JP2014036331A - Antenna device - Google Patents

Antenna device Download PDF

Info

Publication number
JP2014036331A
JP2014036331A JP2012176340A JP2012176340A JP2014036331A JP 2014036331 A JP2014036331 A JP 2014036331A JP 2012176340 A JP2012176340 A JP 2012176340A JP 2012176340 A JP2012176340 A JP 2012176340A JP 2014036331 A JP2014036331 A JP 2014036331A
Authority
JP
Japan
Prior art keywords
band elimination
antenna
transmission
reception
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012176340A
Other languages
Japanese (ja)
Inventor
Takeshi Kumamoto
剛 熊本
Mitsuyoshi Shinonaga
充良 篠永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012176340A priority Critical patent/JP2014036331A/en
Publication of JP2014036331A publication Critical patent/JP2014036331A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radio Transmission System (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve high sensitivity of a reception system while preventing superposition of the strain component due to interference wave, or the like, on an input signal, and to continue operation even in a situation where a filter is not cooled to cryogenic state.SOLUTION: An antenna device includes a normal conducting line 613 composed of a normal conducting material, and configured by forming a plurality of branch lines by stubs in the main line, a plurality of band elimination filters 6121-612m corresponding to a plurality of transmission frequencies, respectively, and bonding wires 6141-614m for connecting the plurality of band elimination filters 6121-612m and the plurality of branch lines, respectively. Upon occurrence of interference of unwanted waves, the band elimination filter 612 suppresses the signals due to unwanted waves by making the plurality of band elimination filters 6121-612m, corresponding to the frequency of the unwanted waves, function.

Description

本発明の実施形態は、レーダ、通信システムやマイクロ波放射計や電波受信システムの受信用アンテナとして用いられるアンテナ装置に関する。   Embodiments described herein relate generally to an antenna device used as a receiving antenna of a radar, a communication system, a microwave radiometer, or a radio wave receiving system.

レーダや通信システム等の信号受信機能を有したシステムにおける性能向上策として、システム雑音温度の低減による受信系の高感度化がある。システム雑音温度は、一般にアンテナから低雑音増幅器(LNA:Low Noise Amplifier)までの伝送損失とLNAにて生じる内部雑音が支配的となるため、アンテナからLNAまでの伝送線路や受信フィルタ等の電気回路、さらにはLNAを真空容器等の断熱用保温容器内に収容し、これらを超伝導状態となるまで冷却するための冷却手段を備えることにより、アンテナからLNAまでの伝送損失をゼロに近づけ、LNAの内部雑音を低減し受信系の高感度化を図るアンテナ装置が考案されている。   As a measure for improving the performance of a system having a signal receiving function such as a radar or a communication system, there is a high sensitivity of a receiving system by reducing a system noise temperature. In general, the system noise temperature is dominated by transmission loss from an antenna to a low noise amplifier (LNA) and internal noise generated by the LNA. Therefore, an electric circuit such as a transmission line from the antenna to the LNA or a reception filter. Furthermore, the LNA is housed in a heat insulating container such as a vacuum container, and provided with a cooling means for cooling the LNA to a superconducting state, thereby reducing the transmission loss from the antenna to the LNA close to zero. An antenna device has been devised that reduces the internal noise and increases the sensitivity of the receiving system.

また、アンテナからLNAまでの伝送損失をゼロに近づけ、LNAの内部雑音を低減し受信系の高感度化を図るアンテナ装置では、妨害信号等の不要波干渉を除去するため、LNAの入力側に、必要な受信周波数の数だけ、受信系統を周波数分離する分波器を備え、分離された受信系統ごとにLNA等の受信回路を構成するアンテナ装置が考案されている。   In addition, in an antenna device that reduces the transmission loss from the antenna to the LNA, reduces the internal noise of the LNA, and increases the sensitivity of the reception system, in order to remove unwanted wave interference such as interference signals, the input side of the LNA An antenna device has been devised that includes a duplexer that frequency-separates reception systems for the required number of reception frequencies, and that configures a reception circuit such as an LNA for each separated reception system.

