JP2014034921A - Control device of internal combustion engine - Google Patents

Control device of internal combustion engine Download PDF

Info

Publication number
JP2014034921A
JP2014034921A JP2012176346A JP2012176346A JP2014034921A JP 2014034921 A JP2014034921 A JP 2014034921A JP 2012176346 A JP2012176346 A JP 2012176346A JP 2012176346 A JP2012176346 A JP 2012176346A JP 2014034921 A JP2014034921 A JP 2014034921A
Authority
JP
Japan
Prior art keywords
state
valve
internal combustion
combustion engine
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012176346A
Other languages
Japanese (ja)
Inventor
Takumi Hanefuji
匠 羽藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012176346A priority Critical patent/JP2014034921A/en
Priority to DE102013108225.4A priority patent/DE102013108225A1/en
Publication of JP2014034921A publication Critical patent/JP2014034921A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0077Control of the EGR valve or actuator, e.g. duty cycle, closed loop control of position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/221Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/50Arrangements or methods for preventing or reducing deposits, corrosion or wear caused by impurities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D2011/108Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type with means for detecting or resolving a stuck throttle, e.g. when being frozen in a position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • F02D41/0072Estimating, calculating or determining the EGR rate, amount or flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/042Introducing corrections for particular operating conditions for stopping the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a control device of an internal combustion engine capable of preventing a wasteful valve opening and closing motion by optimizing a time to execute a fastening preventing motion after stop of an engine to elongate a service life of a valve and to save power.SOLUTION: A control device of an internal combustion engine includes: circulation passages 21, 41 for circulating the exhaust from an exhaust passage to an intake passage of the internal combustion engine 10; valves 23a, 43a for adjusting a flow rate of the exhaust circulated in the circulation passages; a circulation state acquiring portion for acquiring a circulation state of the exhaust in the circulation passages when a predetermined estimation timing comes; a determining portion 60 for comparing the acquired circulation state with a reference state of the circulation state memorized in advance to determine whether a fastening preventing motion to solve or prevent fastening of a valve, is necessary or not; and an instruction information outputting portion 60 for outputting instruction information including an instruction to execute the fastening preventing motion, when the internal combustion engine transits from a rotating state to a stop state, in a case when the determining portion determines necessity of execution of the fastening preventing motion.

Description

本発明は、内燃機関の制御装置に関する。   The present invention relates to a control device for an internal combustion engine.

例えば自動車用エンジンでは、排気管内を流れる排気ガスの一部を排気再循環ガス(EGRガス)として吸気管内に導入し、このEGRガスを吸入空気中に混入させることによって筒内最高燃焼温度を低下させ、排気ガス中に含まれる有害物質(例えば窒素酸化物)の低減を図るようにした排気ガス再循環装置が備えられている。   For example, in an automobile engine, a part of the exhaust gas flowing in the exhaust pipe is introduced into the intake pipe as exhaust recirculation gas (EGR gas), and this EGR gas is mixed into the intake air to lower the maximum in-cylinder combustion temperature. And an exhaust gas recirculation device that reduces harmful substances (for example, nitrogen oxides) contained in the exhaust gas.

この排気ガス再循環装置は、エンジンの排気系と吸気系とを接続するEGR配管と、このEGR配管内に備えられて開度調整可能とされたEGRバルブ(単に、「バルブ」と称することもある)とを備えている。つまり、このEGRバルブの開度を調整することによってEGRガスの還流量を調整するようになっている。   This exhaust gas recirculation device includes an EGR pipe that connects an exhaust system and an intake system of an engine, and an EGR valve (also simply referred to as a “valve”) that is provided in the EGR pipe and is adjustable in opening. There is). That is, the recirculation amount of the EGR gas is adjusted by adjusting the opening degree of the EGR valve.

この種の排気ガス再循環装置においては、EGR配管、例えばバルブハウジング内に嵌め合わされた円管形状のノズル内に形成される排気ガス還流路に、EGRガス中に含まれる燃焼生成物(酸化物または炭化物)のデポジットが堆積する可能性がある。このデポジットは、排気ガス中の炭化水素(HC)、カーボン(C)、オイル等が原因で発生し、粘度が高いため、EGRバルブの外周部、EGRバルブの駆動シャフト、排気ガス還流路の内壁面等に付着する。そして、このデポジット(堆積物)が、EGRバルブの外周部と還流路内壁面との間に付着したり、駆動シャフトと還流路内壁面との間に付着した場合には、EGRバルブの開閉動作が妨げられることになり、EGRバルブの開度調整を良好に行えず、EGRガスを吸気管内に供給できなくなったり、適正なEGRガスの還流量を得ることができなくなるといった問題があった。特に、EGRバルブを開閉動作させるための駆動トルクが小さい場合や、EGRバルブの開度を微小角度範囲で制御しようとする場合には、この問題は顕著に現れる。   In this type of exhaust gas recirculation device, combustion products (oxides) contained in EGR gas are provided in an exhaust gas recirculation path formed in an EGR pipe, for example, a circular tube-shaped nozzle fitted in a valve housing. (Or carbide) deposits may be deposited. This deposit is caused by hydrocarbons (HC), carbon (C), oil, etc. in the exhaust gas, and has a high viscosity. Therefore, the deposit is included in the outer periphery of the EGR valve, the drive shaft of the EGR valve, and the exhaust gas recirculation path. Adhere to the wall surface. When this deposit (deposit) adheres between the outer periphery of the EGR valve and the inner wall surface of the return path, or between the drive shaft and the inner wall surface of the return path, the EGR valve opens and closes. As a result, the opening degree of the EGR valve cannot be adjusted satisfactorily, and EGR gas cannot be supplied into the intake pipe, and an appropriate recirculation amount of EGR gas cannot be obtained. In particular, when the driving torque for opening and closing the EGR valve is small, or when the opening degree of the EGR valve is to be controlled within a minute angle range, this problem appears remarkably.

