い鉄やニッケルを用いると、低周波数の電磁波が反射されるので、高い電磁波シールド効果が得られる。さらに、1GHz近辺の高周波に対しては、磁性による高い電磁波吸収効果が得られる。   A material with higher conductivity reflects more electromagnetic waves. Therefore, what is generally referred to as a shielding material reflects electromagnetic waves using a conductive material. For example, when iron or nickel having a high magnetic permeability and high conductivity is used, a low frequency electromagnetic wave is reflected, so that a high electromagnetic shielding effect is obtained. Furthermore, a high electromagnetic wave absorption effect due to magnetism is obtained for high frequencies in the vicinity of 1 GHz.

一方、本発明で用いる半絶縁体は、体積抵抗率が大きいため、導電体と組み合わせても導電率は高くならない。そのため、低周波数の電磁波が反射されることは考えられない。そうすると、本発明の電磁波吸収体を用いた場合に、低周波数の電磁波の透過量が減少したのは、本発明の電磁波吸収体により低周波数の電磁波が吸収されたためと考えられる。この原因については検討中であるが、本発明で用いている半絶縁体の極性が反転し易く、電磁波により極性が反転する過程で低周波数の電磁波エネルギーが吸収されると考えている。   On the other hand, since the semi-insulator used in the present invention has a large volume resistivity, the conductivity does not increase even when combined with a conductor. Therefore, it is unlikely that low frequency electromagnetic waves are reflected. Then, when the electromagnetic wave absorber of the present invention was used, the reason why the amount of low-frequency electromagnetic wave transmitted decreased was that the low-frequency electromagnetic wave was absorbed by the electromagnetic wave absorber of the present invention. Although the cause of this is under investigation, it is thought that the polarity of the semi-insulator used in the present invention is easily reversed, and low-frequency electromagnetic energy is absorbed in the process of polarity reversal by electromagnetic waves.

以下、詳しく説明する。
本発明では、導体を組み合わせており、更には静電防止効果がある領域の電気絶縁性を有する半絶縁体を組み合わせているので、電位差の発現は、静電気によるものでもないのは明らかである。一般に、金属を用いて電位差を発生するものとして、金属と低い電気抵抗の電解質を用いた金属のイオン化傾向が知られているが、本発明での電位差は、カーボンや導電性のポリマーでも発現しており、電位差の発現は、測定と同時に起こる瞬時であり、抵抗も比較的高い半絶縁領域のものを用いているので、イオン化傾向によるものとは別のものである。
This will be described in detail below.
In the present invention, since conductors are combined and a semi-insulator having electrical insulation in a region having an antistatic effect is combined, it is clear that the expression of the potential difference is not due to static electricity. In general, as a potential difference using a metal, a tendency of ionization of a metal using a metal and an electrolyte having a low electrical resistance is known. However, the potential difference in the present invention is also manifested in carbon or a conductive polymer. On the other hand, the onset of the potential difference is instantaneous at the same time as the measurement, and is different from that due to the ionization tendency because the semi-insulating region having a relatively high resistance is used.

以下に標準酸化還元電位を示す(東京都鍍金工業組合めっき関連データ集、各種金属の標準電極電位、http://www.tmk.or.jp/datapdf/data51.pdf)。   The standard oxidation-reduction potential is shown below (Tokyo Electroplating Industry Association plating-related data collection, standard electrode potential of various metals, http://www.tmk.or.jp/datapdf/data51.pdf).

Figure 2014049526
Figure 2014049526

半絶縁体を用いた時は、同じ金属どうしで、電位差が発現し、さらには、カーボンや導電性のポリマーでも発現するので、イオン化傾向の差によるものではない。   When a semi-insulator is used, a potential difference is developed between the same metals, and further, carbon and a conductive polymer are also developed. Therefore, this is not due to a difference in ionization tendency.

一方、熱起電力の指標となるゼーベック係数は次のような値が報告されている(Moffat, R., "Notes on Using Thermocouples", Electronics Cooling, Vol. 3, No. 1, 1997)。   On the other hand, the following values have been reported for the Seebeck coefficient as an index of thermoelectromotive force (Moffat, R., “Notes on Using Thermocouples”, Electronics Cooling, Vol. 3, No. 1, 1997).

Figure 2014049526
Figure 2014049526

ゼーベック素子やペルチェ素子など、熱起電力を利用したものは、異種の導体を接合し、その接触の電位差を利用するものである。そして、その性能はゼーベック係数やそれをもとにした性能指数で評価されている。しかし、異種金属を直接接合すると、その瞬間に電子が移動し、電位差を測定する事が出来ない。そこで、2種の異種金属をリング状に接合し、2つの接合面の温度を変えて、その温度差を利用して、電位差を発生させるという方法、またその逆に電位差を与えて温度を変化させる方法を採っている。当然、同じ金属では、熱起電力は発生しない。一方、本発明の半絶縁体を用いた場合の電位差発現は、同一金属同士でも起きるので、ゼーベック係数による熱起電力発生の機構とも異なっている。   A device using a thermoelectromotive force, such as a Seebeck device or a Peltier device, joins different kinds of conductors and uses a potential difference between the contacts. Its performance is evaluated by the Seebeck coefficient and a figure of merit based on it. However, when different metals are directly joined, electrons move at that moment, and the potential difference cannot be measured. Therefore, two different kinds of metals are joined in a ring shape, the temperature of the two joint surfaces is changed, and the temperature difference is used to generate a potential difference, and vice versa. The method to make it take is taken. Naturally, the same metal does not generate thermoelectromotive force. On the other hand, since the potential difference when the semi-insulator of the present invention is used also occurs between the same metals, it is different from the mechanism of thermoelectromotive force generation by the Seebeck coefficient.

