JP2014035265A - Apparatus and method for predicting damage value using human body simulation device - Google Patents

Apparatus and method for predicting damage value using human body simulation device Download PDF

Info

Publication number
JP2014035265A
JP2014035265A JP2012176584A JP2012176584A JP2014035265A JP 2014035265 A JP2014035265 A JP 2014035265A JP 2012176584 A JP2012176584 A JP 2012176584A JP 2012176584 A JP2012176584 A JP 2012176584A JP 2014035265 A JP2014035265 A JP 2014035265A
Authority
JP
Japan
Prior art keywords
impact
human body
sensitivity
simulation device
body simulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012176584A
Other languages
Japanese (ja)
Other versions
JP5906990B2 (en
Inventor
Hiroyuki Suzuki
裕之 鈴木
Naoki Fujisawa
直樹 藤澤
Shinya Nakamura
真也 中村
Akihiro Nishiyama
明宏 西山
Takaaki Nii
孝彰 二井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2012176584A priority Critical patent/JP5906990B2/en
Publication of JP2014035265A publication Critical patent/JP2014035265A/en
Application granted granted Critical
Publication of JP5906990B2 publication Critical patent/JP5906990B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus and method for predicting a damage value using a human body simulation device, to predict a damage value of a passenger in detail.SOLUTION: A method of predicting a damage value includes: dividing a waist of a human body simulation device into a plurality of areas at a predetermined interval in a grid shape on a surface perpendicular to a direction of applying impact (S1); applying constant impact for each area, and detecting pelvis load and pelvis central acceleration for each area by using a load meter for pelvis of the waist and an acceleration meter around trunk of the waist, for each area (S2-S5); determining pelvis load sensitivity in each area by using the maximum pelvis load in all the areas, preparing pelvis load sensitivity distribution, determining pelvis central acceleration sensitivity in each area by using the maximum pelvis central acceleration in all the area, and preparing pelvis central acceleration sensitivity distribution (S6); and extracting an area having low pelvis load sensitivity and high pelvis central acceleration sensitivity on the basis of the prepared pelvis load sensitivity distribution and pelvis central acceleration sensitivity distribution (S7).

Description

本発明は、人体模擬装置を用いた傷害値予測装置及び方法に関する。   The present invention relates to an injury value prediction apparatus and method using a human body simulation device.

車両衝突時の乗員傷害を低減するため、従来は、例えば、下記特許文献1、2に示すような手法を用いて、乗員への傷害値を予測(評価)し、傷害値低減の検討を行っていた。   In order to reduce occupant injury at the time of a vehicle collision, conventionally, for example, using methods such as those shown in Patent Documents 1 and 2 below, an injury value to an occupant is predicted (evaluated), and examination of injury value reduction is performed. It was.

特開平8−240509号公報JP-A-8-240509 特開2011−209285号公報JP2011-209285A

従来の手法では、乗員の大まかな部位、例えば、胸部、肩部、腰部等に対して、傷害値を予測し、その予測に基づいて、車両の衝撃吸収材等を最適化して、傷害値低減を図っていた。しかしながら、乗員の細部、例えば、腰部であれば腸骨、寛骨臼等に渡って傷害値を予測している例は無かった。   In the conventional method, the injury value is predicted for a rough part of the occupant, for example, chest, shoulder, waist, etc., and based on the prediction, the shock absorber of the vehicle is optimized to reduce the injury value. I was trying. However, there has been no example of predicting the injury value over details of the occupant, for example, the iliac bone, acetabulum, etc. in the case of the lumbar region.

本発明は上記課題に鑑みなされたもので、乗員の細部に渡って傷害値を予測する人体模擬装置を用いた傷害値予測装置及び方法を提供することを目的とする。   The present invention has been made in view of the above problems, and an object thereof is to provide an injury value prediction apparatus and method using a human body simulation device that predicts an injury value over the details of an occupant.

上記課題を解決する第1の発明に係る人体模擬装置を用いた傷害値予測装置は、
人体を模擬する人体模擬装置に衝撃を与える衝突部材と、
前記人体模擬装置を構成する1つの部位における所定の箇所に設けられ、前記衝突部材の衝撃により前記所定の箇所で生じる衝撃値を計測する衝撃値計測手段と、
前記1つの部位における体幹中心に設けられ、前記衝突部材の衝撃により生じる体幹中心の加速度を計測する体幹中心加速度計測手段と、
前記衝突部材を制御すると共に、前記衝撃値計測手段及び前記体幹中心加速度計測手段で検出された衝撃値及び体幹中心加速度に基づいて、所定の計算処理を行う制御手段とを有し、
前記制御手段は、
前記1つの部位を、前記衝突部材で衝撃を与える方向に垂直な面において、一定の間隔で格子状に複数のエリアに区分けし、
各エリア毎に前記衝突部材で一定の衝撃を与え、各エリアでの前記衝撃により生じる衝撃値及び体幹中心加速度を、全エリアに亘って検出し、
全エリアでの最大衝撃値を用いて、各エリアにおける衝撃感度を求めて、前記衝撃感度の分布を作成すると共に、全エリアでの最大体幹中心加速度を用いて、各エリアにおける体幹中心加速度感度を求めて、前記体幹中心加速度感度の分布を作成し、
作成した前記衝撃感度の分布及び前記体幹中心加速度感度の分布に基づいて、衝撃感度が低く、かつ、体幹中心加速度感度が高いエリアを抽出することを特徴とする。
An injury value prediction apparatus using the human body simulation apparatus according to the first invention for solving the above-described problems is provided.
A collision member that gives an impact to the human body simulation device for simulating the human body;
An impact value measuring means which is provided at a predetermined location in one part constituting the human body simulation device and measures an impact value generated at the predetermined location by the impact of the collision member;
A trunk center acceleration measuring means that is provided at the trunk center in the one part and measures the acceleration of the trunk center caused by the impact of the collision member;
Control means for controlling the collision member, and performing a predetermined calculation process based on the impact value and trunk center acceleration detected by the impact value measuring means and the trunk center acceleration measuring means,
The control means includes
The one part is divided into a plurality of areas in a lattice shape at regular intervals on a surface perpendicular to the direction in which the impact is applied by the collision member,
A constant impact is given by the collision member for each area, and the impact value and trunk center acceleration generated by the impact in each area are detected over the entire area,
Using the maximum impact value in all areas, determine the impact sensitivity in each area, create the distribution of the impact sensitivity, and use the maximum trunk center acceleration in all areas to determine the trunk center acceleration in each area Find the sensitivity, create the trunk center acceleration sensitivity distribution,
An area having a low impact sensitivity and a high trunk center acceleration sensitivity is extracted based on the created distribution of the impact sensitivity and the distribution of the trunk center acceleration sensitivity.

