JP2014037781A - Wave power generation system and construction method of the same - Google Patents

Wave power generation system and construction method of the same Download PDF

Info

Publication number
JP2014037781A
JP2014037781A JP2012179017A JP2012179017A JP2014037781A JP 2014037781 A JP2014037781 A JP 2014037781A JP 2012179017 A JP2012179017 A JP 2012179017A JP 2012179017 A JP2012179017 A JP 2012179017A JP 2014037781 A JP2014037781 A JP 2014037781A
Authority
JP
Japan
Prior art keywords
wave
power generation
hollow structure
water column
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012179017A
Other languages
Japanese (ja)
Other versions
JP6021175B2 (en
Inventor
Takeaki Miyazaki
武晃 宮▲ざき▼
Hidenori Kayano
秀則 茅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OCEAN ENERGY ENGINEERING CORP
Original Assignee
OCEAN ENERGY ENGINEERING CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OCEAN ENERGY ENGINEERING CORP filed Critical OCEAN ENERGY ENGINEERING CORP
Priority to JP2012179017A priority Critical patent/JP6021175B2/en
Publication of JP2014037781A publication Critical patent/JP2014037781A/en
Application granted granted Critical
Publication of JP6021175B2 publication Critical patent/JP6021175B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/141Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy with a static energy collector
    • F03B13/142Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy with a static energy collector which creates an oscillating water column
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an oscillating water column type wave power generation system which has a simple structure adaptable to geography and environment of many coast areas and can reduce cost of material or materials and construction cost, etc.SOLUTION: An oscillating water column type wave power generation system includes a wave energy absorption device (10) comprising a tubular hollow structural body (11) and an air feed pipe (40) connected to a base edge part (16) of the hollow structural body. The absorption device (10) has an opening (13) which is opened toward an ocean under sea level on the top end part (19), and a center axial line (X) of the hollow structural body is inclined such that the top end part is located on the lower side than the base edge part. On an inner hollow region of the hollow structural body, a water column (14) oscillating in the vertical direction in accordance with an energy of wave coming-in of ocean wave and an air chamber (15) demarcated above the water level of the water column are formed. The absorption device (10) is arranged in a wave dissipating block group which constitutes a wave dissipating work (R) of a coast area, is engaged or comes into contact with a surrounding wave dissipating block (T) and is retained within the wave dissipating work.

Description

本発明は波力発電システム及びその構築方法に関するものであり、より詳細には、振動水柱の振動により空気室内に発生する空気振動流によって発電装置を作動させる振動水柱型の波力発電システム及びその構築方法に関するものである。   The present invention relates to a wave power generation system and a construction method thereof, and more specifically, a vibration water column type wave power generation system that operates a power generation device by an air vibration flow generated in an air chamber by vibration of a vibration water column and the same It relates to the construction method.

海洋の波浪エネルギーを利用して発電する波力発電システムが知られている。波力発電システムをそのエネルギー変換方式より分類すると、主として、振動水柱型、可動物体型及び越波型に大別される。振動水柱型の波力発電システムは、装置内に配設した空気室を海面下で海洋に連通させ、海面の上下動により生じる空気振動流によって空気タービンを回転させて発電する方式の発電システムである。可動物体型の波力発電システムは、波浪エネルギーによって運動する可動物体を用い、可動物体を介して波のエネルギーを機械的運動エネルギーに変換して発電する方式の発電システムである。また、越波型の波力発電システムは、波を貯水池等に超波させて過渡的に貯留し、貯水池内の海水を導水溝によって重力下に海に排水する際に導水溝の水車を回転させて発電する方式の発電システムである。   There is known a wave power generation system that generates power using ocean wave energy. When the wave power generation system is classified according to its energy conversion method, it is mainly classified into an oscillating water column type, a movable object type, and an overtopping type. An oscillating water column type wave power generation system is a power generation system that generates electricity by rotating an air turbine by an air vibration flow generated by vertical movement of the sea surface by communicating an air chamber disposed in the apparatus to the ocean below the sea surface. is there. The movable object-type wave power generation system is a power generation system that uses a movable object that moves by wave energy and generates electric power by converting wave energy into mechanical kinetic energy via the movable object. In addition, the overtopping-type wave power generation system causes waves to be transiently stored in a reservoir or the like, and the water turbine in the reservoir is rotated when the seawater in the reservoir is drained into the ocean under gravity by the conduit. This is a power generation system that generates electricity.

一方、波力発電システムをその設置方式より分類すると、装置を海面又は海中に浮遊させる浮体式と、装置を沖合又は沿岸部に固定する固定式とに大別される。固定式の振動水柱型波力発電システムの構成が、例えば、特開平10-246171号公報(特許文献1)に記載されている。   On the other hand, when the wave power generation system is classified according to its installation method, it is roughly classified into a floating type that floats the device on the sea surface or in the sea and a fixed type that fixes the device offshore or on the coast. The configuration of a fixed oscillating water column type wave power generation system is described in, for example, Japanese Patent Laid-Open No. 10-246171 (Patent Document 1).

図8は、固定式振動水柱型波力発電システムの構成を概略的に示す断面図である。一般に、固定式振動水柱型波力発電システムSの構造体は、港湾等の海底Bに施工した広域面積のマウンドMと、マウンドM上に構築された鉄筋コンクリート構造の防波堤N及びケーソンCとから構成される。海水Wの海面下に開口する空気室Aと、発電装置Gを収容する発電室Dと、各種計器類を収容する制御室Eとが、ケーソンCによって形成される。防波堤N及びケーソンCは、水面波のエネルギーを流体エネルギー(空気圧)に変換する一次変換装置を構成し、空気室Aは、波浪エネルギーを吸収する波浪エネルギー吸収装置を構成する。   FIG. 8 is a cross-sectional view schematically showing a configuration of a fixed oscillating water column type wave power generation system. Generally, the structure of the fixed oscillating water column type wave power generation system S is composed of a mound M of a wide area constructed on the seabed B such as a harbor, a breakwater N and a caisson C of a reinforced concrete structure constructed on the mound M. Is done. The caisson C forms an air chamber A that opens below the sea surface of the seawater W, a power generation chamber D that houses the power generation device G, and a control room E that houses various instruments. The breakwater N and the caisson C constitute a primary conversion device that converts water surface wave energy into fluid energy (pneumatic pressure), and the air chamber A constitutes a wave energy absorption device that absorbs wave energy.

矢印αで示す海洋波の入波エネルギーにより、空気室A内の水柱が上下方向に振動する。空気室A内の水面が矢印β方向に上下動するので、空気室Aの上部空間(空気柱)の空気圧が変動し、矢印γで示す往復気流が、通気孔Iを流通する。発電装置Gが通気孔Iに接続される。発電装置Gは往復気流γにより作動する。発電装置Gは、一次変換装置(防波堤N及びケーソンC)によって得られた流体エネルギー(空気圧)を電気エネルギーに変換する二次変換装置を構成する。発電装置Gとして、往復気流の作用により常に一定方向に回転する形式のウェルズタービン又は衝動型タービンを備えた発電装置が一般に使用される。発電装置Gの発電機によって発生した電力は、送電線等(図示せず)によって系外に送電される。なお、発電室Dは、発電室D内の空間を外気と連通せしめる吸廃気口Oを備え、往復気流γに相応した吸気流又は廃気流が、矢印ηで示すように吸廃気口Oを流通する。   The water column in the air chamber A vibrates in the vertical direction by the incoming energy of the ocean wave indicated by the arrow α. Since the water surface in the air chamber A moves up and down in the direction of arrow β, the air pressure in the upper space (air column) of the air chamber A varies, and the reciprocating airflow indicated by the arrow γ flows through the vent hole I. The power generator G is connected to the vent hole I. The power generator G is operated by a reciprocating airflow γ. The power generator G constitutes a secondary converter that converts fluid energy (air pressure) obtained by the primary converter (breakwater N and caisson C) into electrical energy. As the power generation device G, a power generation device including a Wells turbine or an impulse type turbine that always rotates in a constant direction by the action of a reciprocating airflow is generally used. The electric power generated by the generator of the power generation apparatus G is transmitted outside the system through a transmission line or the like (not shown). The power generation chamber D includes an intake / exhaust vent O that allows the space in the power generation chamber D to communicate with the outside air, and an intake flow or waste air flow corresponding to the reciprocating air flow γ is indicated by an arrow η. Circulate.

他方、固定式振動水柱型波力発電システムにおいて、消波ブロックとしても機能するコンクリート構造の垂直円筒体を備えた構成のものが特開平11-201014号公報(特許文献2)に記載されている。垂直円筒体は、鉛直な中心軸線を有する円柱状の内部空間を有し、沿岸の岸壁等に垂直に設置される。垂直円筒体の下端部には、円柱状内部空間を海洋と連通せしめる波導入孔が形成される。垂直円筒体の頂部には、ウェルズタービンを備えた発電機が配設される。垂直円筒体の下部は、海中に没するように配置される。波導入孔を介して海洋と連続する内部空間の海水は、波の揺動に従って水面を上下動させるので、ウェルズタービンを介して大気に放出される廃気流と、ウェルズタービンを介して内部空間に流入する吸気流とが交互に発生する。このような吸気流及び廃気流によってウェルズタービンは回転し、ウェルズタービンに連結された発電機は発電する。   On the other hand, in a fixed oscillating water column type wave power generation system, a configuration including a vertical cylindrical body having a concrete structure that also functions as a wave-dissipating block is described in Japanese Patent Laid-Open No. 11-201014 (Patent Document 2). . The vertical cylinder has a cylindrical inner space having a vertical center axis, and is installed vertically on a coastal quay or the like. A wave introduction hole is formed in the lower end portion of the vertical cylindrical body to communicate the columnar inner space with the ocean. A generator equipped with a Wells turbine is disposed on the top of the vertical cylinder. The lower part of the vertical cylinder is arranged so as to be immersed in the sea. Seawater in the internal space that continues to the ocean through the wave introduction hole moves the water surface up and down according to the wave oscillation, so the waste airflow that is released to the atmosphere through the Wells turbine and the internal space through the Wells turbine An inflowing intake flow alternately occurs. The wells turbine is rotated by the intake air flow and the waste air flow, and the generator connected to the wells turbine generates electric power.

