JP2014041224A - Macro lens having vibration compensation mechanism - Google Patents

Macro lens having vibration compensation mechanism Download PDF

Info

Publication number
JP2014041224A
JP2014041224A JP2012182854A JP2012182854A JP2014041224A JP 2014041224 A JP2014041224 A JP 2014041224A JP 2012182854 A JP2012182854 A JP 2012182854A JP 2012182854 A JP2012182854 A JP 2012182854A JP 2014041224 A JP2014041224 A JP 2014041224A
Authority
JP
Japan
Prior art keywords
lens group
lens
refractive power
magnification
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012182854A
Other languages
Japanese (ja)
Inventor
Keiko Taki
慶行 滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2012182854A priority Critical patent/JP2014041224A/en
Publication of JP2014041224A publication Critical patent/JP2014041224A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To maintain an appropriate vibration-proof sensitivity from infinity to a macro area and besides, to obtain excellent performances both at a reference time and in vibration-proofing.SOLUTION: There is provided a macro lens which comprises, from an object side: a first lens group having a positive refractive power; a second lens group having a negative refractive power; a third lens group having a positive refractive power; and a fourth lens group having a positive or negative refractive power. The fourth lens group is located nearest to an image side and comprises, in order from an object side, a 4a-th lens group having a negative refractive power and a 4b-th lens group having a positive refractive power, the 4b-th lens group is moved in a direction substantially perpendicular to an optical axis so as to correct an optical performance during vibration. Upon focusing from infinity to a finite distance, at least the second lens group and the third lens group move independently. The macro lens satisfies the following conditional expression: 0.15<|f4a/f|<0.450. 6<|f4a/f4b|≤1.0 where f4a represents a focal length of the 4a-th lens group, f4b represents a focal length of the 4b-th lens group, and f represents a focal length of an entire system.

Description

本発明は、写真用カメラ、ビデオカメラ、電子スチルカメラ等に好適な交換レンズに関して、撮影倍率が等倍程度の近距離撮影可能で、手ぶれ等における像ブレを光学的に補償し得るようなマクロレンズに関する。   The present invention relates to an interchangeable lens suitable for a photographic camera, a video camera, an electronic still camera, etc., and is capable of taking a close-up shot at a shooting magnification of the same magnification and capable of optically compensating for image blur due to camera shake. Related to lenses.

従来、写真用カメラにおいて、近距離撮影を目的とした撮影レンズとしてマクロレンズがある。マクロレンズは、無限遠から等倍程度の近距離撮影時において、特に近距離撮影時に高い光学性能が得られるような設計をしている。   2. Description of the Related Art Conventionally, in a photographic camera, there is a macro lens as a photographic lens for short-distance shooting. The macro lens is designed so that high optical performance can be obtained during close-up shooting from infinity to the same magnification.

一般に、撮影倍率が大きくなるにつれて、フォーカシングに伴う収差の変動が大きくなり、良好に補正することが困難になる。そこで、近距離へのフォーカシングの際に複数のレンズ群を独立に移動させ、収差の変動を補正する、フローティングが採用されている。   In general, as the photographing magnification increases, the variation in aberration accompanying focusing increases, making it difficult to correct well. In view of this, floating is employed in which a plurality of lens groups are independently moved during focusing to a short distance to correct aberration variations.

しかし、従来の第1レンズ群を物体側に繰り出すことによるフローティングフォーカス方式では、迅速なピント合わせが困難である上、被写体との距離(ワーキングディスタンス)が短くなるという問題点があった。   However, the conventional floating focus method in which the first lens group is extended toward the object side has problems that rapid focusing is difficult and the distance (working distance) from the subject is shortened.

そこで、近距離へのフォーカシングの際に第1レンズ群が移動しないインナーフォーカスタイプのマクロレンズが提案されている。   Therefore, an inner focus type macro lens in which the first lens group does not move during focusing to a short distance has been proposed.

さらに、光学系の一部を光軸と略垂直方向に移動させることで、防振状態での像ぶれの補正を行ったマクロレンズが提案されている。   Furthermore, there has been proposed a macro lens in which image blur is corrected in a vibration-proof state by moving a part of the optical system in a direction substantially perpendicular to the optical axis.

特開2003−329919号公報JP 2003-329919 A 特開2000−214380号公報JP 2000-214380 A

撮影倍率の高いマクロ撮影においては、被写界深度を確保するために絞り込んで撮影を行うのが一般的である。しかしそのためにスローシャッターとなり、撮影時の手振れが問題となる。   In macro shooting with a high shooting magnification, it is common to shoot with narrowing down to ensure a depth of field. However, this results in a slow shutter and camera shake during shooting is a problem.

更に、マクロ撮影時においては、撮影倍率の増加につれて、手ブレが撮影画像に与える影響が大きくなる。そのため、防振レンズ群にはマクロ撮影領域での像ブレを補償するために、適切な偏芯敏感度が必要となる。   Further, at the time of macro photography, the influence of camera shake on the photographed image increases as the photographing magnification increases. For this reason, the anti-vibration lens group requires appropriate decentration sensitivity in order to compensate for image blur in the macro imaging region.

また、防振群駆動部分の大型化を避けるために、防振レンズ群はなるべく小型、軽量であることが望ましい。   In order to avoid an increase in the size of the anti-vibration group driving portion, it is desirable that the anti-vibration lens group be as small and light as possible.