上記課題を解決する第2の発明に係る人体模擬装置を用いた傷害値予測装置は、
上記第1の発明に記載の人体模擬装置を用いた傷害値予測装置において、
前記衝撃値計測手段は、前記衝突部材の衝撃により、前記所定の箇所で生じる荷重を計測する荷重計であることを特徴とする。
An injury value prediction apparatus using the human body simulation apparatus according to the second invention for solving the above-mentioned problems is provided.
In the injury value prediction apparatus using the human body simulation device according to the first invention,
The impact value measuring means is a load meter that measures a load generated at the predetermined location due to an impact of the collision member.

上記課題を解決する第3の発明に係る人体模擬装置を用いた傷害値予測装置は、
上記第1の発明に記載の人体模擬装置を用いた傷害値予測装置において、
前記衝撃値計測手段は、前記衝突部材の衝撃により、前記所定の箇所で生じる加速度を計測する加速度計であることを特徴とする。
An injury value predicting apparatus using a human body simulation apparatus according to a third invention for solving the above-mentioned problems is
In the injury value prediction apparatus using the human body simulation device according to the first invention,
The impact value measuring means is an accelerometer that measures acceleration generated at the predetermined location by the impact of the collision member.

上記課題を解決する第4の発明に係る人体模擬装置を用いた傷害値予測装置は、
上記第1の発明に記載の人体模擬装置を用いた傷害値予測装置において、
前記衝撃値計測手段は、前記衝突部材の衝撃により、前記所定の箇所で生じる変位量を計測する変位計であることを特徴とする。
An injury value prediction apparatus using the human body simulation apparatus according to the fourth invention for solving the above-described problems is provided.
In the injury value prediction apparatus using the human body simulation device according to the first invention,
The impact value measuring means is a displacement meter that measures a displacement amount generated at the predetermined location due to an impact of the collision member.

上記課題を解決する第5の発明に係る人体模擬装置を用いた傷害値予測方法は、
人体を模擬する人体模擬装置を構成する1つの部位を、衝撃を与える方向に垂直な面において、一定の間隔で格子状に複数のエリアに区分けし、
各エリア毎に一定の衝撃を与え、前記1つの部位における所定の箇所に設けられた衝撃値計測手段と前記1つの部位における体幹中心に設けられた体幹中心加速度計測手段を用いて、各エリアでの前記衝撃により生じる衝撃値及び体幹中心加速度を、全エリアに亘って検出し、
全エリアでの最大衝撃値を用いて、各エリアにおける衝撃感度を求めて、前記衝撃感度の分布を作成すると共に、全エリアでの最大体幹中心加速度を用いて、各エリアにおける体幹中心加速度感度を求めて、前記体幹中心加速度感度の分布を作成し、
作成した前記衝撃感度の分布及び前記体幹中心加速度感度の分布に基づいて、衝撃感度が低く、かつ、体幹中心加速度感度が高いエリアを抽出することを特徴とする。
The injury value prediction method using the human body simulation device according to the fifth invention for solving the above-mentioned problem is as follows.
Dividing one part constituting the human body simulation device for simulating the human body into a plurality of areas in a lattice shape at regular intervals on a plane perpendicular to the direction of impact,
Applying a constant impact for each area, using an impact value measuring means provided at a predetermined location in the one part and a trunk center acceleration measuring means provided at the center of the trunk in the one part, The impact value and trunk center acceleration generated by the impact in the area are detected over the entire area,
Using the maximum impact value in all areas, determine the impact sensitivity in each area, create the distribution of the impact sensitivity, and use the maximum trunk center acceleration in all areas to determine the trunk center acceleration in each area Find the sensitivity, create the trunk center acceleration sensitivity distribution,
An area having a low impact sensitivity and a high trunk center acceleration sensitivity is extracted based on the created distribution of the impact sensitivity and the distribution of the trunk center acceleration sensitivity.

上記課題を解決する第6の発明に係る人体模擬装置を用いた傷害値予測方法は、
上記第5の発明に記載の人体模擬装置を用いた傷害値予測方法において、
前記衝撃値計測手段は、前記衝突部材の衝撃により、前記所定の箇所で生じる荷重を計測する荷重計であることを特徴とする。
The injury value prediction method using the human body simulation device according to the sixth invention for solving the above-mentioned problem is as follows.
In the injury value prediction method using the human body simulation device according to the fifth invention,
The impact value measuring means is a load meter that measures a load generated at the predetermined location due to an impact of the collision member.

上記課題を解決する第7の発明に係る人体模擬装置を用いた傷害値予測方法は、
上記第5の発明に記載の人体模擬装置を用いた傷害値予測方法において、
前記衝撃値計測手段は、前記衝突部材の衝撃により、前記所定の箇所で生じる加速度を計測する加速度計であることを特徴とする。
The injury value prediction method using the human body simulation device according to the seventh invention for solving the above-mentioned problems is as follows.
In the injury value prediction method using the human body simulation device according to the fifth invention,
The impact value measuring means is an accelerometer that measures acceleration generated at the predetermined location by the impact of the collision member.

上記課題を解決する第8の発明に係る人体模擬装置を用いた傷害値予測方法は、
上記第5の発明に記載の人体模擬装置を用いた傷害値予測方法において、
前記衝撃値計測手段は、前記衝突部材の衝撃により、前記所定の箇所で生じる変位量を計測する変位計であることを特徴とする。
The injury value prediction method using the human body simulation device according to the eighth invention for solving the above-mentioned problems is as follows.
In the injury value prediction method using the human body simulation device according to the fifth invention,
The impact value measuring means is a displacement meter that measures a displacement amount generated at the predetermined location due to an impact of the collision member.

本発明によれば、人体模擬装置の1つの部位を複数のエリアに細分化し、全エリアについて、一定の衝撃による衝撃値と体幹中心加速度の感度分布を作成し、作成した衝撃感度の分布と体幹中心加速度感度の分布に基づいて、衝撃感度が低く、かつ、体幹中心加速度感度が高いエリアを抽出するので、乗員の細部について、傷害値が発生する傾向を予測し、分析することができる。その結果、乗員の細部に渡って、傷害値低減の対策を図ることが可能となる。   According to the present invention, one part of the human body simulation device is subdivided into a plurality of areas, and for all areas, an impact value by constant impact and a sensitivity distribution of trunk center acceleration are created. Based on the distribution of trunk center acceleration sensitivity, areas with low impact sensitivity and high trunk center acceleration sensitivity are extracted, so it is possible to predict and analyze the tendency of injury values to occur for passenger details. it can. As a result, it is possible to take measures to reduce the injury value over the details of the occupant.