上記分波器は、超伝導素材からなる複数の帯域通過フィルタにより構成され、使用する瞬時帯域のみを抽出できる狭帯域フィルタとすることで、分離された受信系統ごとに狭帯域信号が入力されるように構成されている。これにより、例えばレーダ装置のように、予め複数の送信可能周波数(送信チャンネル)を決めて運用するような装置において、妨害波等の不要波干渉が生じた場合、干渉していない他の送信チャンネルを選択して送受信を行うことにより不要波干渉を回避している。   The branching filter is composed of a plurality of bandpass filters made of a superconducting material, and a narrowband signal is input for each separated reception system by using a narrowband filter that can extract only the instantaneous band to be used. It is configured as follows. As a result, when unnecessary wave interference such as jamming waves occurs in a device that determines and operates a plurality of transmittable frequencies (transmission channels) in advance, such as a radar device, other transmission channels that do not interfere with each other By selecting and performing transmission / reception, unnecessary wave interference is avoided.

特開2000−236206号公報JP 2000-236206 A

しかしながら、従来のアンテナ装置では、超伝導素材が超伝導状態となる極低温温度までの冷却期間や冷凍機等の冷却手段が故障して超伝導状態となる極低温温度に冷却できない場合、分波器を構成する複数の帯域通過フィルタでの伝送損失が増大する。この伝送損失の増大により受信信号が遮断され、アンテナ装置は、運用が継続できないという問題があった。   However, in the conventional antenna device, if the superconducting material cannot be cooled to the cryogenic temperature where the superconducting material becomes superconductive or the cooling means such as the refrigerator breaks down and becomes superconducting, it can be demultiplexed. Transmission loss in a plurality of band-pass filters constituting the device increases. The reception signal is cut off due to the increase of the transmission loss, and the antenna device has a problem that the operation cannot be continued.

そこで、本実施形態は、妨害信号等の不要波干渉が生じた場合でも、妨害信号等によるひずみ成分の受信信号への重畳を防ぎつつ、受信系統の高感度化を実現することができ、さらにフィルタが極低温状態に冷却されていなくても、運用継続が可能なアンテナ装置を提供することを目的とする。   Therefore, in the present embodiment, even when unnecessary wave interference such as an interference signal occurs, it is possible to achieve high sensitivity of the reception system while preventing the distortion component due to the interference signal or the like from being superimposed on the reception signal. An object of the present invention is to provide an antenna device that can continue operation even if the filter is not cooled to a cryogenic state.

本実施形態によれば、アンテナ装置は、複数の送信周波数のうちの任意の送信周波数で送信される信号を受信するアンテナ部と、常伝導素材で形成される主線路に複数の分岐線路を形成する常伝導線路と、超伝導素材で形成され、複数の受信周波数それぞれに対応する複数の帯域除去フィルタと、前記複数の帯域除去フィルタと前記複数の分岐線路それぞれを選択的に接続する接続手段とを備える帯域除去フィルタ部と、前記帯域除去フィルタ部で抽出された受信信号を低雑音で増幅する増幅器と、前記帯域除去フィルタ部及び増幅器を収容し、外部からの熱を遮断する断熱容器と、前記断熱容器に収容される前記帯域除去フィルタ部及び増幅器を極低温に冷却する冷却手段とを具備する。   According to this embodiment, the antenna device forms a plurality of branch lines on an antenna unit that receives a signal transmitted at an arbitrary transmission frequency among a plurality of transmission frequencies and a main line formed of a normal conductive material. A normal conduction line, a plurality of band elimination filters formed of a superconducting material and corresponding to each of a plurality of reception frequencies, and a connection means for selectively connecting each of the plurality of band elimination filters and the plurality of branch lines. A band elimination filter unit comprising: an amplifier that amplifies the reception signal extracted by the band elimination filter unit with low noise; and a heat insulating container that houses the band elimination filter unit and the amplifier and shields heat from the outside, Cooling means for cooling the band elimination filter unit and the amplifier accommodated in the heat insulating container to a cryogenic temperature.

本実施形態に係るアンテナ装置の構成を示すブロック図である。It is a block diagram which shows the structure of the antenna apparatus which concerns on this embodiment. 図1に示す帯域除去フィルタ部の構成の一例を示す図である。It is a figure which shows an example of a structure of the zone | band removal filter part shown in FIG. 図2に示す帯域除去フィルタ部のフィルタ特性を示す特性図である。It is a characteristic view which shows the filter characteristic of the zone | band removal filter part shown in FIG.

以下、実施形態について、図面を参照して説明する。   Hereinafter, embodiments will be described with reference to the drawings.

図1は、本実施形態に係るアンテナ装置の構成を示すブロック図である。   FIG. 1 is a block diagram showing the configuration of the antenna device according to the present embodiment.