本発明は上記の課題に鑑み、全長の変化がないインナーフォーカスタイプで、手ぶれによる像ブレを光学的に補償し、無偏芯状態である基準状態、防振状態共に良好な性能を持つマクロレンズの提供を目的とする。   In view of the above problems, the present invention is an inner focus type that does not change in overall length, optically compensates for image blur due to camera shake, and has a good performance in both a non-eccentric reference state and an anti-vibration state. The purpose is to provide.

上記目的を達成するために、本発明の請求項1の撮影レンズは、
物体側より順に、正の屈折力を持つ第1レンズ群、負の屈折力を持つ第2レンズ群、正の屈折力を持つ第3レンズ群、正または負の屈折力を持つ第4レンズ群で構成され、最も像側の第4レンズ群は、物体側から順に負の屈折力を持つ第4aレンズ群と正の屈折力を持つ第4bレンズ群で構成され、前期第4bレンズ群を光軸と略垂直方向に移動して振動時の光学性能の補正を行い、無限遠から有限距離へのフォーカスの際、少なくとも前記第2レンズ群と第3レンズ群が独立に移動し、
以下の条件式を満たすことを特徴とする。
In order to achieve the above object, a photographic lens according to claim 1 of the present invention comprises:
In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens group having a positive or negative refractive power The fourth lens group closest to the image side is composed of a 4a lens group having a negative refractive power and a 4b lens group having a positive refractive power in order from the object side. The optical performance during vibration is corrected by moving in a direction substantially perpendicular to the axis, and at the time of focusing from infinity to a finite distance, at least the second lens group and the third lens group move independently,
The following conditional expression is satisfied.

0.15<|f4a/f|<0.45
0.6<|f4a/f4b|≦1.0
式中のf4aは、第4aレンズ群の焦点距離、f4bは第4bレンズ群の焦点距離、fは全系の焦点距離を示している。
0.15 <| f4a / f | <0.45
0.6 <| f4a / f4b | ≦ 1.0
In the equation, f4a represents the focal length of the 4a lens group, f4b represents the focal length of the 4b lens group, and f represents the focal length of the entire system.

本発明の更なる目的、またはその他の特徴は、以下添付図面を参照して説明される好ましい実施例等において明らかにされるであろう。   Further objects and other features of the present invention will become apparent from the preferred embodiments described below with reference to the accompanying drawings.

本発明によれば以上のように、インナーフォーカスタイプの望遠マクロレンズにおいて、振動時の像ぶれの補償を光学的に行い、無限遠から等倍領域まで、無偏芯状態である基準状態、偏芯状態である防振状態いずれにおいても良好な光学性能を得ることができる。   As described above, according to the present invention, in the inner focus type telephoto macro lens, compensation of image blur during vibration is optically performed, and from the infinity to the equal magnification region, a reference state that is an eccentric state, an eccentricity Good optical performance can be obtained in any vibration-proof state.

(A)本発明の数値実施例1の無限遠状態でのレンズ断面図、(B)本発明の数値実施例1の倍率−0.5倍状態でのレンズ断面図、(C)本発明の数値実施例1の倍率−1.0倍状態でのレンズ断面図(A) Lens cross-sectional view of Numerical Example 1 of the present invention in an infinite state, (B) Lens cross-sectional view of Numerical Example 1 of the present invention in a magnification of −0.5 times, and (C) of the present invention. Lens sectional view of Numerical Example 1 at a magnification of -1.0 times (A)本発明の数値実施例1の無限遠状態での収差図、(B)本発明の数値実施例1の倍率−0.5倍状態での収差図、(C)本発明の数値実施例1の倍率−1.0倍状態での収差図(A) Aberration diagram in infinity state of Numerical Example 1 of the present invention, (B) Aberration diagram in magnification -0.5 times state of Numerical Example 1 of the present invention, (C) Numerical implementation of the present invention. Aberration diagram of Example 1 at magnification -1.0x (A)本発明の数値実施例1において、光軸が0.3°傾いた状態での無限遠状態の収差図、(B)本発明の数値実施例1において、光軸が0.3°傾いた状態での倍率−0.5倍状態の収差図、(C)本発明の数値実施例1において、光軸が0.3°傾いた状態での倍率−1.0倍状態の収差図(A) Aberration diagram in the state of infinity when the optical axis is inclined by 0.3 ° in Numerical Example 1 of the present invention, (B) Optical axis is 0.3 ° in Numerical Example 1 of the present invention. Aberration diagram in a tilted state at a magnification of −0.5 ×, (C) Aberration diagram in a numerical embodiment of the present invention at a magnification of −1.0 × in a state in which the optical axis is tilted by 0.3 ° (A)本発明の数値実施例2の無限遠状態でのレンズ断面図、(B)本発明の数値実施例2の倍率−0.5倍状態でのレンズ断面図、(C)本発明の数値実施例2の倍率−1.0倍状態でのレンズ断面図(A) Lens cross-sectional view of Numerical Example 2 of the present invention in an infinite state, (B) Lens cross-sectional view of Numerical Example 2 of the present invention in a magnification of −0.5 times, and (C) of the present invention. Lens sectional view of Numerical Example 2 at a magnification of -1.0 times (A)本発明の数値実施例2の無限遠状態での収差図、(B)本発明の数値実施例2の倍率−0.5倍状態での収差図、(C)本発明の数値実施例2の倍率−1.0倍状態での収差図(A) Aberration diagram of Numerical Example 2 of the present invention in an infinite state, (B) Aberration diagram of Numerical Example 2 of the present invention at a magnification of −0.5 times, (C) Numerical implementation of the present invention. Aberration diagram of Example 2 at magnification -1.0x (A)本発明の数値実施例2において、光軸が0.3°傾いた状態での無限遠状態の収差図、(B)本発明の数値実施例2において、光軸が0.3°傾いた状態での倍率−0.5倍状態の収差図、(C)本発明の数値実施例2において、光軸が0.3°傾いた状態での倍率−1.0倍状態の収差図(A) Aberration diagram in the state of infinity when the optical axis is tilted by 0.3 ° in Numerical Example 2 of the present invention, (B) In the Numerical Example 2 of the present invention, the optical axis is 0.3 °. Aberration diagram in the state of magnification -0.5 times when tilted, (C) Aberration diagram in the state of magnification -1.0 times when the optical axis is tilted by 0.3 ° in Numerical Example 2 of the present invention (A)本発明の数値実施例3の無限遠状態でのレンズ断面図、(B)本発明の数値実施例3の倍率−0.5倍状態でのレンズ断面図、(C)本発明の数値実施例3の倍率−1.0倍状態でのレンズ断面図(A) Lens cross-sectional view of Numerical Example 3 of the present invention in an infinite state, (B) Lens cross-sectional view of Numerical Example 3 of the present invention in a magnification of −0.5 times, and (C) of the present invention. Lens sectional view of Numerical Example 3 at a magnification of -1.0 times (A)本発明の数値実施例3の無限遠状態での収差図、(B)本発明の数値実施例3の倍率−0.5倍状態での収差図、(C)本発明の数値実施例3の倍率−1.0倍状態での収差図(A) Aberration diagram of Numerical Example 3 of the present invention in an infinite state, (B) Aberration diagram of Numerical Example 3 of the present invention at a magnification of −0.5 times, (C) Numerical implementation of the present invention. Aberration diagram of Example 3 at magnification -1.0 times (A)本発明の数値実施例3において、光軸が0.3°傾いた状態での無限遠状態の収差図、(B)本発明の数値実施例3において、光軸が0.3°傾いた状態での倍率−0.5倍状態の収差図、(C)本発明の数値実施例3において、光軸が0.3°傾いた状態での倍率−1.0倍状態の収差図(A) Aberration diagram in the state of infinity when the optical axis is tilted by 0.3 ° in Numerical Example 3 of the present invention, (B) In the Numerical Example 3 of the present invention, the optical axis is 0.3 °. Aberration diagram in a tilted state at a magnification of −0.5 ×, (C) Aberration diagram in a numerical embodiment 3 of the present invention at a magnification of −1.0 × in a state in which the optical axis is tilted by 0.3 °