本発明に係る人体模擬装置を用いた傷害値予測装置を示す概略図である。It is the schematic which shows the injury value prediction apparatus using the human body simulation apparatus which concerns on this invention. 図1に示した人体模擬装置の腰部の構造を示す透視図である。It is a perspective view which shows the structure of the waist | hip | lumbar part of the human body simulation apparatus shown in FIG. 図1に示した人体模擬装置を用いた傷害値予測装置で実施する傷害値予測方法を説明するフローチャートである。It is a flowchart explaining the injury value prediction method implemented with the injury value prediction apparatus using the human body simulation apparatus shown in FIG. 図1に示した人体模擬装置の腰部側面を示す側面図である。It is a side view which shows the waist | hip | lumbar part side surface of the human body simulation apparatus shown in FIG. 図4に示した腰部側面を細分化した状態を示す図である。It is a figure which shows the state which subdivided the waist part side surface shown in FIG. 図3に示したフローチャートにおいて求めた骨盤荷重感度を示す分布図である。It is a distribution map which shows the pelvic load sensitivity calculated | required in the flowchart shown in FIG. 図3に示したフローチャートにおいて求めた骨盤中心加速度感度を示す分布図である。It is a distribution map which shows the pelvic center acceleration sensitivity calculated | required in the flowchart shown in FIG. 図6に示した骨盤荷重感度の分布図及び図7に示した骨盤中心加速度感度の分布図に基づいて、腰部への傷害値低減を図ることができるエリアを示す評価分布図である。FIG. 8 is an evaluation distribution diagram showing areas in which injury values to the lower back can be reduced based on the distribution diagram of pelvic load sensitivity shown in FIG. 6 and the distribution diagram of pelvic center acceleration sensitivity shown in FIG. 7.

以下、本発明に係る人体模擬装置を用いた傷害値予測装置及び方法の実施形態について、図1〜図8を参照して説明を行う。なお、ここでは、人体模擬装置を用い、傷害値予測装置により傷害値予測を行っているが、傷害値予測装置でもあるコンピュータにおいて、人体模擬装置自体をシミュレーションしても、同様に、傷害値予測を行うことが可能である。   Hereinafter, an embodiment of an injury value prediction apparatus and method using a human body simulation apparatus according to the present invention will be described with reference to FIGS. Here, the human body simulation device is used and the injury value prediction is performed by the injury value prediction device. However, even if the human body simulation device itself is simulated in the computer that is also the injury value prediction device, the injury value prediction is similarly performed. Can be done.

(実施例1)
図1は、本実施例の人体模擬装置を用いた傷害値予測装置を示す概略図であり、図2は、図1に示した人体模擬装置の腰部の構造を示す透視図である。又、図3は、図1に示した人体模擬装置を用いた傷害値予測装置で実施する傷害値予測方法を説明するフローチャートである。又、図4は、図1に示した人体模擬装置の腰部側面を示す側面図であり、図5は、図4に示した腰部側面を細分化した状態を示す図である。又、図6、図7は、図3に示したフローチャートにおいて求めた骨盤荷重感度、骨盤中心加速度感度を示す分布図であり、図8は、図6に示した骨盤荷重感度の分布図及び図7に示した骨盤中心加速度感度の分布図に基づいて、腰部への傷害値低減を図ることができるエリアを示す評価分布図である。
Example 1
FIG. 1 is a schematic diagram showing an injury value prediction apparatus using the human body simulation apparatus of the present embodiment, and FIG. 2 is a perspective view showing the structure of the waist of the human body simulation apparatus shown in FIG. FIG. 3 is a flowchart for explaining an injury value prediction method implemented by the injury value prediction apparatus using the human body simulation apparatus shown in FIG. 4 is a side view showing a waist side surface of the human body simulation apparatus shown in FIG. 1, and FIG. 5 is a diagram showing a state where the waist side surface shown in FIG. 4 is subdivided. 6 and 7 are distribution diagrams showing the pelvic load sensitivity and the pelvic center acceleration sensitivity obtained in the flowchart shown in FIG. 3, and FIG. 8 is a distribution diagram and a diagram of the pelvic load sensitivity shown in FIG. FIG. 8 is an evaluation distribution diagram showing areas in which injury values to the lower back can be reduced based on the distribution diagram of pelvic center acceleration sensitivity shown in FIG.

本実施例では、人体を模擬し、車両衝突実験時のデータを出力するために使用する人体模擬装置、所謂、ダミー人形(以降、ダミーと呼ぶ。)10を用いている。ダミー10には、乗員の体型や衝突の形態(前面衝突、側面衝突等)に応じ、様々な種類があり、ダミー10の各部には、衝突時に乗員の骨や内臓等への傷害値を予測するため、計測器、例えば、加速度計、荷重計、変位計等が装着されている。   In the present embodiment, a human body simulation apparatus, so-called dummy doll (hereinafter referred to as a dummy) 10, used for simulating a human body and outputting data at the time of a vehicle collision experiment is used. There are various types of dummy 10 according to the occupant's body shape and the type of collision (frontal collision, side collision, etc.). Therefore, a measuring instrument, for example, an accelerometer, a load meter, a displacement meter or the like is attached.

特に、本実施例では、乗員の胸部、肩部、腰部(大腿部含む)等の大まかな部位ではなく、乗員の各部位において細部に渡って傷害値を予測することを目的としている。例えば、腰部であれば、側突時には、骨盤を構成する腸骨や寛骨臼等を保護することが必要となるため、骨盤に相当する部位の傷害値を予測する必要がある。そのため、図2に示すような構造の腰部20を有するダミー10を用いて、傷害値を予測している。以降は、一例として、図2に示す腰部20を例にとって、説明を行う。   In particular, the present embodiment aims at predicting injury values in detail in each part of the occupant, rather than in rough parts such as the occupant's chest, shoulders, and waist (including the thigh). For example, in the case of the lumbar region, it is necessary to protect the iliac bone, acetabulum, and the like that constitute the pelvis during a side collision, and therefore, it is necessary to predict the injury value of the part corresponding to the pelvis. Therefore, the injury value is predicted using the dummy 10 having the waist 20 having the structure shown in FIG. Hereinafter, as an example, the waist 20 shown in FIG. 2 will be described as an example.

