JP2014035275A - Gas chromatograph - Google Patents

Gas chromatograph Download PDF

Info

Publication number
JP2014035275A
JP2014035275A JP2012176725A JP2012176725A JP2014035275A JP 2014035275 A JP2014035275 A JP 2014035275A JP 2012176725 A JP2012176725 A JP 2012176725A JP 2012176725 A JP2012176725 A JP 2012176725A JP 2014035275 A JP2014035275 A JP 2014035275A
Authority
JP
Japan
Prior art keywords
gas
sample
liquid sample
column
reaction tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012176725A
Other languages
Japanese (ja)
Inventor
Toyohito Wada
豊仁 和田
Koichi Shiomi
紘一 塩見
Takashi Hine
隆 日根
Susumu Kitagawa
進 北川
Masakazu Higuchi
雅一 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Kyoto University
Original Assignee
Shimadzu Corp
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Kyoto University filed Critical Shimadzu Corp
Priority to JP2012176725A priority Critical patent/JP2014035275A/en
Publication of JP2014035275A publication Critical patent/JP2014035275A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a gas chromatograph that brings a liquid sample with a solid catalyst or the like into reaction and analyzes the gas thereby generated, the chromatograph being able to perform analysis without allowing any part of the sample to evaporate before reaction or the generated gas to be dispersed, adsorbed or decomposed and permitting installation in a limited space.SOLUTION: A gas chromatograph that performs component separation of gas generated by bringing a liquid sample into reaction with a solid catalyst or the like 213 with columns (24 and 25) comprises: a liquid sample inlet 210 through which the liquid sample is injected; a carrier gas inlet 210; an outlet 215; a sample reaction pipe 21 in which the liquid sample is brought into reaction with the solid catalyst or the like to generate the gas. The outlet 215 is connected to the columns (24 and 25) within a column oven 26 in which they are accommodated.

Description

本発明は、ガスクロマトグラフ装置に関する。特に、液体試料を固体触媒又は固体試料と反応させて発生させたガスを分析するために好適に使用できるガスクロマトグラフ装置に関する。   The present invention relates to a gas chromatograph apparatus. In particular, the present invention relates to a gas chromatograph apparatus that can be suitably used for analyzing a gas generated by reacting a liquid sample with a solid catalyst or a solid sample.

液体試料を固体触媒又は固体試料(固体は塊体だけでなく粉体や粒体を含む。以下同じ。)と反応させて発生させたガスを分析するために、ガスクロマトグラフ装置が広く用いられている。   A gas chromatograph apparatus is widely used to analyze a gas generated by reacting a liquid sample with a solid catalyst or a solid sample (a solid includes not only a lump but also a powder and a granule; the same applies hereinafter). Yes.

図1に、一般的なガスクロマトグラフ装置の一例の要部構成を示す。図示しないボンベから供給されるヘリウム等のキャリアガスは、キャリアガス供給流路1に設けられた流量制御部(AFCなど)2により所定の流量に調整されて液体試料気化室3に供給される。キャリアガスは液体試料気化室3を経て、図示しないヒータにより所定の温度に保たれたカラムオーブン5に収容されたキャピラリカラム6に送られる。分析対象の液体試料は、インジェクタ4を液体試料注入部8のセプタム9に刺し入れることにより、図示しない加熱機構を備えた液体試料気化室3に注入される。液体試料気化室3に注入された液体試料は該液体試料気化室3内で気化して試料ガスとなり、キャリアガス流によりキャピラリカラム6に送り込まれる。キャピラリカラム6に送り込まれた試料ガスは、キャピラリカラム6を通過する間に成分分離され、検出部7で検出される。検出部7としては、水素炎イオン化型検出器(FID)や熱伝導度型検出器(TCD)、質量検出器(MS)などが用いられる。また、分離すべき成分によっては、キャピラリカラムに代えてパックドカラムを用いることもある。   In FIG. 1, the principal part structure of an example of a general gas chromatograph apparatus is shown. A carrier gas such as helium supplied from a cylinder (not shown) is adjusted to a predetermined flow rate by a flow rate control unit (AFC or the like) 2 provided in the carrier gas supply channel 1 and supplied to the liquid sample vaporizing chamber 3. The carrier gas passes through the liquid sample vaporizing chamber 3 and is sent to the capillary column 6 accommodated in the column oven 5 maintained at a predetermined temperature by a heater (not shown). The liquid sample to be analyzed is injected into the liquid sample vaporizing chamber 3 having a heating mechanism (not shown) by inserting the injector 4 into the septum 9 of the liquid sample injection unit 8. The liquid sample injected into the liquid sample vaporizing chamber 3 is vaporized in the liquid sample vaporizing chamber 3 to become a sample gas, and is sent into the capillary column 6 by the carrier gas flow. The sample gas sent into the capillary column 6 is separated into components while passing through the capillary column 6 and detected by the detection unit 7. As the detector 7, a flame ionization detector (FID), a thermal conductivity detector (TCD), a mass detector (MS), or the like is used. Depending on the components to be separated, a packed column may be used instead of the capillary column.