ここで、一方の電極をSUS304とし、半絶縁性樹脂を種々の導電体で挟んだ状態で、導電体とSUS電極との電位差を岩通計測株式会社製のデジタル・マルチメーターVOAC7522を用いて室温(20℃)で測定した結果を以下の表3に示す。なお、半絶縁性樹脂は、マトリックスとして、アクリル系共重合樹脂(アクリロニトリル/ブチルアクリレート=40/60を水中で乳化重合した)エマルジョンを用い、樹脂を固形分で85重量部、ジエチレングリコール15重量部を攪拌機で混合し、製造した。   Here, in the state where one electrode is SUS304 and the semi-insulating resin is sandwiched between various conductors, the potential difference between the conductor and the SUS electrode is measured at room temperature using a digital multimeter VOAC7522 manufactured by Iwatsu Measurement Co., Ltd. The results measured at (20 ° C.) are shown in Table 3 below. The semi-insulating resin uses an acrylic copolymer resin (acrylonitrile / butyl acrylate = 40/60 emulsion-polymerized in water) emulsion as a matrix, and the resin contains 85 parts by weight of solid and 15 parts by weight of diethylene glycol. It mixed and manufactured with the stirrer.

Figure 2014049526
Figure 2014049526

この電位差は、電極を変えた測定の時に、瞬時に起こるので、その原因となる電荷の媒体は、イオンではなく、電子である事がわかる。   Since this potential difference occurs instantaneously at the time of measurement with the electrode changed, it can be seen that the charge medium that causes the potential difference is not ions but electrons.

ここで、表2のゼーベック係数と、表3の電位差をそれぞれ大きい方から順番に比較すると、以下の表4のようになり、ニッケルの順番が一致しない。   Here, when comparing the Seebeck coefficient in Table 2 and the potential difference in Table 3 in order from the larger one, it becomes as shown in Table 4 below, and the nickel order does not match.

Figure 2014049526
Figure 2014049526

しかし、表5に示すように、ゼーベック係数の絶対値の大きさと電位差の絶対値の大きさとを比較すると、順番は一致するが、ゼーベック係数が小さいほど半絶縁体の電位差が大きくなり、逆相関があり、ゼーベック係数が関与する熱起電力等の接触電位差でも説明できない。   However, as shown in Table 5, when the magnitude of the absolute value of the Seebeck coefficient is compared with the magnitude of the absolute value of the potential difference, the order agrees, but the smaller the Seebeck coefficient, the larger the potential difference of the semi-insulator, and the inverse correlation. Therefore, even a contact potential difference such as a thermoelectromotive force involving the Seebeck coefficient cannot be explained.

Figure 2014049526
Figure 2014049526

金属の表面に光が当たると、表面のごく薄い層に存在する金属イオン、自由電子などが、光のエネルギーを吸収して、高いエネルギー順位に励起し、直ぐに、そのエネルギーを表面より放出する。そこで、導電性が高いほど、金属からの光の反射は大きくなる。つまり、瞬時ではあるが、電磁波の状態に応じて、金属の状態が変わる。半絶縁体がない場合は、そのまま反射されるが、金属が半絶縁体と接触している面では、その状態に応じで、半絶縁体と金属の接触面の電荷が変化する。これは、電磁波の存在により、金属の表面の電気的性質が変わり、異種金属のようなゼーベック係数を持つようになると考えてもいい。それに合わせて、半絶縁体の極性が変化するのは、カーボンとSUS304で極性が逆になっていることからも分かる。半絶縁体の極性が変わるときには、電荷(電子)の移動があり、半絶縁体は若干の導電性があるので、半絶縁体の中や伝導体との界面で、電子の往来があり、熱エネルギーに変化していると考えている。   When light hits the surface of the metal, metal ions, free electrons, etc. present in a very thin layer of the surface absorb the energy of the light, excite it at a high energy level, and immediately release the energy from the surface. Therefore, the higher the conductivity, the greater the reflection of light from the metal. That is, although it is instantaneous, the state of the metal changes according to the state of the electromagnetic wave. When there is no semi-insulator, it is reflected as it is, but on the surface where the metal is in contact with the semi-insulator, the charge on the contact surface between the semi-insulator and the metal changes depending on the state. It may be considered that due to the presence of electromagnetic waves, the electrical properties of the metal surface change and have a Seebeck coefficient like a dissimilar metal. In accordance with this, the polarity of the semi-insulator changes from the fact that the polarity is reversed between carbon and SUS304. When the polarity of the semi-insulator changes, there is a transfer of charge (electrons), and the semi-insulator has some conductivity, so there is electron traffic in the semi-insulator or at the interface with the conductor, and heat I think it has changed to energy.

以下、実施例を用いて本発明を説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated using an Example, this invention is not limited to a following example.

実施例1.
(作製方法)
導電体として、面重量が約170g/mの日本蚕毛染色社製の有機導電性繊維(商品名サンダーロン)(体積抵抗率:0.8Ω・m)の不織布を用いた。半絶縁体の樹脂は、マトリックスとして、アクリル系共重合樹脂(アクリロニトリル/ブチルアクリレート=40/60を水中で乳化重合した)エマルジョンを用い、樹脂を固形分で85重量部、ジエチレングリコール15重量部を攪拌機で混合し、製造した。半絶縁体の面重量が約500g/mになるように、サンダーロンの不織布に半絶縁体を塗布し、50℃で乾燥して、電波吸収体を得た。電波吸収体の厚さは890μmであった。
Example 1.
(Production method)
As the conductor, a non-woven fabric of organic conductive fiber (trade name: Sanderlon) (volume resistivity: 0.8 Ω · m) manufactured by Nippon Kashiwa Dyeing Co., Ltd. having a surface weight of about 170 g / m 2 was used. The semi-insulating resin uses an acrylic copolymer resin (acrylonitrile / butyl acrylate = 40/60 emulsion polymerized in water) emulsion as a matrix, and the resin is 85 parts by weight in solid content and 15 parts by weight of diethylene glycol in a stirrer. And mixed. A semi-insulator was applied to a sanderon nonwoven fabric so that the surface weight of the semi-insulator was about 500 g / m 2 and dried at 50 ° C. to obtain a radio wave absorber. The thickness of the radio wave absorber was 890 μm.