腰部の傷害値は、骨盤部分にダミーの体表面側から入力される衝撃値により評価される。具体的には、腸骨に相当する箇所及び寛骨臼に相当する箇所に入力される衝撃値の合計値により評価される。そのため、側面衝突時に腰部の傷害値を低減するためには、骨盤(腸骨、寛骨臼)に作用する衝撃値を低減させることが必要である。なお、衝撃値は、衝突時に骨盤(腸骨、寛骨臼)に相当する部位のダミーの体幹中心より体表面側(側面側)で生じる加速度や、変形量、荷重の大きさから求める(推定する)ことができるが、本実施例では、骨盤(腸骨、寛骨臼)の部位に入力される骨盤荷重を計測している。そして、本実施例のダミー10の腰部20には、骨盤25の寛骨臼26に相当する箇所に、当該箇所の荷重を計測する寛骨臼荷重計21(衝撃値計測手段)が設けられており、骨盤25の腸骨27に相当する箇所に、当該箇所の荷重を計測する腸骨荷重計22(衝撃値計測手段)が設けられおり、これらの荷重計の値から骨盤(腸骨、寛骨臼)に作用する衝撃値を算出することになる。   The injury value of the lower back is evaluated by an impact value input from the dummy body surface side to the pelvis. Specifically, it is evaluated by the total value of impact values input to a location corresponding to the iliac bone and a location corresponding to the acetabulum. Therefore, in order to reduce the lumbar injury value at the time of a side collision, it is necessary to reduce the impact value acting on the pelvis (iliac bone, acetabulum). The impact value is obtained from the acceleration, deformation amount, and load generated on the body surface side (side surface side) from the center of the dummy trunk in the region corresponding to the pelvis (iliac bone, acetabulum) at the time of collision ( In this embodiment, the pelvic load input to the pelvis (iliac bone, acetabulum) is measured. The lumbar portion 20 of the dummy 10 according to the present embodiment is provided with an acetabular load meter 21 (impact value measuring means) for measuring the load at the portion of the pelvis 25 corresponding to the acetabulum 26. In addition, an iliac load meter 22 (impact value measuring means) for measuring the load at the location is provided at a location corresponding to the iliac 27 of the pelvis 25. From the values of these load meters, the pelvis (iliac, The impact value acting on the acetabulum is calculated.

腰部の傷害値を低減するには、骨盤へ入力される衝撃値を低減することが効果的であることは言うまでも無いが、これだけでは十分では無い。骨盤への衝撃値をより効果的に低減するためには、腰部(骨盤)を加速して車室内側へ移動させることが必要である。つまり、腰部(骨盤)を侵入してくる車両のドア等から遠ざけることが効果的な手段となる。従って、腰部の傷害値をより効果的に低減するためには、骨盤へ入力される衝撃値を低減しつつ、腰部(骨盤)を車室内側へ移動させる(加速させる)必要がある。ここで、腰部(骨盤)を車室内側に移動させる(加速させる)ためには、ドアトリムやエアバッグ等で大腿部を含む腰部の部位を押す必要がある。しかしながら、腰部のどの部位を押すかによって、骨盤(腸骨、寛骨臼)に与える影響、即ち、骨盤に生じる衝撃値や骨盤の中心部分(体幹中心)の加速度が異なってくる。そのため、腰部エリアにおける骨盤衝撃値と骨盤中心加速度の発生傾向について把握をする必要がある。そして、骨盤(腸骨、寛骨臼)に対して作用する骨盤衝撃値が低く、かつ腰部(骨盤)の体幹中心に生じる骨盤中心加速度が大きい部位を把握することが腰部の傷害値をより効果的に低減するために必要である。   Needless to say, it is effective to reduce the impact value input to the pelvis in order to reduce the injury value of the lumbar region, but this is not sufficient. In order to more effectively reduce the impact value on the pelvis, it is necessary to accelerate the waist (pelvis) and move it to the vehicle interior side. In other words, it is an effective means to keep the waist (pelvis) away from the vehicle door or the like entering the waist. Therefore, in order to reduce the injury value of the lower back more effectively, it is necessary to move (accelerate) the lower back (pelvis) to the vehicle interior side while reducing the impact value input to the pelvis. Here, in order to move (accelerate) the waist (pelvis) to the vehicle interior side, it is necessary to push the region of the waist including the thigh with a door trim, an airbag, or the like. However, depending on which part of the lumbar region is pressed, the influence on the pelvis (iliac bone, acetabulum), that is, the impact value generated in the pelvis and the acceleration of the central part of the pelvis (center of the trunk) are different. Therefore, it is necessary to grasp the generation tendency of the pelvic impact value and the pelvic center acceleration in the lumbar area. In addition, it is possible to understand the injury value of the lumbar region by grasping the site where the pelvic impact value acting on the pelvis (iliac bone, acetabulum) is low and the pelvic center acceleration generated at the trunk center of the lumbar region (pelvis) is large. It is necessary for effective reduction.

本実施例では、ダミー10の腰部20には、更に、骨盤25の中心部(体幹中心)に、骨盤の中心部(体幹中心)での加速度を計測する骨盤中心加速度計23(体幹中心加速度計測手段)が設けられており、この加速度計の計測値から骨盤の変位量を推定することになる。なお、寛骨臼荷重計21及び腸骨荷重計22は、体幹中心の骨盤中心加速度計23より体表面側に配置されることになる。又、衝撃値計測手段として、寛骨臼荷重計21と腸骨荷重計22を設けて骨盤荷重(寛骨臼荷重計21及び腸骨荷重計22の各々で計測された荷重の合計荷重)を計測しているが、荷重計に変えて加速度計や変位計を設け、体表面側で生じる加速度や変位量から衝撃値を推定するようにしても良い。   In the present embodiment, the lumbar 20 of the dummy 10 is further provided with a pelvic center accelerometer 23 (trunk) that measures acceleration at the center (trunk center) of the pelvis at the center (trunk center) of the pelvis 25. Central acceleration measuring means) is provided, and the amount of displacement of the pelvis is estimated from the measured value of the accelerometer. Note that the acetabular load meter 21 and the iliac load meter 22 are arranged on the body surface side from the pelvic center accelerometer 23 at the center of the trunk. Further, as an impact value measuring means, an acetabular load meter 21 and an iliac load meter 22 are provided, and a pelvic load (total load measured by each of the acetabular load meter 21 and the iliac load meter 22) is calculated. Although it is measured, an impact value may be estimated from an acceleration or a displacement amount generated on the body surface side by providing an accelerometer or a displacement meter instead of the load meter.

そして、本実施例においては、図1に示すように、コンピュータ(制御手段)30を用いて、インパクタ(衝突部材)31を制御して、後述するように、腰部20の多点に各々一定の衝撃を与え、その衝撃による荷重及び加速度を、寛骨臼荷重計21、腸骨荷重計22及び骨盤中心加速度計23を用いて検出し、所定の計算処理を行って、骨盤衝撃値を示す骨盤荷重及び骨盤中心加速度の発生傾向を求めるようにしている。   In this embodiment, as shown in FIG. 1, the impactor (collision member) 31 is controlled by using a computer (control means) 30, and a plurality of points on the waist 20 are fixed to each other as will be described later. A pelvis showing a pelvic impact value by applying an impact, detecting the load and acceleration due to the impact using the acetabular load meter 21, the iliac load meter 22, and the pelvic center accelerometer 23, and performing a predetermined calculation process. The generation tendency of load and pelvic center acceleration is obtained.