図1に示すように、アンテナ装置は、アレイ状に配列されるn個のアンテナ素子T1〜Tn、分配器1、送信用移相器21〜2n、送信アンプ31〜3n及び送信フィルタ41〜4nからなる送信系統と、送受信切換器51〜5n、受信回路61〜6n、受信用移相器71〜7n及び合成器8からなる受信系統と、真空容器9と、冷凍機10とを備える。   As shown in FIG. 1, the antenna device includes n antenna elements T1 to Tn arranged in an array, a distributor 1, transmission phase shifters 21 to 2n, transmission amplifiers 31 to 3n, and transmission filters 41 to 4n. , A transmission system including transmission / reception switchers 51 to 5n, reception circuits 61 to 6n, a reception phase shifter 71 to 7n, and a synthesizer 8, a vacuum vessel 9, and a refrigerator 10.

なお、図1には、受信回路61の構成のみを示し、他の受信回路62〜6nは、受信回路61と同一の構成とする。以降の実施形態を示す図も同様にして重複する説明を省略する。   FIG. 1 shows only the configuration of the receiving circuit 61, and the other receiving circuits 62 to 6 n have the same configuration as the receiving circuit 61. In the drawings showing the subsequent embodiments, the same description is omitted.

また、上記送信系統及び受信系統は、アンテナ素子数nに対応してn個ずつ設けられ、送信系統の出力端及び受信系統の入力端はそれぞれ送受信切換器51〜5nを介して対応するアンテナ素子T1〜Tnに接続される。   The transmission system and the reception system are provided with n antenna elements corresponding to the number n of antenna elements, and the output terminals of the transmission system and the input terminals of the reception system are respectively corresponding antenna elements via transmission / reception switchers 51 to 5n. Connected to T1 to Tn.

分配器1は、図示しない送信信号生成装置により生成される送信信号を入力し、この送信信号をn系統に分配する。送信信号生成装置は、複数の送信チャンネルの中からいずれかの送信チャンネルを選択して送信信号を生成する。   The distributor 1 receives a transmission signal generated by a transmission signal generation device (not shown) and distributes this transmission signal to n systems. The transmission signal generation device generates a transmission signal by selecting one of the plurality of transmission channels.

送信用移相器21〜2nは、それぞれ分配器1により分配された送信信号を入力し、この送信信号に所望の位相制御を施す。   Each of the transmission phase shifters 21 to 2n receives the transmission signal distributed by the distributor 1, and performs desired phase control on the transmission signal.

送信アンプ31〜3nは、それぞれ対応する系統の送信用移相器21〜2nから出力される送信信号を入力し、この送信信号を所望の利得で電力増幅する。   The transmission amplifiers 31 to 3n receive the transmission signals output from the corresponding transmission phase shifters 21 to 2n, respectively, and amplify the power of the transmission signals with a desired gain.

送信フィルタ41〜4nは、それぞれ対応する系統の送信アンプ31〜3nから出力される送信信号を入力し、この送信信号から所望の送信周波数帯域成分を抽出する。   The transmission filters 41 to 4n receive the transmission signals output from the corresponding transmission amplifiers 31 to 3n, respectively, and extract desired transmission frequency band components from the transmission signals.

送受信切換器51〜5nは、それぞれ対応する系統のアンテナ素子T1〜Tnに対する送信系統と受信系統の切り換えを行うものであり、例えば、サーキュレータや同軸スイッチ等を用いる。   The transmission / reception switchers 51 to 5n are for switching the transmission system and the reception system for the corresponding antenna elements T1 to Tn, and use, for example, a circulator or a coaxial switch.

受信回路61〜6nは、リミッタ611と、複数の帯域除去フィルタ(BRF:Band Rejection Filter、以降、BRFと表記。)6121〜612mを備えるBRF部612と、LNA(低雑音増幅器)615とを備える。   The reception circuits 61 to 6n include a limiter 611, a BRF unit 612 including a plurality of band rejection filters (BRF: Band Rejection Filter, hereinafter referred to as BRF) 6121 to 612m, and an LNA (low noise amplifier) 615. .

リミッタ611は、送受信切換器51〜5nより出力される受信信号を入力し、この受信信号の信号レベルを制限し、以降のBRF部612及びLNA615への過入力保護を行う。   The limiter 611 receives the reception signal output from the transmission / reception switchers 51 to 5n, limits the signal level of the reception signal, and performs subsequent over-input protection to the BRF unit 612 and the LNA 615.

