JP2014039434A - Soc estimation device and soc estimation method - Google Patents

Soc estimation device and soc estimation method Download PDF

Info

Publication number
JP2014039434A
JP2014039434A JP2012181590A JP2012181590A JP2014039434A JP 2014039434 A JP2014039434 A JP 2014039434A JP 2012181590 A JP2012181590 A JP 2012181590A JP 2012181590 A JP2012181590 A JP 2012181590A JP 2014039434 A JP2014039434 A JP 2014039434A
Authority
JP
Japan
Prior art keywords
ocv
value
soc
bypass current
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012181590A
Other languages
Japanese (ja)
Inventor
Hiroko Ataya
皓子 安谷屋
Takahiro Tsutake
隆広 都竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2012181590A priority Critical patent/JP2014039434A/en
Priority to PCT/JP2013/069349 priority patent/WO2014030464A1/en
Publication of JP2014039434A publication Critical patent/JP2014039434A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3828Arrangements for monitoring battery or accumulator variables, e.g. SoC using current integration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To accurately estimate an SOC (State Of Charge) of a secondary battery capable of being charged/discharged and reduce time required for estimating the SOC, with regard to an SOC estimation device and an SOC estimation method for estimating the SOC.SOLUTION: A measurement unit 1-1 measures a value of OCV of each of cells C1 to C5 at outflow start time of bypass current flowing in bypass circuits B1 to B5 and outflow time of the bypass current. A fluctuation transition estimation unit 1-2 estimates transition of fluctuation in the value of OCV of the cell after the outflow start of the bypass current on the basis of known SOC-OCV characteristic information showing relation between an SOC and OCV of a cell and the value of OCV at the outflow start time of the bypass current. An OCV value estimation unit 1-3 estimates a value of OCV in the case of outflow suspension of the bypass current on the basis of the transition of the fluctuation in the value of OCV. SOC value estimation means 1-4 estimates a value of SOC in the case of the outflow suspension of the bypass current from the value of OCV estimated by the OCV value estimation unit 1-3, on the basis of the SOC-OCV characteristic information.

Description

本発明は、充放電が可能な2次電池のSOC(State Of Charge:充電状態)を推定するSOC推定装置及びSOC推定方法に関する。   The present invention relates to an SOC estimation device and an SOC estimation method for estimating an SOC (State Of Charge) of a secondary battery that can be charged and discharged.

複数のセル(単電池)を直列に接続したバッテリ(組電池)は、充放電中又は放置中に、各セルのSOCに差が生じることがあり、電圧が高いセルに対して抵抗を接続してバイパス電流を流し、全てのセルのSOCが均一となるよう、セルバランス制御を行っている(例えば下記の特許文献1,2等参照)。   A battery (assembled battery) in which a plurality of cells (single cells) are connected in series may cause a difference in the SOC of each cell during charging / discharging or standing, and a resistor is connected to a cell having a high voltage. The cell balance control is performed so that the SOC of all the cells is uniform by supplying a bypass current (see, for example, Patent Documents 1 and 2 below).

図6は、抵抗を用いたバイパス回路によるセルバランス回路の構成例を示している。各セルC1〜C5には、それぞれ、抵抗R1〜R5とスイッチング素子Sw1〜Sw5とを直列に接続したバイパス回路B1〜B5を並列に接続し、スイッチング素子Sw1〜Sw5を閉路して、抵抗R1〜R5を通してセルC1〜C5の電荷を放電させる。   FIG. 6 shows a configuration example of a cell balance circuit by a bypass circuit using a resistor. In each of the cells C1 to C5, bypass circuits B1 to B5 in which resistors R1 to R5 and switching elements Sw1 to Sw5 are connected in series are connected in parallel, the switching elements Sw1 to Sw5 are closed, and the resistors R1 to R5 are closed. The charges of the cells C1 to C5 are discharged through R5.

セルバランス制御を行うに当たって、スイッチング素子Sw1〜Sw5の閉路時間を適切に決定して効率よくセルバランス制御を行うため、或いは充放電の状態を適正に管理するために、各セルC1〜C5のSOCを短時間で推定することが必要となる。   In performing the cell balance control, the SOC of each of the cells C1 to C5 is determined in order to appropriately determine the closing time of the switching elements Sw1 to Sw5 and efficiently perform the cell balance control, or to properly manage the charge / discharge state. Must be estimated in a short time.

各セルC1〜C5のSOCを推定する手法として、充放電電流の電流積算によりSOCを推定する手法や、予めセルのOCV(Open Circuit Voltage:開放電圧)とSOCとの対応関係(SOC−OCV特性)を観測し、該対応関係をマッピングしたSOC−OCV特性情報をメモリに記憶し、各セルのOCVを測定し、該OCVの値から該SOC−OCV特性情報を参照して、SOCを推定する手法などが知られている(例えば下記の特許文献3等参照)。   As a method of estimating the SOC of each of the cells C1 to C5, a method of estimating the SOC by integrating the charge / discharge current, or a correspondence relationship between the OCV (Open Circuit Voltage) of the cell and the SOC in advance (SOC-OCV characteristics) ), The SOC-OCV characteristic information in which the correspondence is mapped is stored in the memory, the OCV of each cell is measured, and the SOC is estimated by referring to the SOC-OCV characteristic information from the value of the OCV A technique is known (see, for example, Patent Document 3 below).

特開2009−038876号公報JP 2009-038876 A 特開2011−234506号公報JP 2011-234506 A 特開2012−026771号公報JP 2012-026771 A

セルの充放電電流の電流積算により該セルのSOCを推定する手法は、セルが満充電や完全放電に至ることが少ない場合、SOCの基準点を定めることが困難であり、電流積算誤差が累積し、高精度の推定を行なうことが困難となる。   The method of estimating the SOC of a cell by integrating the charge / discharge current of the cell is difficult to determine the SOC reference point when the cell is unlikely to be fully charged or completely discharged, and the current accumulation error is accumulated. However, it is difficult to perform highly accurate estimation.