ここで、図3に示すフローチャートと共に、図4〜図8を参照して、本実施例の人体模擬装置を用いた傷害値予測装置で実施する傷害値予測方法を説明する。   Here, with reference to FIGS. 4 to 8 together with the flowchart shown in FIG. 3, an injury value prediction method implemented by the injury value prediction apparatus using the human body simulation device of the present embodiment will be described.

(ステップS1〜S2)
図4、図5に示すように、腰部20の側面をある一定の間隔で(一定の面積で)格子状に区分けし、n個のエリアPiに細分化する。この細分化した面は、インパクタ31で衝撃を与える方向に垂直な面であり、Y方向に衝撃を与える場合には、XZ平面となる。ここで、nは整数、iはi=1〜nの整数であり、開始当初は、i=1である。なお、腰部20の側面を、l列×m行のエリアPjkに細分化してもよい。この場合、l、mは整数、jはj=1〜lの整数であり、kはk=1〜mの整数であり、開始当初は、j=1、k=1である。以降は、n個のエリアPiに細分化した場合について説明するが、l列×m行のエリアPjkに細分化した場合には、「i」を「jk」と読み替えればよい。
(Steps S1 and S2)
4, as shown in FIG. 5, (in certain area) at regular intervals with the side of the waist 20 is divided in a grid pattern, subdivided into n areas P i. This subdivided surface is a surface perpendicular to the direction in which the impactor 31 applies an impact, and when the impact is applied in the Y direction, it becomes an XZ plane. Here, n is an integer, i is an integer of i = 1 to n, and i = 1 at the beginning. Note that the side surface of the waist 20 may be subdivided into an area P jk of l columns × m rows. In this case, l and m are integers, j is an integer of j = 1 to 1, k is an integer of k = 1 to m, and j = 1 and k = 1 at the beginning. In the following, the case of subdividing into n areas P i will be described. However, when subdividing into an area P jk of l columns × m rows, “i” may be read as “jk”.

(ステップS3〜S5)
次に、細分化した1つのエリアPiに対し、側方からY方向にインパクタ31で一定の衝撃を与え、寛骨臼荷重計21及び腸骨荷重計22により骨盤衝撃値を示す骨盤荷重Fi(寛骨臼荷重計21及び腸骨荷重計22の各々で計測された荷重の合計荷重)を検出し、骨盤中心加速度計23により骨盤中心加速度Aiを検出する。その後、i=i+1とし、別のエリアPi+1に対しても、同様に、一定の衝撃を与えて、骨盤荷重Fi+1及び骨盤中心加速度Ai+1を検出し、これを、i=nとなるまで繰り返すことにより、全てのエリアPiで同じ手順を実施することになる。l列×m行のエリアPjkに細分化した場合には、各行の列について、j=j+1とし、j=lとなるまで同じ手順を繰り返し、これを、全行について、k=k+1とし、k=mとなるまで同じ手順を繰り返すことにより、全てのエリアPjkで同じ手順を実施する。
(Steps S3 to S5)
Next, a fixed impact is applied to the subdivided area P i from the side in the Y direction by the impactor 31, and the pelvic load F indicating the pelvic impact value by the acetabular load meter 21 and the iliac load meter 22. i (the total load of the loads measured by each of the acetabular load meter 21 and the iliac load meter 22) is detected, and the pelvic center acceleration meter 23 detects the pelvic center acceleration A i . Then, the i = i + 1, with respect to another area P i + 1, likewise, giving certain impact, detects the pelvic load F i + 1 and pelvis central acceleration A i + 1, this, By repeating until i = n, the same procedure is performed in all areas P i . When subdividing into an area P jk of l columns × m rows, j = j + 1 is repeated for each row column, the same procedure is repeated until j = 1, and this is set to k = k + 1 for all rows, The same procedure is repeated for all areas P jk by repeating the same procedure until k = m.

(ステップS6)
検出された骨盤荷重Fiの全エリアでの最大骨盤荷重Fmax(最大衝撃値)と、検出された骨盤中心加速度Aiの全エリアでの最大骨盤中心加速度Amaxとを用い、下記式により、各エリアPiにおける骨盤荷重感度SFi(骨盤衝撃感度)と骨盤中心加速度感度SAiとを算出する。そして、エリアPi毎に算出した骨盤荷重感度SFi及び骨盤中心加速度感度SAiにより、それらの感度分布を作成する。
(Step S6)
Using the maximum pelvic load F max (maximum impact value) in all areas of the detected pelvic load F i and the maximum pelvic center acceleration A max in all areas of the detected pelvic center acceleration A i , Then, pelvic load sensitivity SF i (pelvic impact sensitivity) and pelvic center acceleration sensitivity SA i in each area P i are calculated. Then, a sensitivity distribution is created based on the pelvic load sensitivity SF i and the pelvic center acceleration sensitivity SA i calculated for each area P i .

SFi=Fi/Fmax
SAi=Ai/Amax
SF i = F i / F max
SA i = A i / A max

図6に示す分布図が、Y方向における骨盤荷重感度SFiの感度分布図であり、図7に示す分布図が、Y方向における骨盤中心加速度感度SAiの感度分布図である。図6に示すように、腰部20のY方向における骨盤荷重感度SFiは、腰部20の中央から後方にかけて高く、腰部20の前方は低い。一方、図7に示すように、腰部20のY方向における骨盤中心加速度感度SAiは、腰部20の中央から後方にかけて感度が高いのに加え、腰部20の前方でも比較的高いことが分かる。 The distribution chart shown in FIG. 6 is a sensitivity distribution chart of pelvic load sensitivity SF i in the Y direction, and the distribution chart shown in FIG. 7 is a sensitivity distribution chart of pelvic center acceleration sensitivity SA i in the Y direction. As shown in FIG. 6, the pelvic load sensitivity SF i in the Y direction of the waist 20 is high from the center to the back of the waist 20, and the front of the waist 20 is low. On the other hand, as shown in FIG. 7, the pelvic center acceleration sensitivity SA i in the Y direction of the lumbar part 20 is high in sensitivity from the center of the lumbar part 20 to the rear, and also relatively high in the front part of the lumbar part 20.