図2に、液体試料を固体触媒又は固体試料と反応させて発生させたガスを分析するために用いられるガス分析装置の一例の要部構成を示す。以下の説明において、図1と同じ構成要素には同一の符号を付して説明を省略する。このガス分析装置は、ガスクロマトグラフ装置のキャリアガス流の上流側に配管11を通じて前処理装置10が接続されて構成されている。前処理装置10は、固体触媒存在下で液体試料を分解させたり、液体試料を別の固体試料と化学反応させてガスを発生させたりするために用いられる。配管11は、該配管を保温するヒートライン12で覆われている。図2のガス分析装置に含まれるガスクロマトグラフ装置は図1に示した一般的なガスクロマトグラフ装置と類似の構成を有しているが、この装置では前処理装置で液体試料を反応させて発生させたガスをガスクロマトグラフ装置のカラムに注入するため、液体試料気化室3に代えてガス試料注入部13が備えられている。
また、ガスクロマトグラフ装置のガス試料注入部13の上流側には、フォーカシング機構14が備えられている。図2のような従来の装置では、前処理装置10がガスクロマトグラフ装置とは別に設けられているため、両者の間を接続する配管11は長いものとならざるを得ず、前処理装置10で生成されたガスがガス試料注入部13に至るまでの間に拡散してしまい、クロマトグラムのピークがブロードになってしまう。フォーカシング機構14は、そのように拡散したガスを空間的に集中させる(フォーカスする)ためのものである。一般的なフォーカシング機構14は加熱手段と冷却手段を備え、まず配管11を冷却して該配管11を流通するガスを凝集させておき、続いて配管11を急速に加熱するとともにキャリアガス供給流路15から流量制御部2により所定の流量に調整されたキャリアガスを導入することにより試料ガス成分を瞬時に放出させる。
FIG. 2 shows a main configuration of an example of a gas analyzer used for analyzing a gas generated by reacting a liquid sample with a solid catalyst or a solid sample. In the following description, the same components as those in FIG. This gas analyzer is configured by connecting a pretreatment device 10 through a pipe 11 on the upstream side of a carrier gas flow of a gas chromatograph device. The pretreatment device 10 is used for decomposing a liquid sample in the presence of a solid catalyst or generating a gas by chemically reacting a liquid sample with another solid sample. The pipe 11 is covered with a heat line 12 that keeps the pipe warm. The gas chromatograph apparatus included in the gas analyzer of FIG. 2 has a similar structure to the general gas chromatograph apparatus shown in FIG. 1, but in this apparatus, a liquid sample is reacted by a pretreatment device and generated. In order to inject the gas into the column of the gas chromatograph apparatus, a gas sample injection unit 13 is provided instead of the liquid sample vaporization chamber 3.
Further, a focusing mechanism 14 is provided on the upstream side of the gas sample injection unit 13 of the gas chromatograph apparatus. In the conventional apparatus as shown in FIG. 2, since the pretreatment apparatus 10 is provided separately from the gas chromatograph apparatus, the pipe 11 connecting the two must be long. The generated gas diffuses before reaching the gas sample injection section 13, and the peak of the chromatogram becomes broad. The focusing mechanism 14 is for spatially concentrating (focusing) the diffused gas. A general focusing mechanism 14 includes a heating unit and a cooling unit. First, the pipe 11 is cooled to aggregate the gas flowing through the pipe 11, and then the pipe 11 is rapidly heated and a carrier gas supply channel is provided. The sample gas component is instantaneously released by introducing the carrier gas adjusted to a predetermined flow rate by the flow rate control unit 2 from 15.

特開平10-104213号公報([0003],[0004], 図5)Japanese Patent Laid-Open No. 10-104213 ([0003], [0004], FIG. 5)

上記のとおり、従来の装置では、前処理装置10とガス試料注入部13の間で拡散したガスを凝集させるフォーカシング機構14を備える必要がある。また、フォーカシング機構14を設けたとしても、そこに到達するまでの間に、ガス中の一部の成分が配管11の内壁に吸着したり、ガス自体が変質したりして、発生させたガスを正確に分析することができないという問題がある。
従来の装置では、液体試料と固体触媒又は固体試料を反応させる際には、まず、カプセルと称される金属容器に固体触媒又は固体試料を入れておき、そこに反応させる液体試料を添加して前処理装置に装着している。しかし、液体試料の揮発性が高い場合には装着前に液体試料の一部が揮発するため、液体試料を定量的に再現性よく反応させることが困難であることや、容器が金属であるため加熱反応時に金属そのものの触媒的作用が無視できないという問題がある。
その他、ガスクロマトグラフ装置とは別に前処理装置10を設けなければならないため、広い設置面積が必要となるという問題もある。
As described above, the conventional apparatus needs to include the focusing mechanism 14 for aggregating the gas diffused between the pretreatment apparatus 10 and the gas sample injection unit 13. Further, even if the focusing mechanism 14 is provided, the generated gas is generated by the adsorption of some components in the gas to the inner wall of the pipe 11 or the alteration of the gas itself before reaching the focusing mechanism 14. There is a problem that cannot be analyzed accurately.
In a conventional apparatus, when a liquid sample and a solid catalyst or a solid sample are reacted, first, the solid catalyst or the solid sample is put in a metal container called a capsule, and the liquid sample to be reacted is added thereto. It is attached to the pretreatment device. However, when the liquid sample is highly volatile, a part of the liquid sample is volatilized before mounting, so it is difficult to react the liquid sample quantitatively with good reproducibility, and the container is made of metal. There is a problem that the catalytic action of the metal itself cannot be ignored during the heating reaction.
In addition, since the pretreatment device 10 must be provided separately from the gas chromatograph device, there is a problem that a large installation area is required.

本発明が解決しようとする課題は、液体試料を固体触媒又は固体試料と反応させて発生させたガスをカラムにより成分分離するガスクロマトグラフ装置であって、液体試料の一部が反応前に揮発してしまったり、前記発生させたガスが拡散、吸着、あるいは変質してしまったりすることなく分析でき、省スペースで設置可能なガスクロマトグラフ装置を提供することである。   The problem to be solved by the present invention is a gas chromatograph apparatus that separates a gas generated by reacting a liquid sample with a solid catalyst or a solid sample by a column, and a part of the liquid sample is volatilized before the reaction. It is an object of the present invention to provide a gas chromatograph apparatus that can be analyzed in a space-saving manner without being diffused, adsorbed or altered by the generated gas.

上記課題を解決するために成された本発明は、液体試料を固体触媒又は固体試料と反応させて発生させたガスをカラムにより成分分離するガスクロマトグラフ装置であって、
前記液体試料を注入する液体試料注入口、キャリアガス入口、及びキャリアガス出口を有し、内部に配置した前記固体触媒又は前記固体試料と前記液体試料とを反応させてガスを発生させる試料反応管を備え、
前記キャリアガス出口が、前記カラムが収容されているカラムオーブン内で該カラムに接続されている
ことを特徴とする。
The present invention made to solve the above-mentioned problems is a gas chromatograph apparatus for separating a component of a gas generated by reacting a liquid sample with a solid catalyst or a solid sample by a column,
A sample reaction tube having a liquid sample inlet for injecting the liquid sample, a carrier gas inlet, and a carrier gas outlet, and generating gas by reacting the solid catalyst or the solid sample with the liquid sample disposed therein With
The carrier gas outlet is connected to the column in a column oven in which the column is accommodated.