以下に、本発明の実施の形態を添付の図面に基づいて詳細に説明する。
[数値実施例1]
表1(a)、表1(b)は、本発明の数値実施例1の数値である。数値においては、rは曲率半径、dは面間隔、ndはd線の屈折率、νdはアッベ数を示す。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
[Numerical Example 1]
Table 1 (a) and Table 1 (b) are numerical values of Numerical Example 1 of the present invention. In the numerical values, r is the radius of curvature, d is the surface spacing, nd is the refractive index of the d-line, and νd is the Abbe number.

図1(A)は、本発明の数値実施例1の無限遠状態のレンズ断面図である。図1(B)は撮影倍率0.5倍、図1(C)は撮影倍率1.0倍状態のレンズ断面図である。   FIG. 1A is a lens cross-sectional view in the infinity state according to Numerical Example 1 of the present invention. FIG. 1B is a lens cross-sectional view in a state where the photographing magnification is 0.5 times and FIG. 1C is a state in which the photographing magnification is 1.0 times.

図1(A)中、L1は正の屈折力の第1レンズ群、L2は負の屈折力の第2レンズ群、L3は正の屈折力の第3レンズ群、L4は正の屈折力を持つ第4bレンズ群である。   In FIG. 1A, L1 is a first lens group having a positive refractive power, L2 is a second lens group having a negative refractive power, L3 is a third lens group having a positive refractive power, and L4 has a positive refractive power. This is a 4b lens group.

近距離へのフォーカシングの際に、第1レンズ群は固定、第2レンズ群が像側へ移動し、第3レンズ群は物体側へ移動する。第1レンズ群を固定にすることにより、全長が一定の操作性の良いレンズが実現可能になる。第2レンズ群の像側への移動とは独立に、第3レンズ群を物体側へ移動させることで、近距離での撮影倍率を等倍まで高くすると同時に、近距離へのフォーカシングに伴う収差変動を良好に補正することが可能になる。   During focusing to a short distance, the first lens group is fixed, the second lens group moves to the image side, and the third lens group moves to the object side. By fixing the first lens group, it is possible to realize a lens having a good overall operability with a constant overall length. Independent of the movement of the second lens group to the image side, the third lens group is moved to the object side to increase the magnification at close distance to the same magnification, and at the same time, aberrations due to focusing to the short distance The fluctuation can be corrected well.

L4レンズ群中、L4aは負の屈折力を持つ第4aレンズ群、L4bは正の屈折力を持つ第4bレンズ群である。第4aレンズ群は、物体側より負の屈折力を持つレンズと正の屈折力を持つレンズとの接合レンズ、負の屈折力を持つ単レンズとの構成になっており、光軸と略垂直方向へ移動させることで振動時の像ぶれの補正を行う。SPは絞り、SP2は副絞り、IPは像面である。   In the L4 lens group, L4a is a 4a lens group having negative refractive power, and L4b is a 4b lens group having positive refractive power. The 4a lens group includes a cemented lens composed of a lens having negative refractive power and a lens having positive refractive power from the object side, and a single lens having negative refractive power, and is substantially perpendicular to the optical axis. Image blurring during vibration is corrected by moving in the direction. SP is a stop, SP2 is a sub stop, and IP is an image plane.

