JP2014041192A - Reflection type liquid crystal modulation element - Google Patents

Reflection type liquid crystal modulation element Download PDF

Info

Publication number
JP2014041192A
JP2014041192A JP2012182435A JP2012182435A JP2014041192A JP 2014041192 A JP2014041192 A JP 2014041192A JP 2012182435 A JP2012182435 A JP 2012182435A JP 2012182435 A JP2012182435 A JP 2012182435A JP 2014041192 A JP2014041192 A JP 2014041192A
Authority
JP
Japan
Prior art keywords
liquid crystal
refractive index
modulation element
light
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012182435A
Other languages
Japanese (ja)
Inventor
Masayuki Abe
阿部  雅之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2012182435A priority Critical patent/JP2014041192A/en
Publication of JP2014041192A publication Critical patent/JP2014041192A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve a reflectance ratio and contrast of a reflection type liquid crystal modulation element.SOLUTION: In a reflection type liquid crystal modulation element in which a liquid crystal layer is arranged among a first substrate, a first counter electrode disposed on the first substrate, a second substrate and a second counter electrode disposed on the second substrate in which electrode pixels in a matrix state are arranged: a groove part is disposed between the adjoining pixel electrodes; an interlayer dielectric is disposed on an undersurface of the electrode pixels and the groove part; the groove part between the pixel electrodes is filled with an insulator film from a top surface to the undersurface of the pixel electrode; and a refractive index of the insulator film in the groove part is larger than an average of the interlayer dielectric and of a normal light refractive index and an abnormal light refractive index of a liquid crystal molecule of the liquid crystal layer, so that an optical waveguide structure is formed and an evanescent light generated in the insulator film in the groove part is confined within the insulator film in the groove part. The effect of such confinement reduces diffraction/interference light reflected from the groove part and improves a refraction index and contrast.

Description

本発明は、画像表示素子に関するものである。特に、画像パターンを液晶変調素子によって偏光状態による変調画像を生成し、偏光状態を選択する偏光選択手段により強度変調画像に変換して可視画像生成する表示装置に関するものであり、また、特に液晶変調素子の画素ピッチの小さい高解像度の表示装置に関するものである。   The present invention relates to an image display element. In particular, the present invention relates to a display device that generates a modulated image according to a polarization state using a liquid crystal modulation element and converts the image pattern into an intensity-modulated image by a polarization selection unit that selects the polarization state, and particularly generates a visible image. The present invention relates to a high-resolution display device having a small pixel pitch of elements.

従来、画像変調手段としては2次元画素光学スイッチとした液晶変調素子があり、例えば透明電極を有する第1の透明基板と、画素を形成する透明電極及び配線,スイッチング素子等を有する第2の透明基板との間に誘電異方性が正のネマチック液晶を封入し、液晶分子長軸を2枚のガラス基板間で連続的に90°ねじった、いわゆるTN(Twisted Nematic)液晶変調素子が用いられている。また、このような透過型の液晶変調素子の他に、透明電極を有する透明基板と、2次元光学スイッチとして一方の基板に反射鏡と配線、スイッチング素子等有する回路基板との間に誘電異方性が正のネマチック液晶を封入し、液晶分子長軸を2枚の基板間に対してほぼ垂直にモメオトロピック配向させた、いわゆるVAN(Vertical Alignment Nematic)液晶型の反射型液晶変調素子を用いているものもある。   Conventionally, there is a liquid crystal modulation element as a two-dimensional pixel optical switch as an image modulation means. For example, a first transparent substrate having a transparent electrode, a transparent electrode and wiring for forming a pixel, a second transparent having a switching element, and the like. A so-called TN (Twisted Nematic) liquid crystal modulation element is used in which nematic liquid crystal with positive dielectric anisotropy is sealed between the substrate and the long axis of the liquid crystal molecule is continuously twisted by 90 ° between two glass substrates. ing. In addition to such a transmissive liquid crystal modulation element, a dielectric anisotropy is formed between a transparent substrate having a transparent electrode and a circuit board having a reflecting mirror, a wiring, a switching element, etc. on one substrate as a two-dimensional optical switch. A so-called VAN (Vertical Alignment Nematic) liquid crystal type reflective liquid crystal modulation element in which nematic liquid crystal with positive characteristics is enclosed and the major axis of the liquid crystal molecule is homeotropically aligned almost perpendicularly between the two substrates. Some have.

液晶変調素子としては、ECB(Electrically Controlled Birefringence)効果を利用し、液晶層を通過する光波動に対してリタデーションを与えて、光波動の偏光状態を変化させる作用を制御して画像を形成する方法が主に用いられる。   As a liquid crystal modulation element, a method of forming an image by using an ECB (Electrically Controlled Birefringence) effect and providing retardation to the light wave passing through the liquid crystal layer to control the action of changing the polarization state of the light wave Is mainly used.

一般的な液晶変調素子の設計は、入射光をポラライザ−等の偏光制御手段を介して波動の偏波を所定方向の直線偏光状態にした光波動を入射させ、この所定方向に振動する直線偏光状態の光が通過するときに、偏光変調を行う場合、ノーマリーホワイトを基準とする液晶素子は、液晶へ無電界印加状態で、入射光波長(ある光波長帯域の重心波長)において半波長だけのリタデーションを与えるよう設計されており、ノーマリーブラックを基準とする液晶素子は、液晶へ無電界印加状態で、入射光波長においては与えるリタデーションを極小とし、液晶へ所定電界を印加した状態にて半波長だけのリタデーションを与えるよう設計されている。半波長のリタデーションを与えられた光は、入射する前の直線偏光の振動方向と直角の方向に振動方向が変換されて出射することとなる。その後、入射側に配された偏光制御手段とクロスニコル配置をとるポラライザ−等の偏光制御手段を配することで偏光状態を選択し、選択された光は透過することとなるよう構成されている。この設計に対して、ECB効果を用いて、液晶層に印加する電圧を制御することで、液晶分子はその分子長軸方向を液晶層の層厚方向にチルト動作を起こし、液晶層厚方向の複屈折量が減少または増加することで、液晶層を通過した光波動は、液晶層印加電圧に応じて楕円偏光状態となり、光出射側に配された偏光制御手段によって、振動方向が直交変換されない光成分が遮断されて、入射光の強度を変調するように構成されている。   The design of a general liquid crystal modulation element is that linearly polarized light that oscillates in a predetermined direction by making incident light incident on a linear polarization state in a predetermined direction through incident light via a polarization control means such as a polarizer. When polarization modulation is performed when light in a state passes, a liquid crystal element based on normally white is only half a wavelength at the incident light wavelength (centroid wavelength of a certain light wavelength band) with no electric field applied to the liquid crystal. The liquid crystal device based on normally black is designed in such a manner that no liquid crystal is applied to the liquid crystal, the retardation given at the incident light wavelength is minimized, and a predetermined electric field is applied to the liquid crystal. It is designed to give retardation for only half wavelength. The light given half-wave retardation is emitted after the vibration direction is changed to a direction perpendicular to the vibration direction of the linearly polarized light before entering. Thereafter, the polarization state is selected by arranging a polarization control unit such as a polarizer having a crossed Nicol arrangement with the polarization control unit disposed on the incident side, and the selected light is transmitted. . In contrast to this design, by controlling the voltage applied to the liquid crystal layer using the ECB effect, the liquid crystal molecules cause the molecular major axis direction to tilt in the layer thickness direction of the liquid crystal layer, and the liquid crystal layer thickness direction As the birefringence amount decreases or increases, the light wave that has passed through the liquid crystal layer becomes an elliptically polarized state according to the voltage applied to the liquid crystal layer, and the vibration direction is not orthogonally converted by the polarization control means arranged on the light exit side. The light component is blocked, and the intensity of the incident light is modulated.

