JP2014040090A - Injection molding machine having resin supply amount regulation part - Google Patents

Injection molding machine having resin supply amount regulation part Download PDF

Info

Publication number
JP2014040090A
JP2014040090A JP2013090401A JP2013090401A JP2014040090A JP 2014040090 A JP2014040090 A JP 2014040090A JP 2013090401 A JP2013090401 A JP 2013090401A JP 2013090401 A JP2013090401 A JP 2013090401A JP 2014040090 A JP2014040090 A JP 2014040090A
Authority
JP
Japan
Prior art keywords
screw
force
resin
value
supply amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013090401A
Other languages
Japanese (ja)
Other versions
JP5543632B2 (en
Inventor
Junpei Maruyama
淳平 丸山
Tatsuhiro Uchiyama
辰宏 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP2013090401A priority Critical patent/JP5543632B2/en
Priority to DE102013012067.5A priority patent/DE102013012067B4/en
Priority to CN201310316642.8A priority patent/CN103568209B/en
Publication of JP2014040090A publication Critical patent/JP2014040090A/en
Application granted granted Critical
Publication of JP5543632B2 publication Critical patent/JP5543632B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/18Feeding the material into the injection moulding apparatus, i.e. feeding the non-plastified material into the injection unit
    • B29C45/1808Feeding measured doses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76003Measured parameter
    • B29C2945/76013Force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76177Location of measurement
    • B29C2945/7618Injection unit
    • B29C2945/76187Injection unit screw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76344Phase or stage of measurement
    • B29C2945/76351Feeding
    • B29C2945/76354Feeding raw materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76344Phase or stage of measurement
    • B29C2945/76367Metering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76494Controlled parameter
    • B29C2945/76585Dimensions, e.g. thickness
    • B29C2945/76591Dimensions, e.g. thickness volume
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76655Location of control
    • B29C2945/76658Injection unit
    • B29C2945/76662Injection unit hopper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76822Phase or stage of control
    • B29C2945/76829Feeding
    • B29C2945/76832Feeding raw materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an injection molding machine having a resin supply amount regulation part that can perform material supply to keep an appropriate starvation state without requiring a special detector for detecting a molding material in a groove of a screw, and further regardless of a measuring revolution speed.SOLUTION: An initial value of a supply amount command value F is set, an injection and pressure keeping process is performed, measurement is initiated, the supply amount command value F of a resin is calculated so that screw resistance force may become a target value (SA01-SA04), the resin is supplied based on the supply amount command value F calculated in a prior cycle, when the measurement is finished, a decompression process is performed (SA05-SA07), and an absolute value of force which the screw receives is detected as screw resistance force, when being not operation completion, the treatment is returned back to the step SA02 and is continued, and when being operation completion, the treatment is finished (SA08, SA09).

Description

本発明は射出成形機に関し、特に、樹脂供給量調節部を有する射出成形機に関する。   The present invention relates to an injection molding machine, and more particularly to an injection molding machine having a resin supply amount adjusting unit.

成形材料となるペレットを射出成形機の射出シリンダに供給するための方法として、射出シリンダに連設した供給ホッパにペレットを貯溜し、その自重を利用してペレットを射出シリンダに送り込む方式が一般的に用いられている。この場合、射出シリンダの樹脂供給口はペレットで満たされた状態になっている。以降、この状態を満杯状態と記載する。
これに対して、射出シリンダの樹脂供給口が疎の状態になるようにペレットを少量ずつ供給する、いわゆる飢餓供給が知られている。例えば、特許文献1には、ペレットの供給源と射出シリンダとの間にペレットフィーダを設け、ペレットフィーダの送り速度を増減させることでペレットの供給速度を制御する技術が開示されている(特許文献1の図1を参照)。
As a method for supplying pellets as molding materials to the injection cylinder of an injection molding machine, a method is generally used in which pellets are stored in a supply hopper connected to the injection cylinder and the pellets are fed into the injection cylinder using its own weight. It is used for. In this case, the resin supply port of the injection cylinder is in a state filled with pellets. Hereinafter, this state is referred to as a full state.
On the other hand, so-called starvation supply is known in which pellets are supplied little by little so that the resin supply port of the injection cylinder becomes sparse. For example, Patent Document 1 discloses a technique for controlling a pellet supply speed by providing a pellet feeder between a pellet supply source and an injection cylinder and increasing or decreasing the feed speed of the pellet feeder (Patent Document 1). 1 (see FIG. 1).

飢餓供給を行うと、射出シリンダ内で発生したガスの樹脂供給口からの脱気が促進されたり、あるいは樹脂供給口付近における射出シリンダ内壁と樹脂材料との摩擦による射出シリンダ内壁の摩耗が抑制される、といった効果が見込まれる。ただし、樹脂供給口の樹脂材料の疎密状態(飢餓状態)が変動すると、計量工程における樹脂の可塑化品質が変動し、成形品質に悪影響を与える恐れがある。よって、飢餓供給を行う場合には、飢餓状態が一定の状態を保つように材料供給を行わなければならないという課題があった。   When starvation is performed, degassing of the gas generated in the injection cylinder from the resin supply port is promoted, or wear of the injection cylinder inner wall due to friction between the injection cylinder inner wall and the resin material in the vicinity of the resin supply port is suppressed. The effect is expected. However, when the density state (starvation state) of the resin material at the resin supply port varies, the plasticization quality of the resin in the metering process varies, which may adversely affect the molding quality. Therefore, when the hunger supply is performed, there is a problem that the material supply must be performed so that the hunger state is kept constant.

特許文献2においては、スクリュにおける供給部に臨ませて配設され、スクリュの溝内の成形材料を検出する成形材料検出部と、該成形材料検出部による検出結果に対応させて、スクリュの溝内に成形材料が100[%]満たされることがないように、樹脂材料の供給量を制御する技術が開示されている。しかし、スクリュの溝内の成形材料を検出するための特別の検出部を必要とするという問題があった。
特許文献3においては、計量工程におけるスクリュ回転のトルクを検出し、該スクリュ回転トルクが基準値に一致するように原料の供給量を調整する技術が開示されている。しかし、樹脂材料の種類によっては、飢餓状態が変動してもスクリュ回転のトルクが変動しない場合があり、そのような場合にはスクリュ回転のトルクに基づいて飢餓状態を制御することができないという問題があった。
In Patent Document 2, a molding material detection unit that is disposed facing a supply unit in a screw and detects a molding material in the groove of the screw, and a screw groove corresponding to the detection result by the molding material detection unit. A technique for controlling the supply amount of the resin material is disclosed so that the molding material is not filled 100%. However, there is a problem that a special detection unit for detecting the molding material in the groove of the screw is required.
Patent Document 3 discloses a technique for detecting the screw rotation torque in the weighing process and adjusting the supply amount of the raw material so that the screw rotation torque matches a reference value. However, depending on the type of resin material, the screw rotation torque may not change even if the starvation state fluctuates. In such a case, the starvation state cannot be controlled based on the screw rotation torque. was there.

一方、特許文献4においては、可塑化工程時の実際の計量時間と予め設定した基準計量時間との差を判定部にて判定し、その判定結果に基づいて材料供給装置による材料供給量を制御する技術が開示されている。しかし、計量時間はスクリュ回転速度の大小によって変動するため、飢餓状態を正確に判定できないという問題があった。
特許文献5においては、色替え対象の原料を用いて色替え運転を行うにあたって、樹脂通路を間欠開閉して原料樹脂をフィード部に間欠供給する原料供給装置において、色替え樹脂の供給開始時期を決定する判断基準として、経過時間又はスクリュ回転の総回転数を設定する技術が開示されている。
On the other hand, in Patent Document 4, a determination unit determines a difference between an actual measurement time during a plasticizing process and a preset reference measurement time, and controls a material supply amount by a material supply device based on the determination result. Techniques to do this are disclosed. However, since the measuring time varies depending on the screw rotation speed, there is a problem that the starvation state cannot be accurately determined.
In Patent Document 5, when a color change operation is performed using a color change target material, in a material supply device that intermittently opens and closes a resin passage and intermittently supplies a raw material resin to a feed unit, the supply start time of the color change resin is set. As a determination criterion to be determined, a technique for setting the elapsed time or the total number of screw rotations is disclosed.