また、本発明のマクロレンズにおいて、更に高い光学性能を得るには、以下の条件式を満足することが必要である。
0.15<|f4a/f|<0.45(1)
0.6<|f4a/f4b|≦1.0(2)
条件式(1)は、防振機能を持つ第4aレンズ群の焦点距離に関する条件式で、望遠マクロレンズでの防振を行うために適切なレンズの屈折力を得るための条件である。
In order to obtain higher optical performance in the macro lens of the present invention, it is necessary to satisfy the following conditional expression.
0.15 <| f4a / f | <0.45 (1)
0.6 <| f4a / f4b | ≦ 1.0 (2)
Conditional expression (1) is a conditional expression relating to the focal length of the 4a lens group having the image stabilization function, and is a condition for obtaining an appropriate lens refractive power for performing image stabilization with the telephoto macro lens.

一般に、防振状態における偏芯像面湾曲を低減するために必要な条件は、次式で表される。   In general, a condition necessary for reducing the eccentric field curvature in the vibration-proof state is expressed by the following equation.

(典拠:松居吉哉 偏芯の存在する光学系の3次の収差論 日本オプトメカトロニクス協会 1989)
式中のPpは防振レンズ群のペッツバール和、Pqは防振レンズ群後群のペッツバール和、αpは防振レンズ群に入射する光線の角度、α´pは、防振レンズ群を出射する光線の角度を表す。
(Source: Yoshiya Matsui Third-order aberration theory of optical system with eccentricity Japan Opto-Mechatronics Association 1989)
In the equation, Pp is the Petzval sum of the anti-vibration lens group, Pq is the Petzval sum of the rear group of the anti-vibration lens group, αp is the angle of light incident on the anti-vibration lens group, and α′p is emitted from the anti-vibration lens group. Represents the angle of the ray.

(A)式より、偏芯状態の像面湾曲を0にするためには、例えばこの条件式において、
・α´p=0、すなわち防振群を出射する光線が光軸に対して平行(アフォーカル)である事
・防振群5aと5bレンズ群の合成のペッツバール和が0であること
が必要になる。
From equation (A), in order to make the field curvature in the eccentric state zero, for example, in this conditional expression:
・ Α′p = 0, that is, the light beam emitted from the image stabilization group is parallel to the optical axis (afocal) ・ The combined Petzval sum of the image stabilization group 5a and the lens group 5b needs to be 0 become.

また、撮影倍率の高いマクロ領域では、遠距離での手ぶれの原因となっている、光軸上の支点を中心とした回転方向のぶれの他に、光軸と略平行に生じるぶれの寄与が大きくなる。   In addition, in the macro area where the shooting magnification is high, in addition to the blurring in the rotation direction around the fulcrum on the optical axis, which is the cause of camera shake at a long distance, the contribution of blurring that occurs substantially parallel to the optical axis growing.

上記の異なる2種類の手ぶれを補正するために、防振レンズ群には適切な屈折力が要求される。   In order to correct the above two different types of camera shake, an appropriate refractive power is required for the anti-vibration lens group.

条件式(1)の上限を超えるほど第4aレンズ群の屈折力が弱いと、低速シャッター時、振動時の画像のぶれ補正が十分に行われず、良好な防振性能を保つことが困難となる。逆に条件式(1)の下限を超えるほど第3レンズ群の屈折力が強いと、フォーカシングにおける諸収差の補正が困難になる。   If the refractive power of the 4a lens group is so weak that the upper limit of conditional expression (1) is exceeded, image blurring during vibration at the low shutter speed will not be sufficiently corrected, and it will be difficult to maintain good anti-shake performance. . Conversely, if the refractive power of the third lens group is so strong that the lower limit of conditional expression (1) is exceeded, it becomes difficult to correct various aberrations during focusing.

望遠マクロレンズにおいて、適切な防振時の敏感度を得るために条件式(1)を満たすことは、防振レンズ群の負の屈折力を増大させ、前記(A)式において、
α´p>0
となる。条件式(2)は防振機能を持つ第4aレンズ群、4bレンズ群の屈折力の比に関する条件式で、前述の式(A)において、条件式(1)を満たした上でペッツバール和の条件を良好に保ち、基準状態、防振状態共に良好な性能を確保するための条件式である。条件式(2)の上限を超えるほど2つのレンズ群の屈折力の比が小さいと、基準状態での諸収差の補正が困難となる。条件式(2)の下限を超えるほど2つのレンズ群の屈折力の比が大きいと、前述の偏芯像面湾曲低減の条件から離れる方向となり、防振状態の収差の補正が困難となる。
In the telephoto macro lens, satisfying the conditional expression (1) in order to obtain appropriate sensitivity at the time of image stabilization increases the negative refractive power of the image stabilization lens group.
α′p> 0
It becomes. Conditional expression (2) is a conditional expression relating to the ratio of refractive powers of the 4a lens group and 4b lens group having an anti-vibration function. In the above-mentioned expression (A), the conditional expression (1) is satisfied and This is a conditional expression for maintaining good conditions and ensuring good performance in both the reference state and the vibration-proof state. If the ratio of the refractive powers of the two lens groups is so small that the upper limit of conditional expression (2) is exceeded, correction of various aberrations in the reference state becomes difficult. If the ratio of the refractive powers of the two lens groups is so large that the lower limit of conditional expression (2) is exceeded, the direction deviates from the aforementioned condition for reducing the decentered field curvature, and it becomes difficult to correct the vibration-proof aberration.