また、近年の画像表示装置は高解像度化が進み、液晶変調素子の1画素の幅(画素ピッチ)が小さくなってきている。一般的に、光学的原理から2次元的に画素が配列することにより、入射した光は回折して更に干渉を起こすが、特に1画素の幅が小さくなることで回折・干渉光の強度は強くなる。このとき、回折・干渉光が多くなることで表示光量が低下し、かつ黒表示も漏れ光が増加して、明るさおよびコントラストが低下してしまうという問題がある。   In recent years, the resolution of image display devices has been increased, and the width (pixel pitch) of one pixel of the liquid crystal modulation element has been reduced. Generally, due to the two-dimensional arrangement of pixels from the optical principle, the incident light is diffracted to cause further interference, but the intensity of diffracted / interfered light is particularly strong because the width of one pixel is reduced. Become. At this time, the amount of diffracted / interfered light increases, so that the amount of display light decreases, and the black light also has a problem that leakage light increases and brightness and contrast decrease.

この問題を解消するために、画素電極近傍の構造を見直して、明るさやコントラスト低減を防止する公知例がいくつかあげられる。   In order to solve this problem, there are some known examples in which the structure in the vicinity of the pixel electrode is reviewed to prevent reduction in brightness and contrast.

公知例としては、例えば、従来は反射画素電極間の溝部に画素電極基板の基板面に対して斜め方向からの斜方蒸着を行っており、蒸着する際に画素の角の部分が陰になり、画素間の溝部の一部が蒸着されず液晶の配向不良が発生していたが、特許文献1に提案されているように、まず、一度、反射型画素電極間の溝部の底面全体に、画素電極基板の基板面に対して垂直方向から垂直蒸着し、更に、基板面に対して斜め方向から斜方蒸着することで、溝部に全て蒸着膜が行き届き、液晶の配向不良を防ぐことができ、かつ、コントラスト低減を抑制するという内容が提案されている。   As a publicly known example, for example, oblique vapor deposition from an oblique direction to the substrate surface of the pixel electrode substrate is conventionally performed in the groove portion between the reflective pixel electrodes, and the corner portion of the pixel is shaded during vapor deposition. In addition, although a part of the groove between the pixels was not deposited and liquid crystal alignment failure occurred, as proposed in Patent Document 1, first, once on the entire bottom surface of the groove between the reflective pixel electrodes, By vertically depositing from the vertical direction to the substrate surface of the pixel electrode substrate and further obliquely depositing from the oblique direction to the substrate surface, the deposited film reaches all the grooves, preventing liquid crystal alignment defects. And the content of suppressing contrast reduction is proposed.

また、特許文献2に提案されているように、反射画素電極の下層にある保護膜(パシベーション膜)をCMP研磨により平坦にして、その上層の反射画素電極がその保護膜にならって平坦になる。   Further, as proposed in Patent Document 2, a protective film (passivation film) under the reflective pixel electrode is flattened by CMP, and the reflective pixel electrode in the upper layer becomes flat following the protective film. .

これにより、反射画素電極が極めて平坦になり、反射する散乱光の発生を抑制することで反射効率(明るさ)を向上することが可能となる、という内容が提案されている。   As a result, it has been proposed that the reflection pixel electrode becomes extremely flat and the reflection efficiency (brightness) can be improved by suppressing the generation of reflected scattered light.

以上のように、画素電極近傍の構造を見直すことで、明るさやコントラストが向上する従来技術がある。   As described above, there is a conventional technique in which brightness and contrast are improved by reviewing the structure in the vicinity of the pixel electrode.

特許第03760444号明細書Japanese Patent No. 0376444 特許第02864464号明細書Japanese Patent No. 0864464

しかしながら、特許文献1に提案されている従来の技術は、反射型画素電極間の溝部の全てに蒸着膜が行き届き、液晶の配向不良を防ぐことができ、かつ、コントラスト低減を抑制することができるが、一方、画素溝部の配向膜構造は、垂直蒸着膜が下段で斜方蒸着膜が上段の階段状の構造になるため、平坦性に十分に取れず、溝内部で散乱光を発生させる原因となり、反射率の向上が見込めない。   However, the conventional technique proposed in Patent Document 1 allows the deposited film to reach all of the groove portions between the reflective pixel electrodes, can prevent alignment failure of the liquid crystal, and can suppress reduction in contrast. On the other hand, the alignment film structure of the pixel groove portion is a stepped structure in which the vertical vapor deposition film is at the lower stage and the oblique vapor deposition film is at the upper stage, so that the flatness cannot be sufficiently obtained, and the scattered light is generated inside the groove. Therefore, the improvement in reflectance cannot be expected.

また、特許文献2に提案されている従来の技術は、反射画素電極が極めて平坦であり、反射する散乱光の発生を抑制することで反射効率(明るさ)を向上させることが可能となる。   In the conventional technique proposed in Patent Document 2, the reflection pixel electrode is extremely flat, and it is possible to improve the reflection efficiency (brightness) by suppressing the generation of reflected scattered light.