また、OCVを用いてSOCを推定する場合、セルバランス実施中のセルに対して、セルバランスの実施を中断し、バイパス電流をゼロとし、OCVを測定しようとしても、該セルの電圧がCCV(Closed Circuit Voltage:閉路電圧)からOCVに収束するまでに、或る程度の長さの時間を要し、直ちにSOCを推定することができない。   In addition, when the SOC is estimated using OCV, even if cell balancing is interrupted, the bypass current is set to zero, and the OCV is measured with respect to the cell being cell-balanced, the voltage of the cell is CCV ( It takes a certain amount of time to converge from the closed circuit voltage to the OCV, and the SOC cannot be estimated immediately.

図7は、セルバランス実施時のセルの電圧の変動の一例を示す。図7において横軸は、セルバランスの実施開始時からの経過時間を示し、縦軸はセルの電圧を示している。7−1の実線は、セルバランス実施中のセル電圧(CCV)及びセルバランス中断後の実際のセル電圧を表している。   FIG. 7 shows an example of cell voltage fluctuations during cell balancing. In FIG. 7, the horizontal axis indicates the elapsed time from the start of cell balance, and the vertical axis indicates the cell voltage. A solid line 7-1 represents the cell voltage (CCV) during the cell balance and the actual cell voltage after the cell balance is interrupted.

セルバランス実施中、CCVは、セルの内部抵抗及び分極の影響により、OCVより常に低い電圧となる。セルバランスの実施を中断し、セルの端子を開放しても、その後、セルの電圧は直ちにOCVに収束することなく、分極解消に或る程度の長さの時間twを要し、セルの電圧が収束したOCVとなるまでに所定の時間twを待たなければならない。そのため、使用中のセルに対して、OCVの測定により直ちにSOCを推定することが困難であった。   During cell balancing, the CCV is always lower than the OCV due to the effects of cell internal resistance and polarization. Even if the cell balancing is interrupted and the cell terminal is opened, the cell voltage does not immediately converge to the OCV, and a certain amount of time tw is required for depolarization. It is necessary to wait for a predetermined time tw until becomes a converged OCV. For this reason, it has been difficult to immediately estimate the SOC of the cell in use by measuring the OCV.

上記課題に鑑み、本発明は、SOCの推定を精度良く行い、かつ推定に要する時間を短縮することができるSOC推定装置及びSOC推定方法を提供する。   In view of the above problems, the present invention provides an SOC estimation apparatus and an SOC estimation method that can accurately estimate an SOC and reduce the time required for the estimation.

本発明の一実施形態であるSOC推定装置は、既知の抵抗値のバイパス回路が接続され、該バイパス回路にバイパス電流を流出してセルバランスを行う二次電池(セル)の充電状態(SOC)を推定するSOC推定装置であって、前記バイパス電流の流出開始時の該セルの開放電圧(OCV)の値と、該バイパス電流の流出時間とを計測する計測手段と、前記セルのSOCとOCVとの対応関係を示すSOC−OCV特性情報と、前記バイパス電流の流出開始時のOCVの値とを基に、該バイパス電流の流出開始後の該セルのOCVの値の変動の推移を推定する変動推移推定手段と、前記計測手段で計測したバイパス電流の流出開始時のOCVの値と前記バイパス電流の流出時間とから、前記変動推移推定手段で推定したOCVの値の変動の推移を基に、該バイパス電流の流出時間後のOCVの値を推定するOCV値推定手段と、前記OCV値推定手段で推定されたOCVの値から、前記SOC−OCV特性情報を基に、前記バイパス電流の流出時間後のSOCの値を推定するSOC値推定手段と、を備えたものである。   An SOC estimation apparatus according to an embodiment of the present invention is connected to a bypass circuit having a known resistance value, and a state of charge (SOC) of a secondary battery (cell) that performs cell balancing by flowing a bypass current to the bypass circuit. An SOC estimation device for estimating the cell open circuit voltage (OCV) value and the bypass current outflow time at the start of the bypass current outflow, and the SOC and OCV of the cell. Based on the SOC-OCV characteristic information indicating the correspondence relationship between the current and the OCV value at the start of outflow of the bypass current, the change in the OCV value of the cell after the start of outflow of the bypass current is estimated. From the fluctuation transition estimation means, the OCV value at the start of bypass current flow measured by the measurement means, and the bypass current flow time, the fluctuation of the OCV value estimated by the fluctuation transition estimation means OCV value estimating means for estimating the OCV value after the outflow time of the bypass current based on the shift, and the OCV value estimated by the OCV value estimating means, based on the SOC-OCV characteristic information, SOC value estimating means for estimating the SOC value after the outflow time of the bypass current.

この構成により、セルバランスの実施後に、セルバランス実施中のOCVの値を推定して求め、該推定したOCVの値を用いて、直ちにSOC推定を行うことが可能となる。
また、他の実施形態のSOC推定装置は、バイパス電流の流出開始時の該セルの開放電圧(OCV)の値と、該バイパス電流の流出時間とを計測する計測手段と、前記セルのSOCとOCVとの対応関係を示すSOC−OCV特性情報と、前記バイパス電流の流出開始時のOCVの値とを基に、該バイパス電流の流出開始後の該セルのOCVの値の変動の推移を推定する変動推移推定手段と、前記変動推移推定手段で推定された前記セルのOCVの値から、前記バイパス電流の値の推移を推定し、該バイパス電流の値を積算する電流積算値推定手段と、前記電流積算値推定手段で積算された積算値を、前記バイパス電流の流出開始時の前記セルのSOCの値から減算し、前記バイパス電流の流出時間後のSOCの値を推定するSOC値推定手段と、を備えたものである。
With this configuration, after the cell balance is performed, it is possible to estimate the OCV value during the cell balance and obtain the SOC immediately using the estimated OCV value.
Further, the SOC estimation apparatus according to another embodiment includes a measuring unit that measures a value of the open circuit voltage (OCV) of the cell at the start of outflow of the bypass current and an outflow time of the bypass current, and the SOC of the cell. Based on the SOC-OCV characteristic information indicating the correspondence with the OCV and the OCV value at the start of the bypass current outflow, the transition of the OCV value fluctuation of the cell after the start of the bypass current outflow is estimated. Fluctuation transition estimating means for estimating the transition value of the bypass current from the OCV value of the cell estimated by the fluctuation transition estimating means, and integrating the value of the bypass current, An SOC value estimator for subtracting the integrated value accumulated by the current accumulated value estimating means from the SOC value of the cell at the start of the bypass current outflow to estimate the SOC value after the bypass current outflow time. When, those having a.

