JP2014041799A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2014041799A
JP2014041799A JP2012184487A JP2012184487A JP2014041799A JP 2014041799 A JP2014041799 A JP 2014041799A JP 2012184487 A JP2012184487 A JP 2012184487A JP 2012184487 A JP2012184487 A JP 2012184487A JP 2014041799 A JP2014041799 A JP 2014041799A
Authority
JP
Japan
Prior art keywords
shaft core
secondary battery
aqueous electrolyte
electrolyte secondary
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012184487A
Other languages
Japanese (ja)
Inventor
Shingo Ito
真吾 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2012184487A priority Critical patent/JP2014041799A/en
Publication of JP2014041799A publication Critical patent/JP2014041799A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Gas Exhaust Devices For Batteries (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery capable of surely inhibiting a battery can from being burst even when it enters the thermorunaway state.SOLUTION: In the outer peripheral part OFa of a shaft core 33A, a recess 55a is formed whose cross-sectional shape in the direction orthogonal to an axis line is a V-character shape and is opened toward the outer side in the radial direction of the shaft core 33A and both sides in the axial direction.

Description

本発明は、非水電解液二次電池に関し、特にリチウムイオン電池等の非水電解液二次電池に関するものである。   The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery such as a lithium ion battery.

リチウムイオン電池等の非水電解液二次電池では、異常な高温環境下に曝されたときや充電装置の故障等により過充電状態になって、電池容器内の温度が上昇し、その結果、非水電解液の分解や気化によりガスが発生して、電池容器内の内圧が上昇し、電池容器が破損する事態が発生することがある。そのため、この種の二次電池の容器には、電池容器内の内圧上昇を防止するために、発生したガスによって内圧が上昇すると、発生したガスを排出する安全弁を備えたガス排出口が設けられている。   Non-aqueous electrolyte secondary batteries such as lithium ion batteries become overcharged when exposed to an abnormally high temperature environment or due to a failure of the charging device, and the temperature inside the battery container rises. A gas may be generated due to decomposition or vaporization of the non-aqueous electrolyte, and the internal pressure in the battery container may increase, and the battery container may be damaged. Therefore, in this type of secondary battery container, in order to prevent an increase in internal pressure in the battery container, when the internal pressure increases due to the generated gas, a gas discharge port provided with a safety valve is provided to discharge the generated gas. ing.

しかしながら、電池容器内の温度上昇が進行すると、セパレータのメルトダウンや軸芯の破断等により、正極板と負極板とが接触して短絡を生じる場合がある。短絡が生じると、短絡している部分に大電流が流れるため、非水電解液の熱分解や気化が連鎖的に生じて、非水電解液二次電池が熱暴走状態に到る場合がある。   However, when the temperature rise in the battery container proceeds, the positive electrode plate and the negative electrode plate may come into contact with each other due to meltdown of the separator, breakage of the shaft core, or the like. When a short-circuit occurs, a large current flows through the short-circuited portion, so that the non-aqueous electrolyte may be thermally decomposed or vaporized in a chain, and the non-aqueous electrolyte secondary battery may reach a thermal runaway state. .

特許第4688612号公報(特許文献1)には、短絡を生じさせる原因となる軸芯の破断を抑制するために、捲回極板群の歪みを吸収することができるように、圧縮変形可能な可撓性材料からなる軸芯を備えた非水電解液二次電池が開示されている。   In Japanese Patent No. 4688612 (Patent Document 1), in order to suppress the breakage of the shaft core that causes a short circuit, it can be compressed and deformed so that the distortion of the wound electrode plate group can be absorbed. A non-aqueous electrolyte secondary battery having an axial core made of a flexible material is disclosed.

特許第4688612号公報Japanese Patent No. 4688612

特許文献1のように軸芯を圧縮変形可能に構成すると、軸芯の破断が抑制されるので、短絡が生じにくく、非水電解液二次電池が熱暴走状態になることを防止するのに一定の効果がある。   If the shaft core is configured to be compressible and deformable as in Patent Document 1, the shaft core is prevented from being broken, so that a short circuit is unlikely to occur and the nonaqueous electrolyte secondary battery is prevented from being in a thermal runaway state. There is a certain effect.

しかしながら、近年開発が進んでいる高容量・高出力の非水電解液二次電池では、電池容器内の内圧が安全弁の動作圧力に達した時点で、電池容器内のエネルギー状態が高くなっている場合がある。電池容器内のエネルギー状態が高い状態で非水電解液二次電池が熱暴走状態に到った場合では、電池容器内のガス発生スピードが安全弁のガス排出能力を上回るため、発生したガスが電池缶内に充満して電池容器内の内圧が急激に上昇する。そのため、高容量・高出力の非水電解液二次電池では、安全弁が設置されていても電池内部のガス発生のスピードが安全弁のガス排出能力を超えて、ガス排出口から電池内容物を激しく噴出したり、電池缶が爆発してしまう場合がある。   However, in high capacity and high output non-aqueous electrolyte secondary batteries that have been developed in recent years, the energy state in the battery container is high when the internal pressure in the battery container reaches the operating pressure of the safety valve. There is a case. When the non-aqueous electrolyte secondary battery reaches a thermal runaway state when the energy state in the battery container is high, the gas generation speed in the battery container exceeds the gas discharge capacity of the safety valve. The can is filled and the internal pressure in the battery container rises rapidly. For this reason, in high-capacity, high-power non-aqueous electrolyte secondary batteries, even if a safety valve is installed, the speed of gas generation inside the battery exceeds the gas discharge capacity of the safety valve, and the battery contents are violently exhausted from the gas discharge port. The battery can may explode or explode.

本発明の目的は、熱暴走状態に到っても電池缶が破裂することを確実に防止することができる非水電解液二次電池を提供することにある。   An object of the present invention is to provide a non-aqueous electrolyte secondary battery that can reliably prevent a battery can from bursting even in a thermal runaway state.

上記目的に加えて本発明の他の目的は、異常発生時に電池容器内のエネルギー状態が低い状態で早期に短絡を生じさせることができる非水電解液二次電池を提供することにある。   In addition to the above object, another object of the present invention is to provide a non-aqueous electrolyte secondary battery capable of causing a short circuit at an early stage in a state where the energy state in the battery container is low when an abnormality occurs.

本発明は、正極板と負極板とが、セパレータを介して中空の軸芯に捲回されてなる捲回型極板群が非水電解液と一緒に電池容器内に収納され、電池容器に安全弁が設けられている非水電解液二次電池を改良の対象とする。本発明で用いる軸芯は、非水電解液の分解反応により電池容器内の内圧が上昇して内圧が安全弁の動作圧力に達する前に、内圧により圧縮変形して捲回型極板群内で短絡を生じさせるように構成する。本発明では、非水電解液の分解反応によりガスが発生して電池容器内の内圧が上昇して内圧が安全弁の動作圧力に達する前に、まず軸芯が圧縮変形する。軸芯が圧縮変形すると、その変形に追随して極板群も変形し、軸芯の破損だけでなく、セパレータの破損や、極板の破損が発生し、それらの破損が原因となって、正極板と負極板とが接触して短絡が生じる。その結果、本発明の非水電解液二次電池では、従来の非水電解液二次電池よりも電池缶内のエネルギー状態が低い状態で短絡が生じる。短絡により非水電解液二次電池が熱暴走状態に到った場合でも、電池内部のガス発生のスピードが安全弁のガス排出能力を超えることがないので、電池缶の破裂を防止することができる。   In the present invention, a wound electrode plate group in which a positive electrode plate and a negative electrode plate are wound around a hollow shaft core via a separator is housed in a battery container together with a non-aqueous electrolyte. A non-aqueous electrolyte secondary battery provided with a safety valve is targeted for improvement. The shaft core used in the present invention is compressed and deformed by the internal pressure before the internal pressure in the battery container rises due to the decomposition reaction of the non-aqueous electrolyte and reaches the operating pressure of the safety valve. It is configured to cause a short circuit. In the present invention, the shaft core is first compressed and deformed before gas is generated by the decomposition reaction of the non-aqueous electrolyte and the internal pressure in the battery container rises and the internal pressure reaches the operating pressure of the safety valve. When the shaft core compressively deforms, the electrode plate group also deforms following the deformation, not only the shaft core breakage, but also the separator breakage and electrode plate breakage. A short circuit occurs when the positive electrode plate and the negative electrode plate come into contact with each other. As a result, in the nonaqueous electrolyte secondary battery of the present invention, a short circuit occurs in a state where the energy state in the battery can is lower than that of the conventional nonaqueous electrolyte secondary battery. Even when the non-aqueous electrolyte secondary battery reaches a thermal runaway due to a short circuit, the speed of gas generation inside the battery does not exceed the gas discharge capacity of the safety valve, thus preventing the battery can from bursting. .

具体的な軸芯としては、薄肉部と該薄肉部よりも厚みが厚い厚肉部とを形成したものとすることができる。薄肉部は厚肉部に比べて機械的強度が低いため、電池容器内の内圧が上昇したときに、薄肉部が最初に圧縮変形する。このように構成すると、軸芯が薄肉部を有していない場合よりも、軸芯は圧縮変形し易くなるので、安全弁が動作するよりも前、即ち電池容器内のエネルギー状態が低い状態で確実に、軸芯を圧縮変形させて短絡を生じさせることができる。   As a specific shaft core, a thin part and a thick part thicker than the thin part can be formed. Since the thin-walled portion has lower mechanical strength than the thick-walled portion, when the internal pressure in the battery container increases, the thin-walled portion first compresses and deforms. With this configuration, the shaft core is more easily compressed and deformed than when the shaft core does not have a thin wall portion. Therefore, before the safety valve operates, that is, in a state where the energy state in the battery container is low. In addition, the shaft core can be compressed and deformed to cause a short circuit.

薄肉部は、軸芯の軸線方向に沿って軸芯の外周部に形成された凹部に対応する部分により形成することができる。ここで凹部に対応する部分とは、凹部が形成された結果、厚みが薄くなっている部分を意味する。このような薄肉部は、軸芯の外周部の一部を加工することにより形成できるので、薄肉部を軸芯に簡単に形成することができる。また凹部の角部は、軸芯が圧縮変形した際に、極板群の一部を破損させることができる可能性がある。   The thin portion can be formed by a portion corresponding to a recess formed in the outer peripheral portion of the shaft core along the axial direction of the shaft core. Here, the portion corresponding to the recess means a portion where the thickness is reduced as a result of the formation of the recess. Since such a thin part can be formed by processing a part of the outer peripheral part of the shaft core, the thin part can be easily formed on the shaft core. In addition, the corners of the recesses may possibly damage a part of the electrode plate group when the shaft core is compressed and deformed.

また薄肉部は、軸芯の軸線方向に沿って軸芯の内周部に形成された凹部に対応する部分により形成してもよい。ここで凹部に対応する部分とは、凹部が形成された結果、厚みが薄くなっている部分を意味する。このように薄肉部を形成すると、軸芯の外周部には、特に角部が形成されることはなく、薄肉部と厚肉部との境界部分に形成される角部は、軸芯の内周部にのみ形成される。そのため、軸芯に捲回される正極板、負極板及びセパレータが、凹部の角部により破損してしまうことがないので、非水電解液二次電池に異常が発生していない通常使用時に、角部が原因となって短絡が生じることを防止することができる。   Moreover, you may form a thin part by the part corresponding to the recessed part formed in the inner peripheral part of an axial core along the axial direction of an axial core. Here, the portion corresponding to the recess means a portion where the thickness is reduced as a result of the formation of the recess. When the thin wall portion is formed in this way, no corner portion is particularly formed on the outer peripheral portion of the shaft core, and the corner portion formed at the boundary portion between the thin wall portion and the thick wall portion is the inner portion of the shaft core. It is formed only on the periphery. Therefore, since the positive electrode plate, the negative electrode plate and the separator wound around the shaft core are not damaged by the corners of the recesses, during normal use where no abnormality has occurred in the nonaqueous electrolyte secondary battery, It is possible to prevent a short circuit from occurring due to the corner portion.

凹部は任意の形状とすることができ、例えば薄肉部の厚みが一定となる横断面形状とすることが好ましい。このような横断面形状の凹部にすると、薄肉部全体の厚みが均一な値となるので、薄肉部の機械的強度は薄肉部全体でほぼ等しくなり、電池容器内の内圧が上昇したときに、薄肉部全体が変形して、軸芯を確実に圧縮変形させることができる。   The concave portion can have any shape, and for example, preferably has a cross-sectional shape in which the thickness of the thin portion is constant. When the concave portion has such a cross-sectional shape, since the thickness of the entire thin portion becomes a uniform value, the mechanical strength of the thin portion becomes substantially equal throughout the thin portion, and when the internal pressure in the battery container increases, The entire thin portion is deformed, and the shaft core can be reliably compressed and deformed.

凹部は、軸芯の周方向の一方向に向かうに従って薄肉部の厚みが徐々に薄くなって最小値となり、更に一方向に向かうに従って厚みが徐々に厚くなる横断面形状とすることもできる。このような横断面形状の凹部にすると、電池容器内の内圧の上昇により軸芯に発生する応力が、厚みが最小値となる部分に集中するので、軸芯を確実に圧縮変形させることができる。   The concave portion may have a cross-sectional shape in which the thickness of the thin portion is gradually reduced to a minimum value as it goes in one direction in the circumferential direction of the shaft core, and further, the thickness is gradually increased as it goes in one direction. When the concave portion having such a cross-sectional shape is used, the stress generated in the shaft core due to the increase in the internal pressure in the battery container is concentrated on the portion where the thickness becomes the minimum value, so that the shaft core can be reliably compressed and deformed. .

薄肉部の厚みの最小値と軸芯の他の部分との厚さの比が、5:100〜95:100であることが好ましい。薄肉部の厚みの最小値と軸芯の他の部分との厚さの比をこの範囲とすると、薄肉部を形成しない場合よりも、異常発生時に電池容器内のエネルギー状態が低い状態で確実に短絡を生じさせることができる。   It is preferable that the ratio of the thickness of the thin portion to the other portion of the shaft core is 5: 100 to 95: 100. When the ratio of the minimum thickness of the thin part to the thickness of the other part of the shaft is in this range, the energy state in the battery container is reliably lower when an abnormality occurs than when the thin part is not formed. A short circuit can occur.

本発明の一実施の形態のリチウムイオン電池の部分断面図である。It is a fragmentary sectional view of the lithium ion battery of one embodiment of the present invention. 電極群を巻回する状態を示す図である。It is a figure which shows the state which winds an electrode group. 正極集電体の斜視図である。It is a perspective view of a positive electrode current collector. 正極集電体を正極電池蓋側から見た図である。It is the figure which looked at the positive electrode current collector from the positive electrode battery lid side. (A)〜(F)は本実施の形態で使用することができる6種類の軸芯の斜視図であり、(G)は従来の軸芯の斜視図である。(A)-(F) are perspective views of six types of shaft cores that can be used in the present embodiment, and (G) is a perspective view of a conventional shaft core. (A)〜(F)は図5(A)〜(F)に示す軸芯を、軸線が延びる方向の端部側からそれぞれ見た図である。(A)-(F) is the figure which looked at the axial center shown to FIG. 5 (A)-(F), respectively from the edge part side of the direction where an axis line is extended. 試験結果を示す表である。It is a table | surface which shows a test result.

以下、図面を参照して本発明の実施の形態を詳細に説明する。図1は、本発明の一実施の形態であるリチウムイオン電池を長手方向に沿って切断した断面図である。なお図1においては、極板群9の断面の一部の図示を省略してある。本実施の形態の円筒型リチウムイオン電池1は、電池容器本体3と、正極側電池蓋5と、負極側電池蓋7と、電解液に浸潤された極板群9と、正極集電体11と、負極集電体13とを備えている。電池容器本体3は、ニッケルメッキが施されたスチール材料により両端が開口した円筒形状を有している。電池容器本体3の両端の開口部は、正極側電池蓋5及び負極側電池蓋7によりそれぞれ塞がれている。正極側電池蓋5及び負極側電池蓋7は、ガス排出口5a及び7aを備えており、その中央部には、端子貫通孔5b及び7bがそれぞれ設けられている。ガス排出口5a及び7aは、例えば特開平11−273650号公報に示される安全弁構造と同様に、開裂形安全弁6及び8により塞がれており、開裂形安全弁6及び8は図示しない弁押え環により保持されている。安全弁6及び8は、電池容器本体3内でガスが発生することにより、電池容器本体3内の圧力が一定以上となると、開裂状態となって発生したガスを放出する。端子貫通孔5b及び7bには、後述する正極集電体11の出力端子部15及び負極集電体13の出力端子部17がゴムパッキン19を介して貫通している。出力端子部15及び17の外周部には、ネジ部が形成されており、このネジ部にはナット部材21がそれぞれ螺合されている。なおナット部材21と正極側電池蓋5及び負極側電池蓋7との間にはワッシャ23が配置されている。なお正極側電池蓋5には、電解液を入れるための注液口に封止部材としてのネジ部材25がネジ留めされている。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional view of a lithium ion battery according to an embodiment of the present invention cut along the longitudinal direction. In FIG. 1, a part of the cross section of the electrode plate group 9 is not shown. The cylindrical lithium ion battery 1 of the present embodiment includes a battery container body 3, a positive electrode side battery cover 5, a negative electrode side battery cover 7, an electrode plate group 9 infiltrated with an electrolyte, and a positive electrode current collector 11. And a negative electrode current collector 13. The battery container body 3 has a cylindrical shape with both ends opened by a nickel-plated steel material. Openings at both ends of the battery container body 3 are respectively closed by the positive battery cover 5 and the negative battery cover 7. The positive electrode side battery cover 5 and the negative electrode side battery cover 7 are provided with gas discharge ports 5a and 7a, respectively, and terminal through holes 5b and 7b are provided at the center thereof. The gas discharge ports 5a and 7a are closed by the cleavable safety valves 6 and 8, similar to the safety valve structure disclosed in, for example, Japanese Patent Laid-Open No. 11-273650, and the cleavable safety valves 6 and 8 are not shown in FIG. Is held by. The safety valves 6 and 8 generate gas in the battery case main body 3 and release the generated gas when the pressure in the battery case main body 3 becomes equal to or higher than a certain level. An output terminal portion 15 of the positive electrode current collector 11 and an output terminal portion 17 of the negative electrode current collector 13 which will be described later pass through the terminal through holes 5 b and 7 b through a rubber packing 19. Screw portions are formed on the outer peripheral portions of the output terminal portions 15 and 17, and nut members 21 are screwed into the screw portions, respectively. A washer 23 is disposed between the nut member 21 and the positive battery cover 5 and the negative battery cover 7. Note that a screw member 25 as a sealing member is screwed to the positive electrode side battery cover 5 at a liquid injection port for containing an electrolytic solution.

極板群9中には、非水電解液が浸潤している。本実施の形態では、非水電解液としてエチレンカーボネートとジメチルカーボネートとジエチルカーボネートとの混合溶媒中に6フッ化リン酸リチウム(LiPF)を電解質として溶解した溶液を用いている。 A non-aqueous electrolyte is infiltrated into the electrode plate group 9. In the present embodiment, a solution obtained by dissolving lithium hexafluorophosphate (LiPF 6 ) as an electrolyte in a mixed solvent of ethylene carbonate, dimethyl carbonate, and diethyl carbonate is used as the nonaqueous electrolytic solution.

図2は、本実施の形態で用いる極板群9を巻回する状態を示す図である。極板群9は、帯状の正極板27と帯状の負極板29とを、セパレータ31を介して中空円筒状の軸芯33を中心として断面渦巻き状に巻回することにより構成されている。なお、本明細書において中空円筒状の軸芯とは、軸芯の外周面または内周面の一部に軸線に沿って凹部が設けられた略円筒状の軸芯を含むものである。本実施の形態の正極板27は、正極集電板としてのアルミニウム箔の両面に、リチウム遷移金属複酸化物であるマンガン酸リチウムを含む正極合剤を略均質に塗布した構成となっている。アルミニウム箔の長手方向に延びる一方の辺側には、正極合剤が塗装されていない未塗着部35が形成されている。未塗着部35は、櫛歯状に切り欠かれており、切り欠かれた残部により、複数の正極リード片37が形成されている。負極板29は、負極集電板としての圧延銅箔の両面に、負極活物質としてリチウムイオンを吸蔵・放出可能な炭素粉末を含む負極合剤を略均質に塗布した構成となっている。銅箔の長手方向に延びる一方の辺側には、負極合剤が塗装されていない未塗着部39が形成されている。未塗着部39は、櫛歯状に切り欠かれており、切り欠かれた残部により、複数の負極リード片41が形成されている。図1においては、正極側電池蓋5側に複数の正極リード片37が位置し、負極側電池蓋7側に複数の負極リード片41が位置している。セパレータ31は、リチウムイオンが通過可能なポリエチレン製の多孔質材により形成されている。セパレータ31は、イオンの通過を許容して、しかも正極板27及び負極板29が互いに接触することを防止する。軸芯33はポリプロピレン樹脂により形成されている。軸芯33の具体的な構成については後に詳細に説明する。なお、正極板27、負極板29及びセパレータ31の詳細な構成については、本発明の要旨とは関係しないので、詳細な説明を省略する。   FIG. 2 is a diagram showing a state in which the electrode plate group 9 used in the present embodiment is wound. The electrode plate group 9 is configured by winding a belt-like positive electrode plate 27 and a belt-like negative electrode plate 29 in a spiral shape with a hollow cylindrical shaft core 33 as a center through a separator 31. In this specification, the hollow cylindrical shaft core includes a substantially cylindrical shaft core in which a concave portion is provided along the axis on a part of the outer peripheral surface or inner peripheral surface of the shaft core. The positive electrode plate 27 of the present embodiment has a configuration in which a positive electrode mixture containing lithium manganate, which is a lithium transition metal double oxide, is applied almost uniformly on both surfaces of an aluminum foil as a positive electrode current collector plate. On one side extending in the longitudinal direction of the aluminum foil, an uncoated portion 35 that is not coated with the positive electrode mixture is formed. The uncoated part 35 is cut out in a comb-like shape, and a plurality of positive electrode lead pieces 37 are formed by the remaining part cut out. The negative electrode plate 29 has a configuration in which a negative electrode mixture containing carbon powder capable of occluding and releasing lithium ions as a negative electrode active material is applied almost uniformly on both surfaces of a rolled copper foil as a negative electrode current collector plate. On one side extending in the longitudinal direction of the copper foil, an uncoated portion 39 that is not coated with the negative electrode mixture is formed. The uncoated part 39 is notched in a comb-like shape, and a plurality of negative electrode lead pieces 41 are formed by the notched remaining part. In FIG. 1, a plurality of positive electrode lead pieces 37 are located on the positive electrode side battery lid 5 side, and a plurality of negative electrode lead pieces 41 are located on the negative electrode side battery lid 7 side. The separator 31 is formed of a polyethylene porous material through which lithium ions can pass. The separator 31 allows the passage of ions and prevents the positive electrode plate 27 and the negative electrode plate 29 from contacting each other. The shaft core 33 is made of polypropylene resin. A specific configuration of the shaft core 33 will be described in detail later. Note that the detailed configuration of the positive electrode plate 27, the negative electrode plate 29, and the separator 31 is not related to the gist of the present invention, and thus detailed description thereof is omitted.

正極側電池蓋5と極板群9の端部との間には、複数の正極リード片37が接続された正極集電体11が極板群9の端部に隣接して配置されている。また、負極側電池蓋7と極板群9の端部との間には、複数の負極リード片41が接続された負極集電体13が極板群9の端部に隣接して配置されている。本実施の形態においては、正極集電体11及び負極集電体13は実質的に同じ形状を有している。   Between the positive electrode side battery cover 5 and the end portion of the electrode plate group 9, a positive electrode current collector 11 to which a plurality of positive electrode lead pieces 37 are connected is disposed adjacent to the end portion of the electrode plate group 9. . A negative electrode current collector 13 to which a plurality of negative electrode lead pieces 41 are connected is disposed adjacent to the end of the electrode plate group 9 between the negative electrode side battery cover 7 and the end of the electrode plate group 9. ing. In the present embodiment, the positive electrode current collector 11 and the negative electrode current collector 13 have substantially the same shape.

図3は本実施の形態で用いる正極集電体11の斜視図であり、図4は正極集電体11を正極電池蓋5側から見た図である。正極集電体11は、円環状の集電体本体43の中央部に出力端子部15を備えている。出力端子部15は、正極側電池蓋5を貫通して外部に延びるように構成されている。集電体本体43には、出力端子部15を中心とする環状の凹部45が形成されている。環状の凹部45は、出力端子部15が延びる方向に向かって開口している。環状の凹部45の底部には、複数の通気用貫通孔46が設けられている。なお通気用貫通孔46は、複数設ける必要はなく、一つのみ設けるように構成してもよい。正極集電体11は、集電体本体43の出力端子部15が設けられた側とは反対側に極板群9の軸芯33に挿入される柱状部47を備えている。柱状部47を軸芯33の一方の端部に挿入することにより、正極集電体11と極板群9との位置関係が確定している。正極集電体11の集電体本体43の外周部に、複数の正極リード片37の端部が超音波溶接されている。   3 is a perspective view of the positive electrode current collector 11 used in the present embodiment, and FIG. 4 is a view of the positive electrode current collector 11 viewed from the positive electrode battery lid 5 side. The positive electrode current collector 11 includes an output terminal portion 15 at the center of an annular current collector body 43. The output terminal portion 15 is configured to penetrate the positive electrode side battery lid 5 and extend to the outside. The current collector body 43 is formed with an annular recess 45 centered on the output terminal portion 15. The annular recess 45 opens toward the direction in which the output terminal portion 15 extends. A plurality of ventilation through holes 46 are provided at the bottom of the annular recess 45. It is not necessary to provide a plurality of ventilation through holes 46, and only one ventilation through hole 46 may be provided. The positive electrode current collector 11 includes a columnar portion 47 that is inserted into the shaft core 33 of the electrode plate group 9 on the side opposite to the side on which the output terminal portion 15 of the current collector body 43 is provided. By inserting the columnar portion 47 into one end portion of the shaft core 33, the positional relationship between the positive electrode current collector 11 and the electrode plate group 9 is established. The ends of the plurality of positive electrode lead pieces 37 are ultrasonically welded to the outer peripheral portion of the current collector body 43 of the positive electrode current collector 11.

本実施の形態においては、図1に示すように、負極集電体13は、正極集電体11と実質的に同じ形状を有しており、集電体本体49と、出力端子部17と、凹部51と、柱状部53とを備えている。負極集電体13も、極板群9の軸芯33に、柱状部53が挿入されて、負極集電体13と極板群9との位置関係が確定している。負極集電体13の集電体本体49の外周部には、複数の負極リード片41の端部が超音波溶接されている。負極集電体13は、正極集電体11と実質的に同じ形状を有してので、図3及び図4には括弧内に負極側の構成部材の符号を付して負極側の負極集電体の図示を省略する。   In the present embodiment, as shown in FIG. 1, the negative electrode current collector 13 has substantially the same shape as the positive electrode current collector 11, and the current collector main body 49, the output terminal portion 17, , A concave portion 51 and a columnar portion 53. Also in the negative electrode current collector 13, the columnar portion 53 is inserted into the shaft core 33 of the electrode plate group 9, and the positional relationship between the negative electrode current collector 13 and the electrode plate group 9 is determined. The ends of the plurality of negative electrode lead pieces 41 are ultrasonically welded to the outer peripheral portion of the current collector body 49 of the negative electrode current collector 13. Since the negative electrode current collector 13 has substantially the same shape as the positive electrode current collector 11, in FIG. 3 and FIG. Illustration of the electric body is omitted.

図5(A)〜(F)は、本実施の形態で使用することができる6種類の軸芯33の斜視図であり、図5(G)は、従来の軸芯の斜視図である。また、図6(A)〜(F)は、図5(A)〜(F)に示す軸芯を、軸線が延びる方向の端部側からそれぞれ見た図である。   FIGS. 5A to 5F are perspective views of six types of shaft cores 33 that can be used in this embodiment, and FIG. 5G is a perspective view of a conventional shaft core. FIGS. 6A to 6F are views of the shaft cores shown in FIGS. 5A to 5F viewed from the end side in the direction in which the axis extends.

図5(A)〜(C)及び図6(A)〜(C)に示す軸芯33A乃至33Cでは、軸芯33A乃至33Cの外周部OFa乃至OFcに、軸芯33A乃至33Cの軸線方向に沿って延びる凹部55a〜55cが形成されている。   In the shaft cores 33A to 33C shown in FIGS. 5A to 5C and FIGS. 6A to 6C, the outer peripheral portions OFa to OFc of the shaft cores 33A to 33C are arranged in the axial direction of the shaft cores 33A to 33C. Concave portions 55a to 55c extending along the surface are formed.

図5(A)及び図6(A)に示す軸芯33Aには、軸線と直交する方向の横断面形状がV字形状であり軸芯33Aの径方向外側と軸線方向の両側に向かって開口する凹部55aが外周部OFaに形成されている。図5(B)及び図6(B)に示す軸芯33Bには、軸線と直交する方向の横断面形状が円弧状で、軸芯33Bの径方向外側と軸線方向の両側に向かって開口する凹部55bが外周部OFbに形成されている。そのため、図5(A)及び図6(A)に示す軸芯33A並びに図5(B)及び図6(B)に示す軸芯33Bでは、外周部OFa及びOFbに形成された凹部55a及び55bは、軸芯33A及び33Bの周方向の一方向に向かうに従って厚みが徐々に薄くなって最小値となり、更に一方向に向かうに従って厚みが徐々に厚くなる横断面形状を有している。   The shaft core 33A shown in FIGS. 5 (A) and 6 (A) has a V-shaped cross section in a direction perpendicular to the axis, and opens toward the radially outer side of the shaft core 33A and both sides in the axial direction. A concave portion 55a is formed in the outer peripheral portion OFa. The shaft core 33B shown in FIGS. 5B and 6B has a circular cross section in a direction perpendicular to the axis, and opens toward the radially outer side of the shaft core 33B and both sides in the axial direction. A recess 55b is formed in the outer periphery OFb. Therefore, in the shaft core 33A shown in FIGS. 5A and 6A and the shaft core 33B shown in FIGS. 5B and 6B, the recesses 55a and 55b formed in the outer peripheral portions OFa and OFb. Has a cross-sectional shape in which the thickness gradually decreases to a minimum value as it goes in one circumferential direction of the shaft cores 33A and 33B, and further, the thickness gradually increases in one direction.

図5(C)及び図6(C)に示す軸芯33Cには、横断面形状が略Uの字形状で軸芯33Cの径方向外側と軸線方向の両側に向かって開口する凹部55cが外周部OFcに形成されている。具体的には、軸芯33Cの外周部OFcから軸芯33Cの中心に向かって互いに近付くように延びる2つの面F1及びF2と、この2つの面F1及びF2を接続する湾曲面F3とを有する凹部55cが形成されている。湾曲面F3は、軸芯33Cの内周部IFcとの距離が一定となるように形成された円弧面からなる。   The shaft core 33C shown in FIGS. 5 (C) and 6 (C) has a substantially U-shaped cross section and has a recess 55c that opens toward the radially outer side and both axial sides of the shaft core 33C. Formed in the part OFc. Specifically, it has two surfaces F1 and F2 extending so as to approach each other from the outer peripheral portion OFc of the shaft core 33C toward the center of the shaft core 33C, and a curved surface F3 connecting the two surfaces F1 and F2. A recess 55c is formed. The curved surface F3 is a circular arc surface formed so that the distance from the inner peripheral part IFc of the shaft core 33C is constant.

図5(D)〜(F)及び図6(D)〜(F)に示す軸芯33D乃至33Fでは、軸芯33D乃至33の内周部IFd乃至IFfに、軸芯33D乃至33Fの軸線方向に沿って延びる凹部55d乃至55fが形成されている。図5(D)及び図6(D)に示す軸芯33Dには、横断面形状がV字形状で、軸芯33Dの径方向内側と軸線方向の両側に向かって開口する凹部55dが内周部IFdに形成されている。図5(E)及び図6(E)に示す軸芯33Eには、横断面形状が円弧状で軸芯33Eの径方向内側と軸線方向の両側に向かって開口する凹部55eが内周部IFeに形成されている。そのため、図5(D)及び図6(D)に示す軸芯33D並びに図5(E)及び図6(E)に示す軸芯33Eでは、内周部IFd及びIFeに形成された凹部55d及び55eは、軸芯33の周方向の一方向に向かうに従って厚みが徐々に薄くなって最小値となり、更に一方向に向かうに従って厚みが徐々に厚くなる横断面形状を有している。   In the shaft cores 33D to 33F shown in FIGS. 5D to 5F and FIGS. 6D to 6F, the axial directions of the shaft cores 33D to 33F are arranged on the inner peripheral portions IFd to IFf of the shaft cores 33D to 33F. Concave portions 55d to 55f extending along the line are formed. The shaft core 33D shown in FIGS. 5 (D) and 6 (D) has a V-shaped cross-sectional shape, and a recess 55d that opens toward the radially inner side and both axial sides of the shaft core 33D. It is formed in the part IFd. The shaft core 33E shown in FIGS. 5 (E) and 6 (E) has a recess 55e that has a circular cross section and opens toward the radially inner side and both axial sides of the shaft core 33E. Is formed. Therefore, in the shaft core 33D shown in FIGS. 5 (D) and 6 (D) and the shaft core 33E shown in FIGS. 5 (E) and 6 (E), the recesses 55d formed in the inner peripheral portions IFd and IFe and 55e has a cross-sectional shape in which the thickness gradually decreases to a minimum value as it goes in one direction in the circumferential direction of the shaft core 33, and the thickness gradually increases as it goes in one direction.

図5(F)及び図6(F)に示す軸芯33Fには、横断面形状が略Uの字形状で、軸芯33Fの径方向内側と軸線方向の両側に向かって開口する凹部33fが形成されている。具体的には、軸芯33の内周部IFfから軸芯33Fの径方向外側に向かって互いに離れるように延びる2つの面F4及びF5と、この2つの面を接続する湾曲面F6とを有する凹部55fが形成されている。湾曲面F6は、軸芯33Fの外周部OFfとの距離が一定となるように形成された円弧面からなる。   The shaft core 33F shown in FIG. 5 (F) and FIG. 6 (F) has a substantially U-shaped cross section, and has a recess 33f that opens toward the radially inner side and both axial sides of the shaft core 33F. Is formed. Specifically, it has two surfaces F4 and F5 that extend from the inner peripheral portion IFf of the shaft core 33 toward the radially outer side of the shaft core 33F, and a curved surface F6 that connects the two surfaces. A recess 55f is formed. The curved surface F6 is an arc surface formed so that the distance from the outer peripheral portion OFf of the shaft core 33F is constant.

発明者は、本発明の熱暴走対策の効果について検証すべく、図5(A)乃至(F)及び図6(A)乃至(F)に示す熱暴走対策を施した軸芯33A乃至33Fを採用したリチウムイオン電池と、図5(G)に示す熱暴走対策を施していない従来の軸芯を採用したリチウムイオン電池(比較例)について、過充電状態にした場合における熱暴走開始時の充電率及び熱暴走発生後の缶破裂の有無について試験を行った。   In order to verify the effect of the thermal runaway countermeasure according to the present invention, the inventor uses the shaft cores 33A to 33F to which the thermal runaway countermeasure shown in FIGS. 5 (A) to (F) and FIGS. 6 (A) to (F) is applied. Charging at the start of thermal runaway when overcharged for the adopted lithium ion battery and the lithium ion battery (comparative example) employing a conventional shaft core that does not take measures against thermal runaway shown in FIG. 5 (G) And the presence or absence of can rupture after thermal runaway occurred.

この試験では、図5(A)乃至(F)及び図6(A)乃至(F)に示す軸芯33A乃至33Fについて、凹部55a乃至55fが形成されていない部分の軸芯33A乃至33Fの厚み寸法(図6(A)乃至図6(F)中のaの寸法)と、凹部55a乃至55fにおける軸芯33A乃至33Fの厚み寸法の最小値(図6(A)乃至図6(F)中のbの寸法)との比が100:5〜100:95である11個の軸芯をそれぞれ準備し、実施例1〜11のリチウムイオン電池を作製した。作製した各リチウムイオン電池及び凹部を形成していない(即ちa:bの比が100:100である)従来のリチウムイオン電池について過充電状態となるまで充電を行い、熱暴走開始時のリチウムイオン電池の充電率SOC(%)及び熱暴走状態発生による電池容器本体3の破裂の有無について確認を行った。   In this test, with respect to the shaft cores 33A to 33F shown in FIGS. 5A to 5F and FIGS. 6A to 6F, the thickness of the shaft cores 33A to 33F where the recesses 55a to 55f are not formed. Dimension (dimension a in FIGS. 6A to 6F) and the minimum thickness dimension of the shaft cores 33A to 33F in the recesses 55a to 55f (in FIGS. 6A to 6F) 11 axes having a ratio of (b) to 100: 5 to 100: 95 were prepared, and lithium ion batteries of Examples 1 to 11 were produced. Each of the manufactured lithium ion batteries and the conventional lithium ion battery that does not have a recess (ie, the ratio of a: b is 100: 100) is charged until it becomes overcharged, and lithium ions at the start of thermal runaway The battery charge rate SOC (%) and the presence or absence of rupture of the battery container body 3 due to the occurrence of thermal runaway were confirmed.

図7は、試験結果を示す表である。図7に示す結果によれば、図5(A)乃至(F)及び図6(A)乃至(F)のいずれの凹部の形状であっても、実施例1〜11の全てのリチウムイオン二次電池は、凹部の破断により、凹部を形成していない従来のリチウムイオン二次電池よりも低い充電率で熱暴走が発生している。特に、aに対するbの数値が小さいほど、即ち凹部55における軸芯33の厚み寸法の最小値が小さいほど、低い充電率で熱暴走が発生している。また、実施例1〜11の全てのリチウムイオン二次電池では、熱暴走発生による電池容器の破裂は確認されなかった。充電率が高くなるほど、電池容器内のエネルギー状態は高くなる。そのため、図7に示す試験結果は、実施例1〜11の全てのリチウムイオン二次電池は、従来のリチウムイオン二次電池よりも電池容器内のエネルギー状態が低い状態で、熱暴走が発生していることを示している。これに対して、凹部を形成していない従来のリチウムイオン二次電池では、熱暴走が発生したことによる電池容器の破裂が確認された。   FIG. 7 is a table showing the test results. According to the results shown in FIG. 7, all the lithium-ion ions in Examples 1 to 11 were formed in any of the concave shapes in FIGS. 5 (A) to (F) and FIGS. 6 (A) to (F). In the secondary battery, thermal runaway occurs at a lower charging rate than a conventional lithium ion secondary battery in which no concave portion is formed due to the fracture of the concave portion. In particular, thermal runaway occurs at a lower charging rate as the numerical value of b with respect to a is smaller, that is, as the minimum value of the thickness dimension of the shaft core 33 in the recess 55 is smaller. Moreover, in all the lithium ion secondary batteries of Examples 1 to 11, no rupture of the battery container due to the occurrence of thermal runaway was confirmed. The higher the charging rate, the higher the energy state in the battery container. Therefore, the test results shown in FIG. 7 show that all the lithium ion secondary batteries of Examples 1 to 11 have thermal runaway in a state where the energy state in the battery container is lower than that of the conventional lithium ion secondary battery. It shows that. On the other hand, in the conventional lithium ion secondary battery in which no recess was formed, the battery container was confirmed to be ruptured due to the occurrence of thermal runaway.

上記実施の形態では、軸芯に形成された凹部の横断面形状は、軸線の延びる方向に沿って同一としているが、軸線の延びる方向に向かうに従って横断面形状が変化するように凹部を形成してもよい。例えば、軸線方向の中央位置に向かうに従って凹部の深さが深くなり、中央位置から離れる従って凹部の深さが浅くなるようにしてもよい。またこの逆でもよい。更に軸線方向に所定の間隔をあけて凹部の深さが深くなる部分を形成してもよい。   In the above embodiment, the cross-sectional shape of the recess formed in the shaft core is the same along the direction in which the axis extends, but the recess is formed so that the cross-sectional shape changes toward the direction in which the axis extends. May be. For example, the depth of the concave portion may be deeper toward the central position in the axial direction, and the depth of the concave portion may be shallower away from the central position. The reverse is also possible. Furthermore, you may form the part where the depth of a recessed part becomes deep at predetermined intervals in an axial direction.

また上記実施の形態においては、リチウムイオン電池について説明をしたが、本発明は、他の非水電解液二次電池に適用することができるのは勿論である。   In the above embodiment, the lithium ion battery has been described. However, the present invention can of course be applied to other non-aqueous electrolyte secondary batteries.

本発明によれば、熱暴走状態に到っても電池缶が破裂することを確実に防止することができる非水電解液二次電池を提供することができる。   According to the present invention, it is possible to provide a non-aqueous electrolyte secondary battery that can reliably prevent a battery can from bursting even when a thermal runaway state is reached.

1 リチウムイオン電池
3 電池容器本体
5 正極側電池蓋
5a ガス排出口
5b 端子貫通孔
6 安全弁
7 負極側電池蓋
7a ガス排出口
7b 端子貫通孔
8 安全弁
9 極板群
11 正極集電体
13 負極集電体
15 出力端子部
17 出力端子部
19 ゴムパッキン
21 ナット部材
23 ワッシャ
25 ネジ部材
27 正極板
29 負極板
31 セパレータ
33 軸芯
35 未塗着部
37 正極リード片
39 未塗着部
41 負極リード片
43 集電体本体
45 凹部
46 貫通孔
47 柱状部
49 集電体本体
51 凹部
53 柱状部
55 凹部
DESCRIPTION OF SYMBOLS 1 Lithium ion battery 3 Battery container main body 5 Positive electrode side battery cover 5a Gas discharge port 5b Terminal through-hole 6 Safety valve 7 Negative electrode side battery cover 7a Gas discharge port 7b Terminal through hole 8 Safety valve 9 Electrode plate group 11 Positive electrode collector 13 Negative electrode collection Electrical body 15 Output terminal portion 17 Output terminal portion 19 Rubber packing 21 Nut member 23 Washer 25 Screw member 27 Positive electrode plate 29 Negative electrode plate 31 Separator 33 Axle core 35 Uncoated portion 37 Positive electrode lead piece 39 Uncoated portion 41 Negative electrode lead piece 43 current collector body 45 recess 46 through-hole 47 columnar portion 49 current collector body 51 recess 53 columnar portion 55 recess

Claims (7)

正極板と負極板とが、セパレータを介して中空の軸芯に捲回されてなる捲回型極板群が非水電解液と一緒に電池容器内に収納され、前記電池容器に安全弁が設けられている非水電解液二次電池であって、
前記軸芯は、前記非水電解液の分解反応により前記電池容器内の内圧が上昇して前記内圧が前記安全弁の動作圧力に達する前に、前記内圧により圧縮変形して前記捲回型極板群内で短絡を生じさせるように構成されていることを特徴とする非水電解液二次電池。
A wound electrode plate group in which a positive electrode plate and a negative electrode plate are wound around a hollow shaft core via a separator is housed in a battery container together with a non-aqueous electrolyte, and a safety valve is provided in the battery container. Non-aqueous electrolyte secondary battery,
The wound electrode plate is compressed and deformed by the internal pressure before the internal pressure rises due to the decomposition reaction of the non-aqueous electrolyte and the internal pressure reaches the operating pressure of the safety valve. A non-aqueous electrolyte secondary battery characterized by being configured to cause a short circuit within a group.
前記軸芯には、薄肉部と該薄肉部よりも厚みが厚い厚肉部とが形成されており、前記薄肉部が最初に圧縮変形することを特徴とする請求項1に記載の非水電解液二次電池。   2. The non-aqueous electrolysis according to claim 1, wherein a thin portion and a thick portion having a thickness larger than the thin portion are formed on the shaft core, and the thin portion is first compressed and deformed. Liquid secondary battery. 前記薄肉部は、前記軸芯の軸線方向に沿って前記軸芯の外周部に形成された凹部に対応する部分により形成されている請求項2に記載の非水電解液二次電池。   The non-aqueous electrolyte secondary battery according to claim 2, wherein the thin portion is formed by a portion corresponding to a recess formed in an outer peripheral portion of the shaft core along an axial direction of the shaft core. 前記薄肉部は、前記軸芯の軸線方向に沿って前記軸芯の内周部に形成された凹部に対応する部分により形成されている請求項2に記載の非水電解液二次電池。   The non-aqueous electrolyte secondary battery according to claim 2, wherein the thin portion is formed by a portion corresponding to a recess formed in an inner peripheral portion of the shaft core along an axial direction of the shaft core. 前記凹部は、前記薄肉部の厚みが一定となる横断面形状を有している請求項3または4に記載の非水電解液二次電池。   The non-aqueous electrolyte secondary battery according to claim 3, wherein the recess has a cross-sectional shape in which the thickness of the thin portion is constant. 前記凹部は、前記軸芯の周方向の一方向に向かうに従って前記薄肉部の厚みが徐々に薄くなって最小値となり、更に一方向に向かうに従って厚みが徐々に厚くなる横断面形状を有している請求項3または4に記載の非水電解液二次電池。   The concave portion has a cross-sectional shape in which the thickness of the thin portion gradually decreases to a minimum value as it goes in one direction in the circumferential direction of the shaft core, and further, the thickness gradually increases as it goes in one direction. The nonaqueous electrolyte secondary battery according to claim 3 or 4. 前記薄肉部の厚みの最小値と軸芯の他の部分との厚さの比が、5:100〜95:100である請求項2乃至6のいずれか1項に記載の非水電解液二次電池。   7. The non-aqueous electrolyte 2 according to claim 2, wherein the ratio of the minimum thickness of the thin portion to the thickness of the other portion of the shaft is 5: 100 to 95: 100. Next battery.
JP2012184487A 2012-08-23 2012-08-23 Nonaqueous electrolyte secondary battery Pending JP2014041799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012184487A JP2014041799A (en) 2012-08-23 2012-08-23 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012184487A JP2014041799A (en) 2012-08-23 2012-08-23 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2014041799A true JP2014041799A (en) 2014-03-06

Family

ID=50393889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012184487A Pending JP2014041799A (en) 2012-08-23 2012-08-23 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2014041799A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023228446A1 (en) * 2022-05-23 2023-11-30 Ckd株式会社 Winding device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006228623A (en) * 2005-02-18 2006-08-31 Yukinobu Mori Battery using semi-permeable film
JP2006310286A (en) * 2005-04-25 2006-11-09 Samsung Sdi Co Ltd Cylindrical lithium secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006228623A (en) * 2005-02-18 2006-08-31 Yukinobu Mori Battery using semi-permeable film
JP2006310286A (en) * 2005-04-25 2006-11-09 Samsung Sdi Co Ltd Cylindrical lithium secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023228446A1 (en) * 2022-05-23 2023-11-30 Ckd株式会社 Winding device
JP2023172118A (en) * 2022-05-23 2023-12-06 Ckd株式会社 winding device

Similar Documents

Publication Publication Date Title
US11233292B2 (en) Cylindrical sealed battery and battery pack
JP6250567B2 (en) Sealed battery
CN106030850B (en) Cylinder-shaped enclosed cell
EP2903056B1 (en) Rectangular secondary battery
US8486546B2 (en) Cap assembly and secondary battery using the same with notched vent member
US10103370B2 (en) Sealed battery
JP5538114B2 (en) Secondary battery
US9337459B2 (en) Sealed secondary battery
US10340499B2 (en) Sealed secondary battery
KR20090096349A (en) Closed type battery
WO2013099295A1 (en) Cylindrical lithium-ion cell
KR100914115B1 (en) Secondary battery
US20220320676A1 (en) Secondary battery
CN104662703A (en) Sealed type battery
JP2016126975A (en) Cylindrical battery
JP6127967B2 (en) Secondary battery and lithium ion battery
KR20160043725A (en) cylindrical secondary battery comprise notch
US8241781B2 (en) Cylinder type lithium ion secondary battery
JP4929619B2 (en) Cylindrical lithium secondary battery
JP2013131430A (en) Sealed secondary battery
JP6927629B2 (en) Insulation plate for secondary batteries and secondary batteries
JP2017162570A (en) Power storage element
JP2014041799A (en) Nonaqueous electrolyte secondary battery
JP2015115222A (en) Power storage element
KR20060059707A (en) Cylindrical li secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150731

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161122