BRF部612は、互いに周波数除去帯域の異なる複数のBRF6121〜612mと、受信信号を伝送する常伝導線路613とを備え、各BRF6121〜612mを常伝導線路613に選択的に接続することで、伝送中の受信信号から不要波干渉が生じた周波数帯域を制限して不要波信号成分を抑圧するものである。   The BRF unit 612 includes a plurality of BRFs 6121 to 612m having different frequency rejection bands and a normal conducting line 613 for transmitting a reception signal, and selectively transmits each BRF 6121 to 612m to the normal conducting line 613 for transmission. The unwanted wave signal component is suppressed by limiting the frequency band in which unwanted wave interference occurs from the received signal.

図2は、図1に示すBRF部612の構成の一例を示す図である。   FIG. 2 is a diagram illustrating an example of the configuration of the BRF unit 612 illustrated in FIG.

常伝導線路613は、常伝導素材であるアルミナ基板上に構築され、銅薄膜等の常伝導素材からなる主線路と、主線路と同様に常伝導素材からなるスタブによる複数の分岐線路により構成される。   The normal conductive line 613 is constructed on an alumina substrate, which is a normal conductive material, and is composed of a main line made of a normal conductive material such as a copper thin film and a plurality of branch lines made of a stub made of a normal conductive material in the same manner as the main line. The

BRF6121〜612mは、超伝導素材であるMgO(酸化マグネシウム)基板上に設置され、YBCO(イットリウム系超伝導体)薄膜等の超伝導素材からなる超伝導BRFを用いる。BRF6121〜612mは、上記複数の分岐線路それぞれに、ボンディングワイヤ6141〜614m等の接続手段により従属的に接続される。   The BRFs 6121 to 612m are installed on a MgO (magnesium oxide) substrate, which is a superconducting material, and use a superconducting BRF made of a superconducting material such as a YBCO (yttrium-based superconductor) thin film. The BRFs 6121 to 612m are subordinately connected to the plurality of branch lines by connecting means such as bonding wires 6141 to 614m.

ここで、常伝導素材、超伝導素材及び接続手段については、一例として提示したものであり、これにより本実施形態の範囲を限定するものではない。   Here, the normal conducting material, the superconducting material, and the connecting means are presented as examples, and the scope of the present embodiment is not limited thereby.

図2より、例えば、アンテナ素子T1にて受信された信号は、リミッタ611を介して、入力側から常伝導線路613へ入力される。このとき、受信信号に妨害信号等の不要波干渉が生じている場合、受信された信号は、常伝導線路613のスタブにより接続された複数のBRF6121〜612mのうち、干渉波の周波数に対応したBRFを機能させることにより、受信信号から干渉波の周波数成分が抑圧されるようになる。   From FIG. 2, for example, a signal received by the antenna element T <b> 1 is input from the input side to the normal conducting line 613 via the limiter 611. At this time, when unnecessary wave interference such as an interference signal occurs in the received signal, the received signal corresponds to the frequency of the interference wave among the plurality of BRFs 6121 to 612m connected by the stubs of the normal conduction line 613. By causing the BRF to function, the frequency component of the interference wave is suppressed from the received signal.

図3は、図2に示すBRF部612のフィルタ特性を示す特性図である。   FIG. 3 is a characteristic diagram showing filter characteristics of the BRF unit 612 shown in FIG.

