JP2014038117A - Liquid crystal display device - Google Patents
Liquid crystal display device Download PDFInfo
- Publication number
- JP2014038117A JP2014038117A JP2010268099A JP2010268099A JP2014038117A JP 2014038117 A JP2014038117 A JP 2014038117A JP 2010268099 A JP2010268099 A JP 2010268099A JP 2010268099 A JP2010268099 A JP 2010268099A JP 2014038117 A JP2014038117 A JP 2014038117A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- color
- display device
- pixel
- crystal display
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2201/00—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
- G02F2201/52—RGB geometrical arrangements
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2201/00—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
- G02F2201/58—Arrangements comprising a monitoring photodetector
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2300/00—Aspects of the constitution of display devices
- G09G2300/04—Structural and physical details of display devices
- G09G2300/0439—Pixel structures
- G09G2300/0452—Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/02—Improving the quality of display appearance
- G09G2320/0242—Compensation of deficiencies in the appearance of colours
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/06—Adjustment of display parameters
- G09G2320/0666—Adjustment of display parameters for control of colour parameters, e.g. colour temperature
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/06—Adjustment of display parameters
- G09G2320/0693—Calibration of display systems
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2340/00—Aspects of display data processing
- G09G2340/06—Colour space transformation
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2360/00—Aspects of the architecture of display systems
- G09G2360/14—Detecting light within display terminals, e.g. using a single or a plurality of photosensors
- G09G2360/145—Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Liquid Crystal (AREA)
- Liquid Crystal Display Device Control (AREA)
Abstract
Description
本発明は、液晶表示装置に関し、より詳細には、4原色で表示を行う液晶表示装置に関する。 The present invention relates to a liquid crystal display device, and more particularly to a liquid crystal display device that performs display with four primary colors.
液晶表示装置は、軽量、薄型および低消費電力等の利点を有しており、携帯電話の表示部等の小型の表示装置としてだけでなく大型テレビジョンとしても利用されている。液晶パネルは、ブラウン管(Cathode Ray Tube:CRT)やプラズマディスプレイパネル(Plasma Display Panel:PDP)などの自発光型パネルとは異なり、液晶パネル自体は発光しない。このため、一般に、液晶表示装置では、液晶パネルの裏面に配置されたバックライトの光を利用して表示を行う。 The liquid crystal display device has advantages such as light weight, thinness, and low power consumption, and is used not only as a small display device such as a display unit of a mobile phone but also as a large television. Unlike a self-luminous panel such as a cathode ray tube (CRT) or a plasma display panel (PDP), the liquid crystal panel does not emit light. For this reason, in general, a liquid crystal display device performs display using light of a backlight disposed on the back surface of a liquid crystal panel.
近年、一般的な3原色の液晶表示装置とは異なり、4以上の原色を加法混色する液晶表示装置が提案されている。このような液晶表示装置は多原色液晶表示装置とも呼ばれる。一般に、多原色液晶表示装置では、3つの原色(すなわち、赤、緑および青)に別の原色が追加されており、色再現範囲の拡大が図られている。また、多原色液晶表示装置では、一般的な3原色表示装置で表示可能な入力映像信号の階調レベルを4以上の原色の階調レベルに変換して表示が行われており(例えば、特許文献1および2参照)、このような変換は多原色変換とも呼ばれる。 In recent years, unlike general liquid crystal display devices of three primary colors, liquid crystal display devices that additively mix four or more primary colors have been proposed. Such a liquid crystal display device is also called a multi-primary color liquid crystal display device. In general, in a multi-primary color liquid crystal display device, another primary color is added to three primary colors (that is, red, green, and blue), and the color reproduction range is expanded. Further, in a multi-primary color liquid crystal display device, display is performed by converting the gradation level of an input video signal that can be displayed by a general three-primary color display device into gradation levels of four or more primary colors (for example, patents). Such a conversion is also called multi-primary color conversion.
また、特許文献3には、4原色以上の表示装置において、再現表示したい色(目標色)を表示パネルの4色成分に変換するためのアルゴリズムおよびキャリブレーション方法が提案されている。以下に説明する。 Patent Document 3 proposes an algorithm and a calibration method for converting a color (target color) to be reproduced and displayed into four color components of a display panel in a display device having four or more primary colors. This will be described below.
一般的な表示パネル、すなわち3つのサブ画素から構成される3原色ディスプレイにおいて、ある特定の色再現を行うにはXYZ表色系の三刺激値X、Y、Zを実現する3色成分R、G、Bの組み合わせを計算すればよい。この場合は次式(1)より3行3列の正則行列M3×3の逆行列を計算することにより1つの解が求まる。 In a general display panel, that is, a three-primary color display composed of three sub-pixels, a three-color component R that realizes tristimulus values X, Y, and Z of the XYZ color system in order to reproduce a specific color. A combination of G and B may be calculated. In this case, one solution can be obtained by calculating the inverse matrix of the 3 × 3 regular matrix M 3 × 3 from the following equation (1).
一方、1画素が4色成分R、YG、B、EGの4色のサブ画素から構成される表示パネルでは、次式(2)が成り立つ。 On the other hand, in a display panel in which one pixel is composed of four color sub-pixels of four color components R, YG, B, and EG, the following expression (2) is established.
この場合は行列M3×4の逆行列を計算できないので、次式(3)を満たす4行3列の行列N4×3を求める必要がある。 In this case, since an inverse matrix of the matrix M 3 × 4 cannot be calculated, it is necessary to obtain a 4 × 3 matrix N 4 × 3 that satisfies the following expression (3).
そして、行列N4×3を求めるに際し、次数を下げるために表示パネルの色再現域を複数に分割したうえで、分割した各領域のN4×3をそれぞれ計算することにより、4色成分への変換およびキャリブレーションを実現している。 Then, when obtaining the matrix N 4 × 3 , the display panel color reproduction area is divided into a plurality of parts in order to lower the order, and N 4 × 3 of each divided area is calculated to obtain four color components. Realization of conversion and calibration.
このように、パネルのキャリブレーションを行う際、3原色ディスプレイに比べ増加した自由度により目標点に近づけるというプロセスが複雑となる。多原色ディスプレイをモニター、TV用途など含め幅広い用途で使用するためには、このキャリブレーションプロセスを効率よく行う指針が必要となる。特許文献3においては、領域分けをする(領域ごとに演算行列が入れ替わる)ことにより、キャリブレーションを効率良く行っている。しかしながら、この方法ではキャリブレーション時に境界をまたぐような調整が行われる場合に、演算行列が境界ごとに異なると、キャリブレーションが不連続で発散する可能性があるという問題がある。 As described above, when the panel is calibrated, the process of approaching the target point with the increased degree of freedom compared to the three primary color display becomes complicated. In order to use multi-primary color displays in a wide range of applications, including monitors and TV applications, guidelines for efficiently performing this calibration process are required. In Patent Document 3, calibration is performed efficiently by dividing the area (the operation matrix is switched for each area). However, in this method, when adjustment is performed so that the boundary is crossed at the time of calibration, there is a problem that if the calculation matrix is different for each boundary, the calibration may diverge discontinuously.
本発明は、上記課題を鑑みてなされたものであり、その目的は、4原色ディスプレイにおけるキャリブレーションを効率良く行う手法を提供することにある。 The present invention has been made in view of the above problems, and an object thereof is to provide a method for efficiently performing calibration in a four-primary color display.
本発明による液晶表示装置の製造方法は、複数の画素がそれぞれ異なる4色のサブ画素からなる液晶パネルを含む液晶表示装置において、前記4色の各原色表示の色度を測定する第一工程、XYZ表色系の三刺激値X、Y、Zについて、青成分のZについて液晶パネルへの入力値と前記第一工程で測定された測定値との差ΔZを調整する第二工程、前記第二工程の後に、青成分以外の色のXまたはYについて液晶パネルへの入力値と前記第一工程で測定された測定値との差ΔXまたはΔYを調整する第三工程とを有する。 The method for manufacturing a liquid crystal display device according to the present invention includes a first step of measuring chromaticity of each primary color display of the four colors in a liquid crystal display device including a liquid crystal panel in which a plurality of pixels are composed of four different sub-pixels. For the tristimulus values X, Y, Z of the XYZ color system, the second step of adjusting the difference ΔZ between the input value to the liquid crystal panel and the measured value measured in the first step for the blue component Z, After the two steps, there is a third step of adjusting the difference ΔX or ΔY between the input value to the liquid crystal panel and the measured value measured in the first step for X or Y of a color other than the blue component.
本発明による手法はキャリブレーション時に領域分けをせず、全領域にわたって同様な処理を行うため、連続性を保ち安定したキャリブレーション結果を得ることができる。 Since the method according to the present invention does not divide the region during calibration and performs the same processing over the entire region, it is possible to obtain a stable calibration result while maintaining continuity.
本発明による液晶表示装置は、4原色ディスプレイにおけるキャリブレーションを可能にし、かつ効率良く行うことができる。 The liquid crystal display device according to the present invention enables calibration in a four-primary color display and can be performed efficiently.
以下、図面を参照して、本発明による液晶表示装置の実施形態を説明する。ただし、本発明は、以下の実施形態に限定されるものではない。 Hereinafter, embodiments of a liquid crystal display device according to the present invention will be described with reference to the drawings. However, the present invention is not limited to the following embodiments.
以下、本発明による実施形態を説明する。図1に、液晶表示装置100およびキャリブレーションを行うシステムの模式図を示す。液晶表装置100は、液晶パネル10、バックライト(図示せず)および4原色変換回路30とを備えている。液晶パネル10は複数の画素を有している。複数の画素は、複数の行および複数の列のマトリクス状に配列されている。各画素は4つのサブ画素によって規定されている。なお、このような液晶パネル10、液晶表示装置100はそれぞれ4原色パネル、4原色表示装置とも呼ばれる。 Embodiments according to the present invention will be described below. FIG. 1 shows a schematic diagram of a liquid crystal display device 100 and a system for performing calibration. The liquid crystal surface device 100 includes a liquid crystal panel 10, a backlight (not shown), and a four primary color conversion circuit 30. The liquid crystal panel 10 has a plurality of pixels. The plurality of pixels are arranged in a matrix of a plurality of rows and a plurality of columns. Each pixel is defined by four subpixels. The liquid crystal panel 10 and the liquid crystal display device 100 are also referred to as a 4-primary color panel and a 4-primary color display device, respectively.
図2に、液晶パネル10における画素Pの模式図を示す。画素Pは、4以上のサブ画素を有している。4以上のサブ画素は互いに異なる色を表示する。画素Pはカラー表示画素とも呼ばれる。ここでは、画素Pは、赤サブ画素R、緑サブ画素G、青サブ画素Bおよび黄サブ画素Yeを有している。 In FIG. 2, the schematic diagram of the pixel P in the liquid crystal panel 10 is shown. The pixel P has four or more subpixels. Four or more sub-pixels display different colors. The pixel P is also called a color display pixel. Here, the pixel P has a red sub-pixel R, a green sub-pixel G, a blue sub-pixel B, and a yellow sub-pixel Ye.
なお、図2(a)では、赤サブ画素R、緑サブ画素G、青サブ画素Bおよび黄サブ画素Yeは行方向に沿って一列に示されているが、図2(b)のように赤サブ画素R、緑サブ画素G、青サブ画素Bおよび黄サブ画素Yeは2行2列のマトリクス状に配列されてもよい。また、図2では、赤サブ画素R、緑サブ画素G、青サブ画素Bおよび黄サブ画素Yeの面積は互いに等しく示されているが、赤サブ画素R、緑サブ画素G、青サブ画素Bおよび黄サブ画素Yeの面積は異なってもよい。赤サブ画素R、緑サブ画素G、青サブ画素Bおよび黄サブ画素Yeの面積の平均をサブ画素平均面積と呼ぶとすると、赤サブ画素Rの面積がサブ画素平均面積よりも大きいことにより、明度の高い赤色を充分に表現することができる。また、青サブ画素Bの面積がサブ画素平均面積よりも大きいことにより、バックライトの発光効率の低下を抑制できる。このため、赤サブ画素R、青サブ画素Bの面積は、緑サブ画素G、黄サブ画素Yeの面積よりも大きいことが好ましい。 In FIG. 2A, the red sub-pixel R, the green sub-pixel G, the blue sub-pixel B, and the yellow sub-pixel Ye are shown in a line along the row direction, but as shown in FIG. The red sub-pixel R, the green sub-pixel G, the blue sub-pixel B, and the yellow sub-pixel Ye may be arranged in a 2 × 2 matrix. In FIG. 2, the areas of the red sub-pixel R, the green sub-pixel G, the blue sub-pixel B, and the yellow sub-pixel Ye are shown to be equal to each other, but the red sub-pixel R, the green sub-pixel G, and the blue sub-pixel B The areas of the yellow sub-pixel Ye may be different. If the average area of the red subpixel R, the green subpixel G, the blue subpixel B, and the yellow subpixel Ye is called a subpixel average area, the area of the red subpixel R is larger than the subpixel average area. Highly bright red can be fully expressed. Moreover, since the area of the blue subpixel B is larger than the average area of the subpixels, it is possible to suppress a decrease in the light emission efficiency of the backlight. For this reason, the areas of the red sub-pixel R and the blue sub-pixel B are preferably larger than the areas of the green sub-pixel G and the yellow sub-pixel Ye.
4原色変換回路30は入力されるXYZまたはxvYCCなどの色情報を4原色信号R、G、B、Yeに変換し、液晶パネル10に供給する。なお、4色変換アルゴリズムは多くの手段が存在するが、本実施形態では、説明の簡略化のためXYZまたはxvYCCなどの色情報に対して忠実に色を再現できるようにR、G、B、Yeの組み合わせを選ぶ4色変換回路を考える。この4色変換により表示される画面の色度は、理想的には入力信号が想定しているXYZ値と一致するはずである。しかし実際の液晶パネルでは、パネル固有の問題により理想のXYZ値との差異が生じる。この差異を修正するためにキャリブレーションを行う必要がある。 The four primary color conversion circuit 30 converts input color information such as XYZ or xvYCC into four primary color signals R, G, B, and Ye, and supplies them to the liquid crystal panel 10. Although there are many means for the four-color conversion algorithm, in the present embodiment, R, G, B, and so on can be reproduced faithfully with respect to color information such as XYZ or xvYCC for simplification of description. Consider a four-color conversion circuit that selects a combination of Ye. The chromaticity of the screen displayed by this four-color conversion should ideally match the XYZ values assumed by the input signal. However, in an actual liquid crystal panel, a difference from an ideal XYZ value occurs due to a problem inherent in the panel. Calibration is required to correct this difference.
本実施形態では、ある色度点X、Y、Zを実現するための4原色信号理論値(R、G、B、Ye)の組み合わせを表示する時の理論値と、実パネルでの測定値との誤差に対してキャリブレーションを行う。なお、目標点等の演算を理論値で行うため、計算に即したガンマ補正後のパネルでキャリブレーションを行うほうが好ましい。ガンマ補正を行うことにより、各原色が理論値に近い特性を示すようになる。他にもパネルの誤差の原因として考えられるのは、例えばサブ画素間のクロストークや低コントラストパネルで見られる低階調付近の彩度の低下などである。このような補正は、ガンマ補正の前、つまり4色変換部において補償(キャリブレーション)を行うことができる。 In this embodiment, theoretical values when displaying combinations of four primary color signal theoretical values (R, G, B, Ye) for realizing a certain chromaticity point X, Y, Z, and measured values on an actual panel Calibration is performed for the error. Since the calculation of the target point and the like is performed with a theoretical value, it is preferable to perform calibration with a panel after gamma correction in accordance with the calculation. By performing gamma correction, each primary color exhibits characteristics close to the theoretical value. Other possible causes of the panel error include crosstalk between sub-pixels and a decrease in saturation near the low gray level seen in a low contrast panel. Such correction can be compensated (calibrated) before gamma correction, that is, in the four-color conversion unit.
図3は4原色変換回路30の内部構成の一例を示している。4原色変換アルゴリズム回路1で入力された色情報を4原色信号R0、G0、B0、Ye0に変換した後に、ガンマ補正回路2でガンマ補正を行い、4原色信号Rout、Gout、Bout、Yeoutを出力している。 FIG. 3 shows an example of the internal configuration of the four primary color conversion circuit 30. After the color information input by the 4-primary color conversion algorithm circuit 1 is converted into 4-primary color signals R 0 , G 0 , B 0 , Ye 0 , the gamma correction circuit 2 performs gamma correction, and the 4 primary color signals R out , G out , B out , Ye out are output.
キャリブレーションは以下の方法で行う。4原色パネルに表示した色を色度測定器200で測定し、その測定結果をフィードバック回路300にフィードバックし、実際に使われた4色階調の理論値R0、B0、G0、Ye0との差をΔX、ΔY、ΔZとして認識し、青原色による調整や赤緑黄原色による調整を行い、調整後の4原色の組み合わせを4原色システムへフィードバックする。なお、任意に設定した色度ずれの許容範囲に収まらなかった場合は、再度同様な作業を繰り返す。 Calibration is performed by the following method. The colors displayed on the four primary color panels are measured by the chromaticity measuring device 200, and the measurement results are fed back to the feedback circuit 300. The theoretical values R 0 , B 0 , G 0 , Ye of the actually used four color gradations are measured. Differences from 0 are recognized as ΔX, ΔY, and ΔZ, adjustments using blue primaries and red, green, and yellow primaries are performed, and the adjusted combination of the four primary colors is fed back to the four-primary system. If the chromaticity deviation does not fall within the arbitrarily set allowable range, the same operation is repeated again.
キャリブレーションのフローチャートを図4に示す。ステップ1で、まずパネルのガンマ値を合わせる。以下の演算は理論値で行うため、実パネルの色表示におけるガンマを補正しておく必要がある(例えばガンマ=2.2等)。ステップ2で、キャリブレーションを行う目標の4色の組み合わせを決定する。4色変換には様々なアルゴリズムが考えられるが、ここでは変換後の4色組み合わせから理論値を計算するため、変換アルゴリズムは指定しない。ステップ3で、三刺激値XYZを求める。理論値であるため、4原色の原色色度(下表1)を用い、補正されたガンマに則り4色で作られるXYZ値を求める。さらに、あらかじめ原色ごとにその各階調から微少量階調をずらした時のX、Y、Zの変化量を計算し、各色の挙動を定義する。ステップ4で、実際に4色階調を表示し、測定を行う。ステップ5で、目標値との誤差のうち、ΔZを最小化するような青原色の差分を求める。ステップ6で、残りのΔX、ΔYを最小化できるような赤緑黄原色の差分を求める。ステップ7で、結果の色度点と目標点の差を確認し、任意の色度ズレ許容範囲より大きければステップ3に戻る。 A flowchart of calibration is shown in FIG. In step 1, first the gamma value of the panel is adjusted. Since the following calculation is performed using theoretical values, it is necessary to correct gamma in the color display of the actual panel (for example, gamma = 2.2). In step 2, a combination of four target colors to be calibrated is determined. Various algorithms are conceivable for the four-color conversion, but here the conversion algorithm is not specified because the theoretical value is calculated from the four-color combination after conversion. In step 3, tristimulus values XYZ are obtained. Since it is a theoretical value, the XYZ values that are created with four colors according to the corrected gamma are obtained using the primary chromaticities of the four primary colors (Table 1 below). Further, the amount of change in X, Y, and Z when a small amount of gradation is shifted from each gradation for each primary color is calculated in advance, and the behavior of each color is defined. In step 4, four color gradations are actually displayed and measured. In step 5, the blue primary color difference that minimizes ΔZ out of the error from the target value is obtained. In step 6, the difference between the red, green, and yellow primary colors that can minimize the remaining ΔX and ΔY is obtained. In step 7, the difference between the resulting chromaticity point and the target point is confirmed. If the difference is larger than the arbitrary chromaticity deviation allowable range, the process returns to step 3.
上記表1から分かるように、全体の構成要素に対してX成分は各原色とも似たような割合で構成されており、Y成分も緑画素や黄色画素に割合が偏って入るものの、オーダーとしてはそれほど大きな違いはない。ところが、青原色のZ成分に占める割合だけは桁違いに大きい。このことは、このパネルにおいて混色により表示される色のZ成分は、ほぼ青原色の影響であることを意味する。よって色調整において、Z成分の誤差は青原色を用いて効率的に調整を行うことができる。その後、残りの赤、緑、黄原色を用いてX、Y成分を調整する。本調整方法を用いることで4原色の自由度のうち1つを固定できるため、解が発散しにくく実用的な手法となり得る。 As can be seen from Table 1 above, the X component is composed of similar proportions for each primary color with respect to the overall components, and the Y component also enters the green pixel and the yellow pixel in proportion, but as an order There is not much difference. However, only the proportion of the blue primary color in the Z component is orders of magnitude. This means that the Z component of the color displayed by color mixing in this panel is almost the influence of the blue primary color. Therefore, in the color adjustment, the error of the Z component can be adjusted efficiently using the blue primary color. Thereafter, the X and Y components are adjusted using the remaining red, green, and yellow primary colors. By using this adjustment method, one of the degrees of freedom of the four primary colors can be fixed, so that the solution is difficult to diverge and can be a practical method.
ステップ6およびステップ7における階調決定と色差判定についてさらに説明する。ステップ6で求められた変化量に応じて赤、緑、黄色画素を用いて調整を行う。そのまま一気に理想値に近づけるような調整を行うのは誤差の観点から好ましくない。特に誤差量が大きい場合は逆に理想値から離れてしまう可能性もある。そこで、1回の調整量の最大値Fを定義することで、数回に分けて理想値に近づけることにする。ステップ6で求められたR、G、Yeの変化量r、g、yeの中で最大絶対値をA_MAXとし、抑制係数C=A_MAX/Fとして導入する。ただし、A_MAX<FのときはC=1とする。この係数の導入により、変化量を抑制しつつ、階調変化の色バランス(キャリブレーションの方向)をある程度維持することができる。なお、最終的な変化量は、(r/C、g/C、ye/C)とする(ただし求める変化量は整数とする)。この変化量を反映し、最終的に得られたXYZに対し、目標値との色差を計算する。色差の許容値を設定しておき(例えば0.0003)、これを満たさない場合は試行を繰り返す。 The gradation determination and color difference determination in step 6 and step 7 will be further described. Adjustment is performed using red, green, and yellow pixels according to the amount of change obtained in step 6. It is not preferable from the viewpoint of errors to make adjustments to bring them closer to the ideal values as they are. In particular, when the amount of error is large, there is a possibility of deviating from the ideal value. Therefore, by defining the maximum value F of one adjustment amount, it is approximated to the ideal value in several times. Among the variation amounts r, g, and ye of R, G, Ye obtained in step 6, the maximum absolute value is A_MAX, and the suppression coefficient C = A_MAX / F is introduced. However, C = 1 when A_MAX <F. By introducing this coefficient, the color balance (calibration direction) of gradation change can be maintained to some extent while suppressing the amount of change. Note that the final change amount is (r / C, g / C, ye / C) (however, the required change amount is an integer). Reflecting this amount of change, the color difference from the target value is calculated for XYZ finally obtained. An allowable value of color difference is set (for example, 0.0003), and when this is not satisfied, the trial is repeated.
以下、具体例を挙げて説明する。入力(目標色度点)階調を下表2のような4色の組み合わせとする。 Hereinafter, a specific example will be described. The input (target chromaticity point) gradation is a combination of four colors as shown in Table 2 below.
このときの3刺激値XYZは、下表3のようになる。 The tristimulus values XYZ at this time are as shown in Table 3 below.
この階調において、例えば赤原色の階調をR、原色のX成分をXRとするなら、ΔXR=((R+1)/255)2.2−(R/255)2.2)XRとして、1階調変化した時の原色点由来の三刺激値への影響を定義する。各色、XYZ成分それぞれについて微少変化量の計算を行う。その結果を下表4に示す。 In this tone, for example, if the tone of the red primary R, and the X component X R primary color, ΔX R = ((R + 1) / 255) 2.2 - (R / 255) 2.2) X R As follows, the effect on the tristimulus value derived from the primary color point when one gradation is changed is defined. The slight change amount is calculated for each color and XYZ component. The results are shown in Table 4 below.
パネルに表示した際の測定値は下表5のようになる。 The measured values when displayed on the panel are as shown in Table 5 below.
ここで、ΔZを青原色で調整する。目標値と測定値のZ成分を比較すると、ΔZ/ΔZBで青原色の調整量が求まる。この場合は、下表6のようになり、Bの変化量がおよそマイナス3となることがわかる。 Here, ΔZ is adjusted with the blue primary color. Comparing the Z component of the target value and the measured value, the adjustment amount of blue primary colors is obtained by [Delta] Z / [Delta] Z B. In this case, as shown in Table 6 below, it can be seen that the amount of change in B is approximately minus 3.
上記青原色の調整により変化したXYZを再計算し、もう一度目標点との差を定義したものを下表7に示す。 Table 7 below shows XYZ that has been changed by adjusting the blue primary color, and the difference from the target point is defined again.
このΔX、ΔYを赤・緑・黄色原色の差分による変化をもとに数式で表すと以下の式(4)および式(5)のようになる。 When ΔX and ΔY are expressed by mathematical formulas based on changes due to differences between the red, green, and yellow primary colors, the following formulas (4) and (5) are obtained.
ここでr、g、yeは赤緑黄の階調変化量である。 Here, r, g, and ye are gradation changes in red, green, and yellow.
上記の式(4)および式(5)において、ΔX、ΔYを最小化するため、 変化量((ΔX)2+(ΔY)2)1/2を定義し、これを最小化するr、g、yeの組み合わせを選び出す。 In the above equations (4) and (5), in order to minimize ΔX and ΔY, change amount ((ΔX) 2 + (ΔY) 2 ) 1/2 is defined, and r and g that minimize this are defined. , Ye are selected.
上記プロセスで選ばれた変化量は下表8のようになる。 The amount of change selected in the above process is shown in Table 8 below.
しかし、キャリブレーションプロセスにおいて、あまり大きな変化は好ましくない(上記において微小変化を前提に計算を行っている)。よって、一度に動かす最大の階調Fを定義する。本例ではF=5とする。上R、G、Yeの変化量のうち、最大値の絶対値AMAXは15となっている。ここから抑制係数C=AMAX/Fを定義する。ただしAMAX<FのときはC=1とする。ここでは、C=15/5=3となる。上記変化量をこの抑制係数で除算した結果が下表9である。 However, a very large change is not preferable in the calibration process (the above calculation is performed on the assumption of a small change). Therefore, the maximum gradation F that is moved at a time is defined. In this example, F = 5. Of the change amounts of R, G, and Ye above, the absolute value A MAX of the maximum value is 15. From here, the suppression coefficient C = A MAX / F is defined. However, C = 1 when A MAX <F. Here, C = 15/5 = 3. Table 9 shows the result obtained by dividing the change amount by the suppression coefficient.
この値を最終的な変化量として出力する。よって、試行1回目のキャリブレーションでは下表10のようになる。 This value is output as the final change amount. Therefore, in the first calibration, the following table 10 is obtained.
この結果、三刺激値XYZは下表11のようになる。 As a result, the tristimulus values XYZ are as shown in Table 11 below.
初期状態の目標との色差Δu’v’=0.0085に対し、0.0066となり近づいていることが示された。色差の許容値を0.0003とすると未だ到達していないので、試行を繰り返す。4回の試行を行った結果、色差許容に収まった。 It was shown that the color difference Δu′v ′ = 0.0085 from the initial target is approaching 0.0066. If the allowable value of the color difference is 0.0003, it has not yet been reached, so the trial is repeated. As a result of four trials, the color difference was acceptable.
本実施例のキャリブレーションによる色度変化過程を図5に示す。試行1から4を行った後におけるそれぞれの表示階調RGBYeを下表12に示す。 FIG. 5 shows a chromaticity change process by calibration according to this embodiment. The respective display gradations RGBYe after trials 1 to 4 are shown in Table 12 below.
試行1から4を行った後におけるそれぞれの3刺激値XYZおよび目標点との色差Δu‘v’を下表13に示す。 Table 3 below shows the tristimulus values XYZ and the color difference Δu′v ”from the target points after trials 1 to 4 are performed.
本実施例では、4原色の中で青原色だけがZに支配的な影響力をもつことに注目し、青原色を用いたZの調整を始めに行うことで調整の自由度を減らし、キャリブレーションを効率化することに成功したことが示された。本キャリブレーション法は、今後デザインや工業分野等へ4原色パネルの応用範囲が広がる際に有効な調整手段となる。 In this example, paying attention to the fact that only the blue primary color has the dominant influence on Z among the four primary colors, the adjustment of Z using the blue primary color is performed first, reducing the degree of freedom of adjustment, and calibration. It has been shown that it has succeeded in streamlining the process. This calibration method will be an effective adjustment method when the application range of the four primary color panels is expanded to the design and industrial fields.
本発明による液晶表示装置は、広い色再現範囲の表示を低消費電力で行うことができる。 The liquid crystal display device according to the present invention can display a wide color reproduction range with low power consumption.
1 4原色変換アルゴリズム回路
2 ガンマ補正回路
10 液晶パネル
30 4原色変換回路
100 液晶表示装置
200 色度測定器
300 フィードバック回路
DESCRIPTION OF SYMBOLS 1 4 primary color conversion algorithm circuit 2 Gamma correction circuit 10 Liquid crystal panel 30 4 Primary color conversion circuit 100 Liquid crystal display device 200 Chromaticity measuring device 300 Feedback circuit
Claims (1)
前記4色の各原色表示の色度を測定する第一工程、
XYZ表色系の三刺激値X、Y、Zについて、青成分のZについて液晶パネルへの入力値と前記第一工程で測定された測定値との差ΔZを調整する第二工程、
前記第二工程の後に、青成分以外の色のXまたはYについて液晶パネルへの入力値と前記第一工程で測定された測定値との差ΔXまたはΔYを調整する第三工程、
とを有することを特徴とする液晶表示装置の製造方法。 In a method of manufacturing a liquid crystal display device including a liquid crystal panel in which a plurality of pixels are composed of different four color sub-pixels,
A first step of measuring the chromaticity of each of the four primary color displays;
For the tristimulus values X, Y, Z of the XYZ color system, the second step of adjusting the difference ΔZ between the input value to the liquid crystal panel and the measured value measured in the first step with respect to Z of the blue component,
A third step of adjusting the difference ΔX or ΔY between the input value to the liquid crystal panel and the measured value measured in the first step for X or Y of a color other than the blue component after the second step;
A method for manufacturing a liquid crystal display device.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010268099A JP2014038117A (en) | 2010-12-01 | 2010-12-01 | Liquid crystal display device |
PCT/JP2011/077324 WO2012073864A1 (en) | 2010-12-01 | 2011-11-28 | Liquid crystal display device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010268099A JP2014038117A (en) | 2010-12-01 | 2010-12-01 | Liquid crystal display device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014038117A true JP2014038117A (en) | 2014-02-27 |
Family
ID=46171796
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010268099A Pending JP2014038117A (en) | 2010-12-01 | 2010-12-01 | Liquid crystal display device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2014038117A (en) |
WO (1) | WO2012073864A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5663063B2 (en) * | 2012-07-20 | 2015-02-04 | シャープ株式会社 | Display device |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3751621B2 (en) * | 2003-10-23 | 2006-03-01 | 株式会社ナナオ | Display characteristic calibration method, display characteristic calibration apparatus, and computer program |
JP2005328386A (en) * | 2004-05-14 | 2005-11-24 | Sharp Corp | System and method for setting white balance correction circuit, lsi circuit used for the system, and liquid crystal television |
JP4890893B2 (en) * | 2006-03-10 | 2012-03-07 | Necカシオモバイルコミュニケーションズ株式会社 | Image processing apparatus, image processing method, and program |
JP2010217516A (en) * | 2009-03-17 | 2010-09-30 | Sony Corp | Image display device |
EP2523184B1 (en) * | 2010-01-07 | 2017-07-12 | Sharp Kabushiki Kaisha | Liquid-crystal display and signal converting circuit |
-
2010
- 2010-12-01 JP JP2010268099A patent/JP2014038117A/en active Pending
-
2011
- 2011-11-28 WO PCT/JP2011/077324 patent/WO2012073864A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2012073864A1 (en) | 2012-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9318075B2 (en) | Image driving using color-compensated image data that has been color-scheme converted | |
US9886932B2 (en) | Multi-primary color display device | |
US7301543B2 (en) | Systems and methods for selecting a white point for image displays | |
KR101134269B1 (en) | Luminance adjustment in a display device | |
US10347198B2 (en) | Image displaying methods and display devices | |
WO2012096345A1 (en) | Gray-scale correction method for display device, and method of producing display device | |
CN106297728B (en) | Image processing apparatus and image processing method | |
TW201407579A (en) | Color signal processing circuit, color signal processing method, display device, and electronic instrument | |
KR20150022235A (en) | Color compensation device and display device using the same, and color compensation method | |
WO2012005170A1 (en) | Multiple-primary color liquid crystal display apparatus | |
JP2014122997A (en) | Display device, image processing device, display method, and electronic apparatus | |
WO2019054178A1 (en) | Display device and signal processing device | |
US9601048B2 (en) | Image processing device and electronic apparatus | |
KR20110081546A (en) | Apparatus and method of processing signals | |
TW201415449A (en) | Image display unit, method of driving image display unit, signal generator, signal generation program, and signal generation method | |
US20140055502A1 (en) | Method of compensating color gamut of display | |
KR20180052836A (en) | Display apparatus and driving method thereof | |
WO2012073864A1 (en) | Liquid crystal display device | |
CN115966171A (en) | Display device and timing controller thereof | |
US9177512B2 (en) | Display device | |
JP2007324665A (en) | Image correction apparatus and video display apparatus | |
JP2014033361A (en) | White balance adjustment device, display device, white balance adjustment method and program | |
TWI671725B (en) | Display device and method for displaying the same | |
KR101046678B1 (en) | Display and its driving method | |
JP2017083606A (en) | Display signal generation device |