(複合体の起電力測定)
得られた電磁波吸収体の導電体と塗布した半絶縁体の表面との電位差(起電力)を、岩通計測株式会社製のデジタル・マルチメーターVOAC7522を用いて室温(20℃)で測定した。測定結果を表6に示す。但し、導電体や樹脂だけものは、両面の電位差を測定した。
(Measurement of electromotive force of complex)
The potential difference (electromotive force) between the obtained electromagnetic wave absorber conductor and the surface of the coated semi-insulator was measured at room temperature (20 ° C.) using a digital multimeter VOAC7522 manufactured by Iwatatsu Measurement Co., Ltd. Table 6 shows the measurement results. However, the potential difference between the two surfaces of the conductor and resin alone was measured.

(電磁波シールド効果測定)
得られた電磁波吸収体についてKEC法で測定した。測定周波数は0.1MHz〜1GHzである。測定結果を図1に示す。
(Electromagnetic wave shielding effect measurement)
The obtained electromagnetic wave absorber was measured by the KEC method. The measurement frequency is 0.1 MHz to 1 GHz. The measurement results are shown in FIG.

実施例2.
(作製方法)
導電体として、サンダーロンの不織布を用いた。半絶縁体の樹脂は、マトリックスとして、アクリロニトリル含量が40重量%のカルボキシル基変性タイプのアクリルニトリルーブタジエン共重合体(Tg:−15℃)のエマルジョンを用い、樹脂を固形分で85重量部とロッシェル塩15重量部を攪拌機で混合して製造した。半絶縁体の面重量が約150g/mになるように、サンダーロンの不織布に半絶縁体を塗布し、50℃で乾燥した。電波吸収体の厚さは1022μmであった。
Example 2
(Production method)
Sanderon nonwoven fabric was used as the conductor. The semi-insulating resin uses an emulsion of a carboxyl group-modified acrylonitrile-butadiene copolymer (Tg: −15 ° C.) having an acrylonitrile content of 40% by weight as a matrix, and the resin has a solid content of 85 parts by weight. It was produced by mixing 15 parts by weight of Rochelle salt with a stirrer. The semi-insulator was applied to a non-woven fabric of Sanderon so that the surface weight of the semi-insulator was about 150 g / m 2 and dried at 50 ° C. The thickness of the radio wave absorber was 1022 μm.

起電力測定は実施例1と同様に行った。結果を表6に示す。また、電磁波シールド効果測定は実施例1と同様に行った。結果を図2に示す。   The electromotive force measurement was performed in the same manner as in Example 1. The results are shown in Table 6. The electromagnetic wave shielding effect measurement was performed in the same manner as in Example 1. The results are shown in FIG.

実施例3.
(作製方法)
導電体として、面重量が約425g/mの100目のステンレス製メッシュ(東急ハンズで購入した1038ステンレスアミ100、16151)(体積抵抗率:7×10−7Ω・m)を用いた。半絶縁体の樹脂は、マトリックスとしてアクリロニトリル含量が40重量%のカルボキシル基変性タイプのアクリルニトリルーブタジエン共重合体(Tg −15℃)のエマルジョンを用い、樹脂を固形分で85重量部、ロッシェル塩15重量部を攪拌機で混合して製造した。半絶縁体の面重量が約200g/mになるように、ステンレス製メッシュアルを離型紙の上に置き、メッシュの穴が埋まるように半絶縁体を塗布し、50℃で乾燥した。電波吸収体の厚さは298μmであった。
Example 3
(Production method)
A 100th stainless mesh (1038 stainless steel 100, 16151 purchased from Tokyu Hands) (volume resistivity: 7 × 10 −7 Ω · m) having a surface weight of about 425 g / m 2 was used as the conductor. The semi-insulating resin uses an emulsion of a carboxyl group-modified acrylonitrile-butadiene copolymer (Tg-15 ° C.) having an acrylonitrile content of 40% by weight as a matrix, and the resin is 85 parts by weight in solids and Rochelle salt. It was produced by mixing 15 parts by weight with a stirrer. A stainless mesh was placed on the release paper so that the surface weight of the semi-insulator was about 200 g / m 2 , the semi-insulator was applied so that the mesh holes were filled, and dried at 50 ° C. The thickness of the radio wave absorber was 298 μm.

起電力測定は実施例1と同様に行った。結果を表6に示す。また、電磁波シールド効果測定は実施例1と同様に行った。結果を図3に示す。   The electromotive force measurement was performed in the same manner as in Example 1. The results are shown in Table 6. The electromagnetic wave shielding effect measurement was performed in the same manner as in Example 1. The results are shown in FIG.

実施例4.
(作製方法)
導電体として、面重量が約600g/mのアルミのパンチング板(東急ハンズで購入したアルミパンチング板A−12、3φ×5の表面の塗装をサンドペーパーで除去したもの)(体積抵抗率:約3×10−8Ω・m)を用いた。半絶縁体の樹脂には、アクリロニトリル含量が40重量%のカルボキシル基変性タイプのアクリルニトリルーブタジエン共重合体(Tg −15℃)のエマルジョンを用いた。樹脂を固形分で85重量部、ロッシェル塩15重量部を攪拌機で混合した。
半絶縁体の面重量が約200g/mになるように、アルミパンチング板を離型紙の上に置き、パンチ穴が埋まるように半絶縁体を塗布し、50℃で乾燥した。電波吸収体の厚さは588μmであった。
Example 4
(Production method)
As a conductor, an aluminum punching plate having a surface weight of about 600 g / m 2 (aluminum punching plate A-12 purchased from Tokyu Hands, 3φ × 5 surface removed with sandpaper) (volume resistivity: About 3 × 10 −8 Ω · m) was used. As the semi-insulating resin, an emulsion of a carboxyl group-modified acrylonitrile-butadiene copolymer (Tg-15 ° C.) having an acrylonitrile content of 40% by weight was used. The resin was mixed with 85 parts by weight of solid and 15 parts by weight of Rochelle salt with a stirrer.
The aluminum punching plate was placed on the release paper so that the surface weight of the semi-insulator was about 200 g / m 2 , the semi-insulator was applied so that the punch holes were filled, and dried at 50 ° C. The thickness of the radio wave absorber was 588 μm.