本発明のマクロレンズにおいて、更に高い光学性能を得るには、更に以下の条件式を満足することが必要である。
−1.0 < β2∞/β2mod < 1.0(3)
1.0< |β3∞/β3mod| < 20(4)
条件式(3)、(4)は、望遠マクロレンズにおける倍率分担に関する条件である。フォーカスによって第2レンズ群を像側へ移動させることで、撮影倍率が上がる。第3レンズ群を物体側へ移動させることで、フォーカスでの諸収差の変動を低減することが可能となる。これによって全系で等倍の撮影倍率を確保しながら、フローティングによってフォーカス全域で良好な性能を得ることが出来る。
In order to obtain higher optical performance in the macro lens of the present invention, it is further necessary to satisfy the following conditional expression.
−1.0 <β2∞ / β2mod <1.0 (3)
1.0 <| β3∞ / β3mod | <20 (4)
Conditional expressions (3) and (4) are conditions relating to magnification sharing in the telephoto macro lens. By moving the second lens group to the image side by focusing, the photographing magnification is increased. By moving the third lens group toward the object side, it is possible to reduce fluctuations in various aberrations at the focus. As a result, it is possible to obtain a good performance in the entire focus area by floating while securing an equal magnification in the entire system.

条件式(3)は、第2レンズ群の撮影倍率に関する条件式で、望遠マクロレンズにおいて高い撮影倍率を得るための条件である。条件式(3)の上限を超えるほど第2レンズ群のフォーカスによる倍率変化が小さいと、等倍の撮影倍率を得ることが困難となる。条件式(3)の下限を超えるほど第2レンズ群の屈折力が強いと、フォーカスによる諸収差の変動を補正することが困難となる。   Conditional expression (3) is a conditional expression related to the photographing magnification of the second lens group, and is a condition for obtaining a high photographing magnification in the telephoto macro lens. If the change in magnification due to the focus of the second lens group is so small that the upper limit of conditional expression (3) is exceeded, it will be difficult to obtain the same magnification. If the refractive power of the second lens group is so strong that the lower limit of conditional expression (3) is exceeded, it becomes difficult to correct variations in various aberrations due to focusing.

望ましくは、条件式(3)の範囲を、
−0.1< β2∞/β2mod < 0.8
にすることで、良好な性能を得ることが出来る。
Desirably, the range of conditional expression (3) is
−0.1 <β2∞ / β2mod <0.8
As a result, good performance can be obtained.

条件式(4)は、第3レンズ群の撮影倍率の条件式で、望遠マクロレンズにおいて高い撮影倍率を得るための条件である。条件式(3)の上限を超えるほど第3レンズ群の屈折力が弱いと、フローティングの効果を得るための繰り出し量が増え、全系の大型化につながる。条件式(3)の下限を超えると、フローティングによる収差の補正が困難になる。   Conditional expression (4) is a conditional expression for the photographing magnification of the third lens group, and is a condition for obtaining a high photographing magnification in the telephoto macro lens. If the refractive power of the third lens unit is so weak that the upper limit of conditional expression (3) is exceeded, the amount of extension for obtaining the floating effect increases, leading to an increase in the size of the entire system. When the lower limit of conditional expression (3) is exceeded, correction of aberrations due to floating becomes difficult.

望ましくは、条件式(3)の範囲を、
1.2< |β3∞/β3mod| < 5.0
にすることで、良好な性能を得ることが出来る。
Desirably, the range of conditional expression (3) is
1.2 <| β3∞ / β3mod | <5.0
As a result, good performance can be obtained.

図2(A)は本発明の実施例1の無限遠状態での収差図である。図2(B)は本発明の実施例1の撮影倍率0.5倍状態での収差図である。図2(C)は本発明の実施例1の撮影倍率1.0倍状態での収差図である。いずれも良好な収差となっている。   FIG. 2A is an aberration diagram in the infinite state according to Example 1 of the present invention. FIG. 2B is an aberration diagram for Example 1 with a photographing magnification of 0.5. FIG. 2C is an aberration diagram in Example 1 according to the present invention when the photographing magnification is 1.0. Both have good aberrations.

図3(A)は本発明の実施例1において、無限遠状態で光軸から0.3°傾いた状態での収差図である。図3(B)は本発明の実施例1において、撮影倍率0.5倍状態で光軸から0.3°傾いた状態での収差図である。図3(C)は本発明の実施例1において、撮影倍率1,0倍状態で光軸から0.3°傾いた状態での収差図である。偏芯時も良好な収差となっている。
[数値実施例2]
表2(a)、表2(b)は、本発明の数値実施例2の数値である。数値においては、rは曲率半径、dは面間隔、ndはd線の屈折率、νdはアッベ数を示す。
FIG. 3A is an aberration diagram in Example 1 according to the present invention when the lens is tilted 0.3 ° from the optical axis at infinity. FIG. 3B is an aberration diagram in Example 1 of the present invention when the photographing magnification is 0.5 times and the optical axis is inclined by 0.3 °. FIG. 3C is an aberration diagram in the first embodiment of the present invention when the photographing magnification is 1.0 and the lens is inclined 0.3 ° from the optical axis. Good aberrations when decentered.
[Numerical Example 2]
Table 2 (a) and Table 2 (b) are numerical values of Numerical Example 2 of the present invention. In the numerical values, r is the radius of curvature, d is the surface spacing, nd is the refractive index of the d-line, and νd is the Abbe number.