本発明に係るガスクロマトグラフ装置では試料反応管のキャリアガス出口がカラムオーブン内に位置しており、そこでカラムに接続されている。そのため、従来のように液体試料の反応により発生したガスが長い流路を流れることがない。従って、長い流路を流通する間に拡散したガスを凝集させるためのフォーカシング機構を設ける必要がない。また、液体試料を直接試料反応管内に注入できるので、液体試料の一部が反応前に揮発してしまうことも防止できる。さらに、生成されたガス中の一部の成分が配管の内壁に吸着したり、ガス自体が変質したりすることもない。
また、本発明に係るガスクロマトグラフ装置は、前処理装置とガスクロマトグラフ装置からなる従来のガス分析装置に比べて省スペースで設置することができる。
なお、試料反応管の液体試料注入口及びキャリアガス入口はカラムオーブンの内外のいずれに位置させてもよい。
In the gas chromatograph apparatus according to the present invention, the carrier gas outlet of the sample reaction tube is located in the column oven and is connected to the column there. Therefore, unlike the conventional case, the gas generated by the reaction of the liquid sample does not flow through the long channel. Therefore, it is not necessary to provide a focusing mechanism for aggregating the diffused gas while flowing through the long flow path. In addition, since the liquid sample can be directly injected into the sample reaction tube, it is possible to prevent a part of the liquid sample from volatilizing before the reaction. Furthermore, some components in the generated gas are not adsorbed on the inner wall of the pipe, and the gas itself is not altered.
In addition, the gas chromatograph apparatus according to the present invention can be installed in a smaller space than a conventional gas analyzer composed of a pretreatment apparatus and a gas chromatograph apparatus.
The liquid sample inlet and the carrier gas inlet of the sample reaction tube may be located either inside or outside the column oven.

前記試料反応管は、前記ガスクロマトグラフ装置の液体試料気化室の内部に装着することが望ましい。
図1に示したとおり、一般的なガスクロマトグラフ装置は液体試料気化室を標準仕様として備えている。そのため、試料反応管を測定試料気化室内部に装着することにより、汎用のガスクロマトグラフ装置のガス流路配管等の構成を利用でき、液体試料を固体触媒又は固体試料と反応させて発生させたガスを簡便に分析することができる。また、上述したとおり、液体試料気化室は液体試料を気化させるための加熱機構を備えているため、液体試料を反応させる際に試料反応管を昇温することもできる。
It is desirable that the sample reaction tube is mounted inside the liquid sample vaporization chamber of the gas chromatograph apparatus.
As shown in FIG. 1, a general gas chromatograph apparatus includes a liquid sample vaporizing chamber as a standard specification. Therefore, by installing the sample reaction tube inside the measurement sample vaporization chamber, it is possible to use a configuration such as a gas flow pipe of a general-purpose gas chromatograph device, and a gas generated by reacting a liquid sample with a solid catalyst or a solid sample. Can be easily analyzed. In addition, as described above, the liquid sample vaporization chamber includes a heating mechanism for vaporizing the liquid sample, so that the temperature of the sample reaction tube can be raised when the liquid sample is reacted.

また、本発明に係るガスクロマトグラフ装置は、更に、
キャリアガスと異なる種類の雰囲気ガスを前記試料反応管に導入する流路切替部
を備えることが望ましい。これにより、キャリアガスと異なる種類の雰囲気ガスを導入し、液体試料の反応条件を変化させてガスを発生させることができる。
Moreover, the gas chromatograph apparatus according to the present invention further includes:
It is desirable to provide a flow path switching unit that introduces a different kind of atmospheric gas from the carrier gas into the sample reaction tube. Thereby, a different kind of atmospheric gas from the carrier gas can be introduced, and the gas can be generated by changing the reaction conditions of the liquid sample.

本発明に係るガスクロマトグラフ装置では試料反応管のキャリアガス出口がカラムオーブン内に位置しており、そこでカラムに接続されている。従って、長い流路を流通する間に拡散したガスを凝集させるためのフォーカシング機構を設ける必要がない。また、液体試料の一部が反応前に揮発してしまったり、生成されたガス中の一部の成分が配管の内壁に吸着したり、ガス自体が変質したりすることもない。さらに、従来のガス分析装置に比べて省スペースで設置することができる。   In the gas chromatograph apparatus according to the present invention, the carrier gas outlet of the sample reaction tube is located in the column oven and is connected to the column there. Therefore, it is not necessary to provide a focusing mechanism for aggregating the diffused gas while flowing through the long flow path. In addition, part of the liquid sample is not volatilized before the reaction, part of the components in the generated gas is not adsorbed on the inner wall of the pipe, and the gas itself is not altered. Furthermore, it can be installed in a smaller space than conventional gas analyzers.

一般的なガスクロマトグラフ装置の一例の要部構成図。The principal part block diagram of an example of a general gas chromatograph apparatus. 前処理装置を備えた従来のガスクロマトグラフ装置の一例の要部構成図。The principal part block diagram of an example of the conventional gas chromatograph apparatus provided with the pre-processing apparatus. 本発明に係るガスクロマトグラフ装置の一実施例の要部構成図。The principal part block diagram of one Example of the gas chromatograph apparatus which concerns on this invention. 本実施例の試料反応管の構造の一例及び変形例を示す図。The figure which shows an example of the structure of the sample reaction tube of a present Example, and a modification. 本実施例に係るガスクロマトグラフ装置のパックドカラムにより成分分離して得たクロマトグラム。The chromatogram obtained by component-separating with the packed column of the gas chromatograph apparatus which concerns on a present Example. 本実施例に係るガスクロマトグラフ装置のキャピラリカラムにより成分分離して得たクロマトグラム。The chromatogram obtained by component-separating with the capillary column of the gas chromatograph apparatus which concerns on a present Example. 反応条件を変化させる雰囲気ガスを導入する場合のパージガス導入路構成図。FIG. 3 is a configuration diagram of a purge gas introduction path when introducing an atmospheric gas that changes reaction conditions.