なお、骨盤荷重感度SFiには、合計荷重を用いているが、荷重を合計する際、重み付けを行って合計荷重を求めてもよい。又、寛骨臼荷重計21及び腸骨荷重計22について、各々独立して、骨盤荷重感度SFiを求めるようにしてもよい。又、骨盤中心加速度感度SAiには、加速度の大きさを用いているが、時間に関する量、例えば、最大加速度に到達する時間などを含めて、骨盤中心加速度感度SAiを求めるようにしてもよい。 Although the total load is used for the pelvic load sensitivity SF i , when totaling the loads, the total load may be obtained by weighting. Alternatively, the pelvic load sensitivity SF i may be obtained independently for the acetabular load meter 21 and the iliac load meter 22. Further, in the pelvic center acceleration sensitivity SA i, are used the size of the acceleration, the amount with respect to time, for example, including such time to reach the maximum acceleration, be calculated pelvic center acceleration sensitivity SA i Good.

ここで、骨盤荷重感度SFiが高いとは、骨盤荷重(骨盤衝撃値)が発生し易いことを意味し、骨盤中心加速度感度SAiが高いとは、骨盤中心加速度が発生し易いことを意味する。従って、腰部20の中央から後方にかけては、入力(衝撃)に対し骨盤荷重(骨盤衝撃値)及び骨盤中心加速度が発生し易く、腰部20の前方は、入力に対し骨盤荷重(骨盤衝撃値)が発生し難いのに対し、骨盤中心加速度は発生し易い。 Here, high pelvic load sensitivity SF i means that pelvic load (pelvic impact value) is likely to occur, and high pelvic center acceleration sensitivity SA i means that pelvic center acceleration is likely to occur. To do. Accordingly, pelvic load (pelvic impact value) and pelvic center acceleration are likely to occur with respect to the input (impact) from the center to the rear of the lumbar part 20, and the pelvic load (pelvic impact value) with respect to the input is likely to occur in front of the lumbar part 20. Pelvic center acceleration is likely to occur while it is unlikely to occur.

以上のことから、腰部20の前方のエリア、特に大腿部に相当する部位は、骨盤荷重(骨盤衝撃値)が発生し難く、骨盤中心加速度が発生し易いことが分かる。   From the above, it can be seen that the pelvic load (pelvic impact value) hardly occurs and the pelvic center acceleration is likely to occur in the area in front of the lumbar 20, particularly in the thigh.

(ステップS7)
図6に示す骨盤荷重感度SFiの感度分布図、図7に示す骨盤中心加速度感度SAiの感度分布図に基づいて、骨盤荷重感度SFiが低く(骨盤荷重が発生し難く)、且つ、骨盤中心加速度感度SAiが高い(骨盤中心加速度が発生し易い)エリアを抽出するため、それらを評価する評価分布図を作成する。例えば、図8に示す評価分布図では、各エリアPiにおける骨盤中心加速度感度SAiを骨盤荷重感度SFiで除算することにより、評価分布図を作成している。図8に示すような評価分布図を作成すると、評価分布図の評価値が低い箇所は、衝突時に傷害値が発生する可能性が高いことが予測できるため、この箇所への入力を低減するような、衝撃低減構造の提案が可能となる。一方、評価分布図の評価値が高い箇所は、衝突時に傷害値が発生する可能性が低いことが予測できるため、この箇所へエアバッグやドアトリムを当接させて乗員を拘束するような衝撃低減構造の提案が可能となる。
(Step S7)
Based on the sensitivity distribution diagram of the pelvic load sensitivity SF i shown in FIG. 6 and the sensitivity distribution diagram of the pelvic center acceleration sensitivity SA i shown in FIG. 7, the pelvic load sensitivity SF i is low (the pelvic load is difficult to occur), and In order to extract areas where the pelvic center acceleration sensitivity SA i is high (the pelvic center acceleration is likely to occur), an evaluation distribution map for evaluating them is created. For example, in the evaluation distribution chart shown in FIG. 8, the pelvic center acceleration sensitivity SA i in each area P i is divided by the pelvic load sensitivity SF i, are creating an evaluation distribution diagram. If an evaluation distribution map as shown in FIG. 8 is created, it can be predicted that a portion having a low evaluation value in the evaluation distribution diagram is likely to generate an injury value at the time of a collision. It is possible to propose a shock reducing structure. On the other hand, it is possible to predict that a place with a high evaluation value in the evaluation distribution map is unlikely to generate an injury value at the time of a collision. Therefore, an impact reduction that restrains an occupant by contacting an air bag or a door trim to this place A structure can be proposed.

本実施例による評価結果によれば、腰部20の前方に位置する大腿部の評価値が高く、比較的衝撃耐性が高いことが予測できるので、乗員の腰部、特に、腸骨及び寛骨臼への衝撃値を低減させて乗員を拘束するために、乗員の大腿部を拘束することで、乗員を適切に保護する最適な構造、例えば、ドアトリムの最適な構造を提案することが可能となる。   According to the evaluation result according to the present example, since the evaluation value of the thigh located in front of the lumbar 20 is high and it can be predicted that the impact resistance is relatively high, the occupant's lumbar region, in particular, the iliac bone and the acetabulum It is possible to propose an optimal structure that appropriately protects the occupant, for example, an optimal structure of a door trim, by restraining the occupant's thigh to reduce the impact value to the occupant Become.

このように、本実施例では、乗員を模擬したダミーの1つの部位に対し、その傷害値発生感度となる荷重感度(衝撃感度)及び体幹中心加速度感度の感度分布を作成することで、乗員の傷害値を各部位の細部に渡って予測することができる。この予測を基に、乗員への傷害値低減のため、乗員への最適な入力条件(衝撃条件)を検証することができ、その結果、乗員をより適切に保護する最適な構造を提案することが可能となる。   As described above, in this embodiment, the sensitivity distribution of the load sensitivity (impact sensitivity) and the trunk center acceleration sensitivity as the injury value generation sensitivity is created for one part of the dummy that simulates the occupant. Can be predicted over the details of each site. Based on this prediction, it is possible to verify the optimal input conditions (impact conditions) to the occupant to reduce the injury value to the occupant, and as a result, to propose an optimal structure that protects the occupant more appropriately Is possible.

なお、本実施例では、一例として、側面衝突における乗員の腰部への傷害値について説明したが、側面衝突に限らず、前面衝突等にも適用可能であり、又、乗員の腰部に限らず、胸部、肩部等にも適用可能である。   In the present embodiment, as an example, the injury value to the occupant's waist in a side collision has been described, but it is not limited to a side collision, but can also be applied to a frontal collision, etc. It can also be applied to the chest and shoulders.

本発明は、車両の乗員の傷害値予測に適用するものであり、この傷害値予測により、車両の衝撃吸収構造等の最適な構造を提案可能となる。   The present invention is applied to predicting the injury value of an occupant of a vehicle, and this injury value prediction makes it possible to propose an optimal structure such as a shock absorbing structure of a vehicle.