特開平10-246171号公報JP-A-10-246171 特開平11-201014号公報Japanese Patent Laid-Open No. 11-201014

しかしながら、特許文献1に示されるような従来の固定式振動水柱型波力発電システムにおいては、波力に対する安定性を確保するために、構造体(防波堤及びケーソン)の自重を増大する必要があるので、構造体の材料費又は資材費等が嵩み、しかも、このような構造体を沖合又は沿岸部の海中又は海上において施工する必要が生じることから、構造体の建設費が高額化する傾向がある。   However, in the conventional fixed oscillating water column wave power generation system as shown in Patent Document 1, it is necessary to increase the weight of the structure (breakwater and caisson) in order to ensure stability against wave power. Therefore, the material cost or the material cost of the structure is increased, and the construction cost of the structure tends to increase because it is necessary to construct such a structure offshore or in the sea in or on the coast. There is.

これに対し、特許文献2に記載された自立形の垂直円筒体を用いて固定式振動水柱型波力発電システムを構築した場合、予め製造した円筒体を沿岸部等に設置することにより、ある程度は、建設費を低廉化し得るかもしれない。しかし、消波ブロックを兼ねた自立形の垂直円筒体は、波浪エネルギー等の外力に抗して垂直円筒体自身を位置固定し且つ姿勢保持するために、過大な自重を要する。このため、構造体の材料費又は資材費等が嵩むことから、図8に示す波力発電システムと同様、建設費が高額化する傾向がある。   On the other hand, when a stationary vibration water column type wave power generation system is constructed using a self-supporting vertical cylinder described in Patent Document 2, a cylinder manufactured in advance is installed in a coastal area or the like to some extent. May reduce construction costs. However, the self-supporting vertical cylindrical body that also serves as a wave-dissipating block requires an excessive weight in order to fix the position of the vertical cylindrical body against an external force such as wave energy and hold the posture. For this reason, since the material cost or the material cost of the structure increases, the construction cost tends to increase as in the wave power generation system shown in FIG.

本発明は、このような課題に鑑みてなされたものであり、その目的とするところは、多くの海岸部の地形及び環境に適応可能な簡素な構造を有し、材料費又は資材費や、建設費等を低廉化することができる振動水柱型波力発電システムを提供することにある。   The present invention has been made in view of such problems, and its purpose is to have a simple structure that can be adapted to the topography and environment of many coastal areas, An object of the present invention is to provide an oscillating water column type wave power generation system capable of reducing construction costs and the like.

上記目的を達成すべく、本発明は、海水面の上下動により発生する空気の振動流によって発電装置を作動させる振動水柱型波力発電システムにおいて、
筒状の中空構造体からなる波浪エネルギー吸収装置と、前記中空構造体の基端部に連結された送気管とを有し、
前記吸収装置は、海洋に向かって海面下で開放した開口を先端部に備え、前記中空構造体の中心軸線は、前記先端部が前記基端部よりも下側に位置するように傾斜し、前記中空構造体の内部中空域には、海洋波の入波エネルギーに相応して上下方向に振動する水柱と、該水柱の水面上方に画成された空気室とが形成されており、
前記送気管は、前記空気室の空気圧変動に相応して発生する往復気流を前記発電装置に供給するように該空気室に流体連通しており、
前記吸収装置は、沿岸部の消波工を構成する消波ブロック群の中に配置され、該消波ブロックに係合又は接触して消波工内に拘束されることを特徴とする振動水柱型波力発電システムを提供する。
In order to achieve the above object, the present invention provides an oscillating water column type wave power generation system in which a power generation device is operated by an oscillating flow of air generated by vertical movement of a sea surface.
A wave energy absorbing device comprising a cylindrical hollow structure, and an air pipe connected to the base end of the hollow structure,
The absorption device includes an opening that is open below the sea surface toward the ocean at the distal end, and the central axis of the hollow structure is inclined so that the distal end is located below the base end, In the hollow interior of the hollow structure, there are formed a water column that vibrates in the vertical direction according to the incoming energy of ocean waves, and an air chamber defined above the water surface of the water column,
The air supply pipe is in fluid communication with the air chamber so as to supply a reciprocating airflow generated in accordance with the air pressure fluctuation of the air chamber to the power generation device,
The absorbing device is arranged in a group of wave-dissipating blocks constituting a wave-dissipating work in a coastal area, and is engaged in or contacting the wave-dissipating block and restrained in the wave-dissipating work. A type wave power generation system is provided.

上記構成の発電システムによれば、波浪エネルギーの入力により中空構造体内の水柱が振動し、中空構造体内の水面が上下動するので、中空構造体内の空気室の空気圧が変動する。空気室の空気は往復気流として送気管に送出される。送気管内の空気流は、往復気流として発電装置に供給され、或いは、一定方向の気流に調整又は変換された後に発電装置に供給され、発電装置は発電する。このような構成の波力発電システムによれば、波浪エネルギー吸収装置を構成する中空構造体は、沿岸の消波工内に配置すれば良いので、消波工を有する多くの海岸部において簡易に波浪エネルギー吸収装置を設置することができる。また、本発明の上記構成によれば、従来の装置のように防波堤及びケーソン等のような比較的大規模な人工構造物を要しないので、構造体構築のための材料費又は資材費を大幅に軽減することができる。加えて、本発明によれば、人工構造物を沖合又は沿岸部の海中又は海上で施工する必要がないので、構造体の建設費及び建設工事を大幅に軽減し又は簡略化することができる。   According to the power generation system configured as described above, the water column in the hollow structure vibrates due to the input of wave energy, and the water surface in the hollow structure moves up and down, so that the air pressure of the air chamber in the hollow structure varies. The air in the air chamber is sent to the air pipe as a reciprocating air flow. The airflow in the air pipe is supplied to the power generation device as a reciprocating airflow, or is adjusted or converted into an airflow in a certain direction and then supplied to the power generation device, and the power generation device generates power. According to the wave power generation system having such a configuration, the hollow structure constituting the wave energy absorbing device may be disposed in the coastal wave-dissipating work, so that it can be easily used in many coastal areas having the wave-dissipating work. A wave energy absorber can be installed. Further, according to the above configuration of the present invention, since a relatively large artificial structure such as a breakwater and a caisson is not required as in the conventional apparatus, the material cost or material cost for constructing the structure is greatly increased. Can be reduced. In addition, according to the present invention, since it is not necessary to construct an artificial structure offshore or in the sea in or on the coast, the construction cost and construction work of the structure can be greatly reduced or simplified.

更に、上記構成の発電システムによれば、波浪エネルギー吸収装置を構成する中空構造体は、沿岸の消波工を構成する消波ブロック群の中に配置される。消波工の各消波ブロックは、各ブロック自身の自重と、周囲の消波ブロックの拘束力又は保持力とにより、その位置を維持する性質を有する。中空構造体は、消波ブロックと同じく、その自重と、周囲の消波ブロックの拘束力又は保持力とにより、その位置を維持する。なお、「ブロック群の中」は、ブロック群の中に完全に隠蔽されることを意味するのではなく、ブロック群の一部を構成する消波工の構成要素としてブロック群に渾然と紛れ込み又は同化した状態を意味しており、部分的にブロック群から外側に突出する部分を吸収装置が含むことを完全に排除する意味ではない。   Furthermore, according to the power generation system having the above-described configuration, the hollow structure constituting the wave energy absorbing device is arranged in the wave-dissipating block group constituting the coastal wave-dissipating work. Each wave-dissipating block of the wave-dissipating work has a property of maintaining its position by its own weight and the binding force or holding force of the surrounding wave-dissipating blocks. Similar to the wave-dissipating block, the hollow structure body maintains its position by its own weight and the restraining force or holding force of the surrounding wave-dissipating blocks. Note that “inside the block group” does not mean that it is completely hidden in the block group, but is suddenly mixed into the block group as a component of the wave-dissipating work that forms part of the block group. Or, it means an assimilated state, and does not completely exclude that the absorption device includes a portion partially protruding outward from the block group.

好ましくは、上記中空構造体は、消波ブロックに係合又は接触するように中空構造体の外面から外方に延びる複数の突起又は突出部を備えており、海底又は海中構造物に係留されず、消波ブロックとの係合又は接触のみによって消波工内に拘束される。更に好ましくは、中空構造体の先端部に隣接して配置された支持台が更に設けられる。支持台は、海底又は海中構造物上に構築されるとともに、平面視において、海洋側に向かって拡開する形態を有する。支持台は、中空構造体が海洋側に変位するのを阻止する。   Preferably, the hollow structure includes a plurality of protrusions or protrusions extending outward from the outer surface of the hollow structure so as to engage or contact the wave-dissipating block, and is not anchored to the seabed or the submarine structure. It is restrained in the wave-dissipating work only by engagement or contact with the wave-dissipating block. More preferably, a support base arranged adjacent to the tip of the hollow structure is further provided. The support base is constructed on the seabed or an underwater structure and has a form that expands toward the ocean side in a plan view. The support base prevents the hollow structure from being displaced toward the ocean side.