図3において、BRF部612は、例えば、レーダ装置のように広いレーダ周波数帯域に対して、複数のフィルタ特性を有している。BRF部612のフィルタ特性の数は、レーダ装置が有する複数の狭帯域な送信可能周波数(送信チャンネル)と同じであり、ここではm個の送信チャンネルに対し、m個のフィルタ特性を有している。つまり、複数のBRF6121〜612mは、それぞれ送信チャンネルごとの周波数帯域を遮断するフィルタ特性を有する。ここで、例えば、図3に示すf2の周波数帯域に干渉波が生じた場合、f2に対応するBRFを機能させる。これにより、常伝導線路613を通過する受信信号は、f2の周波数帯域の損失が増大するため、f2の周波数帯域の信号が抑圧され、干渉波が抑圧される。BRF部612のBRF6121〜612mには、例えばダイオードが用いられる。この場合、ダイオードをON、OFF動作させるように印加電圧を制御することで、所望の周波数帯域の損失を増大させることができる。   In FIG. 3, the BRF unit 612 has a plurality of filter characteristics with respect to a wide radar frequency band like a radar device, for example. The number of filter characteristics of the BRF unit 612 is the same as a plurality of narrow-band transmittable frequencies (transmission channels) included in the radar apparatus. Here, m filter characteristics are provided for m transmission channels. Yes. That is, each of the plurality of BRFs 6121 to 612m has a filter characteristic that blocks the frequency band for each transmission channel. Here, for example, when an interference wave is generated in the frequency band f2 shown in FIG. 3, the BRF corresponding to f2 is caused to function. Thereby, since the loss of the frequency band of f2 increases in the reception signal passing through the normal conducting line 613, the signal of the frequency band of f2 is suppressed, and the interference wave is suppressed. For example, a diode is used for the BRFs 6121 to 612m of the BRF unit 612. In this case, the loss in a desired frequency band can be increased by controlling the applied voltage so that the diode is turned on and off.

また、常伝導線路613に構成された分岐線路(超伝導BRFが接続される線路)は、常伝導線路613から見た特性インピーダンスを開放状態としたスタブ等により構成されている。これによって、超伝導BRFが超伝導状態となる極低温に冷却されていない場合でも、常伝導線路613のみでの動作を可能として運用継続が可能となる。この場合、図3の入力側からの信号は、常伝導線路613により出力側へと伝搬され、動作しない各超伝導BRF端は開放状態となり、伝搬信号は安定した特性を得ることができる。   Further, the branch line (line to which the superconducting BRF is connected) configured in the normal conductive line 613 is configured by a stub or the like with the characteristic impedance viewed from the normal conductive line 613 opened. As a result, even when the superconducting BRF is not cooled to a cryogenic temperature at which the superconducting BRF is in a superconducting state, the operation can be continued only with the normal conducting line 613. In this case, the signal from the input side in FIG. 3 is propagated to the output side by the normal conducting line 613, each superconducting BRF end that does not operate is opened, and the propagation signal can obtain stable characteristics.

なお、BRF部612の複数のBRF6121〜612mは、図示しないアンテナ制御器からの制御信号により、抑圧する周波数のBRFのみが機能するように選択される。   The plurality of BRFs 6121 to 612m of the BRF unit 612 are selected so that only the BRF of the frequency to be suppressed functions according to a control signal from an antenna controller (not shown).

LNA615は、BRF部612から出力される受信信号を入力し、この受信信号を低雑音で増幅する。受信用移相器71〜7nは、LNA615より出力された受信信号を入力し、この受信信号に所望の位相制御を施す。合成器8は、受信用移相器71〜7nにより位相制御を施された各受信信号を入力し、これらの受信信号の信号合成を行う。   The LNA 615 receives the reception signal output from the BRF unit 612 and amplifies the reception signal with low noise. The reception phase shifters 71 to 7n receive the reception signal output from the LNA 615 and perform desired phase control on the reception signal. The synthesizer 8 receives the received signals that have been subjected to phase control by the receiving phase shifters 71 to 7n, and synthesizes these received signals.

真空容器9は、上記受信回路61〜6nを収容し、内部を真空状態にすることで、収容物の断熱と保温を行う。この真空容器9は、極低温の効率的な維持を目的として超伝導素材を配置した周囲を真空状態として断熱するための容器である。このため、少なくとも超伝導素材を配置した周囲はインターフェース用のコネクタ等を含めて気密構造とする。   The vacuum container 9 accommodates the receiving circuits 61 to 6n, and insulates and keeps the temperature of the contents by making the inside vacuum. The vacuum vessel 9 is a vessel for insulating the surroundings where the superconducting material is disposed in a vacuum state for the purpose of efficiently maintaining a cryogenic temperature. For this reason, at least the periphery where the superconducting material is disposed has an airtight structure including an interface connector and the like.

冷凍機10は、真空容器9内の伝送線路及び受信回路61〜6nを極低温で冷却するための手段である。   The refrigerator 10 is a means for cooling the transmission line in the vacuum vessel 9 and the receiving circuits 61 to 6n at an extremely low temperature.

上記構成において、以下にその処理動作を説明する。   The processing operation of the above configuration will be described below.

まず、送信時において、任意の送信チャンネルによる送信信号が入力されると、この送信信号は分配器1にてアレイ状に配置される各送信用移相器21〜2nに分配供給され、各送信用移相器21〜2nにて送信ビームの励振分布に応じた位相制御が施された後、送信アンプ31〜3nで電力増幅され、送信フィルタ41〜4nにて不要波成分が抑圧され、送受信切換器51〜5nを介してアンテナ素子T1〜Tnから空間へ放射される。ここで、入力される送信信号の周波数は、図示しない送信信号生成器にて複数の送信チャンネルのうちの1つの周波数が選択される。   First, at the time of transmission, when a transmission signal by an arbitrary transmission channel is input, this transmission signal is distributed and supplied to each of the transmission phase shifters 21 to 2n arranged in an array by the distributor 1, and each transmission signal is transmitted. After phase control according to the excitation distribution of the transmission beam is performed by the credit phase shifters 21 to 2n, power is amplified by the transmission amplifiers 31 to 3n, unnecessary wave components are suppressed by the transmission filters 41 to 4n, and transmission / reception is performed. It is radiated | emitted to space from antenna element T1-Tn via the switchers 51-5n. Here, as the frequency of the input transmission signal, one frequency of a plurality of transmission channels is selected by a transmission signal generator (not shown).

また、受信時において、各アンテナ素子T1〜Tnにて受信された信号は、送受信切換器51〜5nを介して受信系統に入力され、真空容器9内に収容されているリミッタ611で振幅制限された後、複数のBRF6121〜612mからなるBRF部612へ入力される。このBRF部612からの出力信号は、LNA613にて低雑音で信号増幅され、受信用移相器71〜7nにて受信ビームの指向特性に応じた位相制御が施された後、合成器8によって信号合成されて、受信ビームとして出力される。   At the time of reception, signals received by the antenna elements T1 to Tn are input to the reception system via the transmission / reception switchers 51 to 5n, and the amplitude is limited by the limiter 611 accommodated in the vacuum vessel 9. After that, the data is input to the BRF unit 612 composed of a plurality of BRFs 6121 to 612m. The output signal from the BRF unit 612 is amplified with low noise by the LNA 613, phase-controlled in accordance with the directivity characteristics of the received beam by the phase shifters for reception 71 to 7 n, and then combined by the combiner 8. The signals are combined and output as a receive beam.

以上のように、上記実施形態におけるアンテナ装置は、真空容器9内に常伝導素材からなる受信系統と、受信系統に従属的に接続される超伝導素材からなるBRF6121〜612mとを備える。このようにすることで、妨害信号等の不要波が干渉した際の干渉波抑圧を可能とすると共に、超伝導素材を超伝導状態とする極低温となるまで冷却している期間や冷凍機等の冷却手段が故障し極低温状態を維持できない場合においても、常伝導素材からなる受信系統にて運用継続が可能となる。   As described above, the antenna device according to the embodiment includes the reception system made of the normal conductive material and the BRFs 6121 to 612m made of the superconductive material connected to the reception system in the vacuum vessel 9. This makes it possible to suppress interference waves when unnecessary waves such as interference signals interfere, and at the same time to cool the superconductive material to a cryogenic temperature, a refrigerator, etc. Even when the cooling means fails and the cryogenic state cannot be maintained, the operation can be continued with the receiving system made of the normal material.

したがって、本実施形態のアンテナ装置は、妨害信号等の不要波干渉が生じた場合でも、妨害信号等によるひずみ成分の受信信号への重畳を防ぎ、さらに受信回路61〜6nを冷却手段で冷却するようにしているので、受信系統の高感度化を実現することが可能となる。   Therefore, the antenna device of the present embodiment prevents distortion components due to interference signals and the like from being superimposed on the reception signal even when unnecessary wave interference such as interference signals occurs, and further cools the reception circuits 61 to 6n by the cooling means. As a result, it is possible to achieve high sensitivity of the receiving system.

また、BRF6121〜612mが極低温状態に冷却されていない場合、常伝導線路から開放状態となり、受信系統の特性に影響を与えないため、アンテナ装置の運用継続が可能となる。   In addition, when the BRFs 6121 to 612m are not cooled to a cryogenic state, the antenna device is opened from the normal transmission line and does not affect the characteristics of the reception system, so that the operation of the antenna device can be continued.

上記アンテナ装置は、移相器を使用しない機械回転式のアレイアンテナ及びアンテナ素子ごとやサブアレイごとに移相器を有するフェーズドアレイアンテナのいずれにも適用可能である。   The antenna device can be applied to any of a mechanical rotating array antenna that does not use a phase shifter and a phased array antenna having a phase shifter for each antenna element or subarray.

また、図1には、真空容器9内に複数の受信系を一体化した構成のブロック図を示したが、アンテナ素子T1〜Tnに対応する1回路ごとに真空容器9を分割しても良い。また、これに合わせて冷凍機10も分割しても良い。   1 shows a block diagram of a configuration in which a plurality of receiving systems are integrated in the vacuum vessel 9, but the vacuum vessel 9 may be divided for each circuit corresponding to the antenna elements T1 to Tn. . Further, the refrigerator 10 may be divided in accordance with this.

また、上記実施形態ではアレイ状に配列される複数のアンテナT1〜Tnを備えるアンテナ装置について記載しているが、n=1(アンテナ素子が1構成となっている場合)として、分配器1、送信用移相器21〜2n、受信用移相器71〜7n及び合成器8を含まない構成とすることもできる。   In the above embodiment, an antenna device including a plurality of antennas T1 to Tn arranged in an array is described. However, as n = 1 (when the antenna element has one configuration), the distributor 1, The transmission phase shifters 21 to 2n, the reception phase shifters 71 to 7n, and the combiner 8 may be omitted.

なお、図2に示したリミッタ611は、真空容器9の外側に配置しても良い。さらに、常伝導素材からなる受信系統には、例えばレーダ帯域等の広い受信帯域以外の妨害波等の干渉波を抑圧するために、帯域通過フィルタ(BPF:Band Pass Filter)を配置しても良く、これはリミッタ611の入力前、または出力後のいずれでも良い。   The limiter 611 shown in FIG. 2 may be disposed outside the vacuum vessel 9. Further, a band pass filter (BPF) may be disposed in the receiving system made of a normal conductive material in order to suppress interference waves such as interference waves other than a wide reception band such as a radar band. This may be either before input of the limiter 611 or after output.

以上、実施形態を説明したが、この実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。この実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   As mentioned above, although embodiment was described, this embodiment is shown as an example and is not intending limiting the range of invention. This embodiment can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. This embodiment and its modifications are included in the scope of the present invention and the gist thereof, and are also included in the invention described in the claims and the equivalent scope thereof.

1…分配器、21〜2n…送信用移相器、31〜3n…送信アンプ、41〜4n…送信フィルタ、51〜5n…送受信切換器、61〜6n…受信回路、611…リミッタ、612…帯域除去フィルタ部、6121〜612m…BRF(帯域除去フィルタ)、613…常伝導線路、6141〜614m…ボンディングワイヤ、615…LNA(低雑音増幅器)、71〜7n…受信用移相器、8…合成器、9…真空容器、10…冷凍機。   DESCRIPTION OF SYMBOLS 1 ... Distributor, 21-2n ... Transmission phase shifter, 31-3n ... Transmission amplifier, 41-4n ... Transmission filter, 51-5n ... Transmission / reception switching device, 61-6n ... Reception circuit, 611 ... Limiter, 612 ... Band elimination filter unit, 6121 to 612m ... BRF (band elimination filter), 613 ... normal conduction line, 6141 to 614m ... bonding wire, 615 ... LNA (low noise amplifier), 71-7n ... reception phase shifter, 8 ... Synthesizer, 9 ... vacuum container, 10 ... freezer.

Claims (5)

複数の送信周波数のうちの任意の送信周波数で送信される信号を受信するアンテナ部と、
常伝導素材で形成される主線路に複数の分岐線路を形成する常伝導線路と、
超伝導素材で形成され、前記複数の送信周波数それぞれに対応する複数の帯域除去フィルタと、前記複数の帯域除去フィルタと前記複数の分岐線路それぞれを選択的に接続する接続手段とを備える帯域除去フィルタ部と、
前記帯域除去フィルタ部で抽出された受信信号を低雑音で増幅する増幅器と、
前記帯域除去フィルタ部及び増幅器を収容し、外部からの熱を遮断する断熱容器と、
前記断熱容器に収容される前記帯域除去フィルタ部及び増幅器を極低温に冷却する冷却手段と
を具備するアンテナ装置。
An antenna unit for receiving a signal transmitted at an arbitrary transmission frequency among a plurality of transmission frequencies;
A normal line that forms a plurality of branch lines on the main line formed of a normal material; and
A band elimination filter formed of a superconducting material and including a plurality of band elimination filters corresponding to each of the plurality of transmission frequencies, and connection means for selectively connecting the plurality of band elimination filters and the plurality of branch lines. And
An amplifier that amplifies the received signal extracted by the band elimination filter unit with low noise;
A heat insulating container that houses the band elimination filter unit and the amplifier and blocks heat from outside;
An antenna device comprising: the band elimination filter unit housed in the heat insulation container; and a cooling means for cooling the amplifier to a cryogenic temperature.
前記アンテナ部は複数のアンテナ素子をアレイ状に配置してなるアレイアンテナである請求項1記載のアンテナ装置。   The antenna apparatus according to claim 1, wherein the antenna unit is an array antenna formed by arranging a plurality of antenna elements in an array. 前記帯域除去フィルタ部の少なくとも一部には超伝導素材が用いられ、
前記断熱容器は、少なくとも前記帯域除去フィルタ部の超伝導素材が配置される周囲を真空状態とする請求項1または2記載のアンテナ装置。
A superconducting material is used for at least a part of the band elimination filter part,
The antenna apparatus according to claim 1, wherein the heat insulating container is in a vacuum state around at least a superconducting material of the band elimination filter unit.
前記複数の帯域除去フィルタとして、ダイオードを用いる請求項1または2記載のアンテナ装置。   The antenna device according to claim 1, wherein a diode is used as the plurality of band elimination filters. 前記複数のアンテナ素子それぞれに対応する受信系統ごとに、前記断熱容器を分割する請求項2記載のアンテナ装置。   The antenna device according to claim 2, wherein the heat insulating container is divided for each reception system corresponding to each of the plurality of antenna elements.
JP2012176340A 2012-08-08 2012-08-08 Antenna device Pending JP2014036331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012176340A JP2014036331A (en) 2012-08-08 2012-08-08 Antenna device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012176340A JP2014036331A (en) 2012-08-08 2012-08-08 Antenna device

Publications (1)

Publication Number Publication Date
JP2014036331A true JP2014036331A (en) 2014-02-24

Family

ID=50285062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012176340A Pending JP2014036331A (en) 2012-08-08 2012-08-08 Antenna device

Country Status (1)

Country Link
JP (1) JP2014036331A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02101801A (en) * 1988-10-11 1990-04-13 Mitsubishi Electric Corp Hand rejection filter
JP2008113450A (en) * 2007-11-12 2008-05-15 Toshiba Corp Adaptive array for radio communication, and radio communication system using adaptive array

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02101801A (en) * 1988-10-11 1990-04-13 Mitsubishi Electric Corp Hand rejection filter
JP2008113450A (en) * 2007-11-12 2008-05-15 Toshiba Corp Adaptive array for radio communication, and radio communication system using adaptive array

Similar Documents

Publication Publication Date Title
US6480706B1 (en) High sensitivity radio receiver
JP5597228B2 (en) Front-end circuit, impedance adjustment method
US9088325B2 (en) Array antenna apparatus
JP2012222725A (en) Active array antenna device
JP5646553B2 (en) Antenna unit
US10205211B2 (en) Thermal insulation waveguide and wireless communication device
JP5865782B2 (en) Antenna device
JP6058475B2 (en) Phase variable device, antenna device, diplexer, and multiplexer
JP4149690B2 (en) Superconducting filter
JP2015159481A (en) antenna device
JP2014036331A (en) Antenna device
JP6071747B2 (en) Antenna transmission / reception module and transmission / reception switch
JP5925622B2 (en) Antenna device
JP6400414B2 (en) Signal transmission device, reception device, and wireless communication device
JP6215072B2 (en) Tunable filter, phase variable device, and antenna device
JP2011171805A (en) Transmitter and receiver module
JP2003066133A (en) Radar
JP2014025727A (en) Radar system and interference removal method therefor
JP6334315B2 (en) Switching device, transmission / reception device, and antenna device
JP6081294B2 (en) Antenna device
Hernandez et al. On the design of wideband monostatic STAR systems with spherically stratified lenses
JP5921337B2 (en) Receiving antenna device
JP2006136025A (en) Radio transmitter-receiver
JP2014082794A (en) Active array antenna device
JP2016046588A (en) Filter device, receiver, transmitter, antenna device, and switching device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160802