図4(A)は、本発明の数値実施例2の無限遠状態のレンズ断面図である。図4(B)は撮影倍率0.5倍状態のレンズ断面図である。図4(C)は撮影倍率1.0倍状態でのレンズ断面図である。   FIG. 4A is a lens cross-sectional view in the infinity state according to Numerical Example 2 of the present invention. FIG. 4B is a lens cross-sectional view at a shooting magnification of 0.5 times. FIG. 4C is a lens cross-sectional view at a photographing magnification of 1.0.

図4(A)中、L1は正の屈折力の第1レンズ群、L2は負の屈折力の第2レンズ群、L3は絞りを含み、正の屈折力の第3レンズ群、L4は正の屈折力の第4レンズ群である。近距離へのフォーカシングの際に、第1レンズ群は固定、第2レンズ群が像側へ移動し、第3レンズ群は物体側へ移動する。第1レンズ群を固定にすることにより、全長が一定の操作性の良いレンズが実現可能になる。第2レンズ群の像側への移動とは独立に、第3レンズ群を物体側へ移動させることで、近距離での撮影倍率を等倍まで高くすると同時に、近距離へのフォーカシングに伴う収差変動を良好に補正することが可能になる。   In FIG. 4A, L1 is a first lens unit having a positive refractive power, L2 is a second lens unit having a negative refractive power, L3 includes a stop, a third lens group having a positive refractive power, and L4 is a positive lens unit. This is a fourth lens unit having a refractive power of. During focusing to a short distance, the first lens group is fixed, the second lens group moves to the image side, and the third lens group moves to the object side. By fixing the first lens group, it is possible to realize a lens having a good overall operability with a constant overall length. Independent of the movement of the second lens group to the image side, the third lens group is moved to the object side to increase the magnification at close distance to the same magnification, and at the same time, aberrations due to focusing to the short distance The fluctuation can be corrected well.

L4レンズ群中、L4aは負の屈折力を持つ第4aレンズ群、L4bは正の屈折力を持つ第4bレンズ群である。第4aレンズ群は、負の屈折力を持つレンズと正の屈折力を持つレンズとの接合レンズとなっており、光軸と略垂直方向へ移動させることで振動時の像ぶれの補正を行う。SPは絞り、SP2は副絞り、IPは像面である。
また、本発明のマクロレンズにおいて、更に高い性能を得るために必要な条件式とその意味は、数値実施例1の場合と同様である。
In the L4 lens group, L4a is a 4a lens group having negative refractive power, and L4b is a 4b lens group having positive refractive power. The 4a lens group is a cemented lens of a lens having a negative refractive power and a lens having a positive refractive power, and is moved in a direction substantially perpendicular to the optical axis to correct image blur during vibration. . SP is a stop, SP2 is a sub stop, and IP is an image plane.
In the macro lens of the present invention, the conditional expressions and their meanings necessary for obtaining higher performance are the same as those in the numerical example 1.

図5(A)は本発明の実施例2の無限遠状態での収差図である。図5(B)は本発明の実施例2の撮影倍率0.5倍状態での収差図である。図5(C)は本発明の実施例2の撮影倍率1.0倍状態での収差図である。
いずれも良好な収差となっている。
FIG. 5A is an aberration diagram in Example 2 of the present invention in the state of infinity. FIG. 5B is an aberration diagram for Example 2 of the present invention when the photographing magnification is 0.5 times. FIG. 5C is an aberration diagram for Example 2 of the present invention when the photographing magnification is 1.0.
Both have good aberrations.

図6(A)は本発明の実施例2において、無限遠状態で光軸から0.3°傾いた状態での収差図である。図6(B)は本発明の実施例2において、撮影倍率0.5倍状態で光軸から0.3°傾いた状態での収差図である。図6(C)は本発明の実施例2において、撮影倍率1.0倍状態で光軸から0.3°傾いた状態での収差図である。偏芯時も良好な収差となっている。
[数値実施例3]
表3(a)、表3(b)は、本発明の数値実施例3の数値である。数値においては、rは曲率半径、dは面間隔、ndはd線の屈折率、νdはアッベ数を示す。
FIG. 6A is an aberration diagram in Example 2 according to the present invention when the lens is tilted 0.3 ° from the optical axis at infinity. FIG. 6B is an aberration diagram in Example 2 of the present invention when the photographing magnification is 0.5 times and the optical axis is inclined by 0.3 °. FIG. 6C is an aberration diagram in Example 2 of the present invention when the photographing magnification is 1.0 and the lens is inclined by 0.3 ° from the optical axis. Good aberrations when decentered.
[Numerical Example 3]
Table 3 (a) and Table 3 (b) are numerical values of Numerical Example 3 of the present invention. In the numerical values, r is the radius of curvature, d is the surface spacing, nd is the refractive index of the d-line, and νd is the Abbe number.

図7(A)は、本発明の数値実施例3の無限遠状態のレンズ断面図である。図7(B)は撮影倍率0.5倍状態での等倍状態のレンズ断面図である。図7(C)は撮影倍率1.0倍状態での等倍状態のレンズ断面図である。   FIG. 7A is a lens cross-sectional view in the infinity state according to Numerical Example 3 of the present invention. FIG. 7B is a lens cross-sectional view in the same magnification state at a photographing magnification of 0.5 times. FIG. 7C is a lens cross-sectional view in the same magnification state at a photographing magnification of 1.0.

図7(A)中、L1は正の屈折力の第1レンズ群、L2は負の屈折力の第2レンズ群、L3は絞りを含み、正の屈折力の第3レンズ群、L4は負の屈折力の第4レンズ群である。   In FIG. 7A, L1 is a first lens group having a positive refractive power, L2 is a second lens group having a negative refractive power, L3 includes a stop, a third lens group having a positive refractive power, and L4 is negative. This is a fourth lens unit having a refractive power of.