そこで、EGRバルブをバルブ全閉位置付近で所定の開度だけ開閉動作させ、付着したデポジットをEGRバルブによって掻き落とし、EGRバルブの固着を解消または防止している(以下、この動作を「固着回避動作」と称する)。この、「固着回避動作」を効率よく実施するために、「固着回避動作」の開始条件を、直前までエンジンが運転していたイグニッションオフ操作時のみとした内燃機関のバルブ制御装置が考案されている(特許文献1参照)。   Therefore, the EGR valve is opened and closed by a predetermined opening degree near the fully closed position of the valve, and the deposited deposit is scraped off by the EGR valve to eliminate or prevent the EGR valve from sticking (hereinafter, this operation is referred to as “sticking avoidance”). Called operation). In order to efficiently perform this “sticking avoidance operation”, a valve control device for an internal combustion engine has been devised in which the start condition of the “sticking avoidance operation” is set only at the time of the ignition off operation that the engine has been operating until just before. (See Patent Document 1).

また、バルブの固着を回避するべく往復動させる際に、所定の移動制御時間が経過してもバルブ移動量が所定量に達しないときにはバルブを他方向へ移動させる動作を開始するようにして、バルブを一方向または他方向へ移動させる動作が長時間にわたることがなく、比較的短時間のうちに「固着回避動作」を完了させることができる内燃機関のバルブ制御装置が考案されている(特許文献2参照)。   Further, when reciprocating to avoid sticking of the valve, if the valve movement amount does not reach the predetermined amount even after the predetermined movement control time has elapsed, an operation of moving the valve in the other direction is started. There has been devised a valve control device for an internal combustion engine that can complete a “sticking avoidance operation” in a relatively short time without the operation of moving the valve in one direction or the other direction taking a long time (patent) Reference 2).

また、内燃機関の運転状態に応じデポジットの生成量を算出し、それを積算して、バタフライ弁体が設けられたガス通路内のデポジット堆積量を推定し、推定したデポジット堆積量に基づいてバタフライ弁体の回動を行ってデポジットを除去する内燃機関の制御装置が考案されている(特許文献3参照)。   In addition, the amount of deposit generated is calculated according to the operating state of the internal combustion engine, and is integrated to estimate the amount of deposit deposited in the gas passage provided with the butterfly valve element. Based on the estimated amount of deposited deposit, A control device for an internal combustion engine that removes deposits by rotating a valve body has been devised (see Patent Document 3).

また、高温の排気ガスを冷却してエンジン吸気側に還流させることができるとともに、排気ガス還流路やバルブに付着したデポジットを高温の排気ガスで除去することができる排気ガス還流装置が考案されている(特許文献4参照)。   Also, an exhaust gas recirculation device has been devised that can cool the high-temperature exhaust gas and recirculate it to the engine intake side, and can remove deposits adhering to the exhaust gas recirculation path and valves with the high-temperature exhaust gas. (See Patent Document 4).

また、エンジンが停止した際に、エンジン運転継続期間中の排気ガス再循環装置の使用環境に基づいて、エンジン停止時のデポジット温度を推定し、このデポジット温度と排気ガス再循環装置の外部環境とによって、エンジンの運転を停止した時期からデポジットがある程度固まる時期までのデポジット固化期間を推定して、このデポジット固化期間が経過した際に、「固着回避動作」を実施する内燃機関の制御装置が考案されている(特許文献5参照)。   Also, when the engine is stopped, the deposit temperature when the engine is stopped is estimated based on the usage environment of the exhaust gas recirculation device during the engine operation continuation period, and the deposit temperature and the external environment of the exhaust gas recirculation device Devised a control device for an internal combustion engine that estimates the deposit solidification period from the time when operation of the engine is stopped to the time when the deposit hardens to some extent, and performs this `` sticking avoidance operation '' when this deposit solidification period has elapsed (See Patent Document 5).