10 ダミー
20 腰部
21 寛骨臼荷重計(衝撃値計測手段)
22 腸骨荷重計(衝撃値計測手段)
23 骨盤中心加速度計(体幹中心加速度計測手段)
30 コンピュータ
31 インパクタ
10 Dummy 20 Lumbar 21 Acetabular load cell (impact value measuring means)
Iliac load meter (impact value measuring means)
23 Pelvic center accelerometer (trunk center acceleration measuring means)
30 Computer 31 Impactor

Claims (8)

人体を模擬する人体模擬装置に衝撃を与える衝突部材と、
前記人体模擬装置を構成する1つの部位における所定の箇所に設けられ、前記衝突部材の衝撃により前記所定の箇所で生じる衝撃値を計測する衝撃値計測手段と、
前記1つの部位における体幹中心に設けられ、前記衝突部材の衝撃により生じる体幹中心の加速度を計測する体幹中心加速度計測手段と、
前記衝突部材を制御すると共に、前記衝撃値計測手段及び前記体幹中心加速度計測手段で検出された衝撃値及び体幹中心加速度に基づいて、所定の計算処理を行う制御手段とを有し、
前記制御手段は、
前記1つの部位を、前記衝突部材で衝撃を与える方向に垂直な面において、一定の間隔で格子状に複数のエリアに区分けし、
各エリア毎に前記衝突部材で一定の衝撃を与え、各エリアでの前記衝撃により生じる衝撃値及び体幹中心加速度を、全エリアに亘って検出し、
全エリアでの最大衝撃値を用いて、各エリアにおける衝撃感度を求めて、前記衝撃感度の分布を作成すると共に、全エリアでの最大体幹中心加速度を用いて、各エリアにおける体幹中心加速度感度を求めて、前記体幹中心加速度感度の分布を作成し、
作成した前記衝撃感度の分布及び前記体幹中心加速度感度の分布に基づいて、衝撃感度が低く、かつ、体幹中心加速度感度が高いエリアを抽出することを特徴とする人体模擬装置を用いた傷害値予測装置。
A collision member that gives an impact to the human body simulation device for simulating the human body;
An impact value measuring means which is provided at a predetermined location in one part constituting the human body simulation device and measures an impact value generated at the predetermined location by the impact of the collision member;
A trunk center acceleration measuring means that is provided at the trunk center in the one part and measures the acceleration of the trunk center caused by the impact of the collision member;
Control means for controlling the collision member, and performing a predetermined calculation process based on the impact value and trunk center acceleration detected by the impact value measuring means and the trunk center acceleration measuring means,
The control means includes
The one part is divided into a plurality of areas in a lattice shape at regular intervals on a surface perpendicular to the direction in which the impact is applied by the collision member,
A constant impact is given by the collision member for each area, and the impact value and trunk center acceleration generated by the impact in each area are detected over the entire area,
Using the maximum impact value in all areas, determine the impact sensitivity in each area, create the distribution of the impact sensitivity, and use the maximum trunk center acceleration in all areas to determine the trunk center acceleration in each area Find the sensitivity, create the trunk center acceleration sensitivity distribution,
Injury using a human body simulation device that extracts an area with low impact sensitivity and high trunk center acceleration sensitivity based on the created distribution of shock sensitivity and distribution of the trunk center acceleration sensitivity Value prediction device.
請求項1に記載の人体模擬装置を用いた傷害値予測装置において、
前記衝撃値計測手段は、前記衝突部材の衝撃により、前記所定の箇所で生じる荷重を計測する荷重計であることを特徴とする人体模擬装置を用いた傷害値予測装置。
Injury value prediction apparatus using the human body simulation device according to claim 1,
The injury value prediction device using a human body simulation device, wherein the impact value measurement means is a load meter that measures a load generated at the predetermined location due to an impact of the collision member.
請求項1に記載の人体模擬装置を用いた傷害値予測装置において、
前記衝撃値計測手段は、前記衝突部材の衝撃により、前記所定の箇所で生じる加速度を計測する加速度計であることを特徴とする人体模擬装置を用いた傷害値予測装置。
Injury value prediction apparatus using the human body simulation device according to claim 1,
The injury value prediction device using a human body simulation device, wherein the impact value measuring means is an accelerometer that measures acceleration generated at the predetermined location due to an impact of the collision member.
請求項1に記載の人体模擬装置を用いた傷害値予測装置において、
前記衝撃値計測手段は、前記衝突部材の衝撃により、前記所定の箇所で生じる変位量を計測する変位計であることを特徴とする人体模擬装置を用いた傷害値予測装置。
Injury value prediction apparatus using the human body simulation device according to claim 1,
The injury value prediction device using a human body simulation device, wherein the impact value measurement means is a displacement meter that measures a displacement amount generated at the predetermined location due to an impact of the collision member.
人体を模擬する人体模擬装置を構成する1つの部位を、衝撃を与える方向に垂直な面において、一定の間隔で格子状に複数のエリアに区分けし、
各エリア毎に一定の衝撃を与え、前記1つの部位における所定の箇所に設けられた衝撃値計測手段と前記1つの部位における体幹中心に設けられた体幹中心加速度計測手段を用いて、各エリアでの前記衝撃により生じる衝撃値及び体幹中心加速度を、全エリアに亘って検出し、
全エリアでの最大衝撃値を用いて、各エリアにおける衝撃感度を求めて、前記衝撃感度の分布を作成すると共に、全エリアでの最大体幹中心加速度を用いて、各エリアにおける体幹中心加速度感度を求めて、前記体幹中心加速度感度の分布を作成し、
作成した前記衝撃感度の分布及び前記体幹中心加速度感度の分布に基づいて、衝撃感度が低く、かつ、体幹中心加速度感度が高いエリアを抽出することを特徴とする人体模擬装置を用いた傷害値予測方法。
Dividing one part constituting the human body simulation device for simulating the human body into a plurality of areas in a lattice shape at regular intervals on a plane perpendicular to the direction of impact,
Applying a constant impact for each area, using an impact value measuring means provided at a predetermined location in the one part and a trunk center acceleration measuring means provided at the center of the trunk in the one part, The impact value and trunk center acceleration generated by the impact in the area are detected over the entire area,
Using the maximum impact value in all areas, determine the impact sensitivity in each area, create the distribution of the impact sensitivity, and use the maximum trunk center acceleration in all areas to determine the trunk center acceleration in each area Find the sensitivity, create the trunk center acceleration sensitivity distribution,
Injury using a human body simulation device that extracts an area with low impact sensitivity and high trunk center acceleration sensitivity based on the created distribution of shock sensitivity and distribution of the trunk center acceleration sensitivity Value prediction method.
請求項5に記載の人体模擬装置を用いた傷害値予測方法において、
前記衝撃値計測手段は、前記衝突部材の衝撃により、前記所定の箇所で生じる荷重を計測する荷重計であることを特徴とする人体模擬装置を用いた傷害値予測方法。
In the injury value prediction method using the human body simulation device according to claim 5,
The injury value prediction method using a human body simulation device, wherein the impact value measurement means is a load meter that measures a load generated at the predetermined location due to an impact of the collision member.
請求項5に記載の人体模擬装置を用いた傷害値予測方法において、
前記衝撃値計測手段は、前記衝突部材の衝撃により、前記所定の箇所で生じる加速度を計測する加速度計であることを特徴とする人体模擬装置を用いた傷害値予測方法。
In the injury value prediction method using the human body simulation device according to claim 5,
The injury value prediction method using a human body simulation device, wherein the impact value measuring means is an accelerometer that measures acceleration generated at the predetermined location due to an impact of the collision member.
請求項5に記載の人体模擬装置を用いた傷害値予測方法において、
前記衝撃値計測手段は、前記衝突部材の衝撃により、前記所定の箇所で生じる変位量を計測する変位計であることを特徴とする人体模擬装置を用いた傷害値予測方法。
In the injury value prediction method using the human body simulation device according to claim 5,
The injury value prediction method using a human body simulation device, wherein the impact value measuring means is a displacement meter that measures a displacement amount generated at the predetermined location due to an impact of the collision member.
JP2012176584A 2012-08-09 2012-08-09 Injury value prediction apparatus and method using human body simulation apparatus Active JP5906990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012176584A JP5906990B2 (en) 2012-08-09 2012-08-09 Injury value prediction apparatus and method using human body simulation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012176584A JP5906990B2 (en) 2012-08-09 2012-08-09 Injury value prediction apparatus and method using human body simulation apparatus

Publications (2)

Publication Number Publication Date
JP2014035265A true JP2014035265A (en) 2014-02-24
JP5906990B2 JP5906990B2 (en) 2016-04-20

Family

ID=50284317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012176584A Active JP5906990B2 (en) 2012-08-09 2012-08-09 Injury value prediction apparatus and method using human body simulation apparatus

Country Status (1)

Country Link
JP (1) JP5906990B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0275544U (en) * 1988-11-29 1990-06-08
JPH08122009A (en) * 1994-10-27 1996-05-17 Toyota Central Res & Dev Lab Inc Instrument for measuring bending strain of dummy belly part and belly-part injury estimation apparatus using it
JPH08240509A (en) * 1995-03-01 1996-09-17 Mitsubishi Motors Corp Apparatus for collision test of vehicle
JPH09297087A (en) * 1996-05-08 1997-11-18 Honda Motor Co Ltd Method for analyzing image of vehicle collision test
US6035728A (en) * 1996-06-03 2000-03-14 Breed Automotive Technology, Inc. Test rig
JP2008216224A (en) * 2007-03-08 2008-09-18 Toyota Motor Corp Dummy for collision test
JP2011209285A (en) * 2010-03-30 2011-10-20 Tk Holdings Inc Force measurement system
JP2012076569A (en) * 2010-09-30 2012-04-19 Toyota Boshoku Corp Impact absorber

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0275544U (en) * 1988-11-29 1990-06-08
JPH08122009A (en) * 1994-10-27 1996-05-17 Toyota Central Res & Dev Lab Inc Instrument for measuring bending strain of dummy belly part and belly-part injury estimation apparatus using it
JPH08240509A (en) * 1995-03-01 1996-09-17 Mitsubishi Motors Corp Apparatus for collision test of vehicle
JPH09297087A (en) * 1996-05-08 1997-11-18 Honda Motor Co Ltd Method for analyzing image of vehicle collision test
US6035728A (en) * 1996-06-03 2000-03-14 Breed Automotive Technology, Inc. Test rig
JP2008216224A (en) * 2007-03-08 2008-09-18 Toyota Motor Corp Dummy for collision test
JP2011209285A (en) * 2010-03-30 2011-10-20 Tk Holdings Inc Force measurement system
JP2012076569A (en) * 2010-09-30 2012-04-19 Toyota Boshoku Corp Impact absorber

Also Published As

Publication number Publication date
JP5906990B2 (en) 2016-04-20

Similar Documents

Publication Publication Date Title
Pawlus et al. Development of lumped-parameter mathematical models for a vehicle localized impact
US8219365B2 (en) Method of designing a motor vehicle
Teng et al. Analysis of dynamic response of vehicle occupant in frontal crash using multibody dynamics method
Putnam et al. Development and evaluation of a finite element model of the THOR for occupant protection of spaceflight crewmembers
Cheng et al. On drop-tower test methodology for blast mitigation seat evaluation
Gierczycka et al. Investigation of occupant arm position and door properties on thorax kinematics in side impact crash scenarios–comparison of ATD and human models
Kerrigan et al. Assessment of pedestrian head impact dynamics in small sedan and large SUV collisions
Mendoza-Vazquez et al. Human rib response to different restraint systems in frontal impacts: a study using a human body model
JP5906990B2 (en) Injury value prediction apparatus and method using human body simulation apparatus
Lemmen et al. Development of an advanced frontal dummy thorax demonstrator
Vychytil et al. Prediction of injury risk in pedestrian accidents using virtual human model VIRTHUMAN: real case and parametric study
Ma et al. Biomechanical response and injury of occupant's pelvis in side impacts: effects of the femoral head and loading conditions
Nie et al. Response surface generation for kinematics and injury prediction in pedestrian impact simulations
Grindle et al. Investigation of traffic accidents involving seated pedestrians using a finite element simulation-based approach
Hallman et al. Door velocity and occupant distance affect lateral thoracic injury mitigation with side airbag
Hazay et al. The probability of traumatic brain injuries based on tissue-level reliability analysis
Subit et al. Robustness of principal and longitudinal strains as fracture predictors in side impact
Kuznetcov Effect of acceleration time history in motorcoach frontal collision on passenger safety under uncertainty of seating posture
El-Asfoury et al. Static and dynamic three-dimensional finite element analysis of pelvic bone
Cox et al. The influence of muscle modeling methods and paths on head and neck response
El-Jawahri et al. Finite-element-based transfer equations: post-mortem human subjects versus Hybrid III test dummy in blunt impact
Fehr et al. Optimal Forces for the Deceleration of the ES-2 Dummy
Nie et al. Development of a parametric vehicle front structure model for pedestrian impact simulations
Artmont et al. A model for simulating dynamic vehicular load on modular bridge expansion joint systems
Xiao et al. Influence of rib fracture on chest deflection by using FE human body model in frontal impact

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160307

R151 Written notification of patent or utility model registration

Ref document number: 5906990

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350