近距離へのフォーカシングの際に、第1レンズ群は固定、第2レンズ群が像側へ移動し、第3レンズ群は固定、第4レンズ群は物体側へ移動する。第1レンズ群を固定にすることにより、全長が一定の操作性の良いレンズが実現可能になる。第2レンズ群の像側への移動とは独立に、第3レンズ群を物体側へ移動させることで、近距離での撮影倍率を等倍まで高くすると同時に、近距離へのフォーカシングに伴う収差変動を良好に補正することが可能になる。   During focusing to a short distance, the first lens group is fixed, the second lens group is moved to the image side, the third lens group is fixed, and the fourth lens group is moved to the object side. By fixing the first lens group, it is possible to realize a lens having a good overall operability with a constant overall length. Independent of the movement of the second lens group to the image side, the third lens group is moved to the object side to increase the magnification at close distance to the same magnification, and at the same time, aberrations due to focusing to the short distance The fluctuation can be corrected well.

L4レンズ群中、L4aは負の屈折力を持つ第4aレンズ群、L4bは正の屈折力を持つ第4bレンズ群である。第4aレンズ群は、負の屈折力を持つレンズと正の屈折力を持つレンズとの接合レンズとなっており、光軸と略垂直方向へ移動させることで振動時の像ぶれの補正を行う。SPは絞り、SP2は副絞り、IPは像面である。   In the L4 lens group, L4a is a 4a lens group having negative refractive power, and L4b is a 4b lens group having positive refractive power. The 4a lens group is a cemented lens of a lens having a negative refractive power and a lens having a positive refractive power, and is moved in a direction substantially perpendicular to the optical axis to correct image blur during vibration. . SP is a stop, SP2 is a sub stop, and IP is an image plane.

また、本発明のマクロレンズにおいて、更に高い性能を得るために必要な条件式とその意味は、数値実施例1の場合と同様である。   In the macro lens of the present invention, the conditional expressions and their meanings necessary for obtaining higher performance are the same as those in the numerical example 1.

図8(A)は本発明の実施例3の無限遠状態での収差図である。図8(B)は本発明の実施例3の撮影倍率0.5倍状態での収差図である。図8(C)は本発明の実施例3の撮影倍率1.0倍状態での収差図である。   FIG. 8A is an aberration diagram in Example 3 of the present invention in the infinity state. FIG. 8B is an aberration diagram for Example 3 of the present invention when the photographing magnification is 0.5 times. FIG. 8C is an aberration diagram for Example 3 of the present invention when the imaging magnification is 1.0.

いずれも良好な収差となっている。   Both have good aberrations.

図9(A)は本発明の実施例3において、無限遠状態で光軸から0.3°傾いた状態での収差図である。図9(B)は本発明の実施例3において、撮影倍率0.5倍状態で光軸から0.3°傾いた状態での収差図である。図9(C)は本発明の実施例3において、撮影倍率1.0倍状態で光軸から0.3°傾いた状態での収差図である。偏芯時も良好な収差となっている。   FIG. 9A is an aberration diagram in Example 3 of the present invention when the lens is tilted 0.3 ° from the optical axis at infinity. FIG. 9B is an aberration diagram in Example 3 according to the present invention when the photographing magnification is 0.5 times and the optical axis is inclined by 0.3 °. FIG. 9C is an aberration diagram in Example 3 according to the present invention when the photographing magnification is 1.0 and the lens is inclined by 0.3 ° from the optical axis. Good aberrations when decentered.

一般にマクロレンズにおいては、撮影倍率βの変化に伴い、Fnoが、
(1−β)・Fno
の式に従って変化していく。その軸上光線の変化に伴い、副絞りSP2を変化させることで、絞り径を小さくするとともに、不要な光線をカットすることができる。
In general, with a macro lens, Fno is
(1-β) ・ Fno
It will change according to the equation. By changing the sub-aperture SP2 in accordance with the change of the on-axis light beam, it is possible to reduce the diameter of the aperture and cut an unnecessary light beam.

以上、本発明の好ましい実施例について説明したが、本発明はこれらの実施例に限定されないことは言うまでもなく、その要旨の範囲内で種々の変形および変更が可能である。   The preferred embodiments of the present invention have been described above, but the present invention is not limited to these embodiments, and various modifications and changes can be made within the scope of the gist.

L1 第1レンズ群
L2 第2レンズ群
L3 第3レンズ群
L4 第4レンズ群
L5a 第4aレンズ群
L5b 第4bレンズ群
SP 絞り
SP2 副絞り
IP 像面
Y 像高
実線 d線
M メリディオナル像面
S サジタル像面
L1 1st lens group L2 2nd lens group L3 3rd lens group L4 4th lens group L5a 4a lens group L5b 4b lens group SP Aperture SP2 Sub-aperture IP Image surface Y Image height solid line d-line M Meridional image surface S Sagittal Image plane

Claims (4)

物体側より順に、正の屈折力を持つ第1レンズ群、負の屈折力を持つ第2レンズ群、正の屈折力を持つ第3レンズ群、正または負の屈折力を持つ第4レンズ群で構成され、
最も像側の第4レンズ群は、物体側から順に負の屈折力を持つ第4aレンズ群と正の屈折力を持つ第4bレンズ群で構成され、前期第4bレンズ群を光軸と垂直方向に移動して振動時の光学性能の補正を行い、
無限遠から有限距離へのフォーカスの際、少なくとも前記第2レンズ群と第3レンズ群が独立に移動し、