一般に、消波工においては、消波ブロックに作用する波浪、津波、地震力、潮位変化、劣化因子等の影響により各消波ブロックが若干移動し又は変位するとともに、一群の消波ブロック全体の位置が全体的に僅かに移動し又は変位する傾向があるが、消波ブロックとの係合又は接触のみによって消波工内に拘束される上記中空構造体は、海底、海中構造物(海底マウンド等)、防波堤等に固定又は係留されず、消波ブロックに係合又は接触して消波工内に保持されるにすぎない。従って、波浪エネルギー吸収装置は、周囲の消波ブロックと一緒に移動又は変位するので、堅固な位置拘束に起因した過大な内部応力が移動過程又は変位過程の中空構造体に作用する事態を未然に回避することができる。なお、このように中空構造体の移動又は変位を許容した本発明の発電システムは、固定式の波力発電システムではなく、浮体式の波力発電システムでもなく、半固定式又は置き式(置き基礎式)の波力発電システムである。   In general, in wave-dissipating works, each wave-dissipating block is moved or displaced slightly due to the effects of waves, tsunamis, seismic force, tide level changes, deterioration factors, etc. Although the position tends to move or displace slightly overall, the hollow structure that is constrained within the wave-dissipating work only by engagement or contact with the wave-dissipating block is a submarine, submarine structure (submarine mound). Etc.), it is not fixed or moored to a breakwater or the like, but is merely held in the wave breaker by engaging or contacting the wave breaker block. Therefore, since the wave energy absorbing device moves or displaces together with the surrounding wave-dissipating block, an excessive internal stress due to the firm position constraint may occur on the hollow structure in the moving process or the displacement process. It can be avoided. The power generation system of the present invention that allows the movement or displacement of the hollow structure in this manner is not a fixed wave power generation system, but a floating wave power generation system, and is not a fixed wave power generation system. This is a fundamental power generation system.

他の手段として、上記中空構造体を海底又は海中構造物に係留するアンカー手段によって中空構造体を位置固定することも可能である。この場合、若干の変位又は移動を許容可能に中空構造体を海底又は海中構造物等に固定しても良く、或いは、変位又は移動を全く許容しないように中空構造体を海底又は海中構造物等に堅固に固定しても良い。   As another means, it is also possible to fix the position of the hollow structure by anchor means for mooring the hollow structure to the seabed or underwater structure. In this case, the hollow structure may be fixed to the seabed or the underwater structure or the like so as to allow a slight displacement or movement, or the hollow structure may be fixed to the seabed or the underwater structure so as not to allow any displacement or movement. It may be fixed firmly.

他の観点により、本発明は、海水面の上下動により発生する空気振動流によって発電装置を作動させる振動水柱型波力発電システムの構築方法において、
先端部に開口を備えた筒状の中空構造体からなる波浪エネルギー吸収装置と、前記中空構造体の基端部に連結された送気管とを使用し、
沿岸部の消波工を構成する消波ブロック群の中に前記中空構造体を配置し、前記開口を海洋に向けて前記中空構造体を配向するとともに、前記先端部が前記基端部よりも下側に位置するように前記中空構造体を傾斜させて前記開口を海面下で海洋に開放し、これにより、海洋波の入波エネルギーに相応して上下方向に振動する水柱と、該水柱の水面上方に画成された空気室とを前記中空構造体の内部中空域に形成し、
前記空気室の空気圧変動に相応して発生する往復気流を前記送気管によって前記発電装置に供給するとともに、前記消波ブロックの拘束力を少なくとも部分的に利用して前記吸収装置の位置及び姿勢を前記消波工内に拘束することを特徴とする振動水柱型波力発電システムの構築方法を提供する。
According to another aspect, the present invention provides a method for constructing an oscillating water column wave power generation system in which a power generation device is operated by an air oscillating flow generated by vertical movement of a seawater surface.
Using a wave energy absorption device composed of a cylindrical hollow structure with an opening at the tip, and an air supply pipe connected to the base end of the hollow structure,
The hollow structure is disposed in a group of wave-dissipating blocks constituting a coastal wave-dissipating work, the hollow structure is oriented with the opening facing the ocean, and the distal end is more than the proximal end. The hollow structure is inclined so as to be located below, and the opening is opened to the ocean below the sea surface, whereby a water column that vibrates in the vertical direction according to the incoming energy of the ocean wave, and the water column Forming an air chamber defined above the water surface in the internal hollow region of the hollow structure;
A reciprocating airflow generated in accordance with the air pressure fluctuation of the air chamber is supplied to the power generation device by the air supply pipe, and the position and posture of the absorption device are adjusted at least partially using the binding force of the wave-dissipating block. Provided is a method for constructing a vibrating water column type wave power generation system, characterized in that it is constrained within the wave-dissipating work.

更に他の観点により、本発明は、海水面の上下動により発生する空気振動流によって発電装置を作動させる振動水柱型波力発電システムを用いた発電方法において、
先端部に開口を備えた筒状の中空構造体からなる波浪エネルギー吸収装置と、該中空構造体の基端部に連結された送気管とを使用し、
沿岸部の消波工を構成する消波ブロック群の中に前記中空構造体を配置し、前記開口を海洋に向けて前記中空構造体を配向するとともに、前記先端部が前記基端部よりも下側に位置するように前記中空構造体を傾斜させて前記開口を海面下で海洋に開放し、これにより、海洋波の入波エネルギーに相応して上下方向に振動する水柱と、該水柱の水面上方に画成された空気室とを前記中空構造体の内部中空域に形成し、
前記空気室の空気圧変動に相応して発生する往復気流を前記送気管によって前記発電装置に供給するとともに、前記消波ブロックの拘束力を少なくとも部分的に利用して前記吸収装置の位置及び姿勢を前記消波工内に維持し、
前記水面の上下動により発生する空気振動流によって前記発電装置を作動させることを特徴とする発電方法を提供する。
According to yet another aspect, the present invention relates to a power generation method using a vibrating water column type wave power generation system in which a power generation device is operated by an air vibration flow generated by vertical movement of a sea surface.
Using a wave energy absorption device composed of a cylindrical hollow structure with an opening at the tip, and an air supply pipe connected to the base end of the hollow structure,
The hollow structure is disposed in a group of wave-dissipating blocks constituting a coastal wave-dissipating work, the hollow structure is oriented with the opening facing the ocean, and the distal end is more than the proximal end. The hollow structure is inclined so as to be located below, and the opening is opened to the ocean below the sea surface, whereby a water column that vibrates in the vertical direction according to the incoming energy of the ocean wave, and the water column Forming an air chamber defined above the water surface in the internal hollow region of the hollow structure;
A reciprocating airflow generated in accordance with the air pressure fluctuation of the air chamber is supplied to the power generation device by the air supply pipe, and the position and posture of the absorption device are adjusted at least partially using the binding force of the wave-dissipating block. Maintained in the wave-dissipating construction
A power generation method is provided, wherein the power generation device is operated by an air vibration flow generated by vertical movement of the water surface.

本発明によれば、多くの海岸部の地形及び環境に適応可能な簡素な構造を有し、材料費又は資材費や、建設費等を低廉化することができる振動水柱型波力発電システムを提供することができる。   According to the present invention, an oscillating water column type wave power generation system having a simple structure that can be adapted to many coastal topography and environments and capable of reducing material costs, material costs, construction costs, etc. Can be provided.

また、本発明によれば、波浪エネルギー吸収装置を既存又は新設の消波工の中に渾然と設置することができるので、景観を損なわず、しかも、中空構造体を消波ブロックとして使用することも可能であるので、実用的に有利である。   Further, according to the present invention, the wave energy absorbing device can be installed in an existing or newly constructed wave breaker, so that the landscape is not impaired and the hollow structure is used as a wave breaker block. Is also practically advantageous.

更に、本発明によれば、中空構造体等のシステム構成要素を規格化、標準化又はユニット化し、或いは、中空構造体等を工場製作可能なユニット構造に設計することが可能となり、これにより、発電システムの設置コストを全体的に更に低廉化するとともに、現場工事の簡素化、材料費、資材費及び工事費の低減、工程の短縮等を更に追求することが可能となるので、実用的に極めて有利である。   Furthermore, according to the present invention, it is possible to standardize, standardize, or unitize system components such as a hollow structure, or to design a hollow structure or the like into a unit structure that can be manufactured at a factory. The system installation cost can be further reduced as a whole, and on-site construction can be simplified, material costs, material costs and construction costs can be reduced, and the process can be further shortened. It is advantageous.

図1は、本発明の実施例に係る振動水柱型波力発電システムの全体構成を示す概略側面図である。FIG. 1 is a schematic side view showing an overall configuration of a vibrating water column type wave power generation system according to an embodiment of the present invention. 図2は、図1に示す振動水柱型波力発電システムの概略平面図である。FIG. 2 is a schematic plan view of the vibrating water column type wave power generation system shown in FIG. 図3は、傾斜面上に配置された波浪エネルギー吸収装置の状態を示す概略斜視図である。FIG. 3 is a schematic perspective view showing a state of the wave energy absorbing device arranged on the inclined surface. 図4は、波浪エネルギー吸収装置の縦断面図である。FIG. 4 is a longitudinal sectional view of the wave energy absorbing device. 図5(A)は、空気室の空気圧変動を概略的に示す線図であり、図5(B)は、バッファタンク内の空気圧変動を概略的に示す線図である。FIG. 5A is a diagram schematically showing air pressure fluctuations in the air chamber, and FIG. 5B is a diagram schematically showing air pressure fluctuations in the buffer tank. 図6は、波浪エネルギー吸収装置内の水位変化の態様を示す縦断面図である。FIG. 6 is a longitudinal cross-sectional view showing a mode of water level change in the wave energy absorbing device. 図7は、波浪エネルギー吸収装置の変形例を示す断面図であり、中空構造体をアンカー手段によって海底マウンドに固定した状態が示されている。FIG. 7 is a cross-sectional view showing a modification of the wave energy absorbing device, and shows a state in which the hollow structure is fixed to the seabed mound by anchor means. 図8は、従来の固定式振動水柱型波力発電システムの構成を概略的に示す断面図である。FIG. 8 is a cross-sectional view schematically showing a configuration of a conventional fixed oscillating water column type wave power generation system.