特許文献6においては、射出成形機の各部に配設されたセンサーの計測情報などから、予め設定された各モニタリング項目に対応する計測データが許容範囲にあるか否かを判定してモニタリングを行う射出成形機において、スクリュの回転開始時点からのスクリュ回転量を累積演算し、このスクリュ回転量をチャージ・計量工程時のモニタリング項目の1つとして用いる技術が開示されている。
特許文献7においては、所定区間内におけるスクリュ回転量を検出し、検出したスクリュ回転量が所定の目標値となるように、樹脂供給部の樹脂供給量を調節する技術が開示されている。
特許文献8においては、射出シリンダ内の材料滞留量または位置的な密度分布に応じて変化する物理量を検出し、その検出結果に基いて定量供給部による材料の供給量を変化させる技術が開示されている。
In Patent Document 6, monitoring is performed by determining whether or not measurement data corresponding to each monitoring item set in advance is within an allowable range from measurement information of sensors disposed in each part of the injection molding machine. In an injection molding machine, a technique is disclosed in which a screw rotation amount from the screw rotation start time is cumulatively calculated, and this screw rotation amount is used as one of monitoring items during a charge / metering process.
Patent Document 7 discloses a technique for detecting the screw rotation amount in a predetermined section and adjusting the resin supply amount of the resin supply unit so that the detected screw rotation amount becomes a predetermined target value.
Patent Document 8 discloses a technique for detecting a physical quantity that changes in accordance with a material retention amount or a positional density distribution in an injection cylinder and changing a material supply amount by a quantitative supply unit based on the detection result. ing.

特開平5−318531号公報JP-A-5-318531 特開2002−248655号公報JP 2002-248655 A 特開昭53−11957号公報Japanese Patent Laid-Open No. 53-11957 特開平1−171830号公報JP-A-1-171830 特開平3−114813号公報JP-A-3-114813 特開平3−118132号公報JP-A-3-118132 特開2012−000962号公報JP 2012-000962 A 特開2001−347545号公報JP 2001-347545 A

そこで本発明は、上記従来技術の問題に鑑み、スクリュの溝内の成形材料を検出するための特別の検出部を必要とせず、さらには計量回転速度の大小に影響されることなく、適切な飢餓状態を保つように材料供給を行うことが可能な樹脂供給量調節部を有する射出成形機を提供することを課題とする。   Therefore, in view of the above-described problems of the prior art, the present invention does not require a special detection unit for detecting the molding material in the groove of the screw, and is not affected by the magnitude of the measurement rotation speed. It is an object of the present invention to provide an injection molding machine having a resin supply amount adjustment unit capable of supplying a material so as to maintain a starvation state.

本願の請求項1に係る発明は、射出シリンダと、スクリュと、スクリュを前後進方向に駆動するスクリュ前後進駆動部と、スクリュが軸方向に受ける力を検出する力検出部と、該射出シリンダ内に樹脂材料を供給する樹脂材料供給部とを有する射出成形機において、前記力検出部の検出値に基いてスクリュ抵抗力を算出するスクリュ抵抗力算出部と、前記スクリュ抵抗力が大きくなるにしたがって前記樹脂材料供給部の樹脂供給量を小さくする樹脂供給量調節部を有することを特徴とする射出成形機である。
請求項2に係る発明は、前記スクリュ抵抗力算出部は、減圧工程完了後からスクリュ前進開始までの任意の時点における前記力検出部の検出値の絶対値をスクリュ抵抗力として算出することを特徴とする請求項1に記載の射出成形機である。
請求項3に係る発明は、前記スクリュ抵抗力算出部は、減圧中に前記力検出部の検出値が減少しなくなった時点からスクリュ前進中に前記力検出部の検出値が増加を始めた時点までの任意の時点における前記力検出部の検出値の絶対値をスクリュ抵抗力として算出することを特徴とする請求項1に記載の射出成形機である。
The invention according to claim 1 of the present application includes an injection cylinder, a screw, a screw forward / reverse drive unit that drives the screw in the forward / backward direction, a force detection unit that detects a force that the screw receives in the axial direction, and the injection cylinder In an injection molding machine having a resin material supply unit for supplying a resin material therein, a screw resistance force calculation unit that calculates a screw resistance force based on a detection value of the force detection unit, and the screw resistance force increases Therefore, an injection molding machine having a resin supply amount adjusting unit for reducing the resin supply amount of the resin material supply unit.
The invention according to claim 2 is characterized in that the screw resistance force calculation unit calculates, as a screw resistance force, an absolute value of a detection value of the force detection unit at an arbitrary time from the completion of the decompression step to the start of screw advancement. The injection molding machine according to claim 1.
According to a third aspect of the present invention, the screw resistance force calculation unit starts when the detection value of the force detection unit starts to increase during screw advance from when the detection value of the force detection unit does not decrease during decompression. 2. The injection molding machine according to claim 1, wherein an absolute value of a detection value of the force detection unit at an arbitrary point in time is calculated as a screw resistance force.

請求項4に係る発明は、請求項1において、さらに、スクリュ前方の樹脂圧力を検出する樹脂圧力検出部を有し、前記スクリュ抵抗力算出部は、前記力検出部の検出値から前記樹脂圧力検出部の検出値にスクリュ断面積を乗じた値を減じ、該算出した値の絶対値をスクリュ抵抗力として算出することを特徴とする請求項1に記載の射出成形機である。
請求項5に係る発明は、スクリュ前方の樹脂圧力を検出する樹脂圧力検出部を有し、前記スクリュ抵抗力算出部は、前記力検出部の検出値をスクリュ断面積で除した値から前記樹脂圧力検出部の検出値を減じ、該算出した値の絶対値をスクリュ抵抗力として算出することを特徴とする請求項1に記載の射出成形機である。
請求項6に係る発明は、前記樹脂供給量調節部は、前記スクリュ抵抗力が所定の目標値となるように、前記樹脂材料供給部の樹脂供給量を調節することを特徴とする請求項1〜5のいずれか一つに記載の射出成形機である。
The invention according to a fourth aspect further includes a resin pressure detection unit that detects a resin pressure in front of the screw in the first aspect, and the screw resistance calculation unit calculates the resin pressure from a detection value of the force detection unit. 2. The injection molding machine according to claim 1, wherein a value obtained by multiplying a detection value of the detection unit by a screw cross-sectional area is subtracted, and an absolute value of the calculated value is calculated as a screw resistance force.
The invention according to claim 5 includes a resin pressure detection unit that detects a resin pressure in front of the screw, and the screw resistance calculation unit calculates the resin from a value obtained by dividing a detection value of the force detection unit by a screw cross-sectional area. The injection molding machine according to claim 1, wherein the detection value of the pressure detection unit is subtracted and an absolute value of the calculated value is calculated as a screw resistance force.
The invention according to claim 6 is characterized in that the resin supply amount adjusting unit adjusts the resin supply amount of the resin material supply unit so that the screw resistance becomes a predetermined target value. It is an injection molding machine as described in any one of -5.

本発明により、スクリュの溝内の成形材料を検出するための特別の検出部を必要とせず、さらには計量回転速度の大小に影響されることなく、適切な飢餓状態を保つように材料供給を行うことが可能な樹脂供給量調節部を有する射出成形機を提供できる。   According to the present invention, a special detection unit for detecting the molding material in the groove of the screw is not required, and the material supply is performed so as to maintain an appropriate starvation state without being affected by the magnitude of the measurement rotation speed. It is possible to provide an injection molding machine having a resin supply amount adjustment section that can be performed.

樹脂供給量調節部を有する射出成形機を説明する図である。It is a figure explaining the injection molding machine which has a resin supply amount adjustment part. 減圧工程完了後からスクリュ前進開始までの任意の時点におけるスクリュが受ける力の絶対値に基づいて樹脂供給量調節を行う処理のフローチャートである。It is a flowchart of the process which performs resin supply amount adjustment based on the absolute value of the force which the screw receives in the arbitrary time after a decompression process completion to a screw advance start. 減圧中にスクリュが受ける力が減少しなくなった時点からスクリュ前進中にスクリュが受ける力が増加をし始めた時点までの任意の時点におけるスクリュが受ける力の絶対値に基づいて樹脂供給量調節を行う処理のフローチャートである。Adjust the resin supply amount based on the absolute value of the force received by the screw at any time from when the force received by the screw during pressure reduction stops to the point when the force received by the screw during screw advance starts to increase. It is a flowchart of the process to perform. スクリュが受ける力Dからスクリュ前方の樹脂圧力Pによる影響を除外したスクリュ抵抗力を元に樹脂供給量調節を行う処理のフローチャートである。It is a flowchart of the process which performs resin supply amount adjustment based on the screw resistance force which excluded the influence by the resin pressure P ahead of a screw from the force D which a screw receives. スクリュが受ける力Dをスクリュ断面積で除した値からスクリュ前方の樹脂圧力Pによる影響を除外したスクリュ抵抗力を元に樹脂供給量調節を行う処理の他のフローチャートである。It is another flowchart of the process which adjusts resin supply amount based on the screw resistance force which excluded the influence by the resin pressure P ahead of a screw from the value which remove | divided the force D which a screw receives with a screw cross-sectional area.

以下、本発明の実施形態を図面と共に説明する。
射出シリンダの樹脂供給口がペレットで満たされている状態、即ち飢餓状態が密の場合、スクリュの前後進動作に対してスクリュ根元の半溶融状態の樹脂が抵抗となり、スクリュは進行方向と反対方向の抵抗力を受ける(以降、「スクリュ抵抗力」と記載する)。一方で、飢餓状態が疎の場合、スクリュ根元に半溶融状態の樹脂が少ないため、スクリュ抵抗力が小さくなる。本発明はこの特性に着目し、スクリュが軸方向に受けるスクリュ抵抗力に基いて樹脂材料の供給量を適切に制御するものである。すなわち、スクリュが軸方向に受けるスクリュ抵抗力を検出し、該検出した抵抗力が大きくなるにしたがって樹脂材料の供給量を小さくすることによって、適切な飢餓状態を保つように材料供給を行うものである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
When the resin supply port of the injection cylinder is filled with pellets, that is, when the starvation state is dense, the resin in the semi-molten state at the base of the screw becomes resistant to the forward and backward movement of the screw, and the screw is in the direction opposite to the traveling direction. (Hereinafter referred to as “screw resistance”). On the other hand, when the starvation state is sparse, the screw resistance is small because there is little semi-molten resin at the screw root. The present invention pays attention to this characteristic, and appropriately controls the supply amount of the resin material based on the screw resistance force that the screw receives in the axial direction. That is, by detecting the screw resistance force that the screw receives in the axial direction and decreasing the supply amount of the resin material as the detected resistance force increases, the material is supplied so as to maintain an appropriate starvation state. is there.

図1は、本発明に係る樹脂供給量調節部を有する射出成形機を説明するブロック図である。図中の符号1は射出成形機のスクリュで、射出シリンダ2に軸方向移動自在および回転自在に内嵌され、射出用サーボモータM1およびスクリュ回転用サーボモータM2により軸方向の射出動作と軸回りのスクリュ回転とが独立して行われるようになっている。符号31は射出用サーボモータM1を駆動源としてスクリュ1に射出動作を行わせるための動力伝達機構であり、符号32はスクリュ回転用サーボモータM2を駆動源としてスクリュに計量動作を行わせるための動力伝達機構である。また、射出シリンダ2には、バンドヒータ等からなる図示しない加熱部が設けられている。   FIG. 1 is a block diagram illustrating an injection molding machine having a resin supply amount adjusting unit according to the present invention. Reference numeral 1 in the drawing denotes a screw of an injection molding machine, which is fitted in the injection cylinder 2 so as to be movable and rotatable in the axial direction. The injection servo motor M1 and the screw rotation servo motor M2 perform the axial injection operation and the shaft rotation. The screw rotation is performed independently. Reference numeral 31 denotes a power transmission mechanism for causing the screw 1 to perform an injection operation using the injection servomotor M1 as a drive source, and reference numeral 32 denotes a screw for causing the screw to perform a metering operation using the screw rotation servomotor M2 as a drive source. It is a power transmission mechanism. The injection cylinder 2 is provided with a heating unit (not shown) made up of a band heater or the like.

また、射出シリンダ2の基部上面には成形材料となるペレットを投入するためのホッパ4が配備され、ペレットの供給源となるホッパ4と射出シリンダ2との間には、ホッパ4内のペレットを射出シリンダ2に供給するためのペレットフィーダ5が設けられている。
ペレットフィーダ5は、ホッパ4と射出シリンダ2との間に形成された連通路6を横切るようにして配備された羽根付ロータ7と羽根付ロータ7の回転駆動部であるモータM3および該モータM3の回転速度を制御するモータ駆動回路8によって構成され、樹脂の供給量指令値Fに基づいて羽根付ロータ7の回転速度を制御することにより、ホッパ4から射出シリンダ2に送り込まれるペレットの移送速度が調整されるようになっている。
Further, a hopper 4 for charging pellets as a molding material is provided on the upper surface of the base of the injection cylinder 2, and the pellets in the hopper 4 are placed between the hopper 4 serving as a pellet supply source and the injection cylinder 2. A pellet feeder 5 for supplying the injection cylinder 2 is provided.
The pellet feeder 5 includes a rotor 7 with a blade disposed so as to traverse a communication path 6 formed between the hopper 4 and the injection cylinder 2, a motor M3 that is a rotation driving unit of the rotor 7 with a blade, and the motor M3. Of the pellets fed from the hopper 4 to the injection cylinder 2 by controlling the rotational speed of the bladed rotor 7 based on the resin supply amount command value F. Has been adjusted.

なお、ペレットフィーダ5の主要部を構成する羽根付ロータ7に替えて樹脂供給用スクリュおよびその周辺部の構成を適用し、モータM3で樹脂供給用スクリュを回転駆動して射出シリンダ2にペレットを送り込むようにしても良い。射出用サーボモータM1およびスクリュ回転用サーボモータM2の各々にはロータリーエンコーダーP1およびP2の各々が装着され、スクリュ1の現在位置(軸方向)や回転位置(軸回り)等が検出されるようになっている。   In addition, it replaces with the rotor 7 with a blade | wing which comprises the principal part of the pellet feeder 5, and applies the structure of the resin supply screw and its peripheral part, and the resin supply screw is rotationally driven with the motor M3, and a pellet is injected into the injection cylinder 2. You may make it send. The rotary encoders P1 and P2 are mounted on the injection servo motor M1 and the screw rotating servo motor M2, respectively, so that the current position (axial direction), rotational position (around the axis), and the like of the screw 1 are detected. It has become.

射出成形機の制御装置100は数値制御用のマイクロプロセッサ(以下、CNCCPUという)111とプログラマブルマシンコントローラ用のマイクロプロセッサ(以下、PMCCPUという)113を有し、PMCCPU113には射出成形機のシーケンス動作やペレットフィーダ5を制御するシーケンスプログラム等を記憶したROM116、および、不揮発性のPMC用RAM109や現在値記憶RAM108が接続されている。CNCCPU111は射出成形機の各部を全体的に制御するためのものであって、クランプ用(図示せず),エジェクタ用(図示せず),スクリュ回転用,射出用等の各軸のサーボモータを駆動制御するサーボ回路がサーボインターフェイス110を介して接続されている。なお、図1では射出用サーボモータM1のためのサーボ回路102とスクリュ回転用サーボモータM2のためのサーボ回路101のみを図示している。   The injection molding machine control device 100 has a numerical control microprocessor (hereinafter referred to as CNCCPU) 111 and a programmable machine controller microprocessor (hereinafter referred to as PMCCPU) 113. The PMCCPU 113 includes a sequence operation of the injection molding machine and the like. A ROM 116 storing a sequence program for controlling the pellet feeder 5, a nonvolatile PMC RAM 109 and a current value storage RAM 108 are connected. The CNC CPU 111 is for overall control of each part of the injection molding machine, and includes a servo motor for each axis for clamping (not shown), ejector (not shown), screw rotation, injection, etc. A servo circuit that controls driving is connected via a servo interface 110. In FIG. 1, only the servo circuit 102 for the injection servo motor M1 and the servo circuit 101 for the screw rotation servo motor M2 are shown.

104は不揮発性の共有RAMで、射出成形機の各動作を制御するNCプログラム等を記憶するメモリ部と各種設定値,パラメータ,マクロ変数等を記憶する設定メモリ部とを有し、該設定メモリ部には、LCD表示装置付手動データ入力装置117およびオペレータパネルコントローラ115を介してオペレータが設定入力した各種の成形条件および計量条件等が記憶される。112はバスアービターコントローラ(以下、BACという)で、該BAC112にはCNCCPU111およびPMCCPU113,共有RAM104,入力回路105,出力回路106の各バスが接続され、該BAC112によって使用するバスが制御されるようになっている。   A non-volatile shared RAM 104 has a memory unit for storing an NC program for controlling each operation of the injection molding machine, and a setting memory unit for storing various setting values, parameters, macro variables, and the like. The section stores various molding conditions, weighing conditions, and the like set and input by the operator via the manual data input device 117 with an LCD display and the operator panel controller 115. Reference numeral 112 denotes a bus arbiter controller (hereinafter referred to as BAC). The BAC 112 is connected to the buses of the CNC CPU 111 and the PMC CPU 113, the shared RAM 104, the input circuit 105, and the output circuit 106 so that the bus used by the BAC 112 is controlled. It has become.

また、射出用サーボモータM1はサーボ回路102に接続され、ロータリーエンコーダーP1からの検出出力がサーボ回路102に入力されており、サーボインターフェイス110内の現在位置記憶レジスタにより、スクリュ1の現在位置(軸方向)が常時検出されるようになっている。また、スクリュ回転用サーボモータM2はサーボ回路101に接続され、ロータリーエンコーダーP2からの検出出力がサーボ回路101に入力され、位置,速度の制御が行われる。RAM103はCNCCPU111のための演算データ記憶メモリである。   The injection servo motor M1 is connected to the servo circuit 102, and the detection output from the rotary encoder P1 is input to the servo circuit 102. The current position (axis) of the screw 1 is stored by the current position storage register in the servo interface 110. Direction) is always detected. The screw rotation servomotor M2 is connected to the servo circuit 101, and the detection output from the rotary encoder P2 is input to the servo circuit 101 to control the position and speed. A RAM 103 is a calculation data storage memory for the CNC CPU 111.

そして、制御装置100の出力回路106にはD/A変換器9を介してモータ駆動回路8が接続され、D/A変換器9でD/A変換された制御装置100からの速度指令によりモータ駆動回路8がモータM3を駆動制御して、ペレットフィーダ5の羽根付ロータ7が制御装置100からの速度指令に対応する送り速度でホッパ4内のペレットを射出シリンダ2に供給するようになっている。   A motor drive circuit 8 is connected to the output circuit 106 of the control device 100 via a D / A converter 9, and the motor is driven by a speed command from the control device 100 D / A converted by the D / A converter 9. The drive circuit 8 drives and controls the motor M3, and the bladed rotor 7 of the pellet feeder 5 supplies the pellets in the hopper 4 to the injection cylinder 2 at a feed speed corresponding to the speed command from the control device 100. Yes.

以上のような構成において、CNC用ROM114に格納されたNCプログラムや共有RAM104に格納された各種成形条件およびPMC用ROM116に格納されたシーケンスプログラム等により、PMCCPU113がシーケンス制御を行いながら、CNCCPU111が射出成形機の各軸のサーボ回路へサーボインターフェイス110を介してパルス分配して射出成形機を駆動制御するものであり、射出成形機本体に関する限り、各部の駆動制御方式は従来のものと全く同様である。   In the above-described configuration, the CNC CPU 111 performs injection control while the PMC CPU 113 performs sequence control according to the NC program stored in the CNC ROM 114, various molding conditions stored in the shared RAM 104, the sequence program stored in the PMC ROM 116, and the like. The injection molding machine is driven and controlled by distributing pulses to the servo circuit of each axis of the molding machine via the servo interface 110. As far as the injection molding machine main body is concerned, the drive control system of each part is exactly the same as the conventional one. is there.

即ち、計量・混練りの工程においては、共有RAM104に予め設定された背圧に基いて従来と同様にCNCCPU111が射出用サーボモータM1を駆動制御し、また、PMCCPU113からの計量開始信号を受けたCNCCPU111が、共有RAM104に予め設定されたスクリュ回転速度に応じてサーボインターフェイス110を介して所定周期毎のパルス分配を開始し、エラーレジスタやF/V変換器および誤差増幅器や電力増幅器等を備えたサーボ回路101がCNCCPU111からの分配パルスとロータリーエンコーダーP2からのフィードバックパルスに基いて位置,速度,電流ループの各処理を行って、スクリュ1の回転速度が設定速度となるようにスクリュ回転用サーボモータM2を制御する。また、図示省略するが、射出成形機にはスクリュが軸方向に受ける力を検出するために、スクリュ1とスクリュ駆動部の間に歪ゲージやロードセルなどの力検出器を備える。さらに、射出シリンダ2の前方部に樹脂圧力を検出する圧力センサーを備えることができる。これらの力検出器や圧力センサーからの出力信号は入力回路105を介して制御装置100に送られる。   That is, in the measurement / kneading process, the CNC CPU 111 controls the drive of the injection servo motor M1 based on the back pressure preset in the shared RAM 104, and receives a measurement start signal from the PMC CPU 113. The CNC CPU 111 starts pulse distribution for each predetermined period via the servo interface 110 in accordance with the screw rotation speed preset in the shared RAM 104, and includes an error register, an F / V converter, an error amplifier, a power amplifier, and the like. The servo circuit 101 performs position, speed, and current loop processing based on the distribution pulse from the CNC CPU 111 and the feedback pulse from the rotary encoder P2, and the screw rotation servomotor so that the rotation speed of the screw 1 becomes the set speed. Control M2. Although not shown, the injection molding machine is provided with a force detector such as a strain gauge or a load cell between the screw 1 and the screw driving unit in order to detect the force that the screw receives in the axial direction. Furthermore, a pressure sensor for detecting the resin pressure can be provided in the front portion of the injection cylinder 2. Output signals from these force detectors and pressure sensors are sent to the control device 100 via the input circuit 105.

上記の射出成形機およびその制御装置は、図2〜図5に示す本発明に係るアルゴリズムを示すフローチャートの処理を実行し、樹脂供給量調節部を有する射出成形機を実現するため、以下に説明する機能を備える。   The above-described injection molding machine and its control device execute the process of the flowchart showing the algorithm according to the present invention shown in FIGS. 2 to 5 and realize an injection molding machine having a resin supply amount adjusting unit. It has a function to do.

<スクリュ抵抗力算出部>
スクリュはスクリュ根元の半溶融状態の樹脂から抵抗力(スクリュ抵抗力)を受けるが、射出や保圧などの成形工程においては、スクリュ抵抗力に加えてスクリュ前方の溶融樹脂からも、樹脂圧力に比例した力を受ける。この樹脂圧力による力は飢餓状態の疎密と相関関係が無く、飢餓状態の指標にならないので、樹脂圧力による力を除外してスクリュ抵抗力のみを検出する必要がある。
<Screw resistance calculation unit>
Screws receive resistance (screw resistance) from the semi-molten resin at the base of the screw. In molding processes such as injection and pressure holding, the resin pressure is also applied from the molten resin in front of the screw in addition to the screw resistance. Receive proportional force. The force due to the resin pressure has no correlation with the density of the starvation state and does not serve as an index of the starvation state. Therefore, it is necessary to detect only the screw resistance force by excluding the force due to the resin pressure.

一般的に射出成形の工程では、計量工程の後に、スクリュを後退させて樹脂圧力を減圧する減圧工程を行う。また、一部の成形方法では、保圧工程の後に減圧工程を行い(プレ減圧)、その後に計量工程を行う場合もある。この減圧工程の完了後は樹脂圧力が減圧されているため、減圧工程完了後からスクリュ前進開始までの間は、スクリュが軸方向に受ける力とスクリュ抵抗力とが略一致するタイミングである。よって、減圧完了からスクリュが前進するまでの任意の時点においてスクリュが軸方向に受ける力の絶対値を、スクリュ抵抗力として検出するようにしてもよい(図2のステップSA08を参照)。   In general, in the injection molding process, after the weighing process, a decompression process is performed in which the screw is retracted to reduce the resin pressure. In some molding methods, a pressure reducing step is performed after the pressure holding step (pre-depressurization), and then a measuring step is performed. Since the resin pressure has been reduced after completion of the decompression step, the force that the screw receives in the axial direction and the screw resistance force substantially coincide between the completion of the decompression step and the start of screw advancement. Therefore, the absolute value of the force that the screw receives in the axial direction at any time from the completion of decompression to the advance of the screw may be detected as the screw resistance force (see step SA08 in FIG. 2).

また、樹脂圧力が減圧している状態の任意の時点、即ち、スクリュ後退中に樹脂圧力が減圧された時点からスクリュ前進中に樹脂圧力が増加を始めた時点までは、スクリュが軸方向に受ける力とスクリュ抵抗力とが略一致するタイミングである。このとき、樹脂圧力が減圧されていない状態ではスクリュを後退することでスクリュが軸方向に受ける力が減少するが、樹脂圧力が減圧されるとスクリュを後退してもスクリュが軸方向に受ける力が減少しなくなること、および、樹脂圧力が減圧された状態ではスクリュを前進してもスクリュが軸方向に受ける力が増加しないがスクリュの前進を続けて樹脂圧力が再び増加するとスクリュが軸方向に受ける力が増加することに着目し、スクリュ後退中にスクリュが軸方向に受ける力が減少しなくなった時点から、スクリュ前進中にスクリュが軸方向に受ける力が増加を始めた時点までの任意の時点においてスクリュが軸方向に受ける力の絶対値を、スクリュ抵抗力として検出するようにしてもよい(図3のステップSB04,SB13を参照)。   Also, the screw is subjected to the axial direction from any time when the resin pressure is reduced, that is, from the time when the resin pressure is reduced during the backward movement of the screw to the time when the resin pressure starts to increase during the forward movement of the screw. This is the timing at which the force and the screw resistance force substantially coincide. At this time, if the resin pressure is not reduced, the force that the screw receives in the axial direction decreases by retreating the screw. However, if the resin pressure is reduced, the force that the screw receives in the axial direction even if the screw is retracted. If the resin pressure is reduced and the resin pressure is reduced, the force applied to the screw in the axial direction will not increase even if the screw is advanced, but if the resin pressure increases again as the screw continues to advance, the screw will move in the axial direction. Focusing on the increase in the force received, any time from when the force that the screw receives in the axial direction during the screw retraction stops to decrease until the force that the screw receives in the axial direction during the screw advancement starts increasing The absolute value of the force that the screw receives in the axial direction at the time may be detected as a screw resistance force (see steps SB04 and SB13 in FIG. 3). .

ノズル部や射出シリンダ前方部に樹脂圧力を検出する圧力センサーを備え、前記圧力センサーで検出した樹脂圧力に基いて樹脂圧力による力を算出し、スクリュが受ける力から樹脂圧力による力を除外してスクリュ抵抗力を算出するようにしてもよい。この場合、樹脂圧力が減圧していなくても、樹脂圧力の検出値に基づいてスクリュ抵抗力を算出できるため、任意の時点においてスクリュ抵抗力を算出できる。例えば、任意の時点において、スクリュが軸方向に受ける力から、樹脂圧力の検出値にスクリュ断面積を乗じた値を減算して求めた値の絶対値を、スクリュ抵抗力として検出するようにしてもよい(図4のステップSC05を参照)。   A pressure sensor that detects the resin pressure is provided at the nozzle and the front part of the injection cylinder. The force due to the resin pressure is calculated based on the resin pressure detected by the pressure sensor, and the force due to the resin pressure is excluded from the force received by the screw. You may make it calculate a screw resistance. In this case, since the screw resistance force can be calculated based on the detected value of the resin pressure even if the resin pressure is not reduced, the screw resistance force can be calculated at an arbitrary time. For example, the absolute value of the value obtained by subtracting the value obtained by multiplying the detected value of the resin pressure by the screw cross-sectional area from the force that the screw receives in the axial direction at an arbitrary time point is detected as the screw resistance force. (Refer to step SC05 in FIG. 4).

または、スクリュが受ける力を圧力の単位に換算した上で、樹脂圧力の成分を除外してスクリュ抵抗力を算出するようにしてもよい。例えば、任意の時点において、スクリュが軸方向に受ける力をスクリュ断面積を除した値から、樹脂圧力の検出値を減算して求めた値の絶対値を、スクリュ抵抗力として検出するようにしてもよい(図5のステップSD05を参照)。   Or after converting the force which a screw receives into the unit of a pressure, you may make it calculate a screw resistance force excluding the component of resin pressure. For example, the absolute value of the value obtained by subtracting the detected value of the resin pressure from the value obtained by dividing the axial force of the screw in the axial direction at an arbitrary time point is detected as the screw resistance force. (Refer to step SD05 in FIG. 5).

<減圧工程について>
減圧工程では、スクリュを後退させることによって樹脂圧力を減圧するようにしてもよいし、スクリュを計量方向と逆方向に回転させることによって樹脂圧力を減圧するようにしてもよい。また、減圧工程中にスクリュを後退してもスクリュが軸方向に受ける力が減少しなくなった時点を樹脂圧力が減圧された時点と判定してもよいし、減圧工程中にスクリュを逆回転してもスクリュが軸方向に受ける力が減少しなくなった時点を樹脂圧力が減圧された時点と判定してもよい。
<About decompression process>
In the decompression step, the resin pressure may be reduced by moving the screw backward, or the resin pressure may be reduced by rotating the screw in a direction opposite to the metering direction. Also, it may be determined that the resin pressure has been reduced when the axial force applied to the screw does not decrease even if the screw is retracted during the decompression process, or the screw is rotated in reverse during the decompression process. Even when the force that the screw receives in the axial direction no longer decreases, it may be determined that the resin pressure has been reduced.

<スクリュが軸方向に受ける力を検出する力検出部>
スクリュが軸方向に受ける力を検出する力検出部としては、前述したように、スクリュとスクリュ駆動部の間に歪みゲージやロードセルなどの力検出部を備えるようにしてもよい。または、スクリュを軸方向に駆動するサーボ回路の中に周知の外乱負荷オブザーバーを構成してスクリュが受ける力を検出するようにしてもよい。または、可動部をサーボモータで駆動する場合は、サーボモータの駆動電流に基づいてスクリュが受ける力を検出するようにしてもよい。または、スクリュを油圧で駆動する場合は、油圧の圧力値に基いてスクリュが受ける力を検出するようにしてもよい。または、スクリュが軸方向に受ける力の代わりに、圧力を検出するようにしてもよい。
<Force detection unit that detects the force that the screw receives in the axial direction>
As described above, the force detection unit that detects the force that the screw receives in the axial direction may include a force detection unit such as a strain gauge or a load cell between the screw and the screw driving unit. Alternatively, a known disturbance load observer may be configured in the servo circuit that drives the screw in the axial direction so as to detect the force received by the screw. Or when driving a movable part with a servomotor, you may make it detect the force which a screw receives based on the drive current of a servomotor. Or when driving a screw with oil pressure, you may make it detect the force which a screw receives based on the pressure value of oil pressure. Or you may make it detect a pressure instead of the force which a screw receives to an axial direction.

<樹脂の供給量指令値の初期値>
運転開始時に設定する樹脂の供給量指令値Fの初期値は、スクリュ1の径などのスペックに応じた固定値としてもよいし、計量完了位置などから成形品ボリュームを求めて、そのボリュームに相当する樹脂量を供給するようにしてもよい。供給量指令値Fの初期値は、不揮発性メモリである共有RAM104に予め記憶させておくことができる。
<Initial value of resin supply amount command value>
The initial value of the resin supply amount command value F set at the start of operation may be a fixed value according to specifications such as the diameter of the screw 1, or the molded product volume is obtained from the measurement completion position or the like and corresponds to the volume. You may make it supply the amount of resin to perform. The initial value of the supply amount command value F can be stored in advance in the shared RAM 104 that is a nonvolatile memory.

<樹脂の供給量指令値の算出について>
供給量指令値Fの算出にあたっては、前記検出したスクリュ抵抗力が所定の目標値より大きい場合には、飢餓状態が密であるので、供給量指令値Fを小さくするように調整し、前記検出したスクリュ抵抗力が所定の目標値より小さい場合には、飢餓状態が疎であるので、供給量指令値Fを大きくするように調整するようにしてもよい。または前記検出したスクリュ抵抗力と所定の目標値との偏差に基いてPID制御を行い、スクリュ抵抗力が所定の目標値に一致するように供給量指令値Fを算出するようにしてもよい。
<Calculation of resin supply amount command value>
In calculating the supply amount command value F, if the detected screw resistance is larger than a predetermined target value, the starvation state is dense, so the supply amount command value F is adjusted to be small and the detection is performed. When the screw resistance is smaller than the predetermined target value, the starvation state is sparse, and the supply amount command value F may be adjusted to be increased. Alternatively, PID control may be performed based on the deviation between the detected screw resistance force and a predetermined target value, and the supply amount command value F may be calculated so that the screw resistance force matches the predetermined target value.

<スクリュ抵抗力の目標値の設定について>
上記のように、検出したスクリュ抵抗力が所定の目標値となるように制御することで、飢餓状態が一定になるように制御することができる。適切な飢餓状態が形成された場合、スクリュ抵抗力はほぼゼロになる場合がある。よって、スクリュ抵抗力の目標値としてはゼロを設定するようにしてもよい。また、適切な飢餓状態が形成されているときのスクリュ抵抗力が予めわかっている場合は、その値を目標値として設定するようにしてもよい。
また、満杯状態におけるスクリュ抵抗力を検出し、その値に所定の係数(0<係数<1)を掛けた値を目標値して設定するようにしてもよい。
<Setting the target value of screw resistance>
As described above, it is possible to control the starvation state to be constant by controlling the detected screw resistance to be a predetermined target value. If adequate starvation is created, screw resistance may be nearly zero. Therefore, the target value of the screw resistance force may be set to zero. Moreover, when the screw resistance force when the appropriate starvation state is formed is known in advance, the value may be set as the target value.
Alternatively, the screw resistance force in a full state may be detected, and a value obtained by multiplying the value by a predetermined coefficient (0 <coefficient <1) may be set as a target value.

<樹脂供給量調節部について>
樹脂供給量調節部は、前記算出した供給量指令値Fに基いて1成形サイクルあたりの樹脂材料の供給量を調節するようにしてもよい。例えば、特開平6−304967のようにフィードスクリュを用いて樹脂材料を供給する樹脂材料供給部であれば、1成形サイクルあたりのフィードスクリュ回転量を制御するようにしてもよい。または、1成形サイクルあたりのフィードスクリュ回転時間を制御するようにしてもよい。あるいは、樹脂供給量調節部は、成形サイクルにおける前記算出した供給指令値Fに基いて単位時間あたりの樹脂材料の供給量を調節するようにしてもよい。例えば、フィードスクリュを用いて樹脂材料を供給する樹脂材料供給部であれば、樹脂材料供給時のフィードスクリュの回転速度を制御するようにしてもよい。このとき、樹脂供給調節部は成形サイクルにおける所定の工程に対応させて供給するようにしてもよい。例えば、計量工程の開始時点から終了時点まで供給するようにしてもよいし、成形サイクルの開始時点から終了時点まで供給するようにしてもよい。あるいは、1成形サイクルにおける供給時間が一定時間となるように供給開始時点と供給終了時点を設定してもよい。
<Resin supply amount adjustment unit>
The resin supply amount adjustment unit may adjust the supply amount of the resin material per molding cycle based on the calculated supply amount command value F. For example, if it is a resin material supply part which supplies a resin material using a feed screw like Unexamined-Japanese-Patent No. 6-304967, you may make it control the feed screw rotation amount per 1 molding cycle. Alternatively, the feed screw rotation time per molding cycle may be controlled. Alternatively, the resin supply amount adjusting unit may adjust the supply amount of the resin material per unit time based on the calculated supply command value F in the molding cycle. For example, if it is a resin material supply part which supplies a resin material using a feed screw, you may make it control the rotational speed of the feed screw at the time of resin material supply. At this time, the resin supply adjusting unit may be supplied in correspondence with a predetermined process in the molding cycle. For example, the metering process may be supplied from the start point to the end point, or may be supplied from the start point to the end point of the molding cycle. Alternatively, the supply start time and the supply end time may be set so that the supply time in one molding cycle is a fixed time.

図2は減圧工程完了後からスクリュ前進開始までの任意の時点におけるスクリュが受ける力の絶対値に基づいて樹脂供給量調節を行う処理のフローチャートである。以下、各ステップに従って説明する。
●[ステップSA01]供給量指令値Fの初期値を設定する。
●[ステップSA02]射出・保圧工程を実行する。
●[ステップSA03]計量を開始する。
●[ステップSA04]スクリュ抵抗力が目標値になるように、樹脂の供給量指令値Fを算出する。
●[ステップSA05]供給量指令値Fに基いて樹脂を供給する。
●[ステップSA06]所定量の樹脂の計量が行われると計量を完了する。
●[ステップSA07]減圧工程を実行する。
●[ステップSA08]スクリュが受ける力の絶対値をスクリュ抵抗力として検出する。
●[ステップSA09]運転終了か否か判断し、運転終了でない場合にはステップSA02に戻り処理を継続し、運転終了の場合には処理を終了する。
FIG. 2 is a flowchart of a process for adjusting the resin supply amount based on the absolute value of the force received by the screw at an arbitrary time from the completion of the decompression process to the start of screw advancement. Hereinafter, it demonstrates according to each step.
[Step SA01] The initial value of the supply amount command value F is set.
[Step SA02] An injection / pressure holding process is executed.
● [Step SA03] Start weighing.
[Step SA04] The resin supply amount command value F is calculated so that the screw resistance becomes the target value.
[Step SA05] Resin is supplied based on the supply amount command value F.
[Step SA06] When a predetermined amount of resin is weighed, the weighing is completed.
[Step SA07] A decompression step is executed.
[Step SA08] The absolute value of the force received by the screw is detected as the screw resistance force.
[Step SA09] It is determined whether or not the operation is finished. If the operation is not finished, the process returns to Step SA02 to continue the process. If the operation is finished, the process is finished.

図3は減圧中にスクリュが受ける力が減少しなくなった時点からスクリュ前進中にスクリュが受ける力が増加をし始めた時点までの任意の時点におけるスクリュが受ける力の絶対値に基づいて樹脂供給量調節を行う処理のフローチャートである。以下、各ステップに従って説明する。
●[ステップSB01]供給量指令値Fの初期値を設定する。
●[ステップSB02]射出工程を実行する。
●[ステップSB03]スクリュが受ける力が増加しているか否か判断し、増加している場合(YES)にはステップSB05へ移行し、増加していない場合(NO)にはステップSB04へ移行する。
●[ステップSB04]スクリュが受ける力の絶対値をスクリュ抵抗力として検出する。
●[ステップSB05]射出工程を完了する。
●[ステップSB06]保圧工程を実行する。
●[ステップSB07]計量工程を開始する。
●[ステップSB08]スクリュ抵抗力が目標値になるように、樹脂の供給量指令値Fを算出する。
●[ステップSB09]供給量指令値Fに基いて樹脂を供給する。
●[ステップSB10]所定量の樹脂の計量が行われると計量を完了する。
●[ステップSB11]減圧工程を開始する。
●[ステップSB12]スクリュが受ける力が減少か否か判断し、減少しない場合(NO)にはステップSB13へ移行し、減少する場合(YES)には減少しないようになるのを待つ。
●[ステップSB13]スクリュが受ける力の絶対値をスクリュ抵抗力として検出する。

●[ステップSB14]減圧を完了する。
●[ステップSB15]運転終了か否か判断し、運転終了でない場合にはステップSB02に戻り処理を継続し、運転終了の場合には処理を終了する。
FIG. 3 shows the resin supply based on the absolute value of the force received by the screw at any time from the point when the force received by the screw during pressure reduction stops to the point when the force received by the screw during screw advance starts to increase. It is a flowchart of the process which performs quantity adjustment. Hereinafter, it demonstrates according to each step.
[Step SB01] The initial value of the supply amount command value F is set.
[Step SB02] An injection process is executed.
[Step SB03] It is determined whether or not the force received by the screw is increasing. If it is increasing (YES), the process proceeds to Step SB05. If not (NO), the process proceeds to Step SB04. .
[Step SB04] The absolute value of the force received by the screw is detected as the screw resistance force.
[Step SB05] The injection process is completed.
[Step SB06] The pressure holding process is executed.
[Step SB07] The weighing process is started.
[Step SB08] The resin supply amount command value F is calculated so that the screw resistance force becomes a target value.
[Step SB09] Resin is supplied based on the supply amount command value F.
[Step SB10] When a predetermined amount of resin is weighed, the weighing is completed.
[Step SB11] The decompression process is started.
[Step SB12] It is determined whether or not the force received by the screw is reduced. If it is not reduced (NO), the process proceeds to Step SB13, and if it is reduced (YES), it is waited until it is not reduced.
[Step SB13] The absolute value of the force received by the screw is detected as the screw resistance force.

[Step SB14] The pressure reduction is completed.
[Step SB15] It is determined whether or not the operation is finished. If the operation is not finished, the process returns to Step SB02 to continue the process. If the operation is finished, the process is finished.

図4はスクリュが受ける力Dからスクリュ前方の樹脂圧力Pによる影響を除外したスクリュ抵抗力を元に樹脂供給量調節を行う処理のフローチャートである。
●[ステップSC01]供給量指令値Fの初期値を設定する。
●[ステップSC02]射出・保圧工程を実行する。
●[ステップSC03]計量を開始する。
●[ステップSC04]スクリュが受ける力Dとスクリュ前方の樹脂圧力Pを検出する。
●[ステップSC05]スクリュ抵抗力Fを、スクリュが受ける力Dからスクリュ前方の樹脂圧力Pにスクリュ断面積を乗算した値を減算し、得られた結果の値の絶対値とする。
つまり、スクリュ抵抗力=|D−P×スクリュ断面積|を計算する。
●[ステップSC06]スクリュ抵抗力が目標値になるように、樹脂の供給量指令値Fを算出する。
●[ステップSC07]樹脂供給量Fに基いて樹脂を供給する。
●[ステップSC08]計量終了か否か判断し、計量終了の場合(YES)にはステップSC09へ移行し、計量終了でない場合(NO)にはステップSC04へ移行する。
●[ステップSC09]減圧工程を実行する。
●[ステップSC10]運転終了か否か判断し、運転終了でない場合にはステップSC02に戻り処理を継続し、運転終了の場合には処理を終了する。
FIG. 4 is a flowchart of a process for adjusting the resin supply amount based on the screw resistance force excluding the influence of the resin pressure P in front of the screw from the force D received by the screw.
[Step SC01] The initial value of the supply amount command value F is set.
[Step SC02] An injection / pressure holding process is executed.
● [Step SC03] Start weighing.
[Step SC04] The force D received by the screw and the resin pressure P in front of the screw are detected.
[Step SC05] The screw resistance force F is subtracted from the force D received by the screw, the value obtained by multiplying the resin pressure P in front of the screw by the screw cross-sectional area, and the absolute value of the obtained result is obtained.
That is, screw resistance force = | D−P × screw cross-sectional area | is calculated.
[Step SC06] The resin supply amount command value F is calculated so that the screw resistance becomes the target value.
[Step SC07] Resin is supplied based on the resin supply amount F.
[Step SC08] It is determined whether or not the measurement is completed. If the measurement is completed (YES), the process proceeds to Step SC09. If the measurement is not completed (NO), the process proceeds to Step SC04.
[Step SC09] The decompression step is executed.
[Step SC10] It is determined whether or not the operation is finished. If the operation is not finished, the process returns to step SC02 to continue the process. If the operation is finished, the process is finished.

図5はスクリュが受ける力Dからスクリュ前方の樹脂圧力Pによる影響を除外したスクリュ抵抗力を元に樹脂供給量調節を行う処理の他のフローチャートである。この処理のフローチャートは、図4に示されるフローチャートのステップSC05を、ステップSD05においてスクリュ抵抗力算出部が、力検出部の検出値をスクリュ断面積で除した値から樹脂圧力検出部の検出値を減じ、該算出した値の絶対値をスクリュ抵抗力として算出するようにした点で異なり、その他のステップの処理の内容は同じであるので記載を略する。   FIG. 5 is another flowchart of the process for adjusting the resin supply amount based on the screw resistance force excluding the influence of the resin pressure P in front of the screw from the force D received by the screw. In the flowchart of this process, step SC05 of the flowchart shown in FIG. 4 is performed. In step SD05, the screw resistance force calculation unit calculates the detection value of the resin pressure detection unit from the value obtained by dividing the detection value of the force detection unit by the screw cross-sectional area. The difference is that the absolute value of the calculated value is calculated as the screw resistance force, and the details of the processing in the other steps are the same, and the description is omitted.

1 スクリュ
2 射出シリンダ
4 ホッパ
5 ペレットフィーダ
6 連通路
7 羽根付ロータ
M3 モータ
F 供給量指令値
D スクリュが受ける力
DESCRIPTION OF SYMBOLS 1 Screw 2 Injection cylinder 4 Hopper 5 Pellet feeder 6 Communication path 7 Rotor with blade M3 Motor F Supply amount command value D Force received by screw

Claims (6)

射出シリンダと、スクリュと、スクリュを前後進方向に駆動するスクリュ前後進駆動部と、スクリュが軸方向に受ける力を検出する力検出部と、該射出シリンダ内に樹脂材料を供給する樹脂材料供給部とを有する射出成形機において、
前記力検出部の検出値に基いてスクリュ抵抗力を算出するスクリュ抵抗力算出部と、
前記スクリュ抵抗力が大きくなるにしたがって前記樹脂材料供給部の樹脂供給量を小さくする樹脂供給量調節部を有することを特徴とする射出成形機。
Injection cylinder, screw, screw forward / backward drive unit for driving the screw in the forward / backward direction, force detection unit for detecting the force received by the screw in the axial direction, and resin material supply for supplying the resin material into the injection cylinder In an injection molding machine having a part,
A screw resistance force calculation unit for calculating a screw resistance force based on a detection value of the force detection unit;
An injection molding machine comprising: a resin supply amount adjusting unit that decreases a resin supply amount of the resin material supply unit as the screw resistance increases.
前記スクリュ抵抗力算出部は、減圧工程完了後からスクリュ前進開始までの任意の時点における前記力検出部の検出値の絶対値をスクリュ抵抗力として算出することを特徴とする請求項1に記載の射出成形機。   2. The screw resistance calculation unit according to claim 1, wherein the screw resistance calculation unit calculates an absolute value of a detection value of the force detection unit at an arbitrary time from the completion of the decompression process to the start of screw advancement as a screw resistance. Injection molding machine. 前記スクリュ抵抗力算出部は、減圧中に前記力検出部の検出値が減少しなくなった時点からスクリュ前進中に前記力検出部の検出値が増加を始めた時点までの任意の時点における前記力検出部の検出値の絶対値をスクリュ抵抗力として算出することを特徴とする請求項1に記載の射出成形機。   The screw resistance force calculation unit may calculate the force at any time from when the detection value of the force detection unit does not decrease during decompression to when the detection value of the force detection unit starts to increase during screw advancement. The injection molding machine according to claim 1, wherein an absolute value of a detection value of the detection unit is calculated as a screw resistance force. スクリュ前方の樹脂圧力を検出する樹脂圧力検出部を有し、前記スクリュ抵抗力算出部は、前記力検出部の検出値から前記樹脂圧力検出部の検出値にスクリュ断面積を乗じた値を減じ、該算出した値の絶対値をスクリュ抵抗力として算出することを特徴とする請求項1に記載の射出成形機。   A resin pressure detection unit that detects a resin pressure in front of the screw, and the screw resistance calculation unit subtracts a value obtained by multiplying a detection value of the resin pressure detection unit by a screw cross-sectional area from a detection value of the force detection unit. 2. The injection molding machine according to claim 1, wherein an absolute value of the calculated value is calculated as a screw resistance force. スクリュ前方の樹脂圧力を検出する樹脂圧力検出部を有し、前記スクリュ抵抗力算出部は、前記力検出部の検出値をスクリュ断面積で除した値から前記樹脂圧力検出部の検出値を減じ、該算出した値の絶対値をスクリュ抵抗力として算出することを特徴とする請求項1に記載の射出成形機。   A resin pressure detection unit that detects a resin pressure in front of the screw, and the screw resistance force calculation unit subtracts the detection value of the resin pressure detection unit from a value obtained by dividing the detection value of the force detection unit by a screw cross-sectional area. 2. The injection molding machine according to claim 1, wherein an absolute value of the calculated value is calculated as a screw resistance force. 前記樹脂供給量調節部は、前記スクリュ抵抗力が所定の目標値となるように、前記樹脂材料供給部の樹脂供給量を調節することを特徴とする請求項1〜5のいずれか一つに記載の射出成形機。   The resin supply amount adjusting unit adjusts the resin supply amount of the resin material supply unit so that the screw resistance becomes a predetermined target value. The injection molding machine described.
JP2013090401A 2012-07-26 2013-04-23 Injection molding machine having a resin supply amount adjustment unit Active JP5543632B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013090401A JP5543632B2 (en) 2012-07-26 2013-04-23 Injection molding machine having a resin supply amount adjustment unit
DE102013012067.5A DE102013012067B4 (en) 2012-07-26 2013-07-19 Injection molding machine with resin feed rate regulator
CN201310316642.8A CN103568209B (en) 2012-07-26 2013-07-25 Injection moulding machine with resin quantity delivered adjustment portion

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012166129 2012-07-26
JP2012166129 2012-07-26
JP2013090401A JP5543632B2 (en) 2012-07-26 2013-04-23 Injection molding machine having a resin supply amount adjustment unit

Publications (2)

Publication Number Publication Date
JP2014040090A true JP2014040090A (en) 2014-03-06
JP5543632B2 JP5543632B2 (en) 2014-07-09

Family

ID=49912310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013090401A Active JP5543632B2 (en) 2012-07-26 2013-04-23 Injection molding machine having a resin supply amount adjustment unit

Country Status (3)

Country Link
JP (1) JP5543632B2 (en)
CN (1) CN103568209B (en)
DE (1) DE102013012067B4 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190036798A (en) * 2017-09-28 2019-04-05 주식회사 대건테크 Method for calculating metal powder supply rate of 3d printer
US20210237324A1 (en) * 2017-03-29 2021-08-05 Maguire Products, Inc. Dual signal additive feeding method and apparatus

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT516122B1 (en) * 2014-08-14 2017-01-15 Engel Austria Gmbh Method for dosing plastic granules
DE102017126946A1 (en) 2017-11-16 2019-05-16 Kraussmaffei Technologies Gmbh Process for the production of plastic molded parts
AT523150B1 (en) 2019-11-28 2021-06-15 Engel Austria Gmbh Method for influencing a backlog length and / or a screw return speed
CN113799350B (en) * 2021-08-23 2023-07-21 西诺控股集团有限公司 Control method and device for intelligently detecting plasticizing capacity

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002248663A (en) * 2001-02-27 2002-09-03 Sumitomo Heavy Ind Ltd Method and apparatus for controlling injection

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5311957A (en) * 1976-07-20 1978-02-02 Meiki Seisakusho Kk Plastic molding machine
JPH01171830A (en) * 1987-12-28 1989-07-06 Japan Steel Works Ltd:The Material feed control method for injection machine and its device
JP2558891B2 (en) * 1989-09-29 1996-11-27 三菱重工業株式会社 Raw material resin feeder for molding machine
JP2529412B2 (en) * 1989-10-02 1996-08-28 東洋機械金属株式会社 Injection molding machine
JPH0518531A (en) 1991-07-08 1993-01-26 Matsushita Electric Ind Co Ltd Control device for electromagnetic pump
JP2694587B2 (en) * 1992-05-19 1997-12-24 ファナック株式会社 Measuring method of injection molding machine
JPH06304967A (en) 1993-04-26 1994-11-01 Fanuc Ltd Fixed quantity weighing equipment for injection molding machine
JP3053518B2 (en) * 1993-12-17 2000-06-19 東芝機械株式会社 Screw back pressure control method for electric injection molding machine
JP3751506B2 (en) * 2000-06-08 2006-03-01 ヤマハファインテック株式会社 Material metering and supply control device for injection molding machine and material metering and control method thereof
JP3905319B2 (en) * 2001-02-26 2007-04-18 住友重機械工業株式会社 Injection control device
DE102007012199A1 (en) * 2007-03-14 2008-09-18 Demag Ergotech Gmbh Plastification mechanism e.g. extruder or injection molding machine, operating method, involves adjusting and/or maintaining fluid level of raw material in valve within fluid level range corresponding to optimal operating parameter range
JP4945662B2 (en) * 2010-06-21 2012-06-06 ファナック株式会社 Injection molding machine having resin supply amount adjusting means

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002248663A (en) * 2001-02-27 2002-09-03 Sumitomo Heavy Ind Ltd Method and apparatus for controlling injection

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210237324A1 (en) * 2017-03-29 2021-08-05 Maguire Products, Inc. Dual signal additive feeding method and apparatus
KR20190036798A (en) * 2017-09-28 2019-04-05 주식회사 대건테크 Method for calculating metal powder supply rate of 3d printer
KR102067873B1 (en) 2017-09-28 2020-01-17 주식회사 대건테크 Method for calculating metal powder supply rate of 3d printer

Also Published As

Publication number Publication date
CN103568209A (en) 2014-02-12
CN103568209B (en) 2017-08-08
DE102013012067B4 (en) 2021-06-24
JP5543632B2 (en) 2014-07-09
DE102013012067A1 (en) 2014-01-30

Similar Documents

Publication Publication Date Title
JP5543632B2 (en) Injection molding machine having a resin supply amount adjustment unit
JP4038226B2 (en) Measuring method and control device for injection molding machine
EP1938947B1 (en) Injection molding machine and method of adjusting control condition for reverse rotation of screw in injection molding machine
JP5702878B2 (en) Pressure control device for injection molding machine
CN105936112B (en) Pressure control device for injection molding machine
JPH0440178B2 (en)
JP3766371B2 (en) Measuring method and control device for injection molding machine
JP5507519B2 (en) Metering control device for injection molding machine
JP5351307B1 (en) Pressure control device for injection molding machine
JP5302436B1 (en) Resin condition monitoring device for injection molding machines
JP2015096298A (en) Controller of injection molding machine
JP5302437B1 (en) Control device for injection molding machine having function of adjusting pressure control parameter
JP6162612B2 (en) Abnormality detection device for movable parts of injection molding machine
JP5877882B2 (en) Pressure control device for injection molding machine
JP2010173183A (en) Control device for injection molding apparatus
JP3851618B2 (en) Injection molding machine
JP2694587B2 (en) Measuring method of injection molding machine
JP4945662B2 (en) Injection molding machine having resin supply amount adjusting means
JP5090996B2 (en) Pressure abnormality detection device for injection molding machine
JP5819647B2 (en) Temperature control device for injection molding machine having feedforward function
JP5727536B2 (en) Control device for injection molding machine having temperature management function of force transmission part
JP5113596B2 (en) Pressure abnormality detection device for injection molding machine
JP3244373B2 (en) Reservoir internal pressure adjusting device in injection molding machine
JP5073562B2 (en) Pressure abnormality detection device for injection molding machine
JP2010000741A (en) Controller of injection molding apparatus

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20131121

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20131205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140508

R150 Certificate of patent or registration of utility model

Ref document number: 5543632

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150