以下の条件式を満たすことを特徴とするマクロレンズ。
0.15<|f4a/f|<0.45
0.6<|f4a/f4b|≦1.0

f4a:第4aレンズ群の焦点距離、f4b:第4bレンズ群の焦点距離、f:全系の焦点距離
In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens group having a positive or negative refractive power Consists of
The fourth lens group closest to the image side includes a 4a lens group having negative refractive power and a 4b lens group having positive refractive power in order from the object side, and the previous 4b lens group is perpendicular to the optical axis. To correct the optical performance during vibration,
At the time of focusing from infinity to a finite distance, at least the second lens group and the third lens group move independently,

A macro lens characterized by satisfying the following conditional expression:
0.15 <| f4a / f | <0.45
0.6 <| f4a / f4b | ≦ 1.0

f4a: focal length of the 4a lens group, f4b: focal length of the 4b lens group, f: focal length of the entire system
前記第4aレンズ群は、正の屈折力を持つレンズと負の屈折力を持つレンズを少なくとも一つずつ含むことを特徴とする請求項1に記載のマクロレンズ。   The macro lens according to claim 1, wherein the fourth lens group includes at least one lens having a positive refractive power and one lens having a negative refractive power. 以下の条件式を満足することを特徴とする請求項1に記載のマクロレンズ。
−1.0 < β2∞/β2mod < 1.0
β2∞:第2レンズ群の無限遠での撮影倍率
β2mod:第2レンズ群の撮影倍率等倍時の撮影倍率
The macro lens according to claim 1, wherein the following conditional expression is satisfied.
−1.0 <β2∞ / β2mod <1.0
β2∞: photographing magnification at infinity of the second lens group β2mod: photographing magnification at the same magnification as the second lens group
以下の条件式を満足することを特徴とする請求項1に記載のマクロレンズ。
1.0 < |β3∞/β3mod| < 20
β3∞:第3レンズ群の無限遠での撮影倍率
β3mod:第3レンズ群の撮影倍率等倍時の撮影倍率
The macro lens according to claim 1, wherein the following conditional expression is satisfied.
1.0 <| β3∞ / β3mod | <20
β3∞: photographing magnification at infinity of the third lens group β3mod: photographing magnification at the same magnification as that of the third lens group
JP2012182854A 2012-08-22 2012-08-22 Macro lens having vibration compensation mechanism Pending JP2014041224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012182854A JP2014041224A (en) 2012-08-22 2012-08-22 Macro lens having vibration compensation mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012182854A JP2014041224A (en) 2012-08-22 2012-08-22 Macro lens having vibration compensation mechanism

Publications (1)

Publication Number Publication Date
JP2014041224A true JP2014041224A (en) 2014-03-06

Family

ID=50393528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012182854A Pending JP2014041224A (en) 2012-08-22 2012-08-22 Macro lens having vibration compensation mechanism

Country Status (1)

Country Link
JP (1) JP2014041224A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109952524A (en) * 2016-11-21 2019-06-28 株式会社尼康 The manufacturing method of variable-power optical system, the optical device for having used the variable-power optical system and picture pick-up device and the variable-power optical system
JP2019164276A (en) * 2018-03-20 2019-09-26 オリンパス株式会社 Macro lens and imaging apparatus with the same
WO2022022026A1 (en) * 2020-07-28 2022-02-03 华为技术有限公司 Optical lens, lens module and terminal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109952524A (en) * 2016-11-21 2019-06-28 株式会社尼康 The manufacturing method of variable-power optical system, the optical device for having used the variable-power optical system and picture pick-up device and the variable-power optical system
JP2019164276A (en) * 2018-03-20 2019-09-26 オリンパス株式会社 Macro lens and imaging apparatus with the same
WO2022022026A1 (en) * 2020-07-28 2022-02-03 华为技术有限公司 Optical lens, lens module and terminal

Similar Documents

Publication Publication Date Title
JP5498259B2 (en) High magnification zoom lens
JP5064837B2 (en) Zoom lens with anti-vibration function
JP5492658B2 (en) High magnification zoom lens
JP5142823B2 (en) Imaging lens and imaging apparatus having the same
JP6667297B2 (en) Optical system and imaging apparatus having the same
JP6292898B2 (en) Zoom lens and imaging apparatus having the same
JP5901357B2 (en) Zoom lens and imaging apparatus having the same
JP2005242015A (en) Zoom lens and imaging apparatus having same
JP5498260B2 (en) Zoom lens unit
JPH11119092A (en) Inner focusing optical system provided with vibration-proof
JP2008185782A (en) Zoom lens and imaging apparatus having same
JP5004725B2 (en) Imaging lens and imaging apparatus having the same
JP5448574B2 (en) Zoom lens and imaging apparatus having the same
JP2001356381A (en) Zoom lens with vibration-proof function and optical equipment using the same
JP6189722B2 (en) Inner focus type lens and imaging device
JP5861971B2 (en) High magnification zoom lens
JP2015215392A (en) Optical system and imaging device including the same
JP4323584B2 (en) Variable magnification optical system with anti-vibration function
JP2017102354A (en) Image capturing lens and image capturing device having the same
JP2006171432A (en) Photographic lens and imaging apparatus having the same
JP2014041224A (en) Macro lens having vibration compensation mechanism
JP5877515B2 (en) High magnification zoom lens
JP2015028555A (en) Optical system with converter lens group having vibration-proof function
JP2014102526A (en) Zoom lens unit
JP2011197413A (en) Photographic lens, optical apparatus having the photographic lens, and method for manufacturing the photographic lens