しかし、近年の高解像度化による画素電極の形状の微細化によって、回折干渉光が増加し、それに伴い反射効率が低下し、コントラストが低下するが、これらに対する言及が無く、かつ、反射画素電極の各物性値に対する言及が無く、反射率向上のために良好な物性値の条件およびその言及もなされておらず、十分な性能を確保するに至らない、という以上の問題があった。   However, due to the recent miniaturization of the pixel electrode due to higher resolution, diffraction interference light increases, and as a result, the reflection efficiency decreases and the contrast decreases. There is no mention of each physical property value, and there is a problem that the conditions of favorable physical property values and the mention thereof are not made for improving the reflectance, and sufficient performance cannot be ensured.

上記の問題を解決するために、第1の基板と、第1の基板上に設けられた第1の対向電極と、第2の基板と、第2の基板上に設けられたマトリックス状に電極画素が配列した第2の対向電極との間に、液晶層を介した反射型液晶変調素子であって、隣接する前記画素電極の間には、溝部が設けられ、前記電極画素および前記溝部の下面には、層間絶縁膜が設けられており、更に、前記画素電極の間の溝部は、前記画素電極の上面から下面まで、絶縁膜で充填されており、前記溝部の絶縁膜の屈折率が、前記層間絶縁膜かつ、前記液晶層の液晶分子の常光屈折率および異常光屈折率の平均値より大きいことにより、溝部の絶縁膜の屈折率が、溝部の絶縁膜を挟んだ層間絶縁膜と液晶層の屈折率より大きいことで光動波路構造を形成し、溝部の絶縁膜に発生するエバネッセント光を、溝部の絶縁膜内部に閉じこめることになる。   In order to solve the above problem, a first substrate, a first counter electrode provided on the first substrate, a second substrate, and a matrix electrode provided on the second substrate A reflective liquid crystal modulation element with a liquid crystal layer interposed between a second counter electrode in which pixels are arranged, and a groove is provided between the adjacent pixel electrodes, and the electrode pixel and the groove An interlayer insulating film is provided on the lower surface, and the groove between the pixel electrodes is filled with an insulating film from the upper surface to the lower surface of the pixel electrode, and the refractive index of the insulating film in the groove is The refractive index of the insulating film in the groove is larger than the average value of the ordinary light refractive index and the extraordinary light refractive index of the liquid crystal molecules of the liquid crystal layer, and the interlayer insulating film sandwiching the insulating film in the groove An optical waveguide structure is formed by being larger than the refractive index of the liquid crystal layer, and the grooves The evanescent light generated film, thereby to confine in the insulating film groove.

この閉じ込めの効果により、溝部から反射する回折・干渉光を低減して、反射率およびコントラストを向上することができる。   Due to the confinement effect, the diffraction / interference light reflected from the groove can be reduced, and the reflectance and contrast can be improved.

更に、前記溝部の絶縁膜の屈折率と前記層間絶縁膜の屈折率との差および、前記溝部の絶縁膜の屈折率と前記液晶層の液晶分子の常光屈折率と異常光屈折率との平均屈折率との差を、共に0.2以上とすることにより、回折・干渉光低減の効果が大きく、更に、反射率およびコントラストを向上することができる。   Further, the difference between the refractive index of the insulating film of the groove and the refractive index of the interlayer insulating film, and the average of the refractive index of the insulating film of the groove and the ordinary and extraordinary refractive indices of the liquid crystal molecules of the liquid crystal layer By setting the difference from the refractive index to 0.2 or more, the effect of reducing diffraction / interference light is great, and the reflectance and contrast can be improved.

このとき、前記電極画素の溝部の幅および、厚みは可視光の最大波長帯域750nm以下の構造体であること、あるいは、前記層間絶縁膜の屈折率が1.2〜1.8であり、前記液晶層の液晶分子の常光屈折率および異常光屈折率が1.2〜1.8であることにより、更に、回折・干渉光低減の効果が大きく、反射率およびコントラストを向上する効果が大きくなる。   At this time, the width and thickness of the groove portion of the electrode pixel is a structure having a maximum wavelength band of visible light of 750 nm or less, or the refractive index of the interlayer insulating film is 1.2 to 1.8, When the ordinary refractive index and extraordinary refractive index of the liquid crystal molecules of the liquid crystal layer are 1.2 to 1.8, the effect of reducing diffraction / interference light is further increased, and the effect of improving reflectance and contrast is increased. .

以上の手段により上記構造を備えた反射型液晶変調素子を、光源と、光源の光を前記反射型液晶変調素子に照明するための照明光学系と、前記反射型液晶変調素子からの光を拡大投影するための投射レンズ系とから構成される投射型液晶表示装置などに用いることで効果を実現することが可能となる。   By the above means, the reflection type liquid crystal modulation element having the above structure, the light source, the illumination optical system for illuminating the reflection type liquid crystal modulation element with the light of the light source, and the light from the reflection type liquid crystal modulation element are expanded. The effect can be realized by using it in a projection type liquid crystal display device constituted by a projection lens system for projecting.

一般的に、光学的原理から2次元的に画素が配列することにより、入射した光は回折して更に干渉を起こすが、特に1画素の幅が小さくなることで回折・干渉光の強度は強くなる。近年高解像化が進んでいるために液晶変調素子の回折・干渉光強度は無視でいきない程強くなっている。このとき、回折・干渉光が多くなることで表示光量が低下し、かつ黒表示も漏れ光が増加して、明るさおよびコントラストが低下してしまうという問題があるが、本発明では、画素電極の間の溝部は、画素電極の上面から下面まで絶縁膜で充填されており、溝部の絶縁膜の屈折率が、層間絶縁膜かつ、液晶層の液晶分子の常光屈折率および異常光屈折率の平均値より大きいことにより、光動波路構造を形成し、溝部の絶縁膜に発生するエバネッセント光を、溝部の絶縁膜内部に閉じこめることになる。この閉じ込めの効果により、溝部から反射する回折・干渉光を低減して、反射率およびコントラストを向上することができる。   Generally, due to the two-dimensional arrangement of pixels from the optical principle, the incident light is diffracted to cause further interference, but the intensity of diffracted / interfered light is particularly strong because the width of one pixel is reduced. Become. In recent years, since the resolution has increased, the intensity of diffraction / interference light of the liquid crystal modulation element has become so strong that it cannot be ignored. At this time, the amount of diffracted / interfered light increases, the amount of display light decreases, and the black display also has a problem of increased light leakage and reduced brightness and contrast. The groove between the electrodes is filled with an insulating film from the upper surface to the lower surface of the pixel electrode, and the refractive index of the insulating film in the groove is the interlayer insulating film and the ordinary refractive index and extraordinary refractive index of the liquid crystal molecules of the liquid crystal layer. By being larger than the average value, an optical waveguide structure is formed, and evanescent light generated in the insulating film in the groove is confined inside the insulating film in the groove. Due to the confinement effect, the diffraction / interference light reflected from the groove can be reduced, and the reflectance and contrast can be improved.

実施例1の液晶変調素子の断面を説明する図FIG. 3 is a diagram illustrating a cross section of the liquid crystal modulation element of Example 1. 実施例1の液晶変調素子の入射平面を説明する図FIG. 6 is a diagram for explaining an incident plane of the liquid crystal modulation element according to the first embodiment. 実施例1の溝内絶縁膜の屈折率に対する反射率を説明する図The figure explaining the reflectance with respect to the refractive index of the insulating film in a groove | channel of Example 1. 従来例の回折光強度を説明する図The figure explaining the diffracted light intensity of the conventional example 実施例1の回折光強度を説明する図The figure explaining the diffracted light intensity of Example 1 実施例2の絶縁層間膜に対する反射率を説明する図The figure explaining the reflectance with respect to the insulating interlayer film of Example 2 実施例3の液晶層の屈折率に対する反射率を説明する図FIG. 6 is a diagram for explaining the reflectance with respect to the refractive index of the liquid crystal layer of Example 3. 実施例4の本発明の液晶変調素子を用いた投影表示装置を説明する図FIG. 6 is a diagram for explaining a projection display device using a liquid crystal modulation element according to the present invention in Example 4.

以下、本発明を図面に基づいて詳しく説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings.

図1は、液晶変調素子の反射画素電極近傍の断面構造を示し、
図2は、液晶変調素子の表面構造を示している。
FIG. 1 shows a cross-sectional structure in the vicinity of a reflective pixel electrode of a liquid crystal modulation element,
FIG. 2 shows the surface structure of the liquid crystal modulation element.

101は液晶層、102は斜方蒸着により形成された配向膜、103は反射画素電極、104a,104bは絶縁層間膜、105は吸収膜、106は多数の吸収膜と絶縁層間膜からなる層、107は電極配線層、108は反射画素電極103の間の溝部に充填されている絶縁膜、109は反射画素電極のピッチ、110は反射画素電極間の溝幅であり、かつ、溝部の絶縁膜108の幅である。   101 is a liquid crystal layer, 102 is an alignment film formed by oblique vapor deposition, 103 is a reflective pixel electrode, 104a and 104b are insulating interlayer films, 105 is an absorbing film, 106 is a layer composed of a number of absorbing films and insulating interlayer films, 107 is an electrode wiring layer, 108 is an insulating film filled in a groove between the reflective pixel electrodes 103, 109 is a pitch of the reflective pixel electrodes, 110 is a groove width between the reflective pixel electrodes, and an insulating film in the groove 108 width.

このとき、反射画素電極103あるいは溝部の絶縁膜108は、CMP(Chemical Mechanical Polishing)などの研磨手法により研磨されることで平坦であり、その表面に斜方蒸着される配向膜102は、下層の反射画素電極103や溝部の絶縁膜108の平坦性にならって全領域で平坦に蒸着される。これにより、液晶層101の液晶分子も斜方蒸着の配向膜102の平坦性にならって全領域で配向性が良好であり、表示不良が起こらず、コントラストも良好となる。   At this time, the reflective pixel electrode 103 or the insulating film 108 in the groove is flat by being polished by a polishing method such as CMP (Chemical Mechanical Polishing), and the alignment film 102 obliquely deposited on the surface thereof is a lower layer. In accordance with the flatness of the reflective pixel electrode 103 and the insulating film 108 in the groove, the vapor deposition is performed in the entire region. As a result, the liquid crystal molecules of the liquid crystal layer 101 also have good orientation in the entire region following the flatness of the obliquely deposited alignment film 102, display failure does not occur, and the contrast is good.

本実施例の構造寸法に関しては、画素ピッチ109は8.0μ、反射画素電極103の厚みは0.65μ、反射画素電極間の溝幅110は0.35μ、絶縁層間膜104aの厚みは0.26μ、斜方蒸着の配向膜102の厚みは0.05μである。   Regarding the structural dimensions of this embodiment, the pixel pitch 109 is 8.0 μ, the thickness of the reflective pixel electrode 103 is 0.65 μ, the groove width 110 between the reflective pixel electrodes is 0.35 μ, and the thickness of the insulating interlayer 104 a is 0.00. The thickness of the alignment film 102 of 26 μ and oblique deposition is 0.05 μ.

また、各構造の物性値に関しては、液晶層101の液晶分子の屈折率は、常光屈折率Noが1.475、異常光屈折率Neが1.547であり、常光屈折率Noと異常光屈折率Neの平均屈折率は1.518であり、反射画素電極103はアルミ金属であり、絶縁層間膜104aは二酸化珪素(SiO2)であり、吸収膜105はTiNとTiの積層膜からなり上層がTiNであり、斜方蒸着の配向膜102はSiとOを蒸着することによりSiOの膜が蒸着されている。一般的に、SiOの物性値は屈折率が2.0、消衰係数は0.02である。   Regarding the physical property values of each structure, the refractive index of the liquid crystal molecules of the liquid crystal layer 101 is 1.475 for the ordinary light refractive index No and 1.547 for the extraordinary light refractive index Ne. The average refractive index of the refractive index Ne is 1.518, the reflective pixel electrode 103 is aluminum metal, the insulating interlayer film 104a is silicon dioxide (SiO2), and the absorption film 105 is a laminated film of TiN and Ti, and the upper layer is TiN is an obliquely deposited alignment film 102, and a SiO film is deposited by depositing Si and O. In general, the physical properties of SiO have a refractive index of 2.0 and an extinction coefficient of 0.02.

本実施例の溝部の絶縁膜108はSiOである。   In this embodiment, the insulating film 108 in the trench is made of SiO.

ここで、本実施例の構造および物性値を、波動伝播シミュレーション(FDTD法)に再現させ、溝部の絶縁膜108に関してのみ屈折率を変化させた計算結果を図3に示す。   Here, FIG. 3 shows a calculation result in which the structure and physical property values of this example are reproduced by wave propagation simulation (FDTD method), and the refractive index is changed only for the insulating film 108 in the trench.

従来は、反射率向上のために良好な溝部絶縁膜の物性値の条件およびその効果に対する言及がなされていないが、特登録02864464に関してはSiO2が溝部の絶縁膜に選択されている。SiO2の屈折率は1.46程度であり、図3より反射率は73.3%に対して、本実施例はSiOの屈折率が2.0のために反射率が74.7%となり、従来に対して1%程度の反射率向上が見込まれる。   Conventionally, no mention has been made of the conditions of physical property values of a good trench insulating film and its effect for improving the reflectivity, but regarding the special registration 0864644, SiO2 is selected as the insulating film of the trench. The refractive index of SiO2 is about 1.46, and the reflectance is 73.3% from FIG. 3, whereas the refractive index of this embodiment is 74.7% because the refractive index of SiO is 2.0. It is expected that the reflectance will be improved by about 1% compared to the conventional case.

また、図4は溝部の絶縁膜がSiO2の従来の回折光強度結果であり、図5は溝部の絶縁膜がSiOの本発明の回折光強度結果である。図4および図5の方位軸は回折光が液晶変調素子から出射する方位角度を示しており、入射振動方向を0度−90度方向とする。一方、縦軸は入射光を100%としたときの回折光の強度を示している。   FIG. 4 shows a conventional diffracted light intensity result when the insulating film in the groove portion is SiO2, and FIG. 5 shows a diffracted light intensity result of the present invention when the insulating film in the groove portion is SiO. The azimuth axes in FIGS. 4 and 5 indicate the azimuth angle at which the diffracted light is emitted from the liquid crystal modulation element, and the incident vibration direction is the 0-90 degree direction. On the other hand, the vertical axis indicates the intensity of diffracted light when the incident light is 100%.

回折光強度の全光量総和は、図4の従来は6.5%で、図5の本発明は5.6%であり、本発明の回折光強度が減少することで、正反射光の強度が強くなっている。   The total amount of diffracted light intensity is 6.5% in the conventional case of FIG. 4 and 5.6% in the present invention of FIG. 5, and the intensity of the specularly reflected light is reduced by decreasing the diffracted light intensity of the present invention. Is getting stronger.

また、従来の溝部絶縁膜108の屈折率1.46のとき反射率は73.3%であるが、図3から、絶縁層間膜104aの屈折率との差が0.2以上あると、屈折率は1.66以上であり、そのときの反射率は74.4%以上となり、十分な効果が得られる。   Further, the reflectivity is 73.3% when the refractive index of the conventional trench insulating film 108 is 1.46. From FIG. 3, when the difference from the refractive index of the insulating interlayer film 104a is 0.2 or more, the refractive index is refracted. The rate is 1.66 or more, and the reflectance at that time is 74.4% or more, and a sufficient effect can be obtained.

実施例1および実施例2と共通する構成要素には同じ符号を付している。   Constituent elements common to the first and second embodiments are denoted by the same reference numerals.

本実施例の構造寸法に関しては、画素ピッチ109は8.0μ、反射画素電極103の厚みは0.65μ、反射画素電極間の溝幅110は0.35μ、絶縁層間膜104aの厚みは0.26μ、斜方蒸着の配向膜102の厚みは0.05μである。   Regarding the structural dimensions of this embodiment, the pixel pitch 109 is 8.0 μ, the thickness of the reflective pixel electrode 103 is 0.65 μ, the groove width 110 between the reflective pixel electrodes is 0.35 μ, and the thickness of the insulating interlayer 104 a is 0.00. The thickness of the alignment film 102 of 26 μ and oblique deposition is 0.05 μ.

また、各構造の物性値に関しては、液晶層101の液晶分子の屈折率は、常光屈折率Noが1.45、異常光屈折率Neが1.51であり、常光屈折率Noと異常光屈折率Neの平均屈折率は1.48であり、反射画素電極103はアルミ金属であり、絶縁層間膜104aは二酸化珪素(SiO2)であり、吸収膜105はTiNとTiの積層膜からなり上層がTiNであり、斜方蒸着の配向膜102はSiとOを蒸着することによりSiOの膜が蒸着されている。一般的に、SiOの物性値は屈折率が2.0、消衰係数は0.02である。   Regarding the physical property values of each structure, the refractive index of the liquid crystal molecules of the liquid crystal layer 101 is 1.45 for ordinary light refractive index No and 1.51 for extraordinary light refractive index Ne. The average refractive index of the refractive index Ne is 1.48, the reflective pixel electrode 103 is aluminum metal, the insulating interlayer film 104a is silicon dioxide (SiO2), and the absorption film 105 is a laminated film of TiN and Ti, and the upper layer is TiN is an obliquely deposited alignment film 102, and a SiO film is deposited by depositing Si and O. In general, the physical properties of SiO have a refractive index of 2.0 and an extinction coefficient of 0.02.

本実施例の溝部の絶縁膜108はY2O3で、屈折率が1.82である。   In this embodiment, the insulating film 108 in the groove is Y2O3, and the refractive index is 1.82.

ここで、本実施例の構造および物性値を、波動伝播シミュレーション(FDTD法)に再現させ、絶縁層間膜104aに関してのみ屈折率を変化させた計算結果を図6に示す。   Here, FIG. 6 shows a calculation result in which the structure and physical property values of this example are reproduced by wave propagation simulation (FDTD method) and the refractive index is changed only for the insulating interlayer film 104a.

図6より絶縁層間膜104aの屈折率の小さい方が、反射率が高くなる傾向にある。これは、絶縁層間膜の屈折率より、溝部の絶縁膜Y2O3の屈折率108がより大きくなることで屈折率差が生じ、溝部に発生したエバンネッセント光が溝内部に閉じこもり易くなって回折光が除々に減少して、反射率が向上することになる。   As shown in FIG. 6, the reflectance is higher when the refractive index of the insulating interlayer 104a is smaller. This is because the refractive index difference of the insulating film Y2O3 in the groove portion becomes larger than the refractive index of the insulating interlayer film, so that the evanescent light generated in the groove portion is easily confined in the groove and diffracted light. Will gradually decrease and the reflectivity will improve.

実施例1と共通する構成要素には同じ符号を付している。   Constituent elements common to the first embodiment are denoted by the same reference numerals.

本実施例の構造寸法に関しては、画素ピッチ109は8.0μ、反射画素電極103の厚みは0.65μ、反射画素電極間の溝幅110は0.35μ、絶縁層間膜104aの厚みは0.26μ、斜方蒸着の配向膜102の厚みは0.05μである。   Regarding the structural dimensions of this embodiment, the pixel pitch 109 is 8.0 μ, the thickness of the reflective pixel electrode 103 is 0.65 μ, the groove width 110 between the reflective pixel electrodes is 0.35 μ, and the thickness of the insulating interlayer 104 a is 0.00. The thickness of the alignment film 102 of 26 μ and oblique deposition is 0.05 μ.

また、各構造の物性値に関しては、液晶層101の液晶分子の屈折率は、常光屈折率Noが1.475、異常光屈折率Neが1.547であり、常光屈折率Noと異常光屈折率Neの平均屈折率は1.51であり、反射画素電極103はアルミ金属であり、絶縁層間膜104aは二酸化珪素(SiO2)であり、吸収膜105はTiNとTiの積層膜からなり上層がTiNであり、斜方蒸着の配向膜102はSiとOを蒸着することによりSiOの膜が蒸着されている。一般的に、SiOの物性値は屈折率が2.0、消衰係数は0.02である。   Regarding the physical property values of each structure, the refractive index of the liquid crystal molecules of the liquid crystal layer 101 is 1.475 for the ordinary light refractive index No and 1.547 for the extraordinary light refractive index Ne. The average refractive index of the refractive index Ne is 1.51, the reflective pixel electrode 103 is aluminum metal, the insulating interlayer film 104a is silicon dioxide (SiO2), and the absorption film 105 is a laminated film of TiN and Ti, and the upper layer is TiN is an obliquely deposited alignment film 102, and a SiO film is deposited by depositing Si and O. In general, the physical properties of SiO have a refractive index of 2.0 and an extinction coefficient of 0.02.

本実施例の溝部の絶縁膜108はSiOである。   In this embodiment, the insulating film 108 in the trench is made of SiO.

ここで、本実施例の構造および物性値を、波動伝播シミュレーション(FDTD法)に再現させ、液晶層101に関してのみ屈折率を変化させた計算結果を図7に示す。   Here, FIG. 7 shows a calculation result in which the structure and physical property values of this example are reproduced by wave propagation simulation (FDTD method) and the refractive index is changed only for the liquid crystal layer 101.

図7より液晶層101の屈折率の小さい方が、反射率が高くなる傾向にある。これは、液晶層101の屈折率より、溝部の絶縁膜SiOの屈折率108がより大きくなることで屈折率差が生じ、溝部に発生したエバンネッセント光が溝内部に閉じこもり易くなって回折光が除々に減少して、反射率が向上することになる。   As shown in FIG. 7, the reflectance is higher when the refractive index of the liquid crystal layer 101 is smaller. This is because the refractive index difference of the insulating film SiO in the groove portion becomes larger than the refractive index of the liquid crystal layer 101, and the evanescent light generated in the groove portion is easily confined inside the groove. Will gradually decrease and the reflectivity will improve.

次に、本発明の液晶変調素子を用いた投影表示装置の実施形態を図8に基づき説明する。   Next, an embodiment of a projection display device using the liquid crystal modulation element of the present invention will be described with reference to FIG.

図8は投写型表示装置の実施形態を構成する主要な光学系の断面図である。   FIG. 8 is a cross-sectional view of main optical systems constituting the embodiment of the projection display apparatus.

不図示の外部ビデオ入力信号を液晶変調素子駆動信号に変換する液晶変調素子ドライバー303からのドライブ信号を図中の実線を介して反射型液晶素子からなるレッド用液晶変調素子3R、グリーン用液晶変調素子3G、ブルー用液晶変調素子2Bをそれぞれ独立制御し、一方、本発明の照明手段301(側面図を横に記している)からの紙面垂直方向に直線偏光偏波した照明光を、マゼンタ色を反射しグリーン色を透過するマゼンタグリーン波長帯域分離ダイクロイックミラー305によってまずマゼンタ色成分を偏向し、偏向されたマゼンタ色は、ブルー色の偏光に半波長のリタデーションを与えるブルークロスカラー偏光子311を通過して、紙面水平方向に直線偏光偏波したブルー色成分と、紙面垂直方向に直線偏光偏波したレッド色成分が作成され、次に、偏光ビームスプリッタ310に入射し、紙面水平方向に直線偏光偏波したブルー色成分は偏光分離膜をP偏光波のため透過して、ブルー用液晶変調素子3Bに導かれ、紙面垂直方向に直線偏光偏波したレッド色成分は偏光分離膜をS偏光波のため反射して、レッド用液晶変調素子3Rに導かれる。   A drive signal from a liquid crystal modulation element driver 303 that converts an external video input signal (not shown) into a liquid crystal modulation element drive signal is converted into a red liquid crystal modulation element 3R composed of a reflective liquid crystal element and a green liquid crystal modulation via a solid line in FIG. The element 3G and the blue liquid crystal modulation element 2B are independently controlled. On the other hand, illumination light linearly polarized and polarized in the direction perpendicular to the paper surface from the illumination means 301 of the present invention (side view is shown horizontally) is converted to magenta. The magenta green wavelength band separation dichroic mirror 305 that reflects the light and transmits the green color first deflects the magenta color component, and the deflected magenta color has a blue cross color polarizer 311 that gives half-wave retardation to the blue polarized light. The blue color component that has been linearly polarized and polarized in the horizontal direction of the paper and the label that has been linearly polarized and polarized in the vertical direction of the paper. Next, the blue color component that has entered the polarization beam splitter 310 and is linearly polarized and polarized in the horizontal direction of the paper passes through the polarization separation film for the P polarized wave, and enters the blue liquid crystal modulation element 3B. The red color component, which is guided and linearly polarized in the direction perpendicular to the paper surface, is reflected by the polarization separation film as an S-polarized wave and guided to the red liquid crystal modulation element 3R.

一方、マゼンタグリーン波長帯域分離ダイクロイックミラー305によって透過分離されたグリーン色成分は、光路長を補正するためのダミーガラス306を通過し、次に、偏光ビームスプリッタ307に入射し、紙面垂直方向に直線偏光偏波したグリーン色成分は偏光分離膜をS偏光波のため反射して、グリーン用液晶変調素子3Gに導かれるように構成されている。   On the other hand, the green color component transmitted and separated by the magenta green wavelength band separation dichroic mirror 305 passes through the dummy glass 306 for correcting the optical path length, and then enters the polarization beam splitter 307 and linearly extends in the direction perpendicular to the paper surface. The polarization-polarized green color component is reflected by the polarization splitting film due to the S-polarized wave and guided to the green liquid crystal modulation element 3G.

上記の照明構成で各レッド用液晶変調素子3R、グリーン用液晶変調素子3G、ブルー用液晶変調素子3Gは照明される。   With the above illumination configuration, each of the red liquid crystal modulation element 3R, the green liquid crystal modulation element 3G, and the blue liquid crystal modulation element 3G is illuminated.