起電力測定は実施例1と同様に行った。結果を表6に示す。また、電磁波シールド効果測定は実施例1と同様に行った。結果を図4に示す。   The electromotive force measurement was performed in the same manner as in Example 1. The results are shown in Table 6. The electromagnetic wave shielding effect measurement was performed in the same manner as in Example 1. The results are shown in FIG.

実施例5.
(作製方法)
導電体として、面重量が約115g/mのカーボン繊維(ユニチカ製Aシート)(体積抵抗率:約2×10−5Ω・m)を用いた。マトリックスとして半絶縁体の樹脂は、アクリロニトリル含量が40重量%のカルボキシル基変性タイプのアクリルニトリルーブタジエン共重合体(Tg −15℃)のエマルジョンを用い、樹脂を固形分で85重量部、ロッシェル塩15重量部を攪拌機で混合して製造した。半絶縁体の面重量が約100g/mになるように、カーボン繊維に半絶縁体を塗布し、50℃で乾燥した。電波吸収体の厚さは555μmであった。
Example 5 FIG.
(Production method)
A carbon fiber (A sheet made by Unitika) (volume resistivity: about 2 × 10 −5 Ω · m) having a surface weight of about 115 g / m 2 was used as the conductor. The semi-insulating resin used as the matrix is an emulsion of a carboxyl group-modified acrylonitrile-butadiene copolymer (Tg-15 ° C) with an acrylonitrile content of 40% by weight. It was produced by mixing 15 parts by weight with a stirrer. The semi-insulator was applied to the carbon fiber so that the surface weight of the semi-insulator was about 100 g / m 2 and dried at 50 ° C. The thickness of the radio wave absorber was 555 μm.

起電力測定は実施例1と同様に行った。結果を表6に示す。また、電磁波シールド効果測定は実施例1と同様に行った。結果を図5に示す。なお、1MHzおよび500MHzにおける電磁波シールド効果の数値を表7に示した。   The electromotive force measurement was performed in the same manner as in Example 1. The results are shown in Table 6. The electromagnetic wave shielding effect measurement was performed in the same manner as in Example 1. The results are shown in FIG. The numerical values of the electromagnetic wave shielding effect at 1 MHz and 500 MHz are shown in Table 7.

実施例6.
(作製方法)
導電体として、ユニチカ製Aシートを用いた。マトリックスとして半絶縁体の樹脂は、アクリロニトリル含量が40重量%のカルボキシル基変性タイプのアクリルニトリルーブタジエン共重合体(Tg:−15℃)のエマルジョンを用いた。樹脂を固形分で85重量部、ロッシェル塩15重量部を攪拌機で混合した。所定の型に混合物を流し込んで50℃で乾燥した。得られたシートを高湿度下に放置し、5重量%の水を加水し、50℃、10MPaの条件で、熱プレスでカーボン繊維に熱融着して、電磁波吸収体を得た。電波吸収体の厚さは1060μmであった。
Example 6
(Production method)
Unitika A sheet was used as the conductor. As a semi-insulating resin as a matrix, an emulsion of a carboxyl group-modified acrylonitrile-butadiene copolymer (Tg: −15 ° C.) having an acrylonitrile content of 40% by weight was used. The resin was mixed with 85 parts by weight of solid and 15 parts by weight of Rochelle salt with a stirrer. The mixture was poured into a predetermined mold and dried at 50 ° C. The obtained sheet was left under high humidity, 5% by weight of water was hydrated, and heat-sealed to carbon fiber with a hot press under the conditions of 50 ° C. and 10 MPa to obtain an electromagnetic wave absorber. The thickness of the radio wave absorber was 1060 μm.

起電力測定は実施例1と同様に行った。結果を表6に示す。また、電磁波シールド効果測定は実施例1と同様に行った。結果を図10に示す。なお、1MHzおよび500MHzにおける電磁波シールド効果の数値を表7に示した。   The electromotive force measurement was performed in the same manner as in Example 1. The results are shown in Table 6. The electromagnetic wave shielding effect measurement was performed in the same manner as in Example 1. The results are shown in FIG. The numerical values of the electromagnetic wave shielding effect at 1 MHz and 500 MHz are shown in Table 7.

比較例1a.
半絶縁体を用いず、導電体のみを用いた以外は、実施例1と同様の方法で電磁波吸収体を製造した。電波吸収体の厚さは890μmであった。
Comparative Example 1a.
An electromagnetic wave absorber was produced in the same manner as in Example 1 except that only the conductor was used without using the semi-insulator. The thickness of the radio wave absorber was 890 μm.

起電力測定は実施例1と同様に行った。結果を表6に示す。また、電磁波シールド効果測定は実施例1と同様に行った。結果を図1と表7に示す。   The electromotive force measurement was performed in the same manner as in Example 1. The results are shown in Table 6. The electromagnetic wave shielding effect measurement was performed in the same manner as in Example 1. The results are shown in FIG.

比較例1b.
導電体を用いず、半絶縁体のみを用いた以外は、実施例1と同様の方法で電磁波吸収体を製造した。電波吸収体の厚さは845μmであった。
Comparative Example 1b.
An electromagnetic wave absorber was produced in the same manner as in Example 1 except that only a semi-insulator was used without using a conductor. The thickness of the radio wave absorber was 845 μm.