この構成により、セルバランスの実施後に、セルバランス実施中のOCVの値を推定して求め、該推定したOCVの値からバイパス電流として流出した電流を積算し、該積算した電流値を、セルバランス開始時のSOC値から減算することにより、直ちにSOC推定を行うことが可能となる。   With this configuration, after the cell balance is performed, the OCV value during the cell balance is estimated and obtained, and the current that has flowed out as a bypass current from the estimated OCV value is integrated. By subtracting from the SOC value at the start, the SOC estimation can be performed immediately.

また、前記変動推移推定手段は、前記セルの満充電状態から完全放電状態に亘って、前記バイパス電流の流出開始後の前記OCVの値と、該バイパス電流の流出時間との対応関係とを、予めマッピングしたOCVマッピング情報をメモリから読み出し、前記セルのOCVの値の変動の推移を推定するものである。   Further, the variation transition estimation means, the correlation between the OCV value after the bypass current starts to flow out and the outflow time of the bypass current from the fully charged state to the fully discharged state of the cell, The OCV mapping information mapped in advance is read from the memory, and the transition of the fluctuation of the OCV value of the cell is estimated.

この構成により、バイパス電流の流出開始後のOCVの値の変動の推移を、メモリに記憶されたOCVマッピング情報を参照することにより、短時間で推定することが可能となる。   With this configuration, it is possible to estimate the transition of the fluctuation in the OCV value after the start of the outflow of the bypass current in a short time by referring to the OCV mapping information stored in the memory.

本発明によれば、セルバランス等の実施後に、バイパス電流の流出中のOCVの値の変動を推定して求め、該推定により求めたOCVの値を用いてSOC推定を行うことにより、セルバランス等の実施の中断時でも分極解消のために或る程度の時間を待つことなく、直ちにSOC推定を行うことが可能となり、精度の良いSOC推定を短時間で行うことが可能となる。   According to the present invention, after the cell balance or the like is performed, the fluctuation of the OCV value during the outflow of the bypass current is estimated and obtained, and the SOC estimation is performed using the OCV value obtained by the estimation. Even when the implementation is interrupted, it is possible to immediately perform the SOC estimation without waiting for a certain amount of time for eliminating the polarization, and it is possible to perform the accurate SOC estimation in a short time.

本発明の第1の実施形態のSOC推定装置の構成例を示す図である。It is a figure which shows the structural example of the SOC estimation apparatus of the 1st Embodiment of this invention. SOCの変化分ΔSOCによるOCVの変動の一例を示す図である。It is a figure which shows an example of the fluctuation | variation of OCV by SOC variation (DELTA) SOC. SOC−OCV特性を基に推定したOCVの値の変動の推移の一例を示す図である。It is a figure which shows an example of transition of the fluctuation | variation of the value of OCV estimated based on the SOC-OCV characteristic. バイパス電流の変動の推移及び消費SOCの一例を示す図である。It is a figure which shows an example of transition of the fluctuation | variation of a bypass current, and consumption SOC. 本発明の第2の実施形態のSOC推定装置の構成例を示す図である。It is a figure which shows the structural example of the SOC estimation apparatus of the 2nd Embodiment of this invention. 抵抗を用いたバイパス回路によるセルバランス回路の構成例を示す図である。It is a figure which shows the structural example of the cell balance circuit by the bypass circuit using resistance. セルバランス実施時のセルの電圧の変動の一例を示す図である。It is a figure which shows an example of the fluctuation | variation of the voltage of the cell at the time of cell balance implementation.

以下、図面を参照して実施の形態について詳細に説明する。図1はSOC推定装置の構成例を示す。図1において、各スイッチング素子によるバイパス回路の構成及びその動作は、図6を参照して説明した構成及び動作と同様であるので重複した説明は省略する。   Hereinafter, embodiments will be described in detail with reference to the drawings. FIG. 1 shows a configuration example of the SOC estimation apparatus. In FIG. 1, the configuration and operation of the bypass circuit by each switching element are the same as the configuration and operation described with reference to FIG.

本発明のSOC推定装置によるSOC推定の対象となるセルC1〜C5は、既知の抵抗値の抵抗R1〜R5を介してバイパス電流を流出させるバイパス回路B1〜B5が接続されたセルである。なお、図示の例では、セルC1〜C5の5個のセルを直列接続した構成例を示しているが、本発明はこれに限定されるものではなく、セルの個数は任意である。   Cells C1 to C5 that are targets of SOC estimation by the SOC estimation apparatus of the present invention are cells to which bypass circuits B1 to B5 that allow a bypass current to flow out through resistors R1 to R5 having known resistance values are connected. In the illustrated example, a configuration example in which five cells C1 to C5 are connected in series is shown, but the present invention is not limited to this, and the number of cells is arbitrary.

本発明のセルSOC推定装置1は、計測部1−1と変動推移推定部1−2とOCV値推定部1−3とSOC推定部1−4とを備える。計測部1−1は、バイパス回路B1〜B5に流れるバイパス電流の流出開始時の各セルC1〜C5のOCVの値と、該バイパス電流の流出時間とを計測する。   The cell SOC estimation apparatus 1 of the present invention includes a measurement unit 1-1, a fluctuation transition estimation unit 1-2, an OCV value estimation unit 1-3, and an SOC estimation unit 1-4. The measuring unit 1-1 measures the OCV value of each of the cells C1 to C5 at the start of outflow of the bypass current flowing through the bypass circuits B1 to B5 and the outflow time of the bypass current.

変動推移推定部1−2は、セルC1〜C5のSOCとOCVとの対応関係を示す既知のSOC−OCV特性情報と、計測部1−1で計測されたバイパス電流の流出開始時のOCVの値とを基に、該バイパス電流の流出開始後のセルのOCVの値の変動の推移を推定する。   The fluctuation transition estimation unit 1-2 includes known SOC-OCV characteristic information indicating the correspondence relationship between the SOCs and the OCVs of the cells C1 to C5, and the OCV at the start of the outflow of the bypass current measured by the measurement unit 1-1. Based on the value, the transition of the fluctuation of the OCV value of the cell after the start of the outflow of the bypass current is estimated.

OCV値推定部1−3は、計測部1−1で計測されたバイパス電流の流出開始時のOCVの値とバイパス電流の流出時間とから、変動推移推定部1−2で推定したOCVの値の変動の推移を基に、該バイパス電流の流出時間後(セルバランス中断時、又はセルバランス終了時)のOCVの値を推定する。SOC値推定手段1−4は、OCV値推定部1−3で推定されたOCVの値から、前述のSOC−OCV特性情報を基に、バイパス電流の流出時間後のSOCの値を推定する。   The OCV value estimator 1-3 determines the value of the OCV estimated by the change transition estimator 1-2 from the value of the OCV at the start of the outflow of the bypass current measured by the measuring unit 1-1 and the outflow time of the bypass current. The OCV value after the outflow time of the bypass current (when the cell balance is interrupted or at the end of the cell balance) is estimated based on the transition of the fluctuations of. The SOC value estimation means 1-4 estimates the SOC value after the outflow time of the bypass current based on the aforementioned SOC-OCV characteristic information from the OCV value estimated by the OCV value estimation unit 1-3.

ここで、前述の変動推移推定部1−2によるバイパス電流の流出開始後のセルのOCVの値の変動の推移を推定の動作について詳しく説明する。バイパス回路B1〜B5の抵抗R1〜R5の値をR、バイパス電流の流出開始時のセルのOCVの値をVとすると、この時のバイパス電流Iは、I=V/Rである。従って、バイパス電流Iを微少時間t流したときの該セルのSOCの変化分ΔSOCは、(V/R)・tとして推定される。 Here, the operation of estimating the change of the OCV value of the cell after the start of outflow of the bypass current by the above-described change transition estimation unit 1-2 will be described in detail. The value of the resistor R1~R5 of the bypass circuit B1 to B5 R, A value of the OCV of the outflow starting cell bypass current to V 1, the bypass current I 1 at this time, at I 1 = V 1 / R is there. Thus, the variation [Delta] SOC 1 of SOC of the cell when the bypass current I 1 was short time t 1 sink is estimated as (V 1 / R) · t 1.

SOCの変化分ΔSOCによるOCVの推測の態様を、図2を参照して説明する。図2は、OCVに対する既知のSOCの関係(SOC−OCV特性)の一例を示している。図2に示すように、SOC−OCV特性を基に、ΔSOCの変化によりOCVの値がVとなることが推定される。 The manner in which the OCV is estimated based on the SOC change ΔSOC will be described with reference to FIG. FIG. 2 shows an example of a known SOC relationship (SOC-OCV characteristic) with respect to the OCV. As shown in FIG. 2, based on the SOC-OCV characteristic, it is estimated that the value of OCV becomes V 2 due to a change in ΔSOC 1 .

同様に、OCVの値がVのとき、バイパス電流IはI=V/Rであるから、バイパス電流Iを微少時間t流したときの該セルのSOCの変化分ΔSOCは、(V/R)・tとして推定される。そして、SOC−OCV特性を基に、ΔSOCの変化によりOCVの値がVとなることが推定される。 Similarly, when the value of the OCV is V 2, the bypass current I 2 is I 2 = V 2 / Since R is, the SOC change amount in the cell [Delta] SOC 2 when the bypass current I 2 was short time t 2 flow Is estimated as (V 2 / R) · t 2 . Based on the SOC-OCV characteristic, it is estimated that the value of OCV becomes V 3 due to a change in ΔSOC 2 .

以下、同様にして、バイパス電流の流出開始時の該セルのOCVの値Vと、バイパス電流の流出開始からの経過時間tとから、SOC−OCV特性を基に、OCVの値Vを推定することができる。なお、上述の微少時間t,t,・・・は、既知のSOC−OCV特性が直線近似される微少の時間幅である。 Similarly, from the OCV value V 1 of the cell at the start of bypass current outflow and the elapsed time t from the start of bypass current outflow, the OCV value V n is calculated based on the SOC-OCV characteristics. Can be estimated. Note that the above-described minute times t 1 , t 2 ,... Are minute time widths in which the known SOC-OCV characteristics are linearly approximated.

図3は、上述の手法により推定したOCVの値の変動の推移の一例を示す。図3において、曲線3−1は推定したOCVの値の変動の推移を示し、曲線7−1は図7で説明した実際の電圧(CCV)を参考までに示している。図3に示すように、例えば、セルバランスを時刻Tで開始し、そのときのOCVの値がVであったとする。そして、セルバランスの開始時刻Tから時間t経過後の時刻Tでセルバランスを中断したとする。すると、セルバランス開始時のOCVの値Vとセルバランス実施時間tとから、上述の演算によりセルバランス中断時のOCVの値Vを推定する。 FIG. 3 shows an example of changes in the OCV value estimated by the above-described method. In FIG. 3, a curve 3-1 shows the transition of the estimated OCV value variation, and a curve 7-1 shows the actual voltage (CCV) described in FIG. 7 for reference. As shown in FIG. 3, for example, it starts the cell balance at time T 1, and the value of OCV at that time was V 1. Then, the interrupted cell balance at time T 2, after the time t elapsed from the start time T 1 of the cell balance. Then, the OCV value V n at the time of cell balance interruption is estimated from the OCV value V 1 at the start of cell balance and the cell balance execution time t by the above calculation.

なお、OCVの値Vを推定する際に、上述のようにSOC−OCV特性を基に演算によって、OCVの値Vを推定する構成に代えて、予めSOC−OCV特性を基に、満充電状態から完全放電状態までの、セルバランス実施時間とOCVとの対応関係(OCV−時間特性)を上述の演算により予め算定してその対応関係をマッピングしてメモリに記憶しておき、該メモリを読み出してOCVの値を取得する構成とすることができる。 Note that when estimating the value V n of the OCV, by calculation based on the SOC-OCV characteristics as described above, instead of the configuration for estimating the value V n of the OCV, based on pre-SOC-OCV characteristics, Mitsuru The correspondence (OCV-time characteristic) between the cell balance execution time and the OCV from the charge state to the complete discharge state is calculated in advance by the above calculation, and the correspondence is mapped and stored in the memory. Can be read to obtain the OCV value.

上述のセルバランス開始時のOCVの値とセルバランス実施時間とから取得した、セルバランス実施時間経過後のOCVの値を基に、既知のSOC−OCV特性を参照して、直ちにセルバランス実施後のSOCを推定することが可能となる。なお、上述の説明において、簡明化のためセルの内部抵抗の影響については説明を省いたが、より精度良くOCVを推定する場合には、上述の抵抗値Rとしてセルの内部抵抗の値を加算した値とすることができる。   Based on the OCV value obtained after the cell balance execution time obtained from the OCV value at the start of cell balance and the cell balance execution time, immediately after the cell balance is executed with reference to the known SOC-OCV characteristics. It is possible to estimate the SOC. In the above description, the influence of the internal resistance of the cell has been omitted for the sake of simplicity. However, when the OCV is estimated with higher accuracy, the value of the internal resistance of the cell is added as the above-described resistance value R. Value.

更に図4を参照して他の実施形態について説明する。前述したように、バイパス電流IとOCVの値Vと既知の抵抗値Rとの間には、I=V/Rの関係がある。従って、セルバランス実施時のOCVの推定と同様に、この関係式を用いてセルバランス実施時のバイパス電流Iの変動を推定することができる。図4の(a)は、セルバランス実施時のバイパス電流Iの変動の推移の一例を曲線4−1により示している。   Further, another embodiment will be described with reference to FIG. As described above, there is a relationship of I = V / R between the bypass current I, the OCV value V, and the known resistance value R. Therefore, similarly to the estimation of the OCV when the cell balance is performed, the variation of the bypass current I when the cell balance is performed can be estimated using this relational expression. FIG. 4A shows an example of the transition of the fluctuation of the bypass current I when the cell balance is performed by a curve 4-1.

時刻Tでセルバランスを開始し、時刻Tでセルバランスの実施が中断された場合、時刻Tでのバイパス電流Iから、セルバランス実施時間t経過後の時刻Tでバイパス電流Iまで、推定されたバイパス電流−時間変動特性4−1を参照して、通電済みのバイパス電流を積算する。図4の(a)では、該積算電流を、砂地模様を付して示している。図4(a)の電流値I、I、・・・Iは図3の電圧値V、V、・・・Vに対応する電流値である。 Start the cell balance at time T 1, if at time T 2, the implementation of the cell balance is interrupted, the bypass current I 1 at time T 1, the bypass current I at time T 2, after the lapse of the cell balance the operating time t Until n , the bypass current that has been energized is integrated with reference to the estimated bypass current-time variation characteristic 4-1. In FIG. 4A, the integrated current is shown with a sand pattern. Figure 4 current value I 1, I 2 of (a), ··· I n the voltage value V 1, V 2 of FIG. 3, a current value corresponding to · · · V n.

該積算電流は、消費したSOCに相当するので、該積算電流からセルバランスの実施によって消費したSOCを推定することができる。従って、図4の(b)に示すように、セルバランス実施前のセルのSOCの値から、電流積算によって推定した消費SOC(図4の(b)の砂地模様部分)を減算することにより、セルバランス中断時のSOCの値を推定することができる。   Since the integrated current corresponds to the consumed SOC, it is possible to estimate the SOC consumed by performing the cell balance from the integrated current. Therefore, as shown in FIG. 4 (b), by subtracting the consumed SOC (sand pattern portion in FIG. 4 (b)) estimated by the current integration from the SOC value of the cell before cell balancing, The SOC value at the time of cell balance interruption can be estimated.

図5は、上述したバイパス電流の積算によりSOCを推定する第2の実施形態のSOC推定装置の構成例を示す。この実施形態のSOC推定装置2は、計測部1−1と変動推移推定部1−2と電流積算推定部2−1とSOC推定部2−2とを備える。計測部1−1及び変動推移推定部1−2は、図1におけるものと同様であるので、重複した説明は省略する。   FIG. 5 shows a configuration example of the SOC estimation apparatus of the second embodiment that estimates the SOC by integrating the bypass current described above. The SOC estimation apparatus 2 of this embodiment includes a measurement unit 1-1, a fluctuation transition estimation unit 1-2, a current integration estimation unit 2-1, and an SOC estimation unit 2-2. The measurement unit 1-1 and the change transition estimation unit 1-2 are the same as those in FIG.

電流積算値推定部2−1は、計測部1−1で計測されたバイパス電流の流出開始時のOCVの値と、変動推移推定部1−2で推定したOCVの値の変動の推移とを基に、I=V/Rの関係から該バイパス電流の流出後のバイパス電流の変動を推定し、セルバランス実施時間t経過後における通電済みのバイパス電流を積算し、消費SOCを推定する。   The current integrated value estimation unit 2-1 determines the OCV value at the start of outflow of the bypass current measured by the measurement unit 1-1 and the transition of the fluctuation of the OCV value estimated by the variation transition estimation unit 1-2. Based on the relationship of I = V / R, the fluctuation of the bypass current after the bypass current flows out is estimated, and the energized bypass current after the cell balance execution time t has elapsed is integrated to estimate the consumed SOC.

詳しくは、バイパス電流の流出開始時のセルのOCVの値をVとすると、この時のバイパス電流Iは、I=V/Rである。従って、バイパス電流Iを徴小時間t流したときの該セルのSOCの変化分ΔSOCは、I・tとして推定される。図2に示すように、SOC−OCV特性を基に、ΔSOCの変化によりOCVの値がVとなることが推定される。 Specifically, when the value of the OCV of the cell of the outflow start bypass current to V 1, the bypass current I 1 at this time is I 1 = V 1 / R. Thus, the variation [Delta] SOC 1 of SOC of the cell when the bypass current I 1 Features small time t 1 sink is estimated as I 1 · t 1. As shown in FIG. 2, based on the SOC-OCV characteristic, it is estimated that the value of OCV becomes V 2 due to a change in ΔSOC 1 .

同様に、OCVの値がVのとき、バイパス電流IはI=V/Rであるから、バイパス電流Iを微少時間t流したときの該セルのSOCの変化分ΔSOCは、I・tとして推定される。 Similarly, when the value of the OCV is V 2, the bypass current I 2 is I 2 = V 2 / Since R is, the SOC change amount in the cell [Delta] SOC 2 when the bypass current I 2 was short time t 2 flow Is estimated as I 2 · t 2 .

以下、同様にして、セルバランス中断までの変化分ΔSOC、ΔSOC、・・・を推定し加算することでセルバランス実施時間t経過後における消費SOCを推定する。
SOC推定部2−2は、セルバランス実施開始時のOCVの値から、既知のSOC−OCV特性情報を基にセルバランス実施開始時のSOCの値を求め、該セルバランス実施開始時のSOCの値から、上記消費SOCを減算し、バイパス電流の流出時間後のSOCの値を推定する。
In the same manner, the amount of change ΔSOC 1 , ΔSOC 2 ,.
The SOC estimation unit 2-2 obtains the SOC value at the start of the cell balance from the OCV value at the start of the cell balance based on the known SOC-OCV characteristic information, and calculates the SOC at the start of the cell balance. The consumption SOC is subtracted from the value, and the SOC value after the outflow time of the bypass current is estimated.

以上、本発明の実施の形態について説明したが、本発明は、以上に説明した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の構成または実施形態を取ることができる。   As mentioned above, although embodiment of this invention was described, this invention is not limited to embodiment described above, In the range which does not deviate from the summary of this invention, a various structure or embodiment is taken. be able to.

1,2 SOC推定装置
1−1 計測部
1−2 変動推移推定部
1−3 OCV値推定部
1−4 SOC推定部
2−1 電流積算値推定部
2−2 SOC推定部
DESCRIPTION OF SYMBOLS 1, 2 SOC estimation apparatus 1-1 Measurement part 1-2 Fluctuation transition estimation part 1-3 OCV value estimation part 1-4 SOC estimation part 2-1 Current integrated value estimation part 2-2 SOC estimation part

Claims (6)

既知の抵抗値のバイパス回路が接続され、該バイパス回路にバイパス電流を流出してセルバランスを行う二次電池(以下「セル」という)の充電状態(以下「SOC」という)を推定するSOC推定装置であって、
前記バイパス電流の流出開始時の該セルの開放電圧(以下「OCV」という)の値と、該バイパス電流の流出時間とを計測する計測手段と、
前記セルのSOCとOCVとの対応関係を示すSOC−OCV特性情報と、前記バイパス電流の流出開始時のOCVの値とを基に、該バイパス電流の流出開始後の該セルのOCVの値の変動の推移を推定する変動推移推定手段と、
前記計測手段で計測したバイパス電流の流出開始時のOCVの値と前記バイパス電流の流出時間とから、前記変動推移推定手段で推定したOCVの値の変動の推移を基に、該バイパス電流の流出時間後のOCVの値を推定するOCV値推定手段と、
前記OCV値推定手段で推定されたOCVの値から、前記SOC−OCV特性情報を基に、前記バイパス電流の流出時間後のSOCの値を推定するSOC値推定手段と、
を備えたことを特徴とするSOC推定装置。
SOC estimation for estimating a state of charge (hereinafter referred to as “SOC”) of a secondary battery (hereinafter referred to as “cell”) which is connected to a bypass circuit having a known resistance value and flows a bypass current to the bypass circuit to perform cell balancing. A device,
Measuring means for measuring the open circuit voltage (hereinafter referred to as “OCV”) of the cell at the start of the bypass current flow and the flow time of the bypass current;
Based on the SOC-OCV characteristic information indicating the correspondence between the SOC and OCV of the cell, and the OCV value at the start of the bypass current outflow, the OCV value of the cell after the bypass current outflow start is calculated. A fluctuation transition estimating means for estimating a transition of fluctuation;
Based on the transition of fluctuation of the OCV value estimated by the fluctuation transition estimation means from the OCV value at the start of the bypass current flow measured by the measuring means and the outflow time of the bypass current, the outflow of the bypass current OCV value estimation means for estimating the OCV value after time;
SOC value estimating means for estimating the SOC value after the outflow time of the bypass current based on the SOC-OCV characteristic information from the OCV value estimated by the OCV value estimating means;
An SOC estimation apparatus comprising:
既知の抵抗値のバイパス回路が接続され、該バイパス回路にバイパス電流を流出してセルバランスを行う二次電池(以下「セル」という)の充電状態(以下「SOC」という)を推定するSOC推定装置であって、
前記バイパス電流の流出開始時の該セルの開放電圧(以下「OCV」という)の値と、該バイパス電流の流出時間とを計測する計測手段と、
前記セルのSOCとOCVとの対応関係を示すSOC−OCV特性情報と、前記バイパス電流の流出開始時のOCVの値とを基に、該バイパス電流の流出開始後の該セルのOCVの値の変動の推移を推定する変動推移推定手段と、
前記変動推移推定手段で推定された前記セルのOCVの値から、前記バイパス電流の値の推移を推定し、該バイパス電流の値を積算する電流積算値推定手段と、
前記電流積算値推定手段で積算された積算値を、前記バイパス電流の流出開始時の前記セルのSOCの値から減算し、前記バイパス電流の流出時間後のSOCの値を推定するSOC値推定手段と、
を備えたことを特徴とするSOC推定装置。
SOC estimation for estimating a state of charge (hereinafter referred to as “SOC”) of a secondary battery (hereinafter referred to as “cell”) which is connected to a bypass circuit having a known resistance value and flows a bypass current to the bypass circuit to perform cell balancing. A device,
Measuring means for measuring the open circuit voltage (hereinafter referred to as “OCV”) of the cell at the start of the bypass current flow and the flow time of the bypass current;
Based on the SOC-OCV characteristic information indicating the correspondence between the SOC and OCV of the cell, and the OCV value at the start of the bypass current outflow, the OCV value of the cell after the bypass current outflow start is calculated. A fluctuation transition estimating means for estimating a transition of fluctuation;
Current accumulated value estimating means for estimating the transition of the bypass current value from the OCV value of the cell estimated by the fluctuation transition estimating means, and integrating the bypass current value;
An SOC value estimating means for subtracting the integrated value integrated by the current integrated value estimating means from the SOC value of the cell at the start of the bypass current outflow to estimate the SOC value after the bypass current outflow time. When,
An SOC estimation apparatus comprising:
前記変動推移推定手段は、前記セルの満充電状態から完放電状態に亘って、前記バイパス電流の流出開始後の前記OCVの値と、該バイパス電流の流出時間との対応関係とを、予めマッピングしたOCVマッピング情報をメモリから読み出し、前記セルのOCVの値の変動の推移を推定することを特徴とする請求項1又は2に記載のSOC推定装置。   The fluctuation transition estimation means maps in advance the correspondence between the OCV value after the bypass current starts to flow and the flow time of the bypass current from the fully charged state to the fully discharged state of the cell. 3. The SOC estimation apparatus according to claim 1, wherein the OCV mapping information that has been read is read out from a memory, and a transition of a change in the OCV value of the cell is estimated. 既知の抵抗値のバイパス回路が接続され、該バイパス回路にバイパス電流を流出してセルバランスを行う二次電池(以下「セル」という)の充電状態(以下「SOC」という)を推定するSOC推定方法であって、
前記バイパス電流の流出開始時の該セルの開放電圧(以下「OCV」という)の値と、該バイパス電流の流出時間とを計測する第1のステップと、
前記セルのSOCとOCVとの対応関係を示すSOC−OCV特性情報と、前記バイパス電流の流出開始時のOCVの値とを基に、該バイパス電流の流出開始後の該セルのOCVの値の変動の推移を推定する第2のステップと、
前記第1のステップで計測したバイパス電流の流出開始時のOCVの値と前記バイパス電流の流出時間とから、前記第2のステップで推定したOCVの値の変動の推移を基に、該バイパス電流の流出時間後のOCVの値を推定する第3のステップと、
前記第3のステップ推定されたOCVの値から、前記SOC−OCV特性情報を基に、前記バイパス電流の流出時間後のSOCの値を推定する第4のステップと、
を含むことを特徴とするSOC推定方法。
SOC estimation for estimating a state of charge (hereinafter referred to as “SOC”) of a secondary battery (hereinafter referred to as “cell”) which is connected to a bypass circuit having a known resistance value and flows a bypass current to the bypass circuit to perform cell balancing. A method,
A first step of measuring a value of an open circuit voltage (hereinafter referred to as “OCV”) of the cell at the start of the flow of the bypass current and a flow time of the bypass current;
Based on the SOC-OCV characteristic information indicating the correspondence between the SOC and OCV of the cell, and the OCV value at the start of the bypass current outflow, the OCV value of the cell after the bypass current outflow start is calculated. A second step of estimating the transition of the change;
Based on the change in the OCV value estimated in the second step from the OCV value at the start of the bypass current flow measured in the first step and the outflow time of the bypass current, the bypass current A third step of estimating the value of OCV after the outflow time of
A fourth step of estimating an SOC value after the outflow time of the bypass current based on the SOC-OCV characteristic information from the OCV value estimated in the third step;
SOC estimation method characterized by including.
既知の抵抗値のバイパス回路が接続され、該バイパス回路にバイパス電流を流出してセルバランスを行う二次電池(以下「セル」という)の充電状態(以下「SOC」という)を推定するSOC推定方法であって、
前記バイパス電流の流出開始時の該セルの開放電圧(以下「OCV」という)の値と、該バイパス電流の流出時間とを計測する第1のステップと、
前記セルのSOCとOCVとの対応関係を示すSOC−OCV特性情報を基と、前記バイパス電流の流出開始時のOCVの値とを基に、該バイパス電流の流出開始後の該セルのOCVの値の変動の推移を推定する第2のステップと、
前記第2のステップで推定された前記セルのOCVの値から、前記バイパス電流の値の推移を推定し、該バイパス電流の値を積算する第3のステップと、
前記第3のステップで積算された積算値を、前記バイパス電流の流出開始時の前記セルのSOCの値から減算し、前記バイパス電流の流出時間後のSOCの値を推定する第4のステップと、
を含むことを特徴とするSOC推定方法。
SOC estimation for estimating a state of charge (hereinafter referred to as “SOC”) of a secondary battery (hereinafter referred to as “cell”) which is connected to a bypass circuit having a known resistance value and flows a bypass current to the bypass circuit to perform cell balancing. A method,
A first step of measuring a value of an open circuit voltage (hereinafter referred to as “OCV”) of the cell at the start of the flow of the bypass current and a flow time of the bypass current;
Based on the SOC-OCV characteristic information indicating the correspondence relationship between the SOC and OCV of the cell, and the OCV value at the start of the bypass current outflow, the OCV of the cell after the bypass current outflow starts. A second step of estimating the transition of value fluctuations;
A third step of estimating a transition of the bypass current value from the OCV value of the cell estimated in the second step, and integrating the bypass current value;
A fourth step of subtracting the integrated value integrated in the third step from the SOC value of the cell at the start of outflow of the bypass current to estimate the SOC value after the bypass current outflow time; ,
SOC estimation method characterized by including.
前記第2のステップにおいて、前記セルの満充電状態から完放電状態に亘って、前記バイパス電流の流出開始後の前記OCVの値と、該バイパス電流の流出時間との対応関係とを、予めマッピングしたOCVマッピング情報をメモリから読み出し、前記セルのOCVの値の変動の推移を推定することを特徴とする請求項4又は5に記載のSOC推定方法。   In the second step, the correspondence between the OCV value after the bypass current starts to flow and the bypass current flow time is mapped in advance from the fully charged state to the fully discharged state of the cell. 6. The SOC estimation method according to claim 4, wherein the OCV mapping information is read from the memory, and the transition of the fluctuation of the OCV value of the cell is estimated.
JP2012181590A 2012-08-20 2012-08-20 Soc estimation device and soc estimation method Pending JP2014039434A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012181590A JP2014039434A (en) 2012-08-20 2012-08-20 Soc estimation device and soc estimation method
PCT/JP2013/069349 WO2014030464A1 (en) 2012-08-20 2013-07-17 Soc estimation device and soc estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012181590A JP2014039434A (en) 2012-08-20 2012-08-20 Soc estimation device and soc estimation method

Publications (1)

Publication Number Publication Date
JP2014039434A true JP2014039434A (en) 2014-02-27

Family

ID=50149777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012181590A Pending JP2014039434A (en) 2012-08-20 2012-08-20 Soc estimation device and soc estimation method

Country Status (2)

Country Link
JP (1) JP2014039434A (en)
WO (1) WO2014030464A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10396589B2 (en) 2015-01-16 2019-08-27 Panasonic Intellectual Property Management Co., Ltd. Storage-battery control system
WO2023237040A1 (en) * 2022-06-09 2023-12-14 南京南瑞继保电气有限公司 Battery energy storage system state-of-charge balance control method and apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3100670A1 (en) * 2019-09-09 2021-03-12 Centre National De La Recherche Scientifique PROCESS FOR CONTROL OF A BATTERY ALLOWING THE BALANCING OF THE CELLS OF A CURRENT LINE BY A CHARGE AND DISCHARGE CURRENT
CN112540296B (en) * 2020-12-01 2023-03-31 南方电网调峰调频发电有限公司 Performance evaluation system for power station battery system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5202918B2 (en) * 2007-10-03 2013-06-05 矢崎総業株式会社 Battery voltage regulator
JP5493407B2 (en) * 2009-03-17 2014-05-14 日産自動車株式会社 Battery pack capacity adjustment device
JP5334697B2 (en) * 2009-06-15 2013-11-06 本田技研工業株式会社 Battery state estimation device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10396589B2 (en) 2015-01-16 2019-08-27 Panasonic Intellectual Property Management Co., Ltd. Storage-battery control system
US11050288B2 (en) 2015-01-16 2021-06-29 Panasonic Intellectual Property Management Co., Ltd. Storage-battery control system
WO2023237040A1 (en) * 2022-06-09 2023-12-14 南京南瑞继保电气有限公司 Battery energy storage system state-of-charge balance control method and apparatus

Also Published As

Publication number Publication date
WO2014030464A1 (en) 2014-02-27

Similar Documents

Publication Publication Date Title
JP6528906B2 (en) Power storage device and control method of power storage device
JP6153528B2 (en) System and method for battery monitoring
JP6371415B2 (en) Method for determining the reliability of degradation state parameters
JP6509725B2 (en) Estimating the state of charge of the battery
JP2020508442A (en) Battery state of charge estimation apparatus and method
JP6369340B2 (en) Power storage device and method for controlling power storage device
JP2014228534A (en) Battery management system and method of driving the same
WO2014147899A1 (en) Method for estimating fully-charged power capacity, and device
TWI669521B (en) Battery residual prediction device and battery pack
CN108279385A (en) State of charge evaluation method, device and the electronic equipment of battery
TW201643458A (en) Battery remaining power predicting device and battery pack
JP2014119265A (en) Semiconductor device, battery pack, and electronic apparatus
JP2020174530A (en) Method and system for effective battery cell balancing using duty control
JP2016166864A (en) Power storage element managing device, power storage element management method, power storage element module, power storage element management program, and moving body
CN108107368A (en) For estimating the method and apparatus of the health status of battery
JP7155486B2 (en) Battery management system, battery management method, battery pack and electric vehicle
WO2014030464A1 (en) Soc estimation device and soc estimation method
JP2009236919A (en) Method for estimating charge amount of motor vehicle battery
KR101399345B1 (en) Method for estimating state of charge in battery
JP2014068468A (en) Charge control device
JP7452924B2 (en) Battery SOH estimation device and method
JP7326237B2 (en) Determination device, power storage system, determination method, and determination program for multiple batteries
CN112912747A (en) Battery state estimating device and battery control device
JP2020043084A (en) Electricity storage element management device, electricity storage element module, vehicle, and electricity storage element management method
JP7062870B2 (en) Battery management device, battery management method and battery pack