本発明の好適な実施形態によれば、複数の波浪エネルギー吸収装置がバッファタンクに並列に接続される。バッファタンクは、このような複数の波浪エネルギー吸収装置の往復気流を集合して一元的に発電装置に供給する。このような構成によれば、各々の波浪エネルギー吸収装置に発生した往復気流がバッファタンクに同時に供給されるので、波浪エネルギーを効果的に吸収することができる。   According to a preferred embodiment of the present invention, a plurality of wave energy absorbers are connected in parallel to the buffer tank. The buffer tank collects the reciprocating airflows of the plurality of wave energy absorbing devices and supplies them to the power generation device in an integrated manner. According to such a configuration, since the reciprocating airflow generated in each wave energy absorbing device is simultaneously supplied to the buffer tank, the wave energy can be effectively absorbed.

本発明の或る実施形態によれば、往復気流を一定方向の気流に調整又は変換する気流変換手段がバッファタンクに設けられ、或いは、バッファタンクと発電装置との間に介装され、常に一定方向の気流が発電装置に供給される。往復気流によって作動する発電装置として、往復気流の作用により常に一定方向に回転するウェルズタービン又は衝動型タービンを備えた構成のものが一般に使用されるが、このような気流変換手段を備えた発電システムにおいては、ラジアルタービン、軸流タービン等を備えた汎用の発電装置を使用することができる。   According to an embodiment of the present invention, the airflow converting means for adjusting or converting the reciprocating airflow into the airflow in a certain direction is provided in the buffer tank, or is interposed between the buffer tank and the power generation device, and is always constant. Directional airflow is supplied to the generator. As a power generation device that operates by a reciprocating airflow, one having a structure including a Wells turbine or an impulse turbine that always rotates in a fixed direction by the action of the reciprocating airflow is generally used. A power generation system including such an airflow conversion means In general, a general-purpose power generator equipped with a radial turbine, an axial turbine, or the like can be used.

以下、添付図面を参照して、本発明の好適な実施例について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図1及び図2は、本発明の実施例に係る振動水柱型波力発電システムの全体構成を示す概略側面図及び概略平面図である。   1 and 2 are a schematic side view and a schematic plan view showing an overall configuration of a vibrating water column type wave power generation system according to an embodiment of the present invention.

図1及び図2には、海岸部又は沿岸部に一般に観られる地形及び環境として、海水Wの波打ち帯に建設された防波堤Jが示されている。防波堤Jは海岸線に沿って延びる。防波堤Jの海洋側(水域側)には、捨石マウンドKが敷設される。捨石マウンドKは、海洋側に向かって下方に傾斜する傾斜面Qを有する。捨石マウンドK上には、打ち寄せる波のエネルギーを低減するための消波工Rが配設される。消波工Rは、一群のコンクリート製消波ブロックTにより形成される。   FIG. 1 and FIG. 2 show a breakwater J constructed in a undulating zone of seawater W as a terrain and environment generally observed in a coastal area or a coastal area. Breakwater J extends along the coastline. A rubble mound K is laid on the ocean side (water side) of the breakwater J. The rubble mound K has an inclined surface Q that is inclined downward toward the ocean side. On the rubble mound K, a wave-dissipating work R for reducing the energy of the wave that strikes is disposed. The wave breaker R is formed by a group of concrete wave breaker blocks T.

本実施例の振動水柱型波力発電システム1(以下、「発電システム1」という。)は、傾斜面Q上に配置された波浪エネルギー吸収装置10と、陸地Lの地盤面又は岩盤面に配置されたバッファタンク20及び発電室30と、波浪エネルギー吸収装置10とバッファタンク20とを接続する送気管40とから構成される。好ましくは、発電システム1は、発電室30内の発電装置31が発電した電気を蓄電する蓄電装置60を更に有する。蓄電装置60は、給電線35を介して発電装置31に接続されるとともに、電力を系外に送電するため送電線61に接続される。   An oscillating water column type wave power generation system 1 (hereinafter referred to as “power generation system 1”) of the present embodiment is disposed on the ground surface or rock surface of the land L and the wave energy absorbing device 10 disposed on the inclined surface Q. The buffer tank 20 and the power generation chamber 30, and the air pipe 40 connecting the wave energy absorbing device 10 and the buffer tank 20 are configured. Preferably, the power generation system 1 further includes a power storage device 60 that stores electricity generated by the power generation device 31 in the power generation chamber 30. The power storage device 60 is connected to the power generation device 31 via the feeder line 35 and also connected to the power transmission line 61 for transmitting power outside the system.

波浪エネルギー吸収装置10(以下、「吸収装置10」という。)は、全体的に中空円筒体に成形された鉄筋コンクリート製の中空構造体11からなり、中空構造体11の中心軸線X−Xと同心の円柱状中空域12と、海洋に向かって中空域12を開放する開口13と、中空構造体11の外周面に突設された複数の突起18とを備える。中空構造体11の中心軸線X−Xは、傾斜面Qの勾配に相応して傾斜しており、水平面に対して角度θ(図4)をなして傾斜する。   The wave energy absorbing device 10 (hereinafter referred to as “absorbing device 10”) is composed of a hollow structure 11 made of reinforced concrete, which is entirely formed into a hollow cylindrical body, and is concentric with the central axis XX of the hollow structure 11. A cylindrical hollow region 12, an opening 13 that opens the hollow region 12 toward the ocean, and a plurality of protrusions 18 that protrude from the outer peripheral surface of the hollow structure 11. The central axis XX of the hollow structure 11 is inclined according to the gradient of the inclined surface Q, and is inclined at an angle θ (FIG. 4) with respect to the horizontal plane.

図3は、傾斜面Q上に配置された吸収装置10の状態を示す概略斜視図であり、図4は、吸収装置10の縦断面図である。なお、図3では、消波ブロックTの図示は、省略されており、図4では、消波ブロックTは破線で示されている。   FIG. 3 is a schematic perspective view showing a state of the absorption device 10 arranged on the inclined surface Q, and FIG. 4 is a longitudinal sectional view of the absorption device 10. In FIG. 3, the wave-dissipating block T is not shown, and in FIG. 4, the wave-dissipating block T is indicated by a broken line.

図3及び図4に示すように、突起18は、中空構造体11の外周面から径方向外方に一体的に延びる截頭円錐形の鉄筋コンクリート部材であり、周囲の消波ブロックTに係合(又は係止)するとともに、捨石マウンドKを構成する捨石群(又は捨石マウンドK上の被覆石等(図示せず))に係合(又は係止)し又は接地する。中空構造体11は、消波工Rの中に渾然と埋没し、消波工Rに同化しており、その自重と、周囲の消波ブロックTの自重及び相互拘束力と、捨石マウンドKの支持力(荷重支持力、摩擦保持力、係合保持力等)とによって初期の姿勢及び位置を維持する。但し、中空構造体11は、捨石マウンドK、防波堤J及び海底B等に固定又は係留されていない。なお、図1及び図4において、下側の突起18は、捨石マウンドK内に延入しているかのように概念的に図示されているが、下側の突起18は、図3に示すように、その先端部が捨石マウンドKに接地し又は捨石マウンドKの凹凸に係合し、或いは、捨石マウンドK上の被覆石等(図示せず)に接地、係合又は係止するにすぎない。   As shown in FIGS. 3 and 4, the protrusion 18 is a frustoconical reinforced concrete member integrally extending radially outward from the outer peripheral surface of the hollow structure 11, and engages with the surrounding wave-dissipating block T. (Or locking) and engaging (or locking) or grounding a rubble group (or a covering stone or the like (not shown) on the rubble mound K) constituting the rubble mound K. The hollow structure 11 is buried in the wave-dissipating work R and is assimilated to the wave-dissipating work R, and its own weight, the self-weight and the mutual restraining force of the surrounding wave-dissipating block T, and the rubble mound K The initial posture and position are maintained by the support force (load support force, friction holding force, engagement holding force, etc.). However, the hollow structure 11 is not fixed or moored to the rubble mound K, the breakwater J, the seabed B, or the like. 1 and 4, the lower protrusion 18 is conceptually illustrated as if it extends into the rubble mound K, but the lower protrusion 18 is illustrated in FIG. 3. In addition, the tip portion thereof touches the rubble mound K or engages with the unevenness of the rubble mound K, or only touches, engages or locks with a covering stone or the like (not shown) on the rubble mound K. .

開口13は、傾斜した円筒状中空体を鉛直面によって切断した形態の先端面19に形成される。鉄筋コンクリート構造の支持台50が、先端面19の下端部から傾斜面Qに沿って海洋側に延びる。支持台50は、先端面19から平面視扇状に拡開するとともに、傾斜面Qの傾斜角よりも小さい傾斜角の斜面51を形成する。支持台50の上端部52は、先端面19の下端部に当接して中空構造体11の自重の一部を支承する支点として機能し、中空構造体11の姿勢及び位置を保持するように機能する。中空構造体11は、傾斜面Qの傾斜によって海洋側に移動し又は変位しようとするが、このような中空構造体11の移動又は変位は、消波ブロックT又は捨石マウンドKに対する突起18の係合及び接地と、支持台50による支承とによって確実に阻止することができる。   The opening 13 is formed in the front end surface 19 in a form in which an inclined cylindrical hollow body is cut by a vertical surface. A support base 50 having a reinforced concrete structure extends from the lower end of the front end surface 19 along the inclined surface Q to the ocean side. The support base 50 expands from the front end surface 19 in a fan shape in plan view, and forms an inclined surface 51 having an inclination angle smaller than the inclination angle of the inclined surface Q. The upper end portion 52 of the support base 50 abuts on the lower end portion of the distal end surface 19 and functions as a fulcrum for supporting a part of its own weight of the hollow structure 11, and functions to maintain the posture and position of the hollow structure 11. To do. The hollow structure 11 tends to move or displace to the ocean side due to the inclination of the inclined surface Q. Such movement or displacement of the hollow structure 11 is caused by the engagement of the protrusion 18 with respect to the wave-dissipating block T or the rubble mound K. It is possible to reliably prevent the contact and grounding and the support by the support base 50.

中空構造体11は、海水Wの水面WLが開口13の上方且つ基端部16の下方に位置するように配置される。水柱14が中空域12の下部に形成され、空気室15が中空域12の上部に形成される。開口13を介して海水Wが中空域12に流入しており、矢印αで示す海洋波浪の入波エネルギーにより、水柱14が上下方向に振動する。水柱14の水面が矢印β方向に上下動するので、空気室15内の空気柱の空気圧が変動する。基端部16は全体的に閉塞しており、給排ポート16aが中心部に形成される。   The hollow structure 11 is disposed such that the water surface WL of the seawater W is located above the opening 13 and below the base end portion 16. A water column 14 is formed in the lower part of the hollow region 12, and an air chamber 15 is formed in the upper part of the hollow region 12. Seawater W flows into the hollow region 12 through the opening 13, and the water column 14 vibrates in the vertical direction by the incoming energy of the ocean wave indicated by the arrow α. Since the water surface of the water column 14 moves up and down in the direction of arrow β, the air pressure of the air column in the air chamber 15 varies. The base end portion 16 is totally closed, and a supply / discharge port 16a is formed at the center.

支持台50の領域は他の部分よりも相対的に水深が浅く、しかも、支持台50は、海洋に向かって平面視扇状に拡開しているので、消波工Rに接近する波は開口13に向かって収斂し、開口13内に進入する波の波高は増大する。この結果、水柱14の上下方向の振幅が増大し、空気室15内の空気柱の空気圧が比較的大きく変動する(従って、吸収装置10のエネルギー吸収量が増大する)。   The area of the support base 50 has a relatively shallow water depth compared with other parts, and the support base 50 is expanded in a fan shape in plan view toward the ocean. The wave height of the wave that converges toward 13 and enters the opening 13 increases. As a result, the vertical amplitude of the water column 14 increases, and the air pressure of the air column in the air chamber 15 fluctuates relatively large (thus, the energy absorption amount of the absorption device 10 increases).

消波工Rを構成する各消波ブロックTは、その自重と、周囲の消波ブロックTとの相互係合又は相互接触とにより、基本的にはその初期位置を維持するが、消波ブロックTに作用する波浪、津波、地震力、潮位変化、劣化因子等の影響により各消波ブロックTが若干移動し又は変位するとともに、一群の消波ブロックT全体の位置が全体的に僅かに移動し又は変位する傾向がある。消波工Rの中に埋没した中空構造体11は、捨石マウンドK、防波堤J及び海底B等に固定又は係留されていないので、周囲の消波ブロックTと一緒に移動又は変位するとともに、堅固な位置拘束に起因した過大な内部応力が移動過程又は変位過程の中空構造体11に作用しない。   Each wave-dissipating block T constituting the wave-dissipating work R basically maintains its initial position by its own weight and mutual engagement or mutual contact with the surrounding wave-dissipating block T. Each wave-dissipating block T moves or displaces slightly due to the effects of waves, tsunamis, seismic forces, tide level changes, deterioration factors, etc., and the entire group of wave-dissipating blocks T moves slightly as a whole. Or tend to displace. Since the hollow structure 11 buried in the wave breaker R is not fixed or moored to the rubble mound K, the breakwater J, the seabed B, or the like, it moves or displaces together with the surrounding wave breaker block T and is solid. Excessive internal stress caused by the positional restraint does not act on the hollow structure 11 in the movement process or the displacement process.

このような中空構造体11の移動又は変位を考慮し、変形可能なフレキシブル管からなる送気管40が、フレキシブルジョイントからなる継手41を介して中空構造体11の給排ポート16aに接続される。中空構造体11の移動又は変位は、送気管40及び継手41の変形によって吸収される。   In consideration of such movement or displacement of the hollow structure 11, the air supply pipe 40 made of a deformable flexible pipe is connected to the supply / discharge port 16 a of the hollow structure 11 via a joint 41 made of a flexible joint. The movement or displacement of the hollow structure 11 is absorbed by the deformation of the air supply pipe 40 and the joint 41.

送気管40は、防波堤Jの頂部を乗り越えて陸地側に延び、陸地L上のバッファタンク20に接続さる。図2に示すように、複数の吸収装置10が消波工R内に並列に配置され、各吸収装置10に接続された各送気管40は、フレキシブルジョイントからなる継手21を介してバッファタンク20に接続される。バッファタンク20は、両端を閉塞した円形断面の金属製管体又は鉄筋コンクリート製管体からなる。各送気管40の往復気流γが、空気室15の空気圧変動に相応して、バッファタンク20に供給される。バッファタンク20は、各送気管40を介して流入又は流出する空気の微細な圧力変化、或いは、不規則な圧力変動を緩和して発電装置31の回転運動を安定化させる圧力緩衝手段として機能する。バッファタンク20は又、異常波浪時の波高上昇等により、吸収装置10内の海水が発電装置31に到達するのを防止する発電装置保護手段として機能する。好ましくは、バッファタンク20は、バッファタンク20内に進入した海水を排水するための排水口、排水溝、排水管等の排水設備又は排水手段を備える。   The air pipe 40 extends over the top of the breakwater J to the land side, and is connected to the buffer tank 20 on the land L. As shown in FIG. 2, a plurality of absorbers 10 are arranged in parallel in the wave absorber R, and each air supply pipe 40 connected to each absorber 10 is connected to a buffer tank 20 via a joint 21 made of a flexible joint. Connected to. The buffer tank 20 is made of a metal tube or a reinforced concrete tube having a circular cross section with both ends closed. The reciprocating airflow γ of each air supply pipe 40 is supplied to the buffer tank 20 in accordance with the air pressure fluctuation of the air chamber 15. The buffer tank 20 functions as pressure buffering means that stabilizes the rotational motion of the power generation device 31 by relieving minute pressure changes or irregular pressure fluctuations of air flowing in or out through each air pipe 40. . The buffer tank 20 also functions as power generation device protection means for preventing seawater in the absorption device 10 from reaching the power generation device 31 due to an increase in wave height during abnormal waves. Preferably, the buffer tank 20 includes a drainage facility or drainage means such as a drain outlet, a drainage groove, and a drain pipe for draining seawater that has entered the buffer tank 20.

発電室30は、バッファタンク20に隣接して陸地Lの地盤面又は岩盤面に構築された鉄筋コンクリート構造又は鋼構造のシェルター34からなる。空気タービン型の発電装置31が、発電室30内に配設される。発電室30の室内空間を外気と連通せしめる吸廃気口36を備える。発電装置31の給排気口32が空気搬送ダクト33を介してバッファタンク20の給排気口22に接続され、空気搬送ダクト33の往復気流λは発電装置31に作用する。発電装置31は、往復気流λの作用により常に一定方向に回転するウェルズタービン又は衝動型タービンを備えており、発電装置31のタービン部は、往復気流λにより回転駆動し、発電装置31の発電機は発電する。発電装置31が発電した電気は蓄電装置60に蓄電され、送電線61を介して系外に適宜送電される。往復気流λに相応した吸気流又は廃気流が、矢印ηで示すように発電室30の吸廃気口36を流通する。   The power generation chamber 30 is composed of a reinforced concrete structure or a steel structure shelter 34 constructed on the ground surface or the rock surface of the land L adjacent to the buffer tank 20. An air turbine type power generation device 31 is disposed in the power generation chamber 30. An air intake / exhaust port 36 that allows the indoor space of the power generation chamber 30 to communicate with the outside air is provided. The air supply / exhaust port 32 of the power generation device 31 is connected to the air supply / exhaust port 22 of the buffer tank 20 via the air transfer duct 33, and the reciprocating airflow λ of the air transfer duct 33 acts on the power generation device 31. The power generation device 31 includes a Wells turbine or an impulse turbine that always rotates in a certain direction by the action of the reciprocating airflow λ. The turbine portion of the power generation device 31 is rotationally driven by the reciprocating airflow λ, and the power generator 31 Will generate electricity. The electricity generated by the power generation device 31 is stored in the power storage device 60 and is appropriately transmitted outside the system via the power transmission line 61. An intake air flow or a waste air flow corresponding to the reciprocating air flow λ flows through the suction / waste port 36 of the power generation chamber 30 as indicated by an arrow η.

図5(A)は、空気室15の空気圧変動を示す線図であり、図5(B)は、バッファタンク20内の空気圧変動を示す線図である。   FIG. 5A is a diagram showing fluctuations in air pressure in the air chamber 15, and FIG. 5B is a diagram showing fluctuations in air pressure in the buffer tank 20.

図5(A)には、空気室15内に生じる空気圧変動の状態が概略的に示されている。空気室15の空気圧は海水面の上下動に応答して変動するが、微細な圧力変動を伴う不規則な圧力変化が空気室15に発生する。図5(B)には、バッファタンク20内に生じる空気圧変動の状態が概略的に示されている。図5(B)に示されるように、空気室15に観られる微細な圧力変化は、バッファタンク20内に発生しない。従って、バッファタンク20を空気室15と発電装置31との間に介装することにより、小刻み且つ急峻に空気圧が変化する微細な圧力変動が平準化され、発電装置31に供給される空気流が安定するので、発電装置31の回転運動は安定する。   FIG. 5A schematically shows the state of air pressure fluctuation generated in the air chamber 15. Although the air pressure in the air chamber 15 fluctuates in response to the vertical movement of the seawater surface, an irregular pressure change accompanied by minute pressure fluctuations occurs in the air chamber 15. FIG. 5B schematically shows the state of air pressure fluctuation that occurs in the buffer tank 20. As shown in FIG. 5B, the minute pressure change observed in the air chamber 15 does not occur in the buffer tank 20. Therefore, by interposing the buffer tank 20 between the air chamber 15 and the power generator 31, minute pressure fluctuations in which the air pressure changes little by little are leveled, and the air flow supplied to the power generator 31 is reduced. Since it is stabilized, the rotational motion of the power generator 31 is stabilized.

図6は、吸収装置10内の水面の水位変化を示す線図である。   FIG. 6 is a diagram showing changes in the water level of the water surface in the absorber 10.

吸収装置10内の水柱14は、海洋波浪の入波エネルギーαの作用で上下方向に振動し、図6(B)及び図6(C)に示すように矢印β方向に上下動し、この結果、空気室15の空気圧が変動する。空気室15の空気圧変動に相応して、矢印γで示すように往復気流が各送気管40を介してバッファタンク20(図1及び図2)に供給される。図1及び図2に示されるように、バッファタンク20は、圧力緩衝後の往復気流λを空気搬送ダクト33によって発電装置31に供給する。   The water column 14 in the absorber 10 vibrates in the vertical direction by the action of the ocean wave incident energy α, and moves up and down in the direction of the arrow β as shown in FIGS. 6B and 6C. As a result, The air pressure in the air chamber 15 varies. A reciprocating airflow is supplied to the buffer tank 20 (FIGS. 1 and 2) via each air supply pipe 40 as indicated by an arrow γ in accordance with the air pressure fluctuation in the air chamber 15. As shown in FIGS. 1 and 2, the buffer tank 20 supplies the reciprocating airflow λ after the pressure buffering to the power generation device 31 through the air transfer duct 33.

図6に示すとおり、中空構造体11は、先端面19が基端部16よりも下側に位置するように全体的に傾斜しているので、水柱14の水面14aは、楕円又は長円形に拡大しており、従って、水面14aの面積は、中空構造体11の中心軸線X−Xを鉛直方向に配向した状態に比べて、かなり増大する。しかも、先端面19の開口13を海洋に向けて開放した傾斜円筒形の中空構造体11は、海洋波浪の入波エネルギーαを効率的に水柱14の上下振動に変換する。即ち、中空構造体11は、海洋波の運動を空気室15の空気圧に効果的に変換するので、吸収装置10の波浪エネルギー吸収能力は向上する。このような傾斜円筒体の優位性は、本出願人の出願に係る特願2011-172439号の図12〜図14に実験条件及び実験結果として示され、特願2011-172439号の明細書、段落[0046]〜[0048]に実験結果として記載されているので、更なる詳細な説明については、省略する。   As shown in FIG. 6, the hollow structure 11 is entirely inclined so that the distal end surface 19 is located below the proximal end portion 16, so that the water surface 14 a of the water column 14 is elliptical or oval. Therefore, the area of the water surface 14a is considerably increased as compared with the state in which the central axis XX of the hollow structure 11 is oriented in the vertical direction. Moreover, the inclined cylindrical hollow structure 11 with the opening 13 of the tip surface 19 opened toward the ocean efficiently converts the incoming energy α of ocean waves into vertical vibrations of the water column 14. That is, since the hollow structure 11 effectively converts the ocean wave motion into the air pressure of the air chamber 15, the wave energy absorption capability of the absorber 10 is improved. The superiority of such an inclined cylindrical body is shown as experimental conditions and experimental results in FIGS. 12 to 14 of Japanese Patent Application No. 2011-172439 related to the applicant's application, and the specification of Japanese Patent Application No. 2011-172439, Since it is described as an experimental result in paragraphs [0046] to [0048], further detailed explanation is omitted.

かくして、上記構成の発電システム1によれば、海洋波浪の入波エネルギーαによって吸収装置10内の水柱14が上下方向に振動すると、水柱14の水面が矢印β方向に上下動するので、空気室15の空気圧が変動し、往復気流γがバッファタンク20内に流入し又はバッファタンク20から流出する。バッファタンク20内の空気圧変動に応答して、往復気流λが、発電装置31のタービン部に作用してタービン部を回転駆動し、発電装置31の発電機が発電し、発電装置31が発電した電気は蓄電装置60に蓄電され、系外に適宜送電される。   Thus, according to the power generation system 1 configured as described above, when the water column 14 in the absorption device 10 vibrates in the vertical direction due to the incoming energy α of ocean waves, the water surface of the water column 14 moves up and down in the direction of arrow β. The air pressure 15 fluctuates, and the reciprocating airflow γ flows into or out of the buffer tank 20. In response to the air pressure fluctuation in the buffer tank 20, the reciprocating airflow λ acts on the turbine portion of the power generation device 31 to rotationally drive the turbine portion, the generator of the power generation device 31 generates power, and the power generation device 31 generates power. Electricity is stored in the power storage device 60 and appropriately transmitted outside the system.

図7は、吸収装置10の変形例を示す断面図である。   FIG. 7 is a cross-sectional view showing a modification of the absorber 10.

前述の実施例においては、中空構造体11は、消波工Rの中に渾然と配置され、中空構造体11自身の重量と、周囲の消波ブロックTの拘束力又は保持力とにより、その位置を維持するが、図7に示す如く、アンカー手段70によって中空構造体11をマウンドK又は海底Bに位置固定しても良い。図7に示すアンカー手段70は、PC鋼より線(撚り線)、PC鋼線、PC棒鋼等の線形PC鋼材72をマウンドK及び海底Bの削孔71内に挿入してグラウト材(セメントミルク等)を削孔71内に注入・充填してなるグラウンドアンカー工又はアースアンカー工からなる。アンカー手段70は、軸線X−X方向に間隔を隔てて中空構造体11の周壁下部に配設され、PC鋼材72の頂部は、補剛材73及び補剛部74を介して中空構造体11の周壁下部に一体的に連結される。補剛材73は、PC鋼材72の張力を中空構造体11に伝達可能な金属部材等からなり、補剛部74は、PC鋼材72及び中空構造体11に一体化したコンクリート部材からなる。なお、所定の荷重で圧潰、圧壊又は変形するように構成された部材により補剛部74を設計し、中空構造体11の変位時又は挙動時に中空構造体11に過負荷が働くのを防止するように吸収装置10を構成しても良く、或いは、中空構造体11の変位又は挙動に追随して変形し得るように補剛材73又は補剛部74を設計しても良い。また、変形例として、鋼製杭、鋼管杭、既製コンクリート杭等によって中空構造体11をマウンドK又は海底Bに堅固に固定することも可能である。   In the above-described embodiment, the hollow structure 11 is clearly arranged in the wave-dissipating work R, and the weight of the hollow structure 11 itself and the binding force or holding force of the surrounding wave-dissipating block T are used. Although the position is maintained, as shown in FIG. 7, the hollow structure 11 may be fixed to the mound K or the seabed B by the anchor means 70. The anchor means 70 shown in FIG. 7 inserts a linear PC steel material 72 such as a PC steel strand (twisted wire), a PC steel wire, a PC steel bar or the like into the hole 71 of the mound K and the seabed B, and grout material (cement milk). Etc.) is formed by ground anchor work or earth anchor work in which the hole 71 is injected and filled. The anchor means 70 is disposed in the lower part of the peripheral wall of the hollow structure 11 with an interval in the direction of the axis XX, and the top of the PC steel material 72 is connected to the hollow structure 11 via the stiffener 73 and the stiffener 74. Are integrally connected to the lower part of the peripheral wall. The stiffening material 73 is made of a metal member that can transmit the tension of the PC steel material 72 to the hollow structure 11, and the stiffening portion 74 is made of a concrete member integrated with the PC steel material 72 and the hollow structure 11. In addition, the stiffening part 74 is designed by a member configured to be crushed, crushed or deformed with a predetermined load to prevent the hollow structure 11 from being overloaded when the hollow structure 11 is displaced or behaves. The absorber 10 may be configured as described above, or the stiffener 73 or the stiffening portion 74 may be designed so as to be able to deform following the displacement or behavior of the hollow structure 11. Further, as a modification, the hollow structure 11 can be firmly fixed to the mound K or the seabed B by a steel pile, a steel pipe pile, a ready-made concrete pile, or the like.

以上、本発明の好適な実施例について詳細に説明したが、本発明は上記実施例に限定されるものではなく、特許請求の範囲に記載された本発明の範囲内で種々の変形又は変更が可能である。   The preferred embodiments of the present invention have been described in detail above, but the present invention is not limited to the above-described embodiments, and various modifications or changes can be made within the scope of the present invention described in the claims. Is possible.

例えば、上記実施例においては、円形断面を有する鉄筋コンクリート構造の中空構造体によって波浪エネルギー吸収装置を形成しているが、方形又は矩形断面、多角形断面等の中空構造体によって波浪エネルギー吸収装置を形成し、或いは、鋼製又は金属製の中空構造体によって波浪エネルギー吸収装置を形成することも可能である。   For example, in the above embodiment, the wave energy absorbing device is formed by a hollow structure of a reinforced concrete structure having a circular cross section, but the wave energy absorbing device is formed by a hollow structure having a square, rectangular cross section, polygonal cross section, or the like. Alternatively, the wave energy absorbing device can be formed by a hollow structure made of steel or metal.

また、上記実施例においては、等断面の内部中空域を有する中空構造体によって波浪エネルギー吸収装置を形成しているが、断面寸法が徐々に変化し又は段階的に変化する内部中空域を有する中空構造体によって波浪エネルギー吸収装置を形成しても良い。   In the above embodiment, the wave energy absorbing device is formed by a hollow structure having an internal hollow area with an equal cross section. However, a hollow body having an internal hollow area in which the cross-sectional dimension changes gradually or stepwise. A wave energy absorbing device may be formed by the structure.

更に、上記実施例では、発電装置は、往復気流の作用により常に一定方向に回転するウェルズタービン又は衝動型タービンを備えているが、往復気流を単一方向の気流に調整する弁装置等を気流変換手段としてバッファタンクと発電装置との間に介装するとともに、汎用のラジアルタービン、軸流タービン等を備えた構成の発電装置を採用しても良い。なお、このような気流変換手段については、例えば、本出願人の出願に係る特願2011-172439号に記載されている。   Further, in the above embodiment, the power generation device is provided with a Wells turbine or an impulse turbine that always rotates in a certain direction by the action of the reciprocating airflow. A power generator having a configuration including a general-purpose radial turbine, an axial-flow turbine, or the like may be employed as a conversion means interposed between the buffer tank and the power generator. Note that such airflow conversion means is described in, for example, Japanese Patent Application No. 2011-172439 related to the application of the present applicant.

また、バッファタンク、発電装置等の構成や、バッファタンク、発電装置等の支持構造などは、地形、地盤の条件等に応じて、適宜変更し得るものである。   In addition, the configuration of the buffer tank, the power generation device, and the like, and the support structure of the buffer tank, the power generation device, etc. can be appropriately changed according to the topography, ground conditions, and the like.

本発明の発電システムは、振動水柱の振動により空気室内に発生する空気振動流によって発電装置を作動させるとともに、海底等に固定せず、海面又は海中に浮遊することもない半固定式の振動水柱型波力発電システムとして好ましく使用し得る。本発明によれば、消波工を有する多くの海岸部に適応可能な構造を有し、しかも、規格化、標準化又はユニット化等により、材料費又は資材費や、建設費等を低廉化することができるので、その実用的価値は顕著である。   The power generation system of the present invention operates a power generation device by an air vibration flow generated in an air chamber by vibration of a vibration water column, and is not fixed to the seabed or the like, and is a semi-fixed vibration water column that does not float on the sea surface or the sea. It can be preferably used as a type wave power generation system. According to the present invention, it has a structure that can be applied to many coastal areas having wave-dissipating works, and further, material costs, material costs, construction costs, etc. are reduced by standardization, standardization, or unitization. Its practical value is remarkable.

1 振動水柱型波力発電システム
10 波浪エネルギー吸収装置
11 中空構造体
12 円柱状中空域
13 開口
14 水柱
15 空気室
16 基端部
18 突起
19 先端面
20 バッファタンク
30 発電室
31 空気タービン型発電装置
40 送気管
50 支持台
60 蓄電装置
70 アンカー手段
J 防波堤
L 陸地
Q 傾斜面
W 海水
K 捨石マウンド
B 海底
R 消波工
T 消波ブロック
α 入波エネルギー
γ、λ 往復気流
DESCRIPTION OF SYMBOLS 1 Oscillating water column type wave power generation system 10 Wave energy absorption device 11 Hollow structure 12 Cylindrical hollow region 13 Opening 14 Water column 15 Air chamber 16 Base end portion 18 Protrusion 19 Tip surface 20 Buffer tank 30 Power generation chamber 31 Air turbine type power generation device 40 Air pipe 50 Support stand 60 Power storage device 70 Anchor means J Breakwater L Land Q Inclined surface W Seawater K Rubble mound B Seabed R Wavebreaking T Wavebreaking block α Incoming energy γ, λ Reciprocating airflow

Claims (12)

海水面の上下動により発生する空気の振動流によって発電装置を作動させる振動水柱型波力発電システムにおいて、
筒状の中空構造体からなる波浪エネルギー吸収装置と、前記中空構造体の基端部に連結された送気管とを有し、
前記吸収装置は、海洋に向かって海面下で開放した開口を先端部に備え、前記中空構造体の中心軸線は、前記先端部が前記基端部よりも下側に位置するように傾斜し、前記中空構造体の内部中空域には、海洋波の入波エネルギーに相応して上下方向に振動する水柱と、該水柱の水面上方に画成された空気室とが形成されており、
前記送気管は、前記空気室の空気圧変動に相応して発生する往復気流を前記発電装置に供給するように該空気室に流体連通しており、
前記吸収装置は、沿岸部の消波工を構成する消波ブロック群の中に配置され、該消波ブロックに係合又は接触して消波工内に拘束されることを特徴とする振動水柱型波力発電システム。
In the oscillating water column type wave power generation system that operates the power generation device by the vibration flow of the air generated by the vertical movement of the seawater surface,
A wave energy absorbing device comprising a cylindrical hollow structure, and an air pipe connected to the base end of the hollow structure,
The absorption device includes an opening that is open below the sea surface toward the ocean at the distal end, and the central axis of the hollow structure is inclined so that the distal end is located below the base end, In the hollow interior of the hollow structure, there are formed a water column that vibrates in the vertical direction according to the incoming energy of ocean waves, and an air chamber defined above the water surface of the water column,
The air supply pipe is in fluid communication with the air chamber so as to supply a reciprocating airflow generated in accordance with the air pressure fluctuation of the air chamber to the power generation device,
The absorbing device is arranged in a group of wave-dissipating blocks constituting a wave-dissipating work in a coastal area, and is engaged in or contacting the wave-dissipating block and restrained in the wave-dissipating work. Type wave power generation system.
前記中空構造体は、前記消波ブロックに係合又は接触するように該中空構造体の外面から外方に延びる複数の突起又は突出部を備えており、海底又は海中構造物に係留されず、前記消波ブロックとの係合又は接触のみによって消波工内に拘束されることを特徴とする請求項1に記載の振動水柱型波力発電システム。   The hollow structure includes a plurality of protrusions or protrusions extending outward from the outer surface of the hollow structure so as to engage with or contact the wave-dissipating block, and is not anchored to the seabed or an underwater structure; 2. The vibrating water column type wave power generation system according to claim 1, wherein the vibration water column type wave power generation system is constrained within the wave-dissipating work only by engagement or contact with the wave-dissipating block. 前記波浪エネルギー吸収装置は、前記中空構造体を海底又は海中構造物に係留して該中空構造体を位置固定するアンカー手段を有することを特徴とする請求項1に記載の振動水柱型波力発電システム。   2. The oscillating water column type wave power generation according to claim 1, wherein the wave energy absorbing device includes anchor means for anchoring the hollow structure to a seabed or an underwater structure and fixing the position of the hollow structure. system. 前記中空構造体が海洋側に変位するのを阻止するように、該中空構造体の先端部に隣接して配置された支持台を更に有し、該支持台は、海底又は海中構造物上に構築されるとともに、平面視において、海洋側に向かって拡開する形態を有することを特徴とする請求項1又は2に記載の振動水柱型波力発電システム。   In order to prevent the hollow structure from being displaced to the ocean side, the structure further includes a support base disposed adjacent to the tip of the hollow structure, and the support base is disposed on the seabed or an underwater structure. The oscillating water column type wave power generation system according to claim 1 or 2, wherein the vibration water column type wave power generation system is constructed and has a form expanding toward the ocean side in a plan view. 複数の前記吸収装置が並列に設けられ、各々の吸収装置に連結された前記送気管は、前記往復気流の微細な圧力変動を緩和するバッファタンクに連結され、該バッファタンクは、空気搬送路を介して前記発電装置に連結されることを特徴とする請求項1乃至4のいずれか1項に記載の振動水柱型波力発電システム。   A plurality of the absorption devices are provided in parallel, and the air supply pipe connected to each absorption device is connected to a buffer tank that relieves minute pressure fluctuations of the reciprocating airflow, and the buffer tank passes through an air conveyance path. The vibration water column type wave power generation system according to any one of claims 1 to 4, wherein the vibration water column type wave power generation system is connected to the power generation device via a power source. 海水面の上下動により発生する空気振動流によって発電装置を作動させる振動水柱型波力発電システムの構築方法において、
先端部に開口を備えた筒状の中空構造体からなる波浪エネルギー吸収装置と、前記中空構造体の基端部に連結された送気管とを使用し、
沿岸部の消波工を構成する消波ブロック群の中に前記中空構造体を配置し、前記開口を海洋に向けて前記中空構造体を配向するとともに、前記先端部が前記基端部よりも下側に位置するように前記中空構造体を傾斜させて前記開口を海面下で海洋に開放し、これにより、海洋波の入波エネルギーに相応して上下方向に振動する水柱と、該水柱の水面上方に画成された空気室とを前記中空構造体の内部中空域に形成し、
前記空気室の空気圧変動に相応して発生する往復気流を前記送気管によって前記発電装置に供給するとともに、前記消波ブロックの拘束力を少なくとも部分的に利用して前記吸収装置の位置及び姿勢を前記消波工内に拘束することを特徴とする振動水柱型波力発電システムの構築方法。
In the construction method of the oscillating water column type wave power generation system in which the power generation device is operated by the air vibration flow generated by the vertical movement of the seawater surface,
Using a wave energy absorption device composed of a cylindrical hollow structure with an opening at the tip, and an air supply pipe connected to the base end of the hollow structure,
The hollow structure is disposed in a group of wave-dissipating blocks constituting a coastal wave-dissipating work, the hollow structure is oriented with the opening facing the ocean, and the distal end is more than the proximal end. The hollow structure is inclined so as to be located below, and the opening is opened to the ocean below the sea surface, whereby a water column that vibrates in the vertical direction according to the incoming energy of the ocean wave, and the water column Forming an air chamber defined above the water surface in the internal hollow region of the hollow structure;
A reciprocating airflow generated in accordance with the air pressure fluctuation of the air chamber is supplied to the power generation device by the air supply pipe, and the position and posture of the absorption device are adjusted at least partially using the binding force of the wave-dissipating block. A method for constructing an oscillating water column type wave power generation system, characterized by being constrained in the wave-dissipating work.
前記空気室の圧力変動により発生する往復気流の微細な圧力変動を緩和するバッファタンクを更に使用し、複数の前記吸収装置を前記バッファタンクに並列に接続するとともに、該バッファタンクを空気搬送路によって前記発電装置に接続することを特徴とする請求項6に記載の構築方法。   Further using a buffer tank that relieves minute pressure fluctuations in the reciprocating airflow generated by pressure fluctuations in the air chamber, and connecting the plurality of absorbers in parallel to the buffer tanks, and connecting the buffer tanks by an air conveyance path The construction method according to claim 6, wherein the construction method is connected to the power generation device. 前記発電装置は、往復気流の作用により常に一定方向に回転するウェルズタービン又は衝動型タービンを備えることを特徴とする請求項7に記載の構築方法。   The construction method according to claim 7, wherein the power generation device includes a Wells turbine or an impulse turbine that always rotates in a constant direction by the action of a reciprocating airflow. 一定方向の気流を前記発電装置に供給するために前記往復気流を一定方向の気流に調整又は変換する気流変換手段を前記バッファタンクに設け、或いは、該バッファタンクと前記発電装置との間に介装することを特徴とする請求項7に記載の構築方法。   An airflow converting means for adjusting or converting the reciprocating airflow into a constant direction airflow is provided in the buffer tank in order to supply a constant direction airflow to the power generation device, or is interposed between the buffer tank and the power generation device. The construction method according to claim 7, further comprising: 海水面の上下動により発生する空気振動流によって発電装置を作動させる振動水柱型波力発電システムを用いた発電方法において、
先端部に開口を備えた筒状の中空構造体からなる波浪エネルギー吸収装置と、該中空構造体の基端部に連結された送気管とを使用し、
沿岸部の消波工を構成する消波ブロック群の中に前記中空構造体を配置し、前記開口を海洋に向けて前記中空構造体を配向するとともに、前記先端部が前記基端部よりも下側に位置するように前記中空構造体を傾斜させて前記開口を海面下で海洋に開放し、これにより、海洋波の入波エネルギーに相応して上下方向に振動する水柱と、該水柱の水面上方に画成された空気室とを前記中空構造体の内部中空域に形成し、
前記空気室の空気圧変動に相応して発生する往復気流を前記送気管によって前記発電装置に供給するとともに、前記消波ブロックの拘束力を少なくとも部分的に利用して前記吸収装置の位置及び姿勢を前記消波工内に維持し、
前記水面の上下動により発生する空気振動流によって前記発電装置を作動させることを特徴とする発電方法。
In a power generation method using an oscillating water column type wave power generation system in which a power generation device is operated by an air vibration flow generated by vertical movement of a sea surface,
Using a wave energy absorption device composed of a cylindrical hollow structure with an opening at the tip, and an air supply pipe connected to the base end of the hollow structure,
The hollow structure is disposed in a group of wave-dissipating blocks constituting a coastal wave-dissipating work, the hollow structure is oriented with the opening facing the ocean, and the distal end is more than the proximal end. The hollow structure is inclined so as to be located below, and the opening is opened to the ocean below the sea surface, whereby a water column that vibrates in the vertical direction according to the incoming energy of the ocean wave, and the water column Forming an air chamber defined above the water surface in the internal hollow region of the hollow structure;
A reciprocating airflow generated in accordance with the air pressure fluctuation of the air chamber is supplied to the power generation device by the air supply pipe, and the position and posture of the absorption device are adjusted at least partially using the binding force of the wave-dissipating block. Maintained in the wave-dissipating construction,
A power generation method, wherein the power generation device is operated by an air vibration flow generated by vertical movement of the water surface.
前記空気室の圧力変動により発生する往復気流の微細な圧力変動をバッファタンクにより緩和した後、該往復気流を前記発電装置に供給することを特徴とする請求項10に記載の発電方法。   The power generation method according to claim 10, wherein after the fine pressure fluctuation of the reciprocating airflow generated by the pressure fluctuation of the air chamber is relaxed by the buffer tank, the reciprocating airflow is supplied to the power generation device. 一定方向の気流を前記発電装置に供給するために前記往復気流を一定方向の気流に調整又は変換することを特徴とする請求項10又は11に記載の発電方法。

The power generation method according to claim 10 or 11, wherein the reciprocating airflow is adjusted or converted into a constant-direction airflow in order to supply a constant-direction airflow to the power generation device.

JP2012179017A 2012-08-10 2012-08-10 Wave power generation system and construction method thereof Active JP6021175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012179017A JP6021175B2 (en) 2012-08-10 2012-08-10 Wave power generation system and construction method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012179017A JP6021175B2 (en) 2012-08-10 2012-08-10 Wave power generation system and construction method thereof

Publications (2)

Publication Number Publication Date
JP2014037781A true JP2014037781A (en) 2014-02-27
JP6021175B2 JP6021175B2 (en) 2016-11-09

Family

ID=50286097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012179017A Active JP6021175B2 (en) 2012-08-10 2012-08-10 Wave power generation system and construction method thereof

Country Status (1)

Country Link
JP (1) JP6021175B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109356779A (en) * 2018-12-19 2019-02-19 哈尔滨工程大学 A kind of the comb type breakwater unit and system of integrated oscillaton water column type and canard power generator of nodding
CN110121592A (en) * 2017-01-26 2019-08-13 韩国海洋科学技术院 Oscillating water column type wave power generation device utilizing breakwater
CN114382639A (en) * 2016-10-17 2022-04-22 浪涌能源有限公司 Apparatus and method for extracting energy from a fluid

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5095635A (en) * 1973-12-27 1975-07-30
JPS5970887A (en) * 1982-10-15 1984-04-21 Takahiko Masuda Wave force generating buoy suitable for shallow sea
JPS6231136U (en) * 1986-05-16 1987-02-24
JPH11201014A (en) * 1998-01-05 1999-07-27 Meidensha Corp Wave activated power generation equipment
JP2002303242A (en) * 2001-04-09 2002-10-18 Yuji Mochizuki Wave power generator unit
GB2418960A (en) * 2004-10-05 2006-04-12 Iain David Roberts Breakwater wave energy converter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5095635A (en) * 1973-12-27 1975-07-30
JPS5970887A (en) * 1982-10-15 1984-04-21 Takahiko Masuda Wave force generating buoy suitable for shallow sea
JPS6231136U (en) * 1986-05-16 1987-02-24
JPH11201014A (en) * 1998-01-05 1999-07-27 Meidensha Corp Wave activated power generation equipment
JP2002303242A (en) * 2001-04-09 2002-10-18 Yuji Mochizuki Wave power generator unit
GB2418960A (en) * 2004-10-05 2006-04-12 Iain David Roberts Breakwater wave energy converter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114382639A (en) * 2016-10-17 2022-04-22 浪涌能源有限公司 Apparatus and method for extracting energy from a fluid
CN110121592A (en) * 2017-01-26 2019-08-13 韩国海洋科学技术院 Oscillating water column type wave power generation device utilizing breakwater
EP3575594A4 (en) * 2017-01-26 2019-12-04 Korea Institute of Ocean Science & Technology Oscillating water column wave power generating device using breakwater
CN109356779A (en) * 2018-12-19 2019-02-19 哈尔滨工程大学 A kind of the comb type breakwater unit and system of integrated oscillaton water column type and canard power generator of nodding

Also Published As

Publication number Publication date
JP6021175B2 (en) 2016-11-09

Similar Documents

Publication Publication Date Title
EP1802814B1 (en) Breakwater wave energy converter
US7877994B2 (en) Wave energy converter (WEC) with heave plates
DK2276892T3 (en) Device for silence and spread of underwater noise in a fluid
CN107842459B (en) Wave energy conversion device combined by oscillating water column and oscillating floater
AU2009272416A1 (en) Wave powered generator
US20080050178A1 (en) Wave Trap
JP6021175B2 (en) Wave power generation system and construction method thereof
JP4746131B2 (en) Water turbine structure and sluice structure for tidal power plant with expansion joint and internal filling
KR101521163B1 (en) Floating teby wind power generator
KR102160475B1 (en) Barge mounted power generation plant and foundation its
JP2010275906A (en) Wave power generator using electric field responsive high-polymer film
TWI653376B (en) Water work platform
JP5950324B2 (en) Wave power generation system and construction method thereof
KR20140120154A (en) Truss Type Lower Structure of Floating Offshore Wind Turbine
JP6558778B2 (en) Tsunami mass transport energy mitigation device
KR102284699B1 (en) A guard pence of offshore photovoltaic power generation apparatus
KR20090056401A (en) Energy absorbing system for floating breakwater
KR101406677B1 (en) Floating wind power generation with passive underwater heaving and rolling/pitching damper, passive heaving and rolling/pitching damper for floating wind power generation
JP2006264596A (en) Floating body unit and floating body type aseismatic structure
KR101242506B1 (en) Tension leg platform having stationary buoyance holding by tendon and movable buoyance
KR20160023343A (en) Floating offshore structures
US20230235521A1 (en) Floating wave-attenuation device
KR20080105564A (en) Pile foundation system for marine structure using buoyancy
KR101432272B1 (en) Apparatus for Movement Reduction
KR101694963B1 (en) Flexible structure for reducing Ocean wave

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160929

R150 Certificate of patent or registration of utility model

Ref document number: 6021175

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250