起電力測定は実施例1と同様に行った。結果を表6に示す。また、電磁波シールド効果測定は実施例1と同様に行った。結果を図1と表7に示す。   The electromotive force measurement was performed in the same manner as in Example 1. The results are shown in Table 6. The electromagnetic wave shielding effect measurement was performed in the same manner as in Example 1. The results are shown in FIG.

比較例2.
導電体を用いず、半絶縁体のみを用いた以外は、実施例2と同様の方法で電磁波吸収体を製造した。電波吸収体の厚さは608μmであった。
Comparative Example 2
An electromagnetic wave absorber was produced in the same manner as in Example 2 except that only the semi-insulator was used without using the conductor. The thickness of the radio wave absorber was 608 μm.

起電力測定は実施例1と同様に行った。結果を表6に示す。また、電磁波シールド効果測定は実施例1と同様に行った。結果を図2と表7に示す。   The electromotive force measurement was performed in the same manner as in Example 1. The results are shown in Table 6. The electromagnetic wave shielding effect measurement was performed in the same manner as in Example 1. The results are shown in FIG.

比較例3.
半絶縁体を用いず、導電体のみを用いた以外は、実施例3と同様の方法で電磁波吸収体を製造した。電波吸収体の厚さは186μmであった。
Comparative Example 3
An electromagnetic wave absorber was produced in the same manner as in Example 3 except that only the conductor was used without using the semi-insulator. The thickness of the radio wave absorber was 186 μm.

起電力測定は実施例1と同様に行った。結果を表6に示す。また、電磁波シールド効果測定は実施例1と同様に行った。結果を図3と表7に示す。   The electromotive force measurement was performed in the same manner as in Example 1. The results are shown in Table 6. The electromagnetic wave shielding effect measurement was performed in the same manner as in Example 1. The results are shown in FIG.

比較例4.
半絶縁体を用いず、導電体のみを用いた以外は、実施例4と同様の方法で電磁波吸収体を製造した。電波吸収体の厚さは498μmであった。
Comparative Example 4
An electromagnetic wave absorber was produced in the same manner as in Example 4 except that only the conductor was used without using the semi-insulator. The thickness of the radio wave absorber was 498 μm.

起電力測定は実施例1と同様に行った。結果を表6に示す。また、電磁波シールド効果測定は実施例1と同様に行った。結果を図4と表7に示す。   The electromotive force measurement was performed in the same manner as in Example 1. The results are shown in Table 6. The electromagnetic wave shielding effect measurement was performed in the same manner as in Example 1. The results are shown in FIG.

比較例5.
半絶縁体を用いず、導電体のみを用いた以外は、実施例5と同様の方法で電磁波吸収体を製造した。電波吸収体の厚さは431μmであった。
Comparative Example 5
An electromagnetic wave absorber was produced in the same manner as in Example 5 except that only the conductor was used without using the semi-insulator. The thickness of the radio wave absorber was 431 μm.

起電力測定は実施例1と同様に行った。結果を表6に示す。また、電磁波シールド効果測定は実施例1と同様に行った。結果を図5と表7に示す。   The electromotive force measurement was performed in the same manner as in Example 1. The results are shown in Table 6. The electromagnetic wave shielding effect measurement was performed in the same manner as in Example 1. The results are shown in FIG.

比較例6.
炭素繊維に、半絶縁性でない、固形比で、スチレンブタジエンラバーSR−104(日本A&L(株)製)を75部にKN―320(戸田工業(株)製のマグネタイト)を25部加えた樹脂をコーティングし、半絶縁体を用いなかった以外は、実施例5と同様の方法で電磁波吸収体を製造した。電波吸収体の厚さは545μmであった。
Comparative Example 6
Non-semi-insulating carbon fiber with a solid ratio of 25 parts of styrene butadiene rubber SR-104 (manufactured by Japan A & L Co.) and 25 parts of KN-320 (magnetite manufactured by Toda Kogyo Co., Ltd.) An electromagnetic wave absorber was produced in the same manner as in Example 5 except that a semi-insulator was not used. The thickness of the radio wave absorber was 545 μm.

起電力測定は実施例1と同様に行った。結果を表6に示す。また、電磁波シールド効果測定は実施例1と同様に行った。結果を図6と表7に示す。   The electromotive force measurement was performed in the same manner as in Example 1. The results are shown in Table 6. The electromagnetic wave shielding effect measurement was performed in the same manner as in Example 1. The results are shown in FIG.

比較例7.
サンダーロンに、半絶縁性でない、Tg18℃のメチルメタクリレート/ブチルアクリレート共重合樹脂をコーティングした。半絶縁体を用いなかった以外は、実施例1と同様の方法で電磁波吸収体を製造した。電波吸収体の厚さは1035μmであった。
Comparative Example 7
Thunderon was coated with a methyl methacrylate / butyl acrylate copolymer resin having a Tg of 18 ° C., which was not semi-insulating. An electromagnetic wave absorber was produced in the same manner as in Example 1 except that the semi-insulator was not used. The thickness of the radio wave absorber was 1035 μm.

起電力測定は実施例1と同様に行った。結果を表1に示す。また、電磁波シールド効果測定は実施例1と同様に行った。結果を図7と表7に示す。   The electromotive force measurement was performed in the same manner as in Example 1. The results are shown in Table 1. The electromagnetic wave shielding effect measurement was performed in the same manner as in Example 1. The results are shown in FIG.

比較例8.
ブチルアクリレートが主成分のアクリル系の樹脂100部とフェライトGP−500を100部ブレンドしたETC(Electronic Toll Collection)用電磁波吸収体電磁波吸収フェライト複合体シートを電磁波吸収体に用いた。電波吸収体の厚さは1005μmであった。
Comparative Example 8.
An electromagnetic wave absorbing ferrite composite sheet for ETC (Electronic Toll Collection) in which 100 parts of acrylic resin mainly composed of butyl acrylate and 100 parts of ferrite GP-500 was blended was used as the electromagnetic wave absorber. The thickness of the radio wave absorber was 1005 μm.

起電力測定は実施例1と同様に行った。結果を表6に示す。また、電磁波シールド効果測定は実施例1と同様に行った。結果を図8、9と表7に示す。   The electromotive force measurement was performed in the same manner as in Example 1. The results are shown in Table 6. The electromagnetic wave shielding effect measurement was performed in the same manner as in Example 1. The results are shown in FIGS.

比較例9.
半絶縁性の樹脂として、ニトリルブタジエンゴムにロッシェル塩を15部加えたものに水を5%加えたものを所定の型に流し込んで50℃で乾燥した。得られたシートを100℃、40MPaの条件で、熱プレスして成形した。電波吸収体の厚さは610μmであった。
Comparative Example 9
As a semi-insulating resin, 15 parts of Rochelle salt added to nitrile butadiene rubber and 5% of water were poured into a predetermined mold and dried at 50 ° C. The obtained sheet was hot-pressed and molded at 100 ° C. and 40 MPa. The thickness of the radio wave absorber was 610 μm.

起電力測定は実施例1と同様に行った。結果を表6に示す。また、電磁波シールド効果測定は実施例1と同様に行った。結果を図10と表7に示す。   The electromotive force measurement was performed in the same manner as in Example 1. The results are shown in Table 6. The electromagnetic wave shielding effect measurement was performed in the same manner as in Example 1. The results are shown in FIG.

(結果)
実施例1〜6と、比較例との比較から明らかなように、本発明では、導電体と半絶縁体とを含むことにより電磁波吸収特性が、測定周波数範囲(1MHz〜1GHz)で向上した。
(result)
As is clear from the comparison between Examples 1 to 6 and the comparative example, in the present invention, the electromagnetic wave absorption characteristics were improved in the measurement frequency range (1 MHz to 1 GHz) by including the conductor and the semi-insulator.

比較例1aは、未処理の導電性の不織布で、その電気伝導性に起因して、電磁波の反射によると思われる20dB程度のシールド効果が得られている(図1)。比較例1bは、本発明の半絶縁体で、単独のフィルムである。単独のフィルムでは電磁波シールド効果は殆どなく、0dBに近い(図1)。   Comparative Example 1a is an untreated conductive non-woven fabric, and due to its electrical conductivity, a shielding effect of about 20 dB, which seems to be due to reflection of electromagnetic waves, is obtained (FIG. 1). Comparative Example 1b is a semi-insulator of the present invention and is a single film. A single film has almost no electromagnetic shielding effect and is close to 0 dB (FIG. 1).

これに対し、実施例1は、導電性の不織布に半絶縁体を塗布したもので、図1から明らかなように、シールド効果が数dB向上している。電磁波の反射は電気伝導性に起因する。半絶縁体は電気伝導率が中間程度で、単独ではシールド効果が殆どないが、組み合わせるとシールド効果が上がるのは、電磁波の反射ではなく、電磁波の吸収が起こっているからと思われる。   On the other hand, in Example 1, a semi-insulating material is applied to a conductive nonwoven fabric, and as can be seen from FIG. 1, the shielding effect is improved by several dB. The reflection of electromagnetic waves is due to electrical conductivity. A semi-insulator has an intermediate electrical conductivity and has almost no shielding effect when used alone. However, when combined, the shielding effect is increased because the electromagnetic wave is absorbed rather than reflected.

また、実施例2は、導電性の不織布に半絶縁体を塗布したもので、図2から明らかなように、シールド効果が数dB向上している。電磁波の反射は電気伝導性に起因する。半絶縁体は電気伝導率が中程度で、単独ではシールド効果が殆どないが、組み合わせるとシールド効果が上がるのは、電磁波の反射ではなく、電磁波の吸収が起こっているからと思われる。   In Example 2, a semi-insulating material is applied to a conductive nonwoven fabric, and as is clear from FIG. 2, the shielding effect is improved by several dB. The reflection of electromagnetic waves is due to electrical conductivity. Semi-insulators have a moderate electrical conductivity and have almost no shielding effect when used alone. However, the combined effect of the semi-insulator is probably due to the absorption of electromagnetic waves, not the reflection of electromagnetic waves.

比較例3は、ステンレスのメッシュで、その電気伝導性に起因して、電磁波の反射によると思われる60〜70dB程度のシールド効果が得られている(図3)。これに対し、実施例3は、ステンレスのメッシュに半絶縁体を塗布したもので、シールド効果が数dB向上している(図3)。   Comparative Example 3 is a stainless steel mesh, and a shielding effect of about 60 to 70 dB, which is considered to be due to reflection of electromagnetic waves, is obtained due to its electrical conductivity (FIG. 3). In contrast, in Example 3, a semi-insulating material was applied to a stainless steel mesh, and the shielding effect was improved by several dB (FIG. 3).

比較例4は、アルミ板に多数の丸い穴をあけたパンチング板で、その電気伝導性に起因して、電磁波の反射によると思われる30dB弱のシールド効果が得られている(図4)。これに対し、実施例4は、アルミ板に多数の丸い穴をあけたパンチング板に半絶縁体を塗布したもので、シールド効果が数dB向上している(図4)。   Comparative Example 4 is a punching plate in which a large number of round holes are formed in an aluminum plate, and due to its electrical conductivity, a shielding effect of less than 30 dB, which seems to be due to reflection of electromagnetic waves, is obtained (FIG. 4). On the other hand, in Example 4, a semi-insulating material was applied to a punching plate having a large number of round holes in an aluminum plate, and the shielding effect was improved by several dB (FIG. 4).

比較例5は、未塗布の炭素繊維で、その電気伝導性に起因して、電磁波の反射と吸収によると思われるシールド効果が得られている(図5)。これに対し、実施例5は、炭素繊維に半絶縁体を塗布したもので、シールド効果が数dB向上している(図5)。   Comparative Example 5 is an uncoated carbon fiber, and due to its electrical conductivity, a shielding effect that seems to be due to reflection and absorption of electromagnetic waves is obtained (FIG. 5). In contrast, in Example 5, a semi-insulator was applied to carbon fiber, and the shielding effect was improved by several dB (FIG. 5).

比較例6は、炭素繊維に絶縁性の樹脂を塗布したもので、シールド効果が、半絶縁体を塗布したものに比べて数dB低下している(図6)。これに対し、実施例5は、炭素繊維に半絶縁体を塗布したもので、シールド効果が数dB向上している(図6)。   In Comparative Example 6, an insulating resin is applied to carbon fiber, and the shielding effect is lower by several dB than that obtained by applying a semi-insulator (FIG. 6). In contrast, in Example 5, a semi-insulator was applied to carbon fiber, and the shielding effect was improved by several dB (FIG. 6).

比較例1aは、未処理の導電性の不織布で、その電気伝導性に起因して、電磁波の反射によると思われる20dB程度のシールド効果が得られている(図7)。これに対し、比較例7は、導電性の不織布に絶縁性のアクリル樹脂を塗布したもので、シールド効果が数dB低下している(図7)。電磁波の反射は電気伝導性に起因する。絶縁体は電気伝導率が低く、シールド効果が殆どない。組み合わせるとシールド効果が下がるのは、電磁波の反射を妨げ、透過量が多くなっているためと思われる。   Comparative Example 1a is an untreated conductive non-woven fabric, and due to its electrical conductivity, a shielding effect of about 20 dB, which seems to be due to reflection of electromagnetic waves, is obtained (FIG. 7). On the other hand, the comparative example 7 apply | coats the insulating acrylic resin to the electroconductive nonwoven fabric, and the shielding effect has fallen several dB (FIG. 7). The reflection of electromagnetic waves is due to electrical conductivity. Insulators have low electrical conductivity and little shielding effect. When combined, the shielding effect decreases because the reflection of electromagnetic waves is prevented and the amount of transmission increases.

比較例8は、フェライトの磁性(高い透磁率)を利用したもので、1GHz以下では、電磁波反射や電磁波吸収による電磁波シールドの効果が認められなかった(図8)。   Comparative Example 8 utilizes the magnetic properties (high permeability) of ferrite, and at 1 GHz or less, the effect of electromagnetic wave shielding by electromagnetic wave reflection and electromagnetic wave absorption was not recognized (FIG. 8).

比較例8は、1GHz以下では、電磁波反射や電磁波吸収による電磁波シールドの効果が認められなかったが、10GHzから15GHzで、電磁波の吸収が観察され、約11GHzと14GHzに反射損失のピークがあった(図9)。   In Comparative Example 8, at 1 GHz or less, the effect of electromagnetic wave shielding by electromagnetic wave reflection and electromagnetic wave absorption was not recognized, but absorption of electromagnetic waves was observed at 10 GHz to 15 GHz, and peaks of reflection loss were observed at about 11 GHz and 14 GHz. (FIG. 9).

比較例9は、本発明の半絶縁体で、単独のフィルムである。単独のフィルムでは電磁波シールの効果は殆どなく、0dBに近い(図10)。これに対し、実施例6は、導電性の不織布に半絶縁体を塗布したもので、シールド効果が数dB向上している(図10)。   Comparative Example 9 is a semi-insulator of the present invention and is a single film. A single film has little effect of electromagnetic wave sealing and is close to 0 dB (FIG. 10). In contrast, in Example 6, a semi-insulator was applied to a conductive nonwoven fabric, and the shielding effect was improved by several dB (FIG. 10).

Figure 2014049526
Figure 2014049526

なお、表6中、被膜とは、導電体に塗布して形成した半絶縁体の被膜または半絶縁体でない被膜を意味し、シートとは、導電体を使用せず作製した半絶縁体でない、半絶縁体のシートまたは半絶縁体でないもののシートを意味する。また、表6中の被膜またはシートの体積抵抗率とは、厚さが2mmの半絶縁体のシートと半絶縁体でないもののシートを作製し、JIS K7194に準じて測定した値である。   In Table 6, a film means a semi-insulator film formed by applying to a conductor or a non-semi-insulator film, and a sheet is not a semi-insulator prepared without using a conductor. By semi-insulating or non-semi-insulating sheet. The volume resistivity of the coating or sheet in Table 6 is a value measured according to JIS K7194 by preparing a semi-insulating sheet having a thickness of 2 mm and a non-semi-insulating sheet.

Figure 2014049526
Figure 2014049526

Claims (3)

体積抵抗率が1Ω・m以下の導電体と、少なくとも1種の誘電体を含む樹脂から成り体積抵抗率が1kΩ・m以上10GΩ以下の半絶縁体とを含み、該導電体と該半絶縁体を接触させると、絶対値が10mV以上である起電力を発生する電磁波吸収体。   A conductor having a volume resistivity of 1 Ω · m or less and a semi-insulator having a volume resistivity of 1 kΩ · m or more and 10 GΩ or less made of a resin containing at least one dielectric, the conductor and the semi-insulator An electromagnetic wave absorber that generates an electromotive force having an absolute value of 10 mV or more when brought into contact. 上記誘電体が、水、グリコール類および強誘電体から選択された少なくとも1種である請求項1記載の電磁波吸収体。   2. The electromagnetic wave absorber according to claim 1, wherein the dielectric is at least one selected from water, glycols and ferroelectrics. 上記導電体と上記半絶縁体を接触させた複合体の電気抵抗が、100kΩ〜1GΩである請求項1記載の電磁波吸収体。   2. The electromagnetic wave absorber according to claim 1, wherein an electrical resistance of the composite in which the conductor and the semi-insulator are in contact is 100 kΩ to 1 GΩ.
JP2012189611A 2012-08-30 2012-08-30 Electromagnetic wave absorber Expired - Fee Related JP5965786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012189611A JP5965786B2 (en) 2012-08-30 2012-08-30 Electromagnetic wave absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012189611A JP5965786B2 (en) 2012-08-30 2012-08-30 Electromagnetic wave absorber

Publications (2)

Publication Number Publication Date
JP2014049526A true JP2014049526A (en) 2014-03-17
JP5965786B2 JP5965786B2 (en) 2016-08-10

Family

ID=50608913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012189611A Expired - Fee Related JP5965786B2 (en) 2012-08-30 2012-08-30 Electromagnetic wave absorber

Country Status (1)

Country Link
JP (1) JP5965786B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017112253A (en) * 2015-12-17 2017-06-22 日本合成化学工業株式会社 Electromagnetic wave-suppressing sheet, electromagnetic wave-suppressing adhesive sheet arranged by use thereof, resin composition for electromagnetic wave suppression, and electromagnetic wave-suppressing layer
JP2021103743A (en) * 2019-12-25 2021-07-15 東洋インキScホールディングス株式会社 Thermoelectric conversion material and thermoelectric conversion element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6290909A (en) * 1985-06-05 1987-04-25 Tdk Corp Electromagnetic shielding material
JP2000278032A (en) * 1999-03-25 2000-10-06 Japan Science & Technology Corp Electromagnetic wave absorbing sheet
JP2002076681A (en) * 2000-09-01 2002-03-15 Takenaka Komuten Co Ltd Electromagnetic wave absorbing body and method for absorbing the same
JP2007019287A (en) * 2005-07-08 2007-01-25 Denki Kagaku Kogyo Kk Dielectric loss material and electromagnetic wave absorber using it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6290909A (en) * 1985-06-05 1987-04-25 Tdk Corp Electromagnetic shielding material
JP2000278032A (en) * 1999-03-25 2000-10-06 Japan Science & Technology Corp Electromagnetic wave absorbing sheet
JP2002076681A (en) * 2000-09-01 2002-03-15 Takenaka Komuten Co Ltd Electromagnetic wave absorbing body and method for absorbing the same
JP2007019287A (en) * 2005-07-08 2007-01-25 Denki Kagaku Kogyo Kk Dielectric loss material and electromagnetic wave absorber using it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017112253A (en) * 2015-12-17 2017-06-22 日本合成化学工業株式会社 Electromagnetic wave-suppressing sheet, electromagnetic wave-suppressing adhesive sheet arranged by use thereof, resin composition for electromagnetic wave suppression, and electromagnetic wave-suppressing layer
JP2021103743A (en) * 2019-12-25 2021-07-15 東洋インキScホールディングス株式会社 Thermoelectric conversion material and thermoelectric conversion element

Also Published As

Publication number Publication date
JP5965786B2 (en) 2016-08-10

Similar Documents

Publication Publication Date Title
Jung et al. Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable electronics applications
Kumar et al. Enhanced absorption of microwave radiations through flexible polyvinyl alcohol-carbon black/barium hexaferrite composite films
Kumar et al. Electromagnetic interference shielding in 1–18 GHz frequency and electrical property correlations in poly (vinylidene fluoride)–multi-walled carbon nanotube composites
Vinayasree et al. Flexible microwave absorbers based on barium hexaferrite, carbon black, and nitrile rubber for 2–12 GHz applications
Shakir et al. Effect of Nickel-spinal-Ferrites on EMI shielding properties of polystyrene/polyaniline blend
Bhattacharya et al. Graphene and MWCNT based bi-functional polymer nanocomposites with enhanced microwave absorption and supercapacitor property
TW201018387A (en) Electromagnetic interference suppressing hybrid sheet
Wang et al. A Polypyrrole/CoFe 2 O 4/Hollow Glass Microspheres three-layer sandwich structure microwave absorbing material with wide absorbing bandwidth and strong absorbing capacity
US20170040830A1 (en) Wireless power charging device
CN104972708B (en) One kind inhales the difunctional composite of wave dispersion heat and its manufacture method
Al‐Ghamdi et al. Electromagnetic wave shielding and microwave absorbing properties of hybrid epoxy resin/foliated graphite nanocomposites
Shahapurkar et al. Comprehensive review on polymer composites as electromagnetic interference shielding materials
Gill et al. Critical analysis of frequency selective surfaces embedded composite microwave absorber for frequency range 2–8 GHz
JP5965786B2 (en) Electromagnetic wave absorber
Egami et al. Stacked polypyrrole-coated non-woven fabric sheets for absorbing electromagnetic waves with extremely high frequencies
CN213951063U (en) Noise-suppressing graphite articles and assemblies
Jang et al. Edge selectively oxidized graphene on carbonyl iron composites for microwave absorption and radar cross-section performance at X-and Ku-band
JP5424606B2 (en) Noise suppressor and manufacturing method thereof
Agrawal et al. Significantly high electromagnetic shielding effectiveness in polypyrrole synthesized by eco‐friendly and cost‐effective technique
Zhou et al. Dielectric properties and electromagnetic interference shielding effectiveness of Al2O3-based composites filled with FeSiAl and flaky graphite
Kumar et al. Magnetization and thickness dependent microwave attenuation behaviour of Ferrite-PANI composites and embedded composite-fabrics prepared by in situ polymerization
Danlée et al. Flexible multilayer combining nickel nanowires and polymer films for broadband microwave absorption
JP2015050361A (en) Insulative coated powder for magnetic member
Rani et al. Exploring the feasibility of development of nanomaterial-based microwave absorbers
JP6348694B2 (en) Insulation coating powder for magnetic materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151228

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160704

R150 Certificate of patent or registration of utility model

Ref document number: 5965786

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees