JP2014040539A - Fluororesin particles - Google Patents

Fluororesin particles Download PDF

Info

Publication number
JP2014040539A
JP2014040539A JP2012184195A JP2012184195A JP2014040539A JP 2014040539 A JP2014040539 A JP 2014040539A JP 2012184195 A JP2012184195 A JP 2012184195A JP 2012184195 A JP2012184195 A JP 2012184195A JP 2014040539 A JP2014040539 A JP 2014040539A
Authority
JP
Japan
Prior art keywords
liquid
raw material
fluororesin
nozzle
superheated steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012184195A
Other languages
Japanese (ja)
Inventor
Tomohiko Hashiba
智彦 羽柴
Atsushi Shono
厚 庄野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WINGTURF Co Ltd
Original Assignee
WINGTURF Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WINGTURF Co Ltd filed Critical WINGTURF Co Ltd
Priority to JP2012184195A priority Critical patent/JP2014040539A/en
Priority to PCT/JP2013/072402 priority patent/WO2014030695A1/en
Publication of JP2014040539A publication Critical patent/JP2014040539A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/26Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with means for mechanically breaking-up or deflecting the jet after discharge, e.g. with fixed deflectors; Breaking-up the discharged liquid or other fluent material by impinging jets
    • B05B1/262Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with means for mechanically breaking-up or deflecting the jet after discharge, e.g. with fixed deflectors; Breaking-up the discharged liquid or other fluent material by impinging jets with fixed deflectors
    • B05B1/265Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with means for mechanically breaking-up or deflecting the jet after discharge, e.g. with fixed deflectors; Breaking-up the discharged liquid or other fluent material by impinging jets with fixed deflectors the liquid or other fluent material being symmetrically deflected about the axis of the nozzle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/34Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl
    • B05B1/3405Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl
    • B05B1/341Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet
    • B05B1/3421Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with channels emerging substantially tangentially in the swirl chamber
    • B05B1/3426Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with channels emerging substantially tangentially in the swirl chamber the channels emerging in the swirl chamber perpendicularly to the outlet axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/34Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl
    • B05B1/3405Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl
    • B05B1/341Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet
    • B05B1/3421Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with channels emerging substantially tangentially in the swirl chamber
    • B05B1/3431Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with channels emerging substantially tangentially in the swirl chamber the channels being formed at the interface of cooperating elements, e.g. by means of grooves
    • B05B1/3442Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with channels emerging substantially tangentially in the swirl chamber the channels being formed at the interface of cooperating elements, e.g. by means of grooves the interface being a cone having the same axis as the outlet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/08Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means
    • B05B12/085Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means responsive to flow or pressure of liquid or other fluent material to be discharged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/08Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means
    • B05B12/10Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means responsive to temperature or viscosity of liquid or other fluent material discharged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/0012Apparatus for achieving spraying before discharge from the apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • B05B7/0441Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber
    • B05B7/0458Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber the gas and liquid flows being perpendicular just upstream the mixing chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/10Spray pistols; Apparatus for discharge producing a swirling discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/1606Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air
    • B05B7/1613Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air comprising means for heating the atomising fluid before mixing with the material to be sprayed
    • B05B7/162Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air comprising means for heating the atomising fluid before mixing with the material to be sprayed and heat being transferred from the atomising fluid to the material to be sprayed
    • B05B7/1626Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air comprising means for heating the atomising fluid before mixing with the material to be sprayed and heat being transferred from the atomising fluid to the material to be sprayed at the moment of mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/24Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas with means, e.g. a container, for supplying liquid or other fluent material to a discharge device
    • B05B7/2489Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas with means, e.g. a container, for supplying liquid or other fluent material to a discharge device an atomising fluid, e.g. a gas, being supplied to the discharge device
    • B05B7/2491Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas with means, e.g. a container, for supplying liquid or other fluent material to a discharge device an atomising fluid, e.g. a gas, being supplied to the discharge device characterised by the means for producing or supplying the atomising fluid, e.g. air hoses, air pumps, gas containers, compressors, fans, ventilators, their drives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/122Pulverisation by spraying
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/124Treatment for improving the free-flowing characteristics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • B05B7/0441Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber
    • B05B7/0475Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber with means for deflecting the peripheral gas flow towards the central liquid flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/1693Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed with means for heating the material to be sprayed or an atomizing fluid in a supply hose or the like
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene

Abstract

PROBLEM TO BE SOLVED: To provide nano-sized fluororesin particles which have a very low coefficient of friction.SOLUTION: Fluororesin particles which have a mean particle diameter of 10 to 300 nm and a coefficient of friction of less than 0.04 can be obtained by discharging a suspension of a fluororesin in a solvent while pulverizing and atomizing the discharged flow with a superheated vapor.

Description

本発明は、摩擦係数の低いフッ素樹脂粒子に関する。   The present invention relates to fluororesin particles having a low friction coefficient.

フッ素樹脂は、一般に、耐薬品性、非粘着性、低摩擦特性を有することから、さまざまな用途に使用されている。フッ素樹脂を微粒化できれば、さらなる用途開発が期待できる。   Fluororesin is generally used in various applications because it has chemical resistance, non-adhesiveness, and low friction characteristics. If the fluororesin can be atomized, further application development can be expected.

フッ素樹脂粒子として、例えば、モノマー混合液に電離性放射線を照射しモノマーを重合することにより得られたポリテトラフルオロエチレン微粉末(特許文献1)、コロイド状ポリテトラフルオロエチレン水性分散体を、凝析、乾燥することによって得られる未焼成ポリテトラフルオロエチレンを、フッ素ラジカル源と反応させることによって製造されたポリテトラフルオロエチレン(特許文献2)が知られている。   As the fluororesin particles, for example, a polytetrafluoroethylene fine powder (Patent Document 1) obtained by irradiating a monomer mixture with ionizing radiation and polymerizing the monomer, a colloidal polytetrafluoroethylene aqueous dispersion, Known is polytetrafluoroethylene produced by reacting green polytetrafluoroethylene obtained by precipitation and drying with a fluorine radical source (Patent Document 2).

しかし、特許文献1では、電離性放射線を照射する必要があり、特許文献2では、複数の工程が必要であり、いずれも操作が煩雑である。また、特許文献1の方法で得られる微粉末は、平均粒径が0.5μm程度、特許文献2の方法で得られる微粉末は、1〜30μmの平均粒径であり、微粒化が不十分である。   However, in patent document 1, it is necessary to irradiate ionizing radiation, and in patent document 2, a plurality of processes are necessary, and the operation is complicated. Moreover, the fine powder obtained by the method of Patent Document 1 has an average particle size of about 0.5 μm, and the fine powder obtained by the method of Patent Document 2 has an average particle size of 1 to 30 μm, and the atomization is insufficient. It is.

特開2000−026614号公報Japanese Unexamined Patent Publication No. 2000-026614 特開平10−147617号公報Japanese Patent Laid-Open No. 10-147617

本発明が解決しようとする課題は、ナノサイズでかつ、摩擦係数の非常に小さいフッ素樹脂粒子を提供することにある。   The problem to be solved by the present invention is to provide fluororesin particles that are nano-sized and have a very small coefficient of friction.

本発明者は、鋭意研究を行った結果、ナノサイズでかつ、摩擦係数の非常に小さいフッ素系ポリマー微粒子を調製することができることを見出し、本発明を完成した。   As a result of intensive studies, the present inventor has found that fluoropolymer fine particles having a nano size and a very small friction coefficient can be prepared, and the present invention has been completed.

すなわち、請求項1の発明は、平均粒径が、10〜300nmであり、摩擦係数が0.04未満であることを特徴とする。   That is, the invention of claim 1 is characterized in that the average particle size is 10 to 300 nm and the friction coefficient is less than 0.04.

請求項2の発明は、請求項1の発明において、フッ素樹脂を溶媒に懸濁させた液を吐出しつつ、当該吐出流を過熱蒸気により破砕し、微細化することにより製造されることを特徴とする。   Invention of Claim 2 is manufactured by crushing the discharge flow by superheated steam and making it fine, while discharging the liquid which suspended the fluororesin in the solvent in Invention of Claim 1. And

本発明に係る微粒子は、ナノサイズでかつ、摩擦係数が非常に小さい。   The fine particles according to the present invention are nano-sized and have a very small friction coefficient.

図1は、本発明にかかる微粒子の製造方法を実施するための好適な製造装置100を示すブロック図である。FIG. 1 is a block diagram showing a preferred production apparatus 100 for carrying out the fine particle production method according to the present invention. 図2は、製造装置100におけるノズル160を説明する図であり、図2(a)はその平面図、図2(b)はその断面図である。2A and 2B are diagrams illustrating the nozzle 160 in the manufacturing apparatus 100. FIG. 2A is a plan view thereof, and FIG. 2B is a cross-sectional view thereof. 図3は、製造装置100におけるノズル160を説明するための正面図である。FIG. 3 is a front view for explaining the nozzle 160 in the manufacturing apparatus 100. 図4は、製造装置100における制御装置の構成例を示すブロック図である。FIG. 4 is a block diagram illustrating a configuration example of a control device in the manufacturing apparatus 100. 図5は、実施例で得られたポリテトラフルオロエチレン粒子のSEM画像である。FIG. 5 is an SEM image of the polytetrafluoroethylene particles obtained in the example. 図6は、ミキサーで処理する前のポリテトラフルオロエチレンのSEM画像である。FIG. 6 is an SEM image of polytetrafluoroethylene before being processed by a mixer. 図7は、実施例で得られたポリテトラフルオロエチレン粒子の摩擦係数の測定結果である。FIG. 7 shows the measurement results of the coefficient of friction of the polytetrafluoroethylene particles obtained in the examples.

以下、本発明を、実施形態に即して詳細に説明する。   Hereinafter, the present invention will be described in detail according to embodiments.

本実施形態に係るフッ素樹脂粒子において、フッ素樹脂としては、特に制限されないが、具体的には、ポリテトラフルオロエチレン、ポリフッ化ビニリデン(PVDF)、ポリクロロトリフルオロエチレン、ポリフッ化ビニル、ペルフルオロアルコキシフッ素樹脂、四フッ化エチレン・六フッ化プロピレン共重合体、エチレン・四フッ化エチレン共重合体等が挙げられる。好ましくは、ポリテトラフルオロエチレンである。これらのフッ素樹脂は通常公知の重合方法により製造できる。例えば、ポリテトラフルオロエチレンであれば、テトラフルオロエチレンの付加重合により製造できる。   In the fluororesin particles according to the present embodiment, the fluororesin is not particularly limited, and specifically, polytetrafluoroethylene, polyvinylidene fluoride (PVDF), polychlorotrifluoroethylene, polyvinyl fluoride, perfluoroalkoxy fluorine. Examples thereof include a resin, a tetrafluoroethylene / hexafluoropropylene copolymer, and an ethylene / tetrafluoroethylene copolymer. Preferably, it is polytetrafluoroethylene. These fluororesins can be usually produced by a known polymerization method. For example, polytetrafluoroethylene can be produced by addition polymerization of tetrafluoroethylene.

本実施形態に係るフッ素樹脂粒子の平均粒径は、10〜300nm、好ましくは20〜200nm、より好ましくは50〜100nmである。また、一次粒径は、10〜200nm、好ましくは20〜50nmである。また、本実施形態に係るフッ素樹脂粒子の摩擦係数は0.04未満、好ましくは0.01未満、より好ましくは0.008未満である。   The average particle diameter of the fluororesin particles according to the present embodiment is 10 to 300 nm, preferably 20 to 200 nm, more preferably 50 to 100 nm. The primary particle size is 10 to 200 nm, preferably 20 to 50 nm. Moreover, the friction coefficient of the fluororesin particles according to the present embodiment is less than 0.04, preferably less than 0.01, and more preferably less than 0.008.

本実施形態に係るフッ素系樹脂粒子の融点は、特に制限されないが、310〜340℃、好ましくは320〜330℃である。なお、融点はDSCで測定したものである。   The melting point of the fluororesin particles according to the present embodiment is not particularly limited, but is 310 to 340 ° C, preferably 320 to 330 ° C. The melting point is measured by DSC.

本実施形態に係るフッ素系樹脂の数平均分子量は、特に制限されないが、50万〜3000万が好ましい。   The number average molecular weight of the fluororesin according to the present embodiment is not particularly limited, but is preferably 500,000 to 30 million.

本実施形態に係るフッ素樹脂粒子の製造方法は、フッ素樹脂を溶媒に懸濁させた液を吐出しつつ、当該吐出流を過熱蒸気により破砕し、微細化することを特徴とする。例えば、フッ素樹脂を溶媒に懸濁させた液を吐出させる液体吐出口と、液体吐出口からの吐出流を一括破砕し微細化すべく、過熱蒸気を噴射する気体噴射口を備えたノズルが使用される。液体吐出口及び気体噴射口の形状は、特に制限されないが、円形であるのが好ましい。また、気体噴射口は、液体吐出口の周囲に形成されているのがよい。   The method for producing fluororesin particles according to the present embodiment is characterized in that the discharge flow is crushed with superheated steam and is refined while discharging a liquid in which the fluororesin is suspended in a solvent. For example, a nozzle having a liquid discharge port for discharging a liquid in which a fluororesin is suspended in a solvent and a gas injection port for injecting superheated steam is used in order to crush and refine the discharge flow from the liquid discharge port. The The shapes of the liquid discharge port and the gas injection port are not particularly limited, but are preferably circular. Further, the gas injection port is preferably formed around the liquid discharge port.

使用される溶媒は、有機溶媒、水またはそれらの混合溶媒が好ましい。具体的には、メタノール、エタノール、2-プロパノール等のアルコール類、ジエチルエーテル、ジメトキシエタン、テトラヒドロフラン、ジオキサン等のエーテル類、ヘキサン、シクロヘキサン、ヘプタン等の脂肪族炭化水素類、ベンゼン、トルエン等の芳香族炭化水素類、塩化メチレン、クロロホルム等のハロゲン化合物、アセトン、メチルエチルケトン、ジエチルケトン、メチルイソブチルケトン、メチルイソプロピルケトン、シクロヘキサノン等のケトン類、酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類、アセトニトリル、ベンゾニトリル等のニトリル類、N,N−ジメチルホルムアミド等のアミド類、ハイドロフルオロエーテル等のフッ素系溶剤、水またはこれらの混合溶媒である。   The solvent used is preferably an organic solvent, water or a mixed solvent thereof. Specifically, alcohols such as methanol, ethanol and 2-propanol, ethers such as diethyl ether, dimethoxyethane, tetrahydrofuran and dioxane, aliphatic hydrocarbons such as hexane, cyclohexane and heptane, and aromatics such as benzene and toluene Group hydrocarbons, halogen compounds such as methylene chloride and chloroform, ketones such as acetone, methyl ethyl ketone, diethyl ketone, methyl isobutyl ketone, methyl isopropyl ketone and cyclohexanone, esters such as methyl acetate, ethyl acetate and butyl acetate, acetonitrile, Nitriles such as benzonitrile, amides such as N, N-dimethylformamide, fluorine-based solvents such as hydrofluoroether, water, or a mixed solvent thereof.

また、使用される溶剤は、シリコーンオイル、炭化水素油、フッ素油、ワックス、及び動植物油等のオイル類でもよい。具体的には、炭化水素油として、イソパラフィン、流動パラフィン、スクワランが挙げられる。また、植物油として、オリーブ油、ゴマ油、大豆油が挙げられる。特に、食用植物油であれば、安全性が高く取り扱いやすい。   The solvent used may be oils such as silicone oil, hydrocarbon oil, fluorine oil, wax, and animal and vegetable oils. Specifically, examples of the hydrocarbon oil include isoparaffin, liquid paraffin, and squalane. Examples of vegetable oils include olive oil, sesame oil, and soybean oil. In particular, edible vegetable oil is safe and easy to handle.

以下では、本実施形態に係る微粒子の製造方法を実施するための好適な製造装置の一例を、図面を参照しつつ詳細に説明する。   Below, an example of the suitable manufacturing apparatus for enforcing the manufacturing method of microparticles | fine-particles which concerns on this embodiment is demonstrated in detail, referring drawings.

図1は、本実施形態に係る微粒子の製造方法を実施するための好適な製造装置の形態例を示すブロック図である。   FIG. 1 is a block diagram showing an example of a preferred production apparatus for carrying out the method for producing fine particles according to the present embodiment.

製造装置100は、原料供給系110とノズル160と流れ阻止体(バッフルボード)190を備えている。   The manufacturing apparatus 100 includes a raw material supply system 110, a nozzle 160, and a flow blocking body (baffle board) 190.

原料供給系110は、原料槽111を備えている。原料槽111は、密閉可能な耐圧容器である。原料槽111は、原料液112を注入した後に密閉される。原料槽111内の底部には、原料液112を撹拌する回転翼を備えた撹拌装置113が設けられている。   The raw material supply system 110 includes a raw material tank 111. The raw material tank 111 is a pressure-resistant container that can be sealed. The raw material tank 111 is sealed after injecting the raw material liquid 112. At the bottom of the raw material tank 111, a stirrer 113 having a rotary blade for stirring the raw material liquid 112 is provided.

原料槽111には、原料給送管121が接続されている。原料給送管121の入口121iは、原料槽111の内底面付近に配置されている。原料給送管121の入口121iには、ストレーナ122が取付けられている。原料給送管121の出口121oは、ノズル160の液体供給口151に接続されている。原料給送管121の中間部には、上流側から下流側に向って順に、送液ポンプ123、流量調節のための電磁弁124が介設されている。   A raw material feed pipe 121 is connected to the raw material tank 111. The inlet 121 i of the raw material feed pipe 121 is disposed near the inner bottom surface of the raw material tank 111. A strainer 122 is attached to the inlet 121 i of the raw material feed pipe 121. The outlet 121o of the raw material feed pipe 121 is connected to the liquid supply port 151 of the nozzle 160. A liquid feed pump 123 and an electromagnetic valve 124 for adjusting the flow rate are provided in the intermediate portion of the raw material feed pipe 121 in order from the upstream side to the downstream side.

過熱器131は過熱蒸気を発生させるためのものである。過熱器131から吐出された過熱蒸気は、気体供給管132に送られる。気体供給管132はノズル160に過熱蒸気を導入するための配管である。気体供給管132に供給された過熱蒸気は、過熱蒸気リザーバ135に蓄えられる。過熱蒸気リザーバ135に蓄えられた過熱蒸気は、所定の圧力に調整されてノズル160に導入される。なお、気体供給管132の周囲には、過熱蒸気の温度を保持するために、断熱材を設けてもよい。   The superheater 131 is for generating superheated steam. The superheated steam discharged from the superheater 131 is sent to the gas supply pipe 132. The gas supply pipe 132 is a pipe for introducing superheated steam into the nozzle 160. The superheated steam supplied to the gas supply pipe 132 is stored in the superheated steam reservoir 135. The superheated steam stored in the superheated steam reservoir 135 is adjusted to a predetermined pressure and introduced into the nozzle 160. A heat insulating material may be provided around the gas supply pipe 132 in order to maintain the temperature of the superheated steam.

ノズル160の気体供給口152には、気体供給管132が接続されている。気体供給管132の途中には、上流側から下流側に向って順に、電磁弁133、圧力センサ134、過熱蒸気リザーバ135および電磁弁136が設けられている。圧力センサ134は、過熱蒸気リザーバ135内の気圧を検出するためのセンサである。圧縮気体リザーバ135には、ヒーターH1が備えられ、過熱蒸気の温度を検出するための温度センサ137が設けられている。なお、圧縮気体リザーバ135の周囲には、過熱蒸気の温度を保持するために、断熱材を設けてもよい。   A gas supply pipe 132 is connected to the gas supply port 152 of the nozzle 160. In the middle of the gas supply pipe 132, an electromagnetic valve 133, a pressure sensor 134, a superheated steam reservoir 135, and an electromagnetic valve 136 are provided in order from the upstream side to the downstream side. The pressure sensor 134 is a sensor for detecting the atmospheric pressure in the superheated steam reservoir 135. The compressed gas reservoir 135 is provided with a heater H1 and a temperature sensor 137 for detecting the temperature of the superheated steam. A heat insulating material may be provided around the compressed gas reservoir 135 in order to maintain the temperature of the superheated steam.

ノズル160の先端部分には、液体供給口151に連通している液体吐出口161と、気体供給口152に連通している気体噴射口162が設けられている。気体噴射口162は液体吐出口161の周囲に形成されている。   A liquid discharge port 161 that communicates with the liquid supply port 151 and a gas ejection port 162 that communicates with the gas supply port 152 are provided at the tip of the nozzle 160. The gas injection port 162 is formed around the liquid discharge port 161.

ノズル160の下方近傍には、ステンレス鋼製の流れ阻止体190が設けられている。流れ阻止体190は、上方に縮径した円錐形状の部材である。流れ阻止体190の先端(上端)は、ノズル160の液体吐出口161に対向している。ノズル160と流れ阻止体190は、直円筒体内のタンク125に共に収容され、タンク125の内壁に連結されて保持されている。タンク125には、ノズル先端の温度を検出するための温度センサが設けられている。   A stainless steel flow blocking body 190 is provided in the vicinity of the lower portion of the nozzle 160. The flow blocking body 190 is a conical member having a diameter reduced upward. The front end (upper end) of the flow blocking body 190 faces the liquid discharge port 161 of the nozzle 160. The nozzle 160 and the flow blocking body 190 are housed together in a tank 125 in a right cylindrical body, and are connected to and held by the inner wall of the tank 125. The tank 125 is provided with a temperature sensor for detecting the temperature of the nozzle tip.

ノズル160の液体供給口151に供給された原料液112は、液体吐出口161から吐出される。ノズル160の前方(図においては下方)には、気体噴射口162から噴出された気体の高速渦流が形成されている。吐出された原料液112はこの高速渦流によって微粒子状(霧状)に破砕される。微粒子状に破砕された原料液112の直後の流れは、流れ阻止体190に衝突する。その結果、微粒子状に破砕された溶液が、流れ阻止体190上で再液化(霧状の液滴同士が再凝集)し、流動体が均一になった状態の処理液124が生成される。処理液124は、流れ阻止体190の表面を伝って流下し、流れ阻止体190の下端から流れ落ち、回収容器126内に溜まる。回収容器126は、タンク127に収容されている。タンク127の上端には、排出口128が設けられている。流れ阻止体190上で再液化せずに気化した溶剤は、排出口128から排出される。   The raw material liquid 112 supplied to the liquid supply port 151 of the nozzle 160 is discharged from the liquid discharge port 161. In front of the nozzle 160 (downward in the figure), a high-speed vortex of the gas ejected from the gas ejection port 162 is formed. The discharged raw material liquid 112 is crushed into fine particles (mist) by the high-speed vortex. The flow immediately after the raw material liquid 112 crushed into fine particles collides with the flow blocking body 190. As a result, the solution crushed into fine particles is liquefied on the flow blocking body 190 (the mist-like droplets are re-aggregated), and the treatment liquid 124 in a state where the fluid is uniform is generated. The processing liquid 124 flows down along the surface of the flow blocking body 190, flows down from the lower end of the flow blocking body 190, and accumulates in the recovery container 126. The collection container 126 is accommodated in the tank 127. A discharge port 128 is provided at the upper end of the tank 127. The solvent evaporated without being reliquefied on the flow blocking body 190 is discharged from the discharge port 128.

次に、図2〜図4を参照してノズル160の構造について説明する。   Next, the structure of the nozzle 160 will be described with reference to FIGS.

ノズル160は、略円筒状の中空のケーシング160Aと、ケーシング160Aの内部に挿入されてねじ込まれた略円筒状の中子160Bとを備えている。   The nozzle 160 includes a substantially cylindrical hollow casing 160A and a substantially cylindrical core 160B inserted into the casing 160A and screwed therein.

ケーシング160Aは、ステンレス鋼や黄銅などの金属材料又は樹脂製材料を機械加工することにより作製された部材である。ケーシング160Aの先端には、円形の開口部163が形成されている。開口部163の中心は、ノズル160の中心軸線Aと中心が一致している。この開口部163の先端縁が気体噴射口162の外側輪郭を形成している。ケーシング160Aの側面には、気体供給口152が穿設されている。気体供給口152の内周面には雌ネジ溝が切られていて、気体供給管136が螺入して結合されている。ケーシング160Aの内面の基端側には雌ネジ溝166が形成されている。雌ネジ溝166よりさらに基端側にはやや内径の大きくなった段差部167が形成されている。また、ケーシング160Aの先端近傍の外面には、雄ネジ溝168が形成されている。雄ネジ溝168は、ノズル160を取付けるためのナット169を螺着できるようになっている。   The casing 160A is a member produced by machining a metal material such as stainless steel or brass, or a resin material. A circular opening 163 is formed at the tip of the casing 160A. The center of the opening 163 coincides with the center axis A of the nozzle 160. The leading edge of the opening 163 forms the outer contour of the gas injection port 162. A gas supply port 152 is formed in the side surface of the casing 160A. A female screw groove is cut in the inner peripheral surface of the gas supply port 152, and a gas supply pipe 136 is screwed and coupled. A female thread groove 166 is formed on the base end side of the inner surface of the casing 160A. A stepped portion 167 having a slightly larger inner diameter is formed on the base end side further than the female screw groove 166. A male screw groove 168 is formed on the outer surface near the tip of the casing 160A. The male thread groove 168 can be screwed with a nut 169 for attaching the nozzle 160.

中子160Bは、前述のケーシング160Aと同一の又は異なる金属材料を機械加工して作製されている。中子160Bは、ケーシング160Aの中心軸線Aに沿って内部がくり抜かれて中空になっている。また、中子160Bの直胴部分の外径寸法はケーシング160Aの内径寸法よりもやや小さく選定されている。このため、中子160Bの外面とケーシング160Aの内面との間において、円筒状の空間170が形成されている。この空間170は、ケーシング160Aに設けられた気体供給口152に連通している。中子160Bの基端部よりもやや先端側の外周には、雄ネジ溝171が切られている。雄ネジ溝171は、前述の雌ネジ溝166に螺合される。螺合されることにより、中子160Bがケーシング160Aの内部に固定される。また、雌ネジ溝171よりもさらに基端側の部分はやや大径になっていて、前述の段差部167との間にてO−リングシール172を挟持している。O−リングシール172を設けることにより、前述の空間170の気密性を確保している。   The core 160B is manufactured by machining the same or different metal material as the casing 160A. The core 160B is hollow by hollowing out the inside along the central axis A of the casing 160A. Further, the outer diameter dimension of the straight body portion of the core 160B is selected to be slightly smaller than the inner diameter dimension of the casing 160A. For this reason, a cylindrical space 170 is formed between the outer surface of the core 160B and the inner surface of the casing 160A. This space 170 communicates with a gas supply port 152 provided in the casing 160A. A male screw groove 171 is cut on the outer periphery slightly distal to the base end of the core 160B. The male screw groove 171 is screwed into the female screw groove 166 described above. By being screwed together, the core 160B is fixed inside the casing 160A. Further, the portion on the proximal end side from the female screw groove 171 has a slightly larger diameter, and the O-ring seal 172 is sandwiched between the stepped portion 167 described above. By providing the O-ring seal 172, the airtightness of the space 170 is ensured.

中子160Bの基端部には液体供給口151が形成されている。液体供給口151の内周部には雌ネジ溝が切られており、原料給送管121の先端部が螺入して結合されている。中子160Bの先端部には、液体供給口151から内部の中空空間を通って連通した液体吐出口161が開口している。中子160Bの先端部の略円錐形状の膨大部分は、スパイラル形成体176を成している。そして、スパイラル形成体176の先端面とケーシング160Aの先端の内面との間には渦流室177が形成されている。渦流室177を構成している中子160Bの先端端面178は、前述のケーシング160Aの開口部163との間に隙間を有している。この隙間が気体噴射口162を構成する。   A liquid supply port 151 is formed at the base end of the core 160B. A female screw groove is cut in the inner peripheral portion of the liquid supply port 151, and the distal end portion of the raw material feed pipe 121 is screwed and coupled. A liquid discharge port 161 communicating from the liquid supply port 151 through the internal hollow space is opened at the tip of the core 160B. The enormous conical portion at the tip of the core 160B forms a spiral forming body 176. A vortex chamber 177 is formed between the front end surface of the spiral forming body 176 and the inner surface of the front end of the casing 160A. The tip end surface 178 of the core 160B constituting the vortex chamber 177 has a gap with the opening 163 of the casing 160A described above. This gap constitutes the gas injection port 162.

図3に示すノズル160の正面図を参照すると、中心に円形の液体吐出口161が配置され、その周囲に環状の気体噴射口162が配置されている。この気体噴射口162は、複数本の旋回溝179に連通している。旋回溝179は、スパイラル形成体176の円錐面に形成され、渦巻状に延在している。   Referring to the front view of the nozzle 160 shown in FIG. 3, a circular liquid discharge port 161 is arranged at the center, and an annular gas injection port 162 is arranged around it. The gas injection port 162 communicates with a plurality of turning grooves 179. The turning groove 179 is formed on the conical surface of the spiral forming body 176, and extends in a spiral shape.

気体供給口152から供給された過熱蒸気は、空間170を通過して、断面積の小さい旋回溝179を通り抜ける際に圧縮されて高速気流となる。この高速気流は、渦流室177の内部で渦状の旋回気流となる。この旋回気流は、絞られた円環状の気体噴射口162から噴射されて、ノズル160の前方に気体の高速渦流を形成する。この渦流は、ケーシング160Aの先端に近接した前方位置を焦点とするような先細りの円錐形に形成される。   The superheated steam supplied from the gas supply port 152 passes through the space 170 and is compressed when passing through the swirling groove 179 having a small cross-sectional area to become a high-speed airflow. This high-speed airflow becomes a swirling swirl airflow inside the vortex chamber 177. The swirling airflow is ejected from the constricted annular gas ejection port 162 to form a high-speed vortex of gas in front of the nozzle 160. This vortex is formed in a tapered conical shape with the front position close to the tip of the casing 160A as a focal point.

第一の原料槽111から送出された原料液112は、原料給送管121を通して液体供給口151に供給される。液体供給口151に供給された原料液112は、液体吐出口161から吐出される。そして、気体噴射口162から噴射された気体の高速渦流によって、それらの吐出流が同時に微粒子に破砕され、渦流の回転に伴って強制的に混合される。そして、それらが均一に分散した霧状の微粒子群としてノズル160の前方へ向けて放出される。   The raw material liquid 112 sent out from the first raw material tank 111 is supplied to the liquid supply port 151 through the raw material supply pipe 121. The raw material liquid 112 supplied to the liquid supply port 151 is discharged from the liquid discharge port 161. Then, by the high-speed vortex flow of the gas injected from the gas injection port 162, these discharge flows are simultaneously crushed into fine particles and are forcibly mixed with the rotation of the vortex flow. And they are discharged toward the front of the nozzle 160 as a group of atomized fine particles in which they are uniformly dispersed.

製造装置100は、図4に示す制御装置180により制御される。制御装置180は、MPU181と、ROM182と、RAM183と、インタフェースユニット184と、A/Dコンバータ185と、駆動ユニット186とを内蔵していて、これらはバスライン187を介して相互に接続されている。ROM182には、MPU181が実行するプログラムが格納されている。RAM183は、MPU181がプログラムを実行する際の作業領域等に使用される。インタフェースユニット184の出力ポートには、CRTなどの表示装置188が接続されている。インタフェースユニット184の入力ポートには、キーボードなどの入力装置189が接続されている。   The manufacturing apparatus 100 is controlled by the control apparatus 180 shown in FIG. The control device 180 includes an MPU 181, a ROM 182, a RAM 183, an interface unit 184, an A / D converter 185, and a drive unit 186, which are connected to each other via a bus line 187. . The ROM 182 stores a program executed by the MPU 181. The RAM 183 is used as a work area when the MPU 181 executes a program. A display device 188 such as a CRT is connected to the output port of the interface unit 184. An input device 189 such as a keyboard is connected to the input port of the interface unit 184.

A/Dコンバータ185の入力には、製造装置100の圧力センサ134が接続されている。これらのセンサにより検出された圧力のアナログ値をデジタル値に変換する。そして、デジタル値に変換された圧力の値はバスライン187を経由してMPU181によって読み取られる。   The pressure sensor 134 of the manufacturing apparatus 100 is connected to the input of the A / D converter 185. The analog value of the pressure detected by these sensors is converted into a digital value. The pressure value converted into a digital value is read by the MPU 181 via the bus line 187.

駆動ユニット186の出力は、製造装置100の電磁弁124、136に接続されている。駆動ユニット186は、MPU181からの指令に従ってこれらの電磁駆動のための電流を調節し、電磁弁のON/OFF切替を行う。また、駆動ユニット186は、MPU181からの指令に従ってヒーター加熱のための電流を調節する。   The output of the drive unit 186 is connected to the solenoid valves 124 and 136 of the manufacturing apparatus 100. The drive unit 186 adjusts the current for electromagnetic driving in accordance with a command from the MPU 181 and performs ON / OFF switching of the electromagnetic valve. Further, the drive unit 186 adjusts the current for heating the heater in accordance with a command from the MPU 181.

製造装置100を作動させるに際して、オペレータは、原料槽111に原料液を入れて、原料槽111の蓋をしっかりと密閉する。その後、入力装置189から混合開始を指令する。この指令を受けると、MPU181は駆動ユニット186に指令を発して、電磁弁133を開く。これにより、過熱蒸気リザーバ135内に過熱蒸気が供給される。次に、MPU181はヒーターH1に電流を流す。温度センサ137によって、圧縮気体リザーバ135が所定の温度にまで昇温したことが確認されると、MPU181はヒーターH1に電流を流すのを停止する。圧力センサ134によって、過熱蒸気リザーバ135が所定の気圧にまで昇圧したことが確認されると、MPU181は、処理開始の条件が整ったと判断し、電磁弁136を開く。なお、圧力は、0.3〜0.6MPaの範囲内で適宜調整される。また、過熱蒸気の温度は、100〜260℃の範囲内で適宜調整される。   When operating the manufacturing apparatus 100, the operator puts the raw material liquid into the raw material tank 111 and tightly seals the lid of the raw material tank 111. Thereafter, the start of mixing is commanded from the input device 189. Upon receiving this command, the MPU 181 issues a command to the drive unit 186 to open the electromagnetic valve 133. As a result, superheated steam is supplied into the superheated steam reservoir 135. Next, the MPU 181 supplies a current to the heater H1. When the temperature sensor 137 confirms that the compressed gas reservoir 135 has been heated to a predetermined temperature, the MPU 181 stops the flow of current to the heater H1. When it is confirmed by the pressure sensor 134 that the superheated steam reservoir 135 has been boosted to a predetermined atmospheric pressure, the MPU 181 determines that the conditions for starting the process have been established, and opens the electromagnetic valve 136. In addition, a pressure is suitably adjusted within the range of 0.3-0.6 MPa. Moreover, the temperature of superheated steam is suitably adjusted within the range of 100-260 degreeC.

電磁弁136を開くと、過熱蒸気リザーバ135からノズル160の気体供給口152へ過熱蒸気が供給される。そして、ノズル160の先端の気体噴射口162から気体の高速渦流が噴射されるようになる。   When the electromagnetic valve 136 is opened, superheated steam is supplied from the superheated steam reservoir 135 to the gas supply port 152 of the nozzle 160. A high-speed vortex of gas is jetted from the gas jet 162 at the tip of the nozzle 160.

次に、MPU181は送液ポンプ123を駆動させる。すると、原料液112が、原料給送管121を通してノズル160の液体供給口151に供給される。そして、原料液112が、ノズル160の先端の液体吐出口161から吐出される。ノズル160から吐出された原料液112は、吐出方向に既に形成されている気体の高速渦流によって微粒子に破砕される。その渦流の流れに伴って、原料液112中の成分が均一になった状態となって回収容器126内に放出される。   Next, the MPU 181 drives the liquid feed pump 123. Then, the raw material liquid 112 is supplied to the liquid supply port 151 of the nozzle 160 through the raw material supply pipe 121. Then, the raw material liquid 112 is discharged from the liquid discharge port 161 at the tip of the nozzle 160. The raw material liquid 112 discharged from the nozzle 160 is crushed into fine particles by a high-speed vortex of gas already formed in the discharge direction. As the vortex flows, the components in the raw material liquid 112 become uniform and are released into the collection container 126.

本実施形態の製造装置100において、原料液112としてフッ素樹脂粒子を懸濁させた液を使用すれば、上で説明した動作により、処理液124としてフッ素樹脂粒子を含む液が回収容器126内に収容されることになる。収容されたフッ素樹脂粒子を含む液は、乾燥させて粉末として使用してもよく、液状のまま使用することもできる。また、いったん乾燥させて粉末とした後に、溶媒に懸濁させて液状で使用することもできる。   In the manufacturing apparatus 100 of the present embodiment, if a liquid in which fluororesin particles are suspended is used as the raw material liquid 112, the liquid containing the fluororesin particles as the processing liquid 124 is placed in the recovery container 126 by the operation described above. Will be housed. The liquid containing the contained fluororesin particles may be dried and used as a powder, or may be used as a liquid. Moreover, after drying once into powder, it can also be suspended and used in a liquid state in a solvent.

本実施形態のフッ素樹脂粒子は、液状で使用する場合には濃度を適宜調整し、コーティング液として部材に塗布することによりさまざまな用途に利用することができる。例えば、本実施形態のフッ素樹脂粒子は、防汚コーティング剤として使用できる。携帯電話やカーナビゲーション、銀行ATM、券売機、コピー機等のタッチパネル機器のタッチパネル表面に塗布することにより、タッチパネル表面への指紋付着を抑制することができる。また、タッチパネル上に汚れが付着しづらいため、滑らかな指タッチで快適に操作できるようになる。   When the fluororesin particles of the present embodiment are used in a liquid state, the concentration can be adjusted as appropriate, and the fluororesin particles can be applied to a member as a coating liquid for various applications. For example, the fluororesin particles of the present embodiment can be used as an antifouling coating agent. By applying to a touch panel surface of a touch panel device such as a mobile phone, a car navigation system, a bank ATM, a ticket machine, or a copy machine, it is possible to suppress fingerprint adhesion to the touch panel surface. In addition, since it is difficult for dirt to adhere to the touch panel, it can be comfortably operated with a smooth finger touch.

また、本実施形態のフッ素樹脂粒子は、刃物用コーティング剤として使用できる。ハサミ、包丁、カミソリ、ナイフ等に塗布することにより、刃の切れ味が向上する。フッ素樹脂粒子の刃物への密着性が高いため、長期間持続した効果が得られる。   Moreover, the fluororesin particle of this embodiment can be used as a coating agent for blades. Applying to scissors, knives, razors, knives, etc. improves the sharpness of the blade. Since the adhesiveness of the fluororesin particles to the blade is high, an effect that lasts for a long time can be obtained.

また、本実施形態のフッ素樹脂粒子は、船舶塗料として使用できる。船舶の船底の表面やプロペラに塗布することにより、海洋生物等の付着を防止できる。そのため、航行中における海洋生物等の付着による船体抵抗が軽減され、燃費を向上させることができる。さらに、本実施形態のフッ素樹脂粒子は、摩擦係数が非常に小さいため、船体表面と水との間に生じる摩擦抵抗を低下させることができ、燃費削減効果が高い。   Moreover, the fluororesin particle of this embodiment can be used as a ship paint. By applying it to the surface of the ship's bottom or a propeller, it is possible to prevent adhesion of marine organisms. Therefore, the hull resistance due to adhesion of marine organisms and the like during navigation is reduced, and fuel consumption can be improved. Furthermore, since the fluororesin particles of the present embodiment have a very small friction coefficient, the frictional resistance generated between the hull surface and water can be reduced, and the fuel consumption reduction effect is high.

また、本実施形態のフッ素樹脂粒子は、固体潤滑剤として使用できる。固体潤滑剤としてグリースに添加することにより、摺動部材の潤滑性を向上できる。   Moreover, the fluororesin particles of this embodiment can be used as a solid lubricant. By adding to the grease as a solid lubricant, the lubricity of the sliding member can be improved.

以下、本発明を実施例によりさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。なお、実施例において、平均粒径は走査型電子顕微鏡(SEM)で観察した20個の粒子の平均値を算出したものである。また、摩擦係数はブロックオンリング摩擦試験機(LFW−1)で測定したものである。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples. In the examples, the average particle diameter is the average value of 20 particles observed with a scanning electron microscope (SEM). The coefficient of friction is measured with a block-on-ring friction tester (LFW-1).

[フッ素樹脂粒子の作製]
液体吐出口と気体噴射口とを備えたノズルを有するミキサーを準備した。液体吐出口は円形であり、気体噴射口は液体吐出口の周囲に形成されている。次に、ポリテトラフルオロエチレンの1mol/Lエタノール溶液を調製した。エタノール溶液の流量を2.5mL/min、過熱蒸気の温度を180℃、噴射圧を0.5MPaに設定し、ミキサーで10分間処理した。処理後、フッ素樹脂粒子を含む溶液が回収容器に得られた。
[評価]
実施例で得られたポリテトラフルオロエチレン粒子を含む溶液の評価を行った。図5は、実施例で得られたポリテトラフルオロエチレン粒子のSEM画像である。図6は、ミキサーで処理する前のポリテトラフルオロエチレンのSEM画像である。フッ素樹脂粒子をミキサーで処理することにより、小粒径化していることが分かる。実施例で得られたポリテトラフルオロエチレン粒子の平均粒径は、50nmであった。また、摩擦係数は0.007であった(図7)。
[Production of fluororesin particles]
A mixer having a nozzle provided with a liquid discharge port and a gas injection port was prepared. The liquid discharge port is circular, and the gas injection port is formed around the liquid discharge port. Next, a 1 mol / L ethanol solution of polytetrafluoroethylene was prepared. The flow rate of the ethanol solution was set to 2.5 mL / min, the temperature of the superheated steam was set to 180 ° C., the injection pressure was set to 0.5 MPa, and the mixture was treated with a mixer for 10 minutes. After the treatment, a solution containing fluororesin particles was obtained in the collection container.
[Evaluation]
The solution containing the polytetrafluoroethylene particles obtained in the examples was evaluated. FIG. 5 is an SEM image of the polytetrafluoroethylene particles obtained in the example. FIG. 6 is an SEM image of polytetrafluoroethylene before being processed by a mixer. It can be seen that the particle diameter is reduced by treating the fluororesin particles with a mixer. The average particle size of the polytetrafluoroethylene particles obtained in the examples was 50 nm. The friction coefficient was 0.007 (FIG. 7).

本発明に係るフッ素樹脂粒子は、防汚コーティング剤、刃物用コーティング剤、船舶塗料、固体潤滑剤等への適用が期待される。   The fluororesin particles according to the present invention are expected to be applied to antifouling coating agents, blade coating agents, marine paints, solid lubricants and the like.

100 製造装置
110 原料供給系
111 原料槽
112 原料液
121 原料給送管
121i 入口
121o 出口
122i ストレーナ
123 送液ポンプ
124 処理液
125、127 タンク
126 回収容器
128 排出口
131 過熱器
132 気体供給管
133、136 電磁弁
134 圧力センサ
135 過熱蒸気リザーバ
137 温度センサ
151 液体供給口
152 気体供給口
160 ノズル
160A ケーシング
160B 中子
161 液体吐出口
162 気体噴射口
163 開口部
164 給送管接続孔
165 貫通孔
165e 拡径部
165f 係合部
166、173 雌ネジ溝
167、169 段差部
168 流路孔
170 空間
171、175、178、199 雄ネジ溝
172 O−リングシール
174 突起部
176 スパイラル形成体
177 渦流室
179 旋回溝
180 制御装置
181 MPU
182 ROM
183 RAM
184 インタフェースユニット
185 A/Dコンバータ
186 駆動ユニット
187 バスライン
188 表示装置
189 入力装置
190 流れ阻止体(バッフルボード)
H1 ヒータ
DESCRIPTION OF SYMBOLS 100 Manufacturing apparatus 110 Raw material supply system 111 Raw material tank 112 Raw material liquid 121 Raw material feed pipe 121i Inlet 121o Outlet 122i Strainer 123 Feed pump 124 Process liquid 125, 127 Tank 126 Recovery container 128 Outlet 131 Superheater 132 Gas supply pipe 133, 136 Solenoid Valve 134 Pressure Sensor 135 Superheated Steam Reservoir 137 Temperature Sensor 151 Liquid Supply Port 152 Gas Supply Port 160 Nozzle 160A Casing 160B Core 161 Liquid Discharge Port 162 Gas Injection Port 163 Opening Portion 164 Feeding Pipe Connection Hole 165 Through Hole 165e Expansion Diameter portion 165f Engagement portion 166, 173 Female thread groove 167, 169 Stepped portion 168 Channel hole 170 Space 171, 175, 178, 199 Male thread groove 172 O-ring seal 174 Protrusion 176 Spira Forming body 177 swirl chamber 179 turning groove 180 controller 181 MPU
182 ROM
183 RAM
184 Interface unit 185 A / D converter 186 Drive unit 187 Bus line 188 Display device 189 Input device 190 Flow blocker (baffle board)
H1 heater

Claims (2)

平均粒径が、10〜300nmであり、摩擦係数が0.04未満であることを特徴とする、フッ素樹脂粒子。   A fluororesin particle having an average particle diameter of 10 to 300 nm and a friction coefficient of less than 0.04. フッ素樹脂を溶媒に懸濁させた液を吐出しつつ、当該吐出流を過熱蒸気により破砕し、微細化することにより製造される、請求項1に記載のフッ素樹脂粒子。   2. The fluororesin particles according to claim 1, wherein the fluororesin particles according to claim 1 are produced by discharging a liquid in which a fluororesin is suspended in a solvent, and crushing the discharge flow with superheated steam and making it finer. 3.
JP2012184195A 2012-08-23 2012-08-23 Fluororesin particles Pending JP2014040539A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012184195A JP2014040539A (en) 2012-08-23 2012-08-23 Fluororesin particles
PCT/JP2013/072402 WO2014030695A1 (en) 2012-08-23 2013-08-22 Fluororesin particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012184195A JP2014040539A (en) 2012-08-23 2012-08-23 Fluororesin particles

Publications (1)

Publication Number Publication Date
JP2014040539A true JP2014040539A (en) 2014-03-06

Family

ID=50150000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012184195A Pending JP2014040539A (en) 2012-08-23 2012-08-23 Fluororesin particles

Country Status (2)

Country Link
JP (1) JP2014040539A (en)
WO (1) WO2014030695A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5044800B2 (en) * 2001-03-28 2012-10-10 ダイキン工業株式会社 Fluorine-containing elastomer composition
EP2008710A1 (en) * 2006-04-11 2008-12-31 Wingturf Co., Ltd. Process and apparatus for producing liposome dispersion
US7973091B2 (en) * 2006-12-20 2011-07-05 E. I. Du Pont De Nemours And Company Process for producing re-dispersable particles of highly fluorinated polymer
JP2011121011A (en) * 2009-12-11 2011-06-23 Taiheiyo Cement Corp Production method and production apparatus for fine particle

Also Published As

Publication number Publication date
WO2014030695A1 (en) 2014-02-27

Similar Documents

Publication Publication Date Title
US6796704B1 (en) Apparatus and method for mixing components with a venturi arrangement
KR101825252B1 (en) External mixing pressurized two-fluid nozzle and a spray drying method
EP1790907A1 (en) Method of treating oil/water mixture
Franceschi et al. Precipitation of β-carotene microparticles from SEDS technique using supercritical CO2
EP2571611A1 (en) Method and apparatus for creating cavitation for blending and emulsifying
WO2007114468A1 (en) Spray dryer, spray dry method, and polymer powder
RU2473396C1 (en) Kochetov's pneumatic sprayer
WO2014030695A1 (en) Fluororesin particles
RU2676039C1 (en) Liquid flow into small drops turning device and method
WO2007117024A1 (en) Method of gas treatment
EP3137203B1 (en) Heating, mixing and hydrating apparatus and process
AU2010295221B2 (en) An assembly for reducing slurry pressure in a slurry processing system
JP3930036B1 (en) Atomization method, atomization apparatus and atomization system
KR101618270B1 (en) Fluid providing apparatus for dispersing and mixing fluid by fucused ultrasound
RU2631282C1 (en) Complex atomizer
JP2008179507A (en) Method of and device for producing carbon cluster liquid dispersion
JP5285231B2 (en) Mixing equipment
WO2003089122A1 (en) Device and method of creating hydrodynamic cavitation in fluids
Kamimura et al. Experimental investigation of hydraulic performance of twin-fluid mist generators for high viscous liquids
Bortolani et al. Synthesis of spherical lead zirconate titanate (PZT) nanoparticles by electrohydrodynamic atomisation
WO2013154056A1 (en) Method for manufacturing microparticles using vacuum reaction
JP2006143903A (en) Method for producing electromagnetic wave-absorbing coating agent and device for the same
Kiralj et al. Separation of oil drops from water using stainless steel fiber bed
Tabibian et al. Modeling and experimental investigation of a Wurster type fluidized bed reactor coupled with an air atmospheric pressure plasma jet for the surface treatment of polypropylene particles
WO2016121596A1 (en) Method for improving dispersibility of aqueous emulsion and method for manufacturing aqueous emulsion having improved dispersibility

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140414