一方、ビデオ信号に法って変調されたレッド用液晶変調素子3R、グリーン用液晶変調素子3G、ブルー用液晶変調素子3Gによって、各液晶変調素子3R、3G、3Bを照明する光は、各レッド用液晶変調素子3R、グリーン用液晶変調素子3G、ブルー用液晶変調素子3Gに配列された画素の変調状態に応じて偏光のリタデーションが付与され、照明光と同じ方向の偏光偏波成分は、照明光路を略引き返す光路を辿って光源ランプ側に戻り、照明光の偏波方向に対して直角方向の偏光偏波成分に関しては、レッド用液晶変調素子3Rによる変調光は偏光偏波方向が紙面水平方向となり、偏光ビームスプリッタ301の偏光分離膜をP偏光波のため透過して、次に、レッド色の偏光に半波長のリタデーションを与えるレッドクロスカラー偏光子312を通過して、紙面垂直方向に直線偏光偏波したレッド色成分に変換され、次に、偏光ビームスプリッタ308に入射し、紙面垂直方向に直線偏光偏波したレッド色成分は偏光分離膜をS偏光波のため反射して、投影光学系304の方向に偏向を受ける。   On the other hand, the light that illuminates each of the liquid crystal modulation elements 3R, 3G, and 3B by the red liquid crystal modulation element 3R, the green liquid crystal modulation element 3G, and the blue liquid crystal modulation element 3G modulated according to the video signal is red. Polarization retardation is given according to the modulation state of the pixels arranged in the liquid crystal modulation element 3R for green, the liquid crystal modulation element 3G for green, and the liquid crystal modulation element 3G for blue, and the polarization polarization component in the same direction as the illumination light Following the optical path that substantially returns the optical path, it returns to the light source lamp side, and with respect to the polarization polarization component perpendicular to the polarization direction of the illumination light, the polarization polarization direction of the modulated light by the liquid crystal modulation element 3R for red is horizontal in the drawing. The red cross-color polarization which passes through the polarization separation film of the polarization beam splitter 301 for the P-polarized wave and then gives half-wave retardation to the red polarized light. The red color component passing through the element 312 is converted into a red color component that is linearly polarized and polarized in the direction perpendicular to the plane of the paper, and then enters the polarization beam splitter 308 and the red color component that is linearly polarized and polarized in the direction perpendicular to the plane of the paper is converted into a polarization separation film. Is reflected by the S-polarized wave and is deflected in the direction of the projection optical system 304.

ブルー用液晶変調素子3Bによる変調光は偏光偏波方向が紙面垂直方向となり、偏光ビームスプリッタ310の偏光分離膜をS偏光波のため反射して、次に、レッド色の偏光に半波長のリタデーションを与えるレッドクロスカラー偏光子312を作用を受けずに通過して、次に、偏光ビームスプリッタ308に入射し、紙面垂直方向に直線偏光偏波したブルー色成分は偏光分離膜をS偏光波のため反射して、投影光学系304の方向に偏向を受ける。   The modulated light by the blue liquid crystal modulation element 3B has a polarization polarization direction perpendicular to the paper surface, reflects the polarization separation film of the polarization beam splitter 310 due to the S-polarized wave, and then half-wave retardation into red polarized light The blue color component that has passed through the red cross color polarizer 312 that gives the light and is incident on the polarization beam splitter 308 and linearly polarized in the direction perpendicular to the plane of the paper passes through the polarization separation film. Therefore, it is reflected and deflected in the direction of the projection optical system 304.

グリーン用液晶変調素子3Gによる変調光は偏光偏波方向が紙面水平方向となり、偏光ビームスプリッタ307の偏光分離膜をP偏光波のため透過して、次に、光路長を補正するためのダミーガラス309を通過し、次に、偏光ビームスプリッタ308に入射し、紙面水平方向に直線偏光偏波したグリーン色成分は偏光分離膜をP偏光波のため透過して、投影光学系304の方向に導かれる。ただし各レッド用液晶変調素子3R、グリーン用液晶変調素子3G、ブルー用液晶変調素子3Gにおける複数配された画素は各所定画素が相対的に所定精度を有して重なるように調整またはメカ的または電気的に補償されていることは言及するまでもない。次に、合波されたカラー色として変調された光はそのまま投影光学系304の入射瞳によって捕らえられ、各レッド用液晶変調素子3R、グリーン用液晶変調素子3G、ブルー用液晶変調素子3Gの光変調面と光拡散スクリーン313の光拡散面が投影光学系304によって光学的共役関係に配されているため、光拡散スクリーン313に転送されて、ビデオ信号に法った画像が光拡散スクリーン313に表示されるものである。   The light modulated by the green liquid crystal modulation element 3G has a polarization polarization direction horizontal to the paper surface, passes through the polarization separation film of the polarization beam splitter 307 for the P-polarized wave, and then is a dummy glass for correcting the optical path length. The green color component that has passed through 309 and then enters the polarization beam splitter 308 and linearly polarized and polarized in the horizontal direction on the paper passes through the polarization separation film as a P-polarized wave and is guided in the direction of the projection optical system 304. It is burned. However, a plurality of arranged pixels in each of the red liquid crystal modulation element 3R, the green liquid crystal modulation element 3G, and the blue liquid crystal modulation element 3G are adjusted or mechanically adjusted so that the predetermined pixels overlap with a predetermined accuracy. Needless to say, it is electrically compensated. Next, the light modulated as the combined color color is captured as it is by the entrance pupil of the projection optical system 304, and the light from each of the liquid crystal modulation element 3R for red, the liquid crystal modulation element 3G for green, and the liquid crystal modulation element 3G for blue. Since the modulation surface and the light diffusion surface of the light diffusion screen 313 are arranged in an optical conjugate relationship by the projection optical system 304, the image is transferred to the light diffusion screen 313 and an image based on the video signal is displayed on the light diffusion screen 313. It is what is displayed.

このとき、各々レッド用液晶変調素子3R、グリーン用液晶変調素子3G、ブルー用液晶変調素子2Bは、垂直配向モードの反射型液晶変調素子である。   At this time, the liquid crystal modulation element 3R for red, the liquid crystal modulation element 3G for green, and the liquid crystal modulation element 2B for blue are vertical alignment mode reflection type liquid crystal modulation elements.

101 液晶層、102 斜方蒸着膜、103 反射画素電極、104−a 絶縁層間膜、104−b 絶縁層間膜、105 吸収膜、106 吸収膜・絶縁層間膜、107 電極配線層、108 反射画素電極間の画素溝、109 反射画素電極のピッチ、110反射画素電極間の画素溝幅
101 liquid crystal layer, 102 oblique deposition film, 103 reflective pixel electrode, 104-a insulating interlayer film, 104-b insulating interlayer film, 105 absorbing film, 106 absorbing film / insulating interlayer film, 107 electrode wiring layer, 108 reflecting pixel electrode Between pixel grooves, 109 Reflection pixel electrode pitch, 110 Reflection pixel electrode width

Claims (5)

第1の基板と、第1の基板上に設けられた第1の対向電極と、第2の基板と、第2の基板上に設けられたマトリックス状に電極画素が配列した第2の対向電極との間に、
液晶層を介した反射型液晶変調素子であって、
隣接する前記画素電極の間には、溝部が設けられ、前記電極画素および前記溝部の下面には、層間絶縁膜が設けられており、更に、前記画素電極の間の溝部は、前記画素電極の上面から下面まで、絶縁膜で充填されており、前記溝部の絶縁膜の屈折率が、前記層間絶縁膜、かつ、前記液晶層の液晶分子の常光屈折率および異常光屈折率の平均値より大きいことを特徴とする反射型液晶変調素子。
A first substrate, a first counter electrode provided on the first substrate, a second substrate, and a second counter electrode in which electrode pixels are arranged in a matrix provided on the second substrate Between
A reflective liquid crystal modulation element through a liquid crystal layer,
A groove portion is provided between the adjacent pixel electrodes, an interlayer insulating film is provided on the lower surface of the electrode pixel and the groove portion, and a groove portion between the pixel electrodes is formed on the pixel electrode. Filled with an insulating film from the upper surface to the lower surface, the refractive index of the insulating film in the groove is greater than the average value of the ordinary refractive index and extraordinary light refractive index of the liquid crystal molecules of the interlayer insulating film and the liquid crystal layer A reflection-type liquid crystal modulation element.
前記溝部の絶縁膜の屈折率と、前記層間絶縁膜の屈折率との差および、前記溝部の絶縁膜の屈折率と、前記液晶層の液晶分子の常光屈折率と異常光屈折率との平均屈折率との差が、共に、0.2以上であることを特徴とする請求項1に記載の反射型液晶変調素子。 The difference between the refractive index of the insulating film in the groove and the refractive index of the interlayer insulating film, and the average of the refractive index of the insulating film in the groove and the ordinary and extraordinary refractive indices of the liquid crystal molecules in the liquid crystal layer The reflection type liquid crystal modulation element according to claim 1, wherein the difference from the refractive index is 0.2 or more. 前記電極画素の溝部の幅および、厚みは、可視光の最大波長帯域750nm以下の構造体であることを特徴とする請求項1又は請求項2に記載の反射型液晶変調素子。 3. The reflective liquid crystal modulation element according to claim 1, wherein a width and a thickness of the groove portion of the electrode pixel are structures having a maximum wavelength band of visible light of 750 nm or less. 前記層間絶縁膜の屈折率が1.2〜1.8であり、前記液晶層の液晶分子の常光屈折率および異常光屈折率が1.2〜1.8であることを特徴とする請求項1乃至請求項3の何れか1項に記載の反射型液晶変調素子。 The refractive index of the interlayer insulating film is 1.2 to 1.8, and the ordinary refractive index and extraordinary refractive index of liquid crystal molecules of the liquid crystal layer are 1.2 to 1.8. The reflective liquid crystal modulation element according to any one of claims 1 to 3. 光源と、光源の光を前記反射型液晶変調素子に照明するための照明光学系と、前記反射型液晶変調素子からの光を拡大投影するための投射レンズ系と、請求項1乃至請求項4の何れか1項に記載の反射型液晶変調素子とから構成される投射型液晶表示装置。
5. A light source, an illumination optical system for illuminating the reflection type liquid crystal modulation element with light from the light source, a projection lens system for enlarging and projecting light from the reflection type liquid crystal modulation element, and claims 1 to 4. A projection type liquid crystal display device comprising the reflective liquid crystal modulation element according to claim 1.
JP2012182435A 2012-08-21 2012-08-21 Reflection type liquid crystal modulation element Pending JP2014041192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012182435A JP2014041192A (en) 2012-08-21 2012-08-21 Reflection type liquid crystal modulation element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012182435A JP2014041192A (en) 2012-08-21 2012-08-21 Reflection type liquid crystal modulation element

Publications (1)

Publication Number Publication Date
JP2014041192A true JP2014041192A (en) 2014-03-06

Family

ID=50393502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012182435A Pending JP2014041192A (en) 2012-08-21 2012-08-21 Reflection type liquid crystal modulation element

Country Status (1)

Country Link
JP (1) JP2014041192A (en)

Similar Documents

Publication Publication Date Title
KR100448046B1 (en) Reflective type fringe field swiching mode lcd
KR960002308B1 (en) Polarizer and light valve image projector having the polarizer
KR101135868B1 (en) Mirror with built-in display
US20060098283A1 (en) Polarization beam splitter and liquid crystal projector apparatus
WO2015093077A1 (en) Liquid-crystal display for heads-up display, and heads-up display
JPH11143404A (en) Reflection type liquid crystal display device and projection type liquid crystal display device using the same
JP2005156717A (en) Liquid crystal display element and liquid crystal display device
JP5737037B2 (en) Electro-optical device and projection display device
US20130100376A1 (en) Liquid crystal device, electronic apparatus, and projection type display apparatus
US6328447B1 (en) Projection device
JP3791377B2 (en) Liquid crystal display element and display device using the same
JP5737854B2 (en) Liquid crystal display
JP3554520B2 (en) Image display device
US9383602B2 (en) Liquid crystal device with antireflective structure and electronic apparatus
JP3490886B2 (en) Projection type image display device
JP2012198457A (en) Projector
JP2013015815A (en) Projection type display device and optical unit
JP4029786B2 (en) Liquid crystal display element and liquid crystal display device
JP4707270B2 (en) Image projection device
KR100401106B1 (en) Apparatus for projection display by using reflective LCD
WO2004092814A1 (en) Liquid crystal display
JP3758612B2 (en) Reflective liquid crystal display device, display device, projection optical system, and projection display system
JP2014041192A (en) Reflection type liquid crystal modulation element
JP2006276622A (en) Liquid crystal device, method for manufacturing same, and projection display device
JP2013007953A (en) Image display unit and method for adjusting voltage applied thereto