また、内燃機関を停止させることが要求された場合に、内燃機関の吸気通路に設けられた吸気絞り弁を所定開度に閉じた後、内燃機関が完全に停止するまでの間に、内燃機関の回転変動の大きさを検出し、この回転変動の大きさが所定値を超えていた場合に、前記吸気絞り弁の周囲に付着したデポジットを除去する内燃機関の吸気制御装置が考案されている(特許文献6参照)。   Further, when it is requested to stop the internal combustion engine, the internal combustion engine is closed after the intake throttle valve provided in the intake passage of the internal combustion engine is closed to a predetermined opening until the internal combustion engine is completely stopped. An intake control device for an internal combustion engine has been devised that detects the magnitude of the rotation fluctuation of the engine and removes the deposit attached around the intake throttle valve when the magnitude of the rotation fluctuation exceeds a predetermined value. (See Patent Document 6).

特開2007−064166号公報Japanese Patent Laid-Open No. 2007-064166 特開2007−032356号公報JP 2007-032356 A 特開2008−038636号公報JP 2008-038636 A 特開2006−070852号公報JP 2006-070852 A 特開2008−075517号公報Japanese Patent Application Laid-Open No. 2008-075517 特開2010−174651号公報JP 2010-174651 A

特許文献1,2,5,6では、エンジン停止時に「固着回避動作」を実施している。このため、近年、燃費対策として採用されている、所定の停止条件が成立した場合にエンジンを自動停止させ、その後所定の再始動条件が成立した場合にエンジンを再始動させるいわゆるアイドリングストップシステムでは、エンジン停止の回数すなわち「固着回避動作」の回数が増加する。これに伴って、EGRバルブの摺動部摩耗量も増大し、EGRバルブおよびEGRバルブを回動させるアクチュエータの寿命が低下するという問題がある。   In Patent Documents 1, 2, 5, and 6, “sticking avoidance operation” is performed when the engine is stopped. For this reason, in a so-called idling stop system that has been adopted as a fuel efficiency measure in recent years, the engine is automatically stopped when a predetermined stop condition is satisfied, and then the engine is restarted when a predetermined restart condition is satisfied. The number of engine stops, that is, the number of “sticking avoidance operations” increases. Along with this, there is a problem that the wear amount of the sliding portion of the EGR valve also increases, and the life of the EGR valve and the actuator that rotates the EGR valve is reduced.

特許文献3では、エンジン回転時に「固着回避動作」を実施しているが、デポジット除去のためのEGRバルブの回動は、EGRバルブの目標開度がその全閉位置近傍の所定開度以下の場合に行われるため、この条件が成立しない運転状態では、「固着回避動作」を実施できないという問題がある。   In Patent Document 3, “sticking avoidance operation” is performed at the time of engine rotation, but the rotation of the EGR valve for deposit removal is performed when the target opening of the EGR valve is less than a predetermined opening near the fully closed position. Therefore, there is a problem that the “sticking avoidance operation” cannot be performed in an operation state in which this condition is not satisfied.

特許文献4では、エンジン回転時に「固着回避動作」を実施しているが、高温の排気ガスをEGRバルブに流すためのバイパス通路およびバイパスバルブを設ける必要があり、装置の構成が複雑化するという問題がある。   In Patent Document 4, “adhesion avoidance operation” is performed during engine rotation, but it is necessary to provide a bypass passage and a bypass valve for flowing hot exhaust gas to the EGR valve, which complicates the configuration of the apparatus. There's a problem.

上記問題点を背景として、本発明の課題は、エンジン停止後の、「固着回避動作」を実施する時期を最適化することで、無駄なバルブ開閉動作を防止し、バルブの長寿命化および省電力化を図ることが可能な内燃機関の制御装置を提供することにある。   Against the background of the above problems, the object of the present invention is to optimize the timing for performing the “sticking avoidance operation” after the engine is stopped, thereby preventing unnecessary valve opening / closing operations, extending the life of the valve and saving it. An object of the present invention is to provide a control device for an internal combustion engine capable of achieving electric power.

課題を解決するための手段および発明の効果Means for Solving the Problems and Effects of the Invention

上記課題を解決するための内燃機関の制御装置は、内燃機関(10)の吸気が流通する吸気通路(15)と、内燃機関からの排気が流通する排気通路(51)と、排気通路から吸気通路へ排気を還流させる還流通路(21,41)と、還流通路に設けられ、該還流通路を還流する排気の流量を調節するバルブ(23a,43a)と、予め定められた推定タイミングが到来したときに、還流通路における排気の還流状態を取得する還流状態取得部(23b,43b,24,44)と、取得した還流状態と、予め記憶された該還流状態の基準状態とを比較して、その比較結果に基づいて、バルブの固着を解消または防止する固着回避動作を行う必要があるか否かを判定する判定部(60)と、判定部が固着回避動作を行う必要があると判定した場合、内燃機関が回転状態から停止状態に遷移したときに、該固着回避動作の実行を指示する旨を含む指示情報を出力する指示情報出力部(60)と、を備えることを特徴とする。   An internal combustion engine control apparatus for solving the above problems includes an intake passage (15) through which intake air of the internal combustion engine (10) flows, an exhