JP2014043849A - Autonomous control wind power generator - Google Patents

Autonomous control wind power generator Download PDF

Info

Publication number
JP2014043849A
JP2014043849A JP2012200937A JP2012200937A JP2014043849A JP 2014043849 A JP2014043849 A JP 2014043849A JP 2012200937 A JP2012200937 A JP 2012200937A JP 2012200937 A JP2012200937 A JP 2012200937A JP 2014043849 A JP2014043849 A JP 2014043849A
Authority
JP
Japan
Prior art keywords
wind
rotor
main body
wing
blades
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012200937A
Other languages
Japanese (ja)
Other versions
JP6024883B2 (en
Inventor
Kazumasa Osawa
一正 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012200937A priority Critical patent/JP6024883B2/en
Publication of JP2014043849A publication Critical patent/JP2014043849A/en
Application granted granted Critical
Publication of JP6024883B2 publication Critical patent/JP6024883B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively use natural energy for global environment, although wind power generation is dependent on weather conditions and has many unstable factors in terms of practicability, and further wind power generation cannot be operated in gentle wind and may cause failure or disruptive accident of equipment in strong wind.SOLUTION: An autonomous control wind power generator comprises a structure capable of changing flow of air or collecting or compressing air; and a structure capable of moving such as hiding or overhanging rotation blade parts to the above structure, thereby taking out natural energy stably.

Description

発明の詳細な説明Detailed Description of the Invention

風力発電機Wind power generator

立地条件を精査するとともに装置を大きくすることで発電量を確保しているが、広く一般的かつ多様な環境には適さない。The amount of power generation is secured by examining the location conditions and enlarging the equipment, but it is not suitable for a wide variety of general and diverse environments.

発明が解決しようとする課題Problems to be solved by the invention

日本の国土では海外の風力発電先進国と比較して
風が弱いこと、風力が安定していないこと、風向きが頻繁に変化すること、台風など強すぎる風の被害を避けられないことなど課題が多い。
In Japan, there are issues such as weak winds compared to overseas wind power developed countries, unstable wind power, frequent changes in wind direction, unavoidable damage from winds such as typhoons. Many.

課題を解決するための手段Means for solving the problem

風上に向かって前よりに垂直の回転軸(図1及び11−11)を備える本体(図1−1及び6及び7)は、回転軸より後に垂直翼に相当する翼(図1−6及び7)を備え、本体全体が流線型をイメージする構造であるため、風力発電装置自体が受ける風により、常に風上に対して正面を向く構造となっている。
本体に取り付けられた発電機(図11−14)を回すための回転翼(図1−4)は、一定の方向に回転するように定めた回転軸(図1−12)に対する遊びをつけ、無風時はスプリングによって風力による回転方向と逆方向の位置に戻しておく。
起動時は、風力発電装置自体の摩擦抵抗と発電機への負荷によって微風程度ではなかなか回転を始めない。しかし本件考案の装置の場合は、微風であっても、最初は回転軸の遊び部分だけで回るため、発電機を回転させるための負荷が無く、起動時の機械的な摩擦抵抗は無いに等しいので、空回りすることと、遊びが終わるまでの間の慣性と加速によって回転を開始する。
したがって、遊びの終わったところでの慣性により回転軸に回転翼自身の回転力によるインパクトを与えることで、構造自体の摩擦と負荷による微風では回りはじめないことを解消し微風から発電を開始する。
回転翼(図1−4)は無風時から弱風時には最も風を受け取りやすくするために回転翼の風上側にある本体(図1−1)から、スプリングの作用によって本体の両側に張り出している。
回転翼(図1−4)は、その回転力を発電機に伝え発電機を回転するが、同時にその先には遠心クラッチ(図11−9)が接続されていて、強風で回転数が一定以上に上昇したときに限って遠心クラッチにより、回転翼を取り付ける張り出しアーム(図1−2)に回転力を伝えることで、回転翼(図1−4)を風上側本体(図1−1)の後ろに隠してしまう。
隠れてしまった回転翼には、回転翼の風上側本体が障害物となって回転翼を遮ってしまうため回転が落ちてしまう。したがってクラッチも回転を伝えないので張り出しアームはスプリングの力によって無風の位置に戻してしまう。
張り出しアームが無風の位置に戻ろうとするとき風上側本体の外側が強風であり、回転翼がクラッチに動力を伝えるならば張り出し動作と影に隠れる動作を繰り返すことで、回転翼自体が移動し、回転翼が受ける風圧を自身の動作で変化させる。
したがって台風などの強風時の回転翼は本体風上側前方部分の後ろ側に移動していることで強風を避け、破損から機械自身が機械を守る。
右側回転翼の右前方と、左側回転翼の左前方にはそれぞれ風を集めるための翼が取り付けられている。
右側前方翼は左側回転翼の張り出しアームと連動し、
左側前方翼は右側回転翼の張り出しアームと連動している。
右側回転翼の右後方と左側回転翼の左後方にはそれぞれ風を逃がすための翼が取り付けられている。
右側後方翼は左側回転翼の張り出しアームと連動し、
左側後方翼は右側回転翼の張り出しアームと連動している。
右の張り出しアームが張り出している状態のとき右の回転翼も張り出している、連動している左側前方翼と左側後方翼は、いずれも引き付けられた状態であり、右側回転翼が風を受けやすい位置にあるとき左側前方翼は左側回転翼に対し風を集めやすい位置にあり、左側後方翼は風を逃がしやすい位置にある。
左右の回転翼を取り付けたそれぞれの張り出しアームは、左右逆方向に連動しているので、
左の張り出しアームが張り出している状態のとき左の回転翼も張り出している、連動している右側前方翼と右側後方翼は、いずれも引き付けられた状態であり、左側回転翼が風を受けやすい位置にあるとき右側前方翼は右側回転翼に対し風を集めやすい位置にあり、右側後方翼は右側回転翼に対し風を逃がしやすい位置にある。
それぞれの前方翼と後方翼について、強風時に回転翼がその風上にある本体の影に隠れる位置に移動し、内側に引き付けられた張り出しアームによって反対側の押し出される前方翼と後方翼はいずれも風を流す位置に移動する。
回転翼自体が移動し回転翼が受ける風圧を、回転翼自身が伝えるクラッチの動作で変化させるとき、それぞれの回転翼に連動した前方翼と後方翼は、自身の動作で風を集めたり逃がしたり流したりといった動作を行う。
回転翼の風下側本体部分は張り出しアーム(図1−2)に連動した整流板(図1−7)で構成する。左右の後方翼が風を逃がしたり流したりといった動作を行うとき、整流板で構成する本体後方部分も風の通りやすさを変化させている。張り出しアームが左右に張り出し回転翼が本体外側の風を受けやすい位置にあるとき、本体後方を構成する整流板は風の流れと平行方向にあり風を通り抜けやすくしている。
逆に、強風時の回転翼が風を受けにくい位置にあるときこの整流板は、左右それぞれに整流板同士の面を揃える方向に角度を変える。
整流板で構成する本体後方部分の外側は風が流れやすいものの、回転翼の後方となる本体の内側では風が流れず、回転翼が風を避ける位置にあるとき、回転翼後ろの本体後方部分では、本体後方部分内側を塞ぐことによって内側である回転翼の直後から本体の後方に対して風の流れや巻き込みを押さえ、流れない状態を構成することで強風時の回転翼に対する風圧を回避している。
風が吹かなければ発電しないし、弱くても難しい反面、少しでも多く、安定した発電を求める、需要に即時対応する発電量を求めることなど、本格的な基盤としての発電のためには、複数の風力発電装置を組み合わせるほか、風力以外の発電を含めて構成することも必要となります。隣り合った風力発電機であっても吹く風の強さの異なることが風力発電の実際であり、効率を求める一方で発電機1台ごとに発電量を制御することが可能です。
それぞれの場所で、それぞれに異なる風を受ける風力発電装置は、それぞれの動作を風力発電装置自身が受ける風によって、もしくは受ける風に応じて風力発電装置自身がこれらの動きを操作することの出来る自律制御風力発電装置を構成します。
A main body (FIGS. 1-1, 6 and 7) having a rotation axis (FIGS. 1 and 11-11) perpendicular to the windward direction from the front is a wing (FIGS. 1-6) corresponding to a vertical wing after the rotation axis. And 7), and the whole main body has a streamlined structure, and therefore, the wind power generator itself is always directed to the front with respect to the windward.
A rotating blade (FIGS. 1-4) for rotating a generator (FIGS. 11-14) attached to the main body attaches play to a rotating shaft (FIGS. 1-12) determined to rotate in a certain direction, When there is no wind, the spring is returned to the position opposite to the direction of rotation by the wind.
At the time of start-up, the wind power generator itself does not start rotating at the same level as the wind due to the frictional resistance of the wind power generator itself and the load on the generator. However, in the case of the device of the present invention, even if it is a breeze, it is rotated only by the play part of the rotating shaft at first, so there is no load to rotate the generator, and there is no mechanical frictional resistance at startup Therefore, it starts rotating by inertia and acceleration during idle running and play.
Therefore, by giving an impact by the rotational force of the rotor blade itself to the rotating shaft due to the inertia at the end of the play, it is solved that the wind does not start due to the friction and load of the structure itself, and power generation is started from the wind.
The rotor blades (FIGS. 1-4) protrude from the main body (FIG. 1-1) on the windward side of the rotor blades to the sides of the main body by the action of the springs in order to receive the wind most easily when there is no wind. .
The rotor blades (Figs. 1-4) transmit the rotational force to the generator and rotate the generators. At the same time, a centrifugal clutch (Figs. Only when it rises above, by transmitting the rotational force to the overhanging arm (Fig. 1-2) to which the rotor blade is attached by the centrifugal clutch, the rotor blade (Fig. 1-4) is connected to the windward main body (Fig. 1-1). Hide behind.
The rotating blades that have been hidden will fall off because the windward main body of the rotating blades becomes an obstacle to block the rotating blades. Therefore, since the clutch does not transmit the rotation, the overhanging arm is returned to the windless position by the force of the spring.
When the overhanging arm tries to return to the windless position, the outside of the windward main body is strong wind, and if the rotor blades transmit power to the clutch, by repeating the overhang operation and the operation hidden in the shadow, the rotor blade itself moves, The wind pressure received by the rotor blade is changed by its own movement.
Therefore, the rotor blades during strong winds such as typhoons are moved to the rear side of the front part of the windward side of the main unit to avoid strong winds and protect the machine from damage.
Wings for collecting wind are attached to the right front of the right rotor and the left front of the left rotor, respectively.
The right front wing is linked with the projecting arm of the left rotor,
The left front wing is linked to the overhanging arm of the right rotor.
Wings for escaping wind are attached to the right rear of the right rotor and the left rear of the left rotor, respectively.
The right rear wing is interlocked with the projecting arm of the left rotor,
The left rear wing is linked to the overhanging arm of the right rotor.
When the right overhanging arm is in the overhanging state, the right rotor blade is also overhanging. The interlocking left front wing and left rear wing are both attracted, and the right rotor blade is susceptible to wind. When in position, the left front wing is in a position where it is easy to collect wind relative to the left rotary wing, and the left rear wing is in a position where it is easy for air to escape.
Each overhanging arm with left and right rotating wings is linked in the opposite direction,
When the left overhanging arm is overhanging, the left rotor blade also overhangs. The interlocking right front wing and right rear wing are both attracted, and the left rotor blade is susceptible to wind. When in position, the right front wing is in a position where it is easy to collect wind relative to the right rotor, and the right rear wing is in a position where it is easy for air to escape from the right rotor.
For each front wing and rear wing, the rotor wing moves to a position hidden in the shadow of the main body above the wind in strong winds, and both the front wing and rear wing pushed out on the opposite side by the overhanging arm attracted inside Move to the position where the wind flows.
When the rotor blade itself moves and the wind pressure received by the rotor blade is changed by the operation of the clutch transmitted by the rotor blade itself, the front and rear wings linked to each rotor blade collect and escape wind by their own operation. Perform actions such as flushing.
The leeward main body portion of the rotor blade is constituted by a current plate (FIG. 1-7) interlocked with the overhanging arm (FIG. 1-2). When the left and right rear wings perform an action such as letting the wind escape or flow, the rear part of the main body constituted by the baffle plate also changes the ease of passage of the wind. When the overhanging arm extends to the left and right and the rotor blade is in a position where it can easily receive the wind outside the main body, the rectifying plate that forms the rear of the main body is in a direction parallel to the flow of the wind and is easy to pass through the wind.
Conversely, when the rotor blades in a strong wind are in a position where they are difficult to receive wind, this rectifying plate changes the angle in a direction in which the surfaces of the rectifying plates are aligned on the left and right.
Although the outside of the rear part of the main body, which is composed of the baffle plate, is easy for the wind to flow, the wind does not flow inside the main body behind the rotor blades, and when the rotor blades are in a position to avoid the wind, the rear part of the main body behind the rotor blades Then, by blocking the inner part of the rear part of the main unit, the flow of wind and entrainment is suppressed from the rear of the main unit immediately after the inner rotary blade, and the state where it does not flow is configured to avoid the wind pressure on the rotary blade during strong winds. ing.
While it is difficult to generate electricity if the wind does not blow, it is difficult even if it is weak. In addition to combining wind power generators, it is also necessary to configure the system to include non-wind power generation. Even in the case of adjacent wind generators, the difference in the strength of the wind that blows is the actual wind power generation, and it is possible to control the power generation for each generator while seeking efficiency.
Wind power generators that receive different winds at each location are autonomous that the wind power generator itself can operate these movements according to the wind that the wind power generator itself receives or depending on the wind that it receives Configure the control wind power generator.

▲1▼ 山林や原野地帯では樹木の上まで出られる高さの電柱のような柱が一本あれば設置が可能。
▲2▼ 水上では発電機を重りとして水面下に下ろすことが可能であり、本体を水上に浮かべるための浮きがあれば設置が可能
▲3▼ 市街地でも建物の屋上のほか道路や河川など、回転する範囲に障害物や危険物が無ければ設置が可能。
(1) In a forest or wilderness area, installation is possible if there is only one pole like a utility pole that can reach the top of the tree.
▲ 2 ▼ On the water, it is possible to lower the surface with a generator as a weight, and it can be installed if there is a float to float the body above the water. ▲ 3 ▼ Rotating roads, rivers, and other buildings in the city Installation is possible if there are no obstacles or dangerous objects within the range.

発明の効果Effect of the invention

▲1▼ 自然エネルギーの活用による地球環境の保仝
▲2▼ 原子力や石油等エネルギー依存度の軽減
▲3▼ 風力自身によって発電を操作することが可能になり、発電効率を制御することによれば、実用的で安定した単独の運用から大規模プラントとしての組み合わせでも可能となる。
▲ 1 ▼ Preservation of the global environment by utilizing natural energy ▲ 2 ▼ Reduction of dependence on energy such as nuclear power and oil ▲ 3 ▼ According to the power generation can be operated by the wind power itself and the power generation efficiency is controlled From a practical and stable single operation to a combination with a large-scale plant.

無風時(平面) 無風時「張り出しアーム」は風向きに対し最も外側の風を受けやすい位置に張り出している。したがって回転翼も両側の風を受けやすい位置にあるとともに、前方翼は風を集めやすく、後方翼は風を逃がしやすい位置にある。このとき本体の回転翼より後ろ側の整流板で構成する部分は、風の流れる方向と平行であり、回転翼の後方の、風の流れを通り抜けやすくしている。When there is no wind (plane) When there is no wind, the “extrusion arm” projects to the position where it is most susceptible to wind outside the wind direction. Therefore, the rotor blades are also in a position where they can easily receive the winds on both sides, the front blades are easy to collect wind, and the rear blades are in a position to easily release the wind. At this time, the portion formed by the rectifying plate on the rear side of the rotor blades of the main body is parallel to the direction in which the wind flows, and easily passes through the wind flow behind the rotor blades. 中風時(平面) 中風時の「張り出しアーム」は無風時と強風時の中間にあり、回転翼、前方翼、後方翼、整流板ともに中間にある。Medium wind (plane) The “extrusion arm” during medium wind is in the middle between no wind and strong wind, and the rotor, front wing, rear wing, and current plate are in the middle. 強風時(平面) 強風時の「張り出しアーム」は風向きに対し最も内側の、風を受けにくい位置に寄っている。したがって回転翼は回転翼より風上部分にある本体の前の部分に隠れてしまって風の影響をほとんど受けなくなってしまう。このときの前方翼及び後方翼は、いずれも風を流しやすい位置にあり、本体の後ろの部分は整流板の面が揃うことで、本体外側を流れる風は流れやすく、回転翼の後方かつ本体の内側は、風が流れにくい。During strong winds (planar) The “overhanging arm” during strong winds is located on the innermost side of the wind direction, where it is difficult to receive wind. Therefore, the rotor blade is hidden behind the main body in the windward portion of the rotor blade and is hardly affected by the wind. At this time, the front wing and the rear wing are both in a position where air can easily flow. Inside, the wind is difficult to flow. 無風時(平面) 無風時又は弱風時の主たる翼の位置を実線で表し風の流れのイメージを破線で表現した。本体側面と前方翼の2枚の翼によって集められた左右それぞれの風が、張り出している回転翼に効率よく集中し、その後ろでは後方翼が広がることで、本体後方の整流板とともに風を効率よく逃がしている。No wind (plane) The position of the main wing when no wind or light wind is shown by a solid line, and the image of wind flow is shown by a broken line. The left and right winds collected by the two wings of the main body side and front wing are efficiently concentrated on the overhanging rotary wing, and the rear wing spreads behind it, allowing the wind to flow efficiently along with the rectifying plate behind the main body. I often miss it. 中風時(平面) 中風時の主たる翼の位置を実線で表し風の流れのイメージを破線で表現した。中風時は回転翼、前方翼、後方翼、整流板とも無風時と強風時の中間にある。Medium wind (plane) The main wing position during medium wind is shown by a solid line, and the wind flow image is shown by a broken line. When the wind is medium, the rotor, front wing, rear wing, and rectifying plate are in the middle of no wind and strong wind. 強風時(平面) 強風時の主たる翼の位置を実線で表し風の流れのイメージを破線で表現した。回転翼は本体の前方部の後ろに隠れ風を受けにくく、前方翼と後方翼および本体後方整流板は周囲の風を流れやすくしながら、回転翼の後ろでは流れにくくしている。Strong wind (plane) The position of the main wing during strong wind is shown by a solid line, and the wind flow image is shown by a broken line. The rotor blades are less likely to receive the hidden wind behind the front part of the main body, and the front blades, the rear blades, and the main body rear rectifier plate make it easier for the surrounding winds to flow, but are less likely to flow behind the rotor blades. 無風時(正面) 本体の右側半分の面と右側前方翼の左の面によって集められた風は、その間を通るとき、大きく張り出した右側の回転翼を回転させる。同様に左側半分の面と左側前方翼の右の面によって集められた風は、その間を通るとき、大きく張り出した左側の回転翼を回転させる。When there is no wind (front) The wind collected by the right half of the main body and the left side of the right front wing rotates the overhanging right wing as it passes between them. Similarly, when the wind collected by the left half surface and the right surface of the left front wing passes between them, the left rotating wing that protrudes greatly is rotated. 中間時(正面) 回転翼及び左右の前方翼が無風時と強風時の中間に位置する。回転翼は無風時と強風時の中間であり半分が隠れる動きに対し、前方翼は半分であるが開く動きになる。In the middle (front) The rotor blades and the left and right front blades are located between the windless and strong winds. The rotor blades are halfway between no wind and strong winds, and half of the rotor blades are hidden, whereas the front blades are half but open. 強風時(正面) 強風時に回転翼は、ほぼ正面からは確認できないほどに本体前方部分の後ろに隠れてしまい、風の影響を受けにくい位置にある。一方で前方翼及び後方翼ともに、ほぼ風の流れに平行であり、風を流しやすい位置にある。このときの本体右側半分の面と右側前方翼の左の面集められた風は、その間を通るとき、その間隔が広く、そこに回転翼は張り出さないので風を集める効果や圧縮するなどの効果を少なくしている。During strong winds (front) The rotor blades are hidden behind the front part of the main body so that they cannot be seen almost from the front during strong winds, and are not easily affected by wind. On the other hand, both the front wing and the rear wing are substantially parallel to the wind flow and are in a position where the wind can easily flow. At this time, the gathered wind on the right half of the right side of the main body and the left face of the right front wing are wide when passing between them. The effect is reduced. 重ね図(平面) 図1、図2、図3の3枚の図面を重ねた図 左右の前方翼の風上側は固定している 左右の前方翼の風下側は連動している 左右の後方翼の風上側は連動している 左右の後方翼の風下側は固定している 右の回転翼は左の前方翼及び左の後方翼と連動している 左の回転翼は右の前方翼及び左の後方翼と連動している 右の整流板は右の回転翼と連動している 左の整流板は左の回転翼と連動しているOverlapping view (plane) Overlapping of the three drawings of FIGS. 1, 2 and 3 The windward side of the left and right front wings is fixed The leeward side of the left and right front wings are interlocked The leeward side of the left and right rear wings is fixed The leeward side of the left and right rear wings are fixed The right rotor is interlocked with the left front wing and the left rear wing The right rectifier is interlocked with the right rotor. The left rectifier is interlocked with the left rotor. 側面 風力発電機全体を常に風上に向ける回転軸 張り出しアームが常に左右対称に開閉する回転軸 風力発電の動力源となる回転翼の回転軸 整流板の面を揃えたり開いたりする回転軸 風力が強くなりすぎたときに動力を伝える遠心クラッチ 上下の回転数が異なるときの調整歯車 本体回転軸の中に発生した動力を伝達するシャフト 本体回転軸の下に発電機Side Rotating shaft that always keeps the entire wind power generator upwind Rotating shaft that the overhanging arm always opens and closes symmetrically Rotating shaft of the rotor blade that is the power source of wind power generation Centrifugal clutch that transmits power when it becomes too strong Adjustment gear when the upper and lower rotational speeds are different Shaft that transmits power generated in the main body rotation shaft A generator under the main body rotation shaft イラスト 立体イメージ1段Illustration Three-dimensional image イラスト 立体イメージ2段Illustration 3D image

(1) 本体前方部(回転翼の風上側)
(2) 張り出しアーム
(3) 前方翼
(4) 回転翼
(5) 後方翼
(6) 本体後方部(回転翼の風下側)
(7) 本体後方部整流板
(8) 張り出しアーム反転ギヤ
(9) 遠心クラッチ
(10) 張り出しアーム回転軸
(11) 本体回転軸
(12) 回転翼の回転軸
(13) 本体後方整流板の回転軸
(14) 発電機
(15) 回転翼の回転部分(4段1列)
(16) 本体後方の整流板(4段4列)
(17) 前方翼固定腕木
(18) 前方翼連動腕木
(19) 後方翼連動腕木
(20) 後方翼固定腕木
(21) 回転翼回転部分
(22) 本体後方整流板部分
(1) Front part of main body (windward side of rotor blade)
(2) Overhang arm (3) Front wing (4) Rotary wing (5) Rear wing (6) Rear of main body (downward side of rotary wing)
(7) Main body rear rectifying plate (8) Overhang arm reversing gear (9) Centrifugal clutch (10) Overhang arm rotating shaft (11) Main body rotating shaft (12) Rotating blade rotating shaft (13) Rotating main body rear rectifying plate Shaft (14) Generator (15) Rotating part of rotor blade (4 rows and 1 row)
(16) Rectifying plate at the rear of the main unit (4 stages, 4 rows)
(17) Front wing fixed arm (18) Front wing interlocking arm (19) Rear wing interlocking arm (20) Rear wing fixed arm (21) Rotary blade rotating part (22) Main body rear rectifying plate part

Claims (1)

回転翼の回転には大きな遊びがあり、無風の状態ではスプリングによって風圧による回転方向の逆方向に戻しておくが、微風発生時には、最初は遊びの部分で回るものの、回転翼だけを回していた微風は、遊びの終わったところで慣性によって「回転力によるインパクト」を回転軸に与えることで本来の機械の摩擦と発電機への負荷によって回転を始めることの無い微風であっても、空回りすることと、遊びが終わるまでの間の慣性と加速によって微風であっても発電を開始する。
回転を始めた回転翼は、発電するための風を受ける回転翼自体が移動することで回転翼が受ける「風圧を変化」させるとともに、
回転翼の右前と左前に風を集める翼。さらに右後と左後に風を逃がすための翼を備え、回転翼の受ける風によりこの角度を変えることで回転翼に集まる「風量を変化」させる。
さらに回転翼より後ろの本体部分を構成する羽の角度を変えることで本体の形状を変え、風の流れを変えることで「風の通りやすさを変化」させる。
それぞれの動作を風力発電装置自身が受ける風によって、もしくは受ける風に応じて風力発電装置自身がこれらの動きを操作することの出来る自律制御風力発電装置。
There is a big play in the rotation of the rotor blades, and when there is no wind, it is returned to the reverse direction of the rotation direction by the wind pressure by the spring, but when the breeze occurred, only the rotor blades were turned at first, although it turned around in the play part Even if the breeze does not begin to rotate due to the friction of the original machine and the load on the generator by giving inertia to the rotating shaft by inertia at the end of play, the breezes can idle. And power generation is started even in a light breeze due to inertia and acceleration until play ends.
The rotating blades that have started rotating change the wind pressure received by the rotating blades as the rotating blades themselves that receive wind to generate electricity move.
A wing that collects wind in front of the rotor and front left. In addition, it is equipped with wings for escaping the wind to the right and left, and by changing the angle according to the wind received by the rotor, the air volume gathered on the rotor is changed.
Furthermore, the shape of the main body is changed by changing the angle of the wings that make up the main body part behind the rotor blades, and the ease of wind passage is changed by changing the flow of the wind.
An autonomously controlled wind power generator capable of operating these movements according to the wind received by the wind power generator itself or according to the wind received.
JP2012200937A 2012-08-28 2012-08-28 Autonomous wind power generator Active JP6024883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012200937A JP6024883B2 (en) 2012-08-28 2012-08-28 Autonomous wind power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012200937A JP6024883B2 (en) 2012-08-28 2012-08-28 Autonomous wind power generator

Publications (2)

Publication Number Publication Date
JP2014043849A true JP2014043849A (en) 2014-03-13
JP6024883B2 JP6024883B2 (en) 2016-11-16

Family

ID=50395282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012200937A Active JP6024883B2 (en) 2012-08-28 2012-08-28 Autonomous wind power generator

Country Status (1)

Country Link
JP (1) JP6024883B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016076425A1 (en) * 2014-11-14 2016-05-19 株式会社リアムウィンド Fluid power generation method and fluid power generation device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57183577A (en) * 1981-04-23 1982-11-11 Berugaa Mitsushieru Vertical shaft type aerogenerator with two rotor through channel type air flow
JPS60152070U (en) * 1984-03-19 1985-10-09 三井造船株式会社 paddle type windmill
JPH01193084A (en) * 1988-01-29 1989-08-03 Yoshio Soda Movable wind mill with wind guiding way
JPH09242658A (en) * 1996-03-04 1997-09-16 Mitsuo Okamoto Twin windmill type power generator
JP2001254667A (en) * 2000-03-10 2001-09-21 Sadao Kusachi Impeller type windmill for wind power generation
JP2009275690A (en) * 2008-05-17 2009-11-26 Kazumasa Osawa Wind force control type wind power generator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57183577A (en) * 1981-04-23 1982-11-11 Berugaa Mitsushieru Vertical shaft type aerogenerator with two rotor through channel type air flow
JPS60152070U (en) * 1984-03-19 1985-10-09 三井造船株式会社 paddle type windmill
JPH01193084A (en) * 1988-01-29 1989-08-03 Yoshio Soda Movable wind mill with wind guiding way
JPH09242658A (en) * 1996-03-04 1997-09-16 Mitsuo Okamoto Twin windmill type power generator
JP2001254667A (en) * 2000-03-10 2001-09-21 Sadao Kusachi Impeller type windmill for wind power generation
JP2009275690A (en) * 2008-05-17 2009-11-26 Kazumasa Osawa Wind force control type wind power generator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016076425A1 (en) * 2014-11-14 2016-05-19 株式会社リアムウィンド Fluid power generation method and fluid power generation device
JPWO2016076425A1 (en) * 2014-11-14 2017-04-27 株式会社リアムウィンド Fluid power generation method and fluid power generation apparatus
US10138866B2 (en) 2014-11-14 2018-11-27 Riamwind Co., Ltd. Fluid power generation method and fluid power generation device

Also Published As

Publication number Publication date
JP6024883B2 (en) 2016-11-16

Similar Documents

Publication Publication Date Title
US20110158787A1 (en) Wind turbine
US7696635B2 (en) Gravity-flap, savonius-type wind turbine device
US7802967B2 (en) Vertical axis self-breaking wind turbine
US20070098542A1 (en) Rotational power system
WO2011095075A1 (en) Wind power generating device and wind blade structure
JP5480342B2 (en) Hybrid wind power generator
JP2009275690A (en) Wind force control type wind power generator
JP2017096239A (en) Vertical wind turbine
KR20120120809A (en) aero generator
JP5551748B2 (en) Power generator
JP6024883B2 (en) Autonomous wind power generator
US20130119662A1 (en) Wind turbine control
JP6116284B2 (en) Wind power generator wind power generator
CN201433853Y (en) Vertical shaft wind generator
JP5782145B2 (en) Wind power generator
US20110215582A1 (en) Wind-operated electrical generating system
JP2020026789A (en) All wind power generator
JP2015214982A (en) Wind power generator
KR101650544B1 (en) Vertical rotor type aerogenerator and rotating member thereof
JP6638952B2 (en) W turbine generator with wind tunnel
KR20130133713A (en) Vane of generator for waterpower and windpower
KR101125952B1 (en) Wind turbine
JP5120990B1 (en) Vertical axis retractable wind turbine device with the function to control the wind direction simultaneously
RU96190U1 (en) STATIONARY AUTONOMOUS HYDRO-ENERGY INSTALLATION OF HINGE TYPE
JP6144807B1 (en) Windmill

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160927

R150 Certificate of patent or registration of utility model

Ref document number: 6024883

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250