本発明のガスクロマトグラフ装置に係る一実施例の要部構成を図3に示す。本実施例のガスクロマトグラフ装置は、分析対象の液体試料を加熱して気化させる分析液体試料気化室22、標準液体試料を加熱して気化させる標準液体試料気化室23、キャリアガス(例えば、Heなど)流路60、パージガス/雰囲気ガス(例えば、H2など)導入路40、パージガス/雰囲気ガス排出路50、パックドカラム24、キャピラリカラム25と、これらを後述するように接続するための八方バルブ30(本発明における流路切替部に相当)が備えられている。図3に示す一点鎖線の内部に位置する各構成要素はカラムオーブン26内に配置されている。また、八方バルブ30及び分析液体試料から発生させたガスを流通させる流路は図示しない温調機構により保温されている。分析液体試料気化室22(本発明における液体試料気化室に相当)内部には試料反応管21が装着されている。八方バルブ30のポートaはパージガス/雰囲気ガス排出路50、ポートbはパージガス/雰囲気ガス導入路40、ポートcは試料反応管21の出口215(本発明におけるキャリアガス出口に相当)、ポートdは標準液体試料気化室23の入口、ポートgはキャリアガス流路60にそれぞれ接続されている。また、ニードルバルブ31の両端がポートe、fに接続されている。パージガス/雰囲気ガス導入路40には上流側から順に圧力調整バルブ41、圧力計42及びストップバルブ43が備えられている。パージガス/雰囲気ガス排出路50には、上流側から順に圧力計52、ストップバルブ53、及び抵抗管54が備えられている。キャリアガス流路60には流量制御部(AFC)が備えられている。 The principal part structure of one Example which concerns on the gas chromatograph apparatus of this invention is shown in FIG. The gas chromatograph apparatus of the present embodiment includes an analysis liquid sample vaporizing chamber 22 that heats and vaporizes a liquid sample to be analyzed, a standard liquid sample vaporizing chamber 23 that heats and vaporizes a standard liquid sample, and a carrier gas (for example, He or the like). ) A flow path 60, a purge gas / atmosphere gas (for example, H 2 ) introduction path 40, a purge gas / atmosphere gas discharge path 50, a packed column 24, a capillary column 25, and an eight-way valve 30 for connecting them as described later. (Corresponding to the flow path switching unit in the present invention) is provided. Each component located inside the alternate long and short dash line shown in FIG. 3 is arranged in the column oven 26. Further, the flow path through which the gas generated from the eight-way valve 30 and the analysis liquid sample flows is kept warm by a temperature control mechanism (not shown). A sample reaction tube 21 is mounted inside the analysis liquid sample vaporizing chamber 22 (corresponding to the liquid sample vaporizing chamber in the present invention). The port a of the eight-way valve 30 is the purge gas / atmosphere gas discharge path 50, the port b is the purge gas / atmosphere gas introduction path 40, the port c is the outlet 215 of the sample reaction tube 21 (corresponding to the carrier gas outlet in the present invention), and the port d is The inlet and the port g of the standard liquid sample vaporizing chamber 23 are connected to the carrier gas channel 60, respectively. Further, both ends of the needle valve 31 are connected to the ports e and f. The purge gas / atmosphere gas introduction path 40 is provided with a pressure adjustment valve 41, a pressure gauge 42, and a stop valve 43 in order from the upstream side. The purge gas / atmosphere gas discharge path 50 is provided with a pressure gauge 52, a stop valve 53, and a resistance tube 54 in order from the upstream side. The carrier gas channel 60 is provided with a flow rate control unit (AFC).

図4(a)に試料反応管21の構造を示す。試料反応管21は、硬質ガラスまたは石英でできており、円筒状を有しており、その外径は5.0mmである。試料反応管21の内部は内径2.6mmの上部領域211と、内径1.2mmの下部領域212とに分かれており、これらの間はテーパー状になっている。使用時には、テーパー状の最下部に石英ウール214を詰め、その上に固体触媒や固体試料213を充填し、さらにその上方に石英ウール214を詰めて蓋をする。固体触媒や固体試料213が塊体であって、テーパー状領域の下部に落下せず、試料反応管21の外部に飛び散らないものであれば、必ずしも石英ウール214を詰めなくてもよい。また、粉粒体の落下や飛散を防止できるものであって、触媒作用を有さず液体試料及び反応後のガスが通過可能な材料であれば、石英ウール以外のものを用いてもよい。分析液体試料は試料反応管21上部の開口210から注入される。また、キャリアガスも同開口210から流入し、固体触媒や固体試料213との反応により発生したガスとともに試料反応管21下部の開口215から流出する。つまり、本実施例の試料反応管21では、試料反応管21上部の開口210が液体試料注入口及びキャリアガス入口に相当し、下部の開口215がキャリアガス出口に相当する。試料反応管21下部の開口215は、八方バルブ30及び標準液体試料気化室23を通る流路を介して、カラムオーブン26内でパックドカラム24とキャピラリカラム25に接続されている。
本実施例では試料反応管21を分析液体試料気化室22内部に装着して用いるため、液体試料注入口及びキャリアガス入口が共通しているが、試料反応管のみを単独で用いる場合には、例えば図4(b)に示すように、試料反応管21aの上部に液体試料注入口216とキャリアガス入口217とをそれぞれ独立に設けてもよい。
FIG. 4A shows the structure of the sample reaction tube 21. The sample reaction tube 21 is made of hard glass or quartz, has a cylindrical shape, and has an outer diameter of 5.0 mm. The inside of the sample reaction tube 21 is divided into an upper region 211 having an inner diameter of 2.6 mm and a lower region 212 having an inner diameter of 1.2 mm, and the space between them is tapered. At the time of use, quartz wool 214 is filled at the bottom of the tapered shape, solid catalyst or solid sample 213 is filled thereon, and further quartz wool 214 is filled above and capped. If the solid catalyst or the solid sample 213 is a lump and does not fall to the lower part of the tapered region and does not scatter outside the sample reaction tube 21, the quartz wool 214 is not necessarily filled. In addition, materials other than quartz wool may be used as long as they can prevent the powder particles from falling and scattering and can pass a liquid sample and a gas after reaction without having a catalytic action. The analysis liquid sample is injected from the opening 210 above the sample reaction tube 21. The carrier gas also flows from the opening 210 and flows out from the opening 215 below the sample reaction tube 21 together with the gas generated by the reaction with the solid catalyst and the solid sample 213. That is, in the sample reaction tube 21 of this embodiment, the opening 210 at the top of the sample reaction tube 21 corresponds to the liquid sample inlet and the carrier gas inlet, and the lower opening 215 corresponds to the carrier gas outlet. The opening 215 at the bottom of the sample reaction tube 21 is connected to the packed column 24 and the capillary column 25 in the column oven 26 through a flow path that passes through the eight-way valve 30 and the standard liquid sample vaporizing chamber 23.
In this embodiment, since the sample reaction tube 21 is mounted inside the analysis liquid sample vaporization chamber 22 and used, the liquid sample inlet and the carrier gas inlet are common, but when only the sample reaction tube is used alone, For example, as shown in FIG. 4B, a liquid sample inlet 216 and a carrier gas inlet 217 may be provided independently on the upper part of the sample reaction tube 21a.

本実施例のガスクロマトグラフを用いた測定の手順を説明する。本実施例では、水素ガス雰囲気においてヘキセン(測定対象の液体試料)を微細ゼオライト粒子(固体触媒)の存在下で反応させて発生させたガスを分析する。この反応では、ゼオライトが有する細孔内にヘキセン分子を取り込み、これを熱分解させてガスを発生させる。発生させたガスを成分分離するカラムとして、KOH/Aluminaカラム(パックドカラム)24と無極性キャピラリカラム25を用い、これらの出口にはそれぞれFID(水素炎イオン化型検出器)を接続した。本実施例で用いたパックドカラム24は内径3mm、長さ2mであり、キャピラリカラム25は内径0.32mm、長さ60mである。   A measurement procedure using the gas chromatograph of this example will be described. In the present embodiment, a gas generated by reacting hexene (a liquid sample to be measured) in the presence of fine zeolite particles (solid catalyst) in a hydrogen gas atmosphere is analyzed. In this reaction, hexene molecules are taken into the pores of zeolite and thermally decomposed to generate gas. A KOH / Alumina column (packed column) 24 and a nonpolar capillary column 25 were used as columns for separating the generated gas into components, and FID (hydrogen flame ionization detector) was connected to each of these outlets. The packed column 24 used in this example has an inner diameter of 3 mm and a length of 2 m, and the capillary column 25 has an inner diameter of 0.32 mm and a length of 60 m.

はじめに、上述した試料反応管21にゼオライトを充填して分析液体試料気化室22に装着する。これと並行して分析液体試料気化室22及び標準液体試料気化室23を300℃に加熱し保温しておく。   First, the sample reaction tube 21 is filled with zeolite and mounted in the analysis liquid sample vaporizing chamber 22. In parallel with this, the analysis liquid sample vaporizing chamber 22 and the standard liquid sample vaporizing chamber 23 are heated to 300 ° C. and kept warm.

次に、八方バルブ30を破線の流路にして、キャリアガス流路60から反応管21、標準液体試料気化室23を通ってパックドカラム24及びキャピラリカラム25に至る流路に流すヘリウムガスの流量を50ml/min、圧力200kPaに設定する。上述したように、本実施例では微細ゼオライト粒子を試料反応管21に充填している。そのため、試料反応管21の上流側から下流側への流路抵抗が大きくなっている場合がある。この場合には、八方バルブ30を実線で示す流路に切り替えてニードルバルブ31によりヘリウムガスの圧力を調整し、八方バルブ30の流路が破線で示す流路であるときと同じ圧力に調整して流路抵抗が等しくなるようにする。つまり、八方バルブ30を切り替えた時に流路抵抗が変動しないように調整する。   Next, the flow rate of helium gas flowing from the carrier gas channel 60 to the packed column 24 and the capillary column 25 through the reaction tube 21 and the standard liquid sample vaporizing chamber 23 with the eight-way valve 30 as a broken channel. Is set to 50 ml / min and pressure 200 kPa. As described above, in this embodiment, the sample reaction tube 21 is filled with fine zeolite particles. Therefore, the flow path resistance from the upstream side to the downstream side of the sample reaction tube 21 may be increased. In this case, the eight-way valve 30 is switched to the flow path indicated by the solid line, the pressure of the helium gas is adjusted by the needle valve 31, and the pressure of the eight-way valve 30 is adjusted to the same pressure as when the flow path is indicated by the broken line. To equalize the channel resistance. That is, the flow path resistance is adjusted so as not to fluctuate when the eight-way valve 30 is switched.

続いて、八方バルブ30を実線で示す流路に設定し、圧力調整バルブ41で調整された圧力で水素ガス(雰囲気ガス)を導入して、パージガス/雰囲気ガス導入路40及びパージガス/雰囲気ガス排出路50のストップバルブ43、53をそれぞれ開放する。本実施例では水素ガスをパージガスとしても使用するため、パージガス/雰囲気ガス導入路40及びパージガス/雰囲気ガス排出路50を使用して水素ガスを流通させる。これにより、試料反応管21内の空気を試料反応管21の下方から(キャリアガス流とは逆方向から)置換する。その後、両ストップバルブ43、53を閉じ、パージガス/雰囲気ガス排出路50の圧力計52に表示される圧力が低下しないことを確認してリークチェックを行う。   Subsequently, the eight-way valve 30 is set to a flow path indicated by a solid line, hydrogen gas (atmosphere gas) is introduced at a pressure adjusted by the pressure adjustment valve 41, and the purge gas / atmosphere gas introduction path 40 and purge gas / atmosphere gas discharge are performed. Stop valves 43 and 53 in the passage 50 are opened. In this embodiment, since hydrogen gas is also used as the purge gas, the purge gas / atmosphere gas introduction path 40 and the purge gas / atmosphere gas discharge path 50 are used to circulate the hydrogen gas. Thereby, the air in the sample reaction tube 21 is replaced from below the sample reaction tube 21 (from a direction opposite to the carrier gas flow). Thereafter, both stop valves 43 and 53 are closed, and a leak check is performed after confirming that the pressure displayed on the pressure gauge 52 of the purge gas / atmosphere gas discharge path 50 does not decrease.

八方バルブ30を実線で示す流路に保持して試料反応管21を含む領域を閉空間にしておき、この状態で分析対象試料であるヘキセン0.5μlをインジェクタにより試料反応管21に注入し、該試料反応管21内のゼオライト213と5分間反応させる。   The region including the sample reaction tube 21 is kept in a closed space by holding the eight-way valve 30 in a flow path indicated by a solid line, and in this state, 0.5 μl of hexene, which is an analysis target sample, is injected into the sample reaction tube 21 by an injector. React with the zeolite 213 in the sample reaction tube 21 for 5 minutes.

上記5分間の反応終了後、八方バルブ30の流路を破線で示す流路に切り替え、10秒後に再び実線の流路に切替える。キャリアガス流量は毎分50mlであるので、約8mlのキャリアガスにより試料反応管21内で発生させたガスを送り出し、標準液体試料気化室23を経てカラム24、25に導入する。上述したように、流量制御部61により毎分50mlでヘリウムガスが流れるように調整しているため、毎分50mlのガス(反応により発生したガスとヘリウムガスの混合ガス)がカラム入口に導入される。このガスは、パックドカラム24とキャピラリカラム25の流路抵抗比に応じた比率でこれらのカラムに導入される。本実施例では、パックドカラム24に毎分45ml、キャピラリカラム25に毎分5mlが導入される。両カラムに導入されたガスは、該カラム内でそれぞれ成分分離されてそれぞれのカラム出口に到達し、FIDにより検出される。図5に、上記反応で発生したガスをパックドカラム24により成分分離して得られたクロマトグラムを示す。このクロマトグラムではメタン、エタン、エチレン、プロパン、及びプロピレン(炭素数が3個以下である炭化水素)のピークがそれぞれ分離して検出された。また、図6に同ガスをキャピラリカラム25により成分分離して得られたクロマトグラムを示す。このカラムでは、エタンとエチレンおよびプロパンとプロピレンは分離できないが、炭素数が4個以上である炭化水素のピークがそれぞれ分離して検出された。   After completion of the reaction for 5 minutes, the flow path of the eight-way valve 30 is switched to a flow path indicated by a broken line, and after 10 seconds, the flow path is switched to a solid flow path again. Since the carrier gas flow rate is 50 ml per minute, the gas generated in the sample reaction tube 21 is sent out by about 8 ml of carrier gas and introduced into the columns 24 and 25 through the standard liquid sample vaporizing chamber 23. As described above, since the flow rate control unit 61 adjusts the helium gas to flow at 50 ml / min, 50 ml / min of gas (mixed gas of reaction and helium gas) is introduced into the column inlet. The This gas is introduced into these columns at a ratio corresponding to the flow path resistance ratio between the packed column 24 and the capillary column 25. In this embodiment, 45 ml / min is introduced into the packed column 24 and 5 ml / min is introduced into the capillary column 25. Gases introduced into both columns are separated into components in the columns, reach the outlet of each column, and are detected by the FID. FIG. 5 shows a chromatogram obtained by separating the components of the gas generated in the above reaction using the packed column 24. In this chromatogram, peaks of methane, ethane, ethylene, propane, and propylene (hydrocarbons having 3 or less carbon atoms) were separated and detected. FIG. 6 shows a chromatogram obtained by separating the components of the same gas with the capillary column 25. In this column, ethane and ethylene and propane and propylene could not be separated, but hydrocarbon peaks having 4 or more carbon atoms were separated and detected.

上記実施例は一例であって、本発明の趣旨に沿って適宜変更や修正を行うことが可能である。
本実施例では、予めヘキセンとゼオライトの反応により発生する化合物ガスの種類が分かっていたため標準液体試料を使用せずに分析を行ったが、反応により発生する化合物が不明である場合には、予め構成成分及び含有量が分かっている標準液体試料を標準液体試料気化室23に導入してクロマトグラムを取得し、測定対象の液体試料から発生したガスにより得られたクロマトグラムの各ピークに対応する成分の同定や定量を行うことができる。
本実施例では、パックドカラム24とキャピラリカラム25の流路抵抗に応じた比率で反応ガスを導入する構成としたが、両カラムの上流側流路に流量調整部を備え、両カラムに導入するガスの比率を変更できるように構成してもよい。また、前述した構成に限らず、発生させたガスに含まれる目的成分の分離、検出を達成するためにカラムの種類(パックドカラム、キャピラリカラム、液相、吸着剤など)やカラムの本数など自由に変更しても良い。さらに、検出器として熱伝導度型検出器(TCD)や質量検出器を用いてもよい。
The above embodiment is merely an example, and can be appropriately changed or modified in accordance with the spirit of the present invention.
In this example, since the type of compound gas generated by the reaction of hexene and zeolite was known in advance, the analysis was performed without using the standard liquid sample, but when the compound generated by the reaction is unknown, A standard liquid sample whose constituent components and content are known is introduced into the standard liquid sample vaporizing chamber 23 to obtain a chromatogram, and corresponds to each peak of the chromatogram obtained by the gas generated from the liquid sample to be measured. Components can be identified and quantified.
In this embodiment, the reaction gas is introduced at a ratio corresponding to the flow path resistance of the packed column 24 and the capillary column 25. However, the upstream side flow path of both columns is provided with a flow rate adjusting unit and is introduced into both columns. You may comprise so that the ratio of gas can be changed. In addition to the configuration described above, the type of column (packed column, capillary column, liquid phase, adsorbent, etc.) and the number of columns are free to achieve separation and detection of the target component contained in the generated gas. You may change to Further, a thermal conductivity detector (TCD) or a mass detector may be used as the detector.

図7に示すように、パージガス/雰囲気ガス導入路40及びパージガス/雰囲気ガス排出路50の上流側にパージガスと、雰囲気ガス(例えば、酸素、二酸化炭素、空気など)とを切り替え可能に導入するパージガス/雰囲気ガス切換バルブ70を備えてもよい。上記実施例では、試料反応管21を含む閉空間内に水素ガスを導入した状態で液体試料を反応させたが、パージガス/雰囲気ガス切替バルブ70を備えた構成とすることによりパージガスと異なる種類の雰囲気ガスを導入して反応条件を変化させることができる。   As shown in FIG. 7, a purge gas that introduces a purge gas and an atmospheric gas (for example, oxygen, carbon dioxide, air, etc.) to the upstream side of the purge gas / atmosphere gas introduction path 40 and the purge gas / atmosphere gas discharge path 50 in a switchable manner. / Ambient gas switching valve 70 may be provided. In the above embodiment, the liquid sample is reacted in a state where hydrogen gas is introduced into the closed space including the sample reaction tube 21. However, the configuration including the purge gas / atmosphere gas switching valve 70 is different from the purge gas. Atmospheric gas can be introduced to change the reaction conditions.

1…キャリアガス供給流路
2…流量制御部
3…液体試料気化室
4…インジェクタ
5…カラムオーブン
6…キャピラリカラム
7…検出部
8…液体試料注入部
9…セプタム
10…前処理装置
11…配管
12…ヒートライン
13…ガス試料注入部
14…フォーカシング機構
15…キャリアガス供給流路
21、21a…試料反応管
210…上部開口(液体試料注入口及びキャリアガス入口)
211…上部領域
212…下部領域
213…ゼオライト(固体触媒あるいは固体試料)
214…石英ウール
215…下部開口(キャリアガス出口)
216…液体試料注入口
217…キャリアガス入口
22…分析液体試料気化室
23…標準液体試料気化室
24…パックドカラム
25…キャピラリカラム
26…カラムオーブン
30…八方バルブ
31…ニードルバルブ
40…パージガス/雰囲気ガス導入路
41…圧力調整バルブ
42…圧力計
43…ストップバルブ
50…パージガス/雰囲気ガス排出路
52…圧力計
53…ストップバルブ
54…抵抗管
60…キャリアガス流路
61…流量制御部
70…パージガス/雰囲気ガス切替バルブ
DESCRIPTION OF SYMBOLS 1 ... Carrier gas supply flow path 2 ... Flow rate control part 3 ... Liquid sample vaporization chamber 4 ... Injector 5 ... Column oven 6 ... Capillary column 7 ... Detection part 8 ... Liquid sample injection | pouring part 9 ... Septum 10 ... Pretreatment apparatus 11 ... Piping DESCRIPTION OF SYMBOLS 12 ... Heat line 13 ... Gas sample injection | pouring part 14 ... Focusing mechanism 15 ... Carrier gas supply flow path 21, 21a ... Sample reaction tube 210 ... Upper opening (liquid sample injection port and carrier gas inlet)
211 ... Upper region 212 ... Lower region 213 ... Zeolite (solid catalyst or solid sample)
214 ... Quartz wool 215 ... Lower opening (carrier gas outlet)
216 ... liquid sample inlet 217 ... carrier gas inlet 22 ... analysis liquid sample vaporization chamber 23 ... standard liquid sample vaporization chamber 24 ... packed column 25 ... capillary column 26 ... column oven 30 ... eight-way valve 31 ... needle valve 40 ... purge gas / atmosphere Gas introduction path 41 ... Pressure adjustment valve 42 ... Pressure gauge 43 ... Stop valve 50 ... Purge gas / atmosphere gas discharge path 52 ... Pressure gauge 53 ... Stop valve 54 ... Resistance pipe 60 ... Carrier gas flow path 61 ... Flow rate control unit 70 ... Purge gas / Ambient gas switching valve

Claims (3)

液体試料を固体触媒又は固体試料と反応させて発生させたガスをカラムにより成分分離するガスクロマトグラフ装置であって、
前記液体試料を注入する液体試料注入口、キャリアガス入口、及びキャリアガス出口を有し、内部に配置した前記固体触媒又は前記固体試料と前記液体試料とを反応させてガスを発生させる試料反応管を備え、
前記キャリアガス出口が、前記カラムが収容されているカラムオーブン内で該カラムに接続されている
ことを特徴とするガスクロマトグラフ装置。
A gas chromatograph apparatus for separating a component of a gas generated by reacting a liquid sample with a solid catalyst or a solid sample by a column,
A sample reaction tube having a liquid sample inlet for injecting the liquid sample, a carrier gas inlet, and a carrier gas outlet, and generating gas by reacting the solid catalyst or the solid sample with the liquid sample disposed therein With
The gas chromatograph apparatus, wherein the carrier gas outlet is connected to the column in a column oven in which the column is accommodated.
前記試料反応管を液体試料気化室内に装着することを特徴とする請求項1に記載のガスクロマトグラフ装置。   The gas chromatograph apparatus according to claim 1, wherein the sample reaction tube is mounted in a liquid sample vaporizing chamber. キャリアガスと異なる種類の雰囲気ガスを前記試料反応管に導入する流路切替部を備えることを特徴とする請求項1又は2に記載のガスクロマトグラフ装置。   The gas chromatograph apparatus according to claim 1, further comprising a flow path switching unit that introduces an atmosphere gas of a different type from the carrier gas into the sample reaction tube.
JP2012176725A 2012-08-09 2012-08-09 Gas chromatograph Pending JP2014035275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012176725A JP2014035275A (en) 2012-08-09 2012-08-09 Gas chromatograph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012176725A JP2014035275A (en) 2012-08-09 2012-08-09 Gas chromatograph

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017088572A Division JP6393363B2 (en) 2017-04-27 2017-04-27 Gas chromatograph

Publications (1)

Publication Number Publication Date
JP2014035275A true JP2014035275A (en) 2014-02-24

Family

ID=50284327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012176725A Pending JP2014035275A (en) 2012-08-09 2012-08-09 Gas chromatograph

Country Status (1)

Country Link
JP (1) JP2014035275A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015194456A (en) * 2014-03-26 2015-11-05 フロンティア・ラボ株式会社 Gas-phase component analyzer
JPWO2017154067A1 (en) * 2016-03-07 2018-10-18 株式会社島津製作所 Sample introduction device for gas chromatograph

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5147280U (en) * 1974-10-05 1976-04-08
JPS51138496A (en) * 1975-05-26 1976-11-30 Japan Spectroscopic Co Device for measuring carbon of entire organic substance
JPS5248391A (en) * 1975-10-15 1977-04-18 Toray Ind Inc Method of measurement of total carbon content and apparatus therefor
JPS52146695A (en) * 1976-05-31 1977-12-06 Toyoda Gosei Kk Pyrolysis tube for analysis
JPS53114292U (en) * 1977-02-19 1978-09-11
JPS5454698A (en) * 1977-10-07 1979-05-01 Hitachi Ltd Gas chromatograph
JPS5858465A (en) * 1981-10-01 1983-04-07 Shimadzu Corp Method and apparatus for analizing of barbituric acid
JPS59122948A (en) * 1982-12-29 1984-07-16 Shimadzu Corp Combustion type water quality analyser
JPS6010170A (en) * 1983-06-30 1985-01-19 Hitachi Ltd Method and apparatus for measuring concentration of ammonia and hydrogen peroxide in ammonia-oriented hydrogen peroxide liquid
JPS60143767A (en) * 1983-12-29 1985-07-30 Shimadzu Corp Total carbon measurement
JPS6114571A (en) * 1984-06-29 1986-01-22 Toyoda Gosei Co Ltd Holding body for thermally cracking gas chromatography and analyzing method using said holding body
JPS62223669A (en) * 1986-03-26 1987-10-01 Nissei Software Kk Method and device for automatic test of catalyst
JPS6430444U (en) * 1987-08-13 1989-02-23
JPH029864U (en) * 1988-07-04 1990-01-22
JPH09311128A (en) * 1996-03-19 1997-12-02 Frontier Lab Kk Gas-phase component analyzing apparatus
JP2000155113A (en) * 1998-11-18 2000-06-06 Shimadzu Corp Gas chromatograph
JP2004340835A (en) * 2003-05-16 2004-12-02 Toyo Seikan Kaisha Ltd Method of analyzing aldehyde
JP3120611U (en) * 2006-01-27 2006-04-13 株式会社島津製作所 Gas chromatograph
JP2010217078A (en) * 2009-03-18 2010-09-30 Shimadzu Corp Gas chromatograph and gas chromatograph mass spectrometer
JP2013255882A (en) * 2012-06-12 2013-12-26 Frontier Lab Kk Catalytic reaction simulation device

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5147280U (en) * 1974-10-05 1976-04-08
JPS51138496A (en) * 1975-05-26 1976-11-30 Japan Spectroscopic Co Device for measuring carbon of entire organic substance
JPS5248391A (en) * 1975-10-15 1977-04-18 Toray Ind Inc Method of measurement of total carbon content and apparatus therefor
JPS52146695A (en) * 1976-05-31 1977-12-06 Toyoda Gosei Kk Pyrolysis tube for analysis
JPS53114292U (en) * 1977-02-19 1978-09-11
JPS5454698A (en) * 1977-10-07 1979-05-01 Hitachi Ltd Gas chromatograph
JPS5858465A (en) * 1981-10-01 1983-04-07 Shimadzu Corp Method and apparatus for analizing of barbituric acid
JPS59122948A (en) * 1982-12-29 1984-07-16 Shimadzu Corp Combustion type water quality analyser
JPS6010170A (en) * 1983-06-30 1985-01-19 Hitachi Ltd Method and apparatus for measuring concentration of ammonia and hydrogen peroxide in ammonia-oriented hydrogen peroxide liquid
JPS60143767A (en) * 1983-12-29 1985-07-30 Shimadzu Corp Total carbon measurement
JPS6114571A (en) * 1984-06-29 1986-01-22 Toyoda Gosei Co Ltd Holding body for thermally cracking gas chromatography and analyzing method using said holding body
JPS62223669A (en) * 1986-03-26 1987-10-01 Nissei Software Kk Method and device for automatic test of catalyst
JPS6430444U (en) * 1987-08-13 1989-02-23
JPH029864U (en) * 1988-07-04 1990-01-22
JPH09311128A (en) * 1996-03-19 1997-12-02 Frontier Lab Kk Gas-phase component analyzing apparatus
JP2000155113A (en) * 1998-11-18 2000-06-06 Shimadzu Corp Gas chromatograph
JP2004340835A (en) * 2003-05-16 2004-12-02 Toyo Seikan Kaisha Ltd Method of analyzing aldehyde
JP3120611U (en) * 2006-01-27 2006-04-13 株式会社島津製作所 Gas chromatograph
JP2010217078A (en) * 2009-03-18 2010-09-30 Shimadzu Corp Gas chromatograph and gas chromatograph mass spectrometer
JP2013255882A (en) * 2012-06-12 2013-12-26 Frontier Lab Kk Catalytic reaction simulation device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015194456A (en) * 2014-03-26 2015-11-05 フロンティア・ラボ株式会社 Gas-phase component analyzer
JPWO2017154067A1 (en) * 2016-03-07 2018-10-18 株式会社島津製作所 Sample introduction device for gas chromatograph

Similar Documents

Publication Publication Date Title
CA2569728C (en) Interface from a thermal desorption unit to a chromatographic column
JP6393363B2 (en) Gas chromatograph
AU2005269451B2 (en) System for regulating fluid flowing through chromatographic column
US5288310A (en) Adsorbent trap for gas chromatography
US8578755B2 (en) Device for providing gases, in particular for isotopic ratio analysis
US6834531B2 (en) Gas chromatograph modular auxiliary oven assembly and method for analyzing a refinery gas
RU2526972C2 (en) Specimens preconcentrator
JP2019514021A (en) Multiple capillary column preconcentration system for increasing the sensitivity of gas chromatography (GC) and gas chromatography mass spectrometry (GCMS)
US20140260540A1 (en) Sample inlet with multi-capillary liner for gas chromatography
CN106093251B (en) Method and apparatus for pre-concentration gaseous sample
JP2013255882A (en) Catalytic reaction simulation device
JP2014035275A (en) Gas chromatograph
US8925369B2 (en) Device and method for preparing samples for gas chromatography
US20130000485A1 (en) Flow Control System, Device and Method for Thermal Desorption
JP2012522988A (en) Gas chromatography check valves and systems
JP2005249691A (en) Gas chromatograph unit and exhaust gas analytical method
US20170173551A1 (en) Device For Evaluation Of At Least One Performance Criterion Of Heterogeneous Catalysts
JP5853942B2 (en) Gas chromatograph
US20220128524A1 (en) Gas separation system
JP2007263905A (en) Concentration analyzer of liquefied gas
Bruno A review of capillary and packed column gas chromatographs
CN208239377U (en) A kind of gas chromatograph with head-space sampler
CN217112203U (en) Sample introduction and analysis system for trace multi-component volatile organic compound
US20070271998A1 (en) Apparatus for testing the emissions, content or permeability of materials
JP2008249572A (en) Sample pretreatment device and gas chromatography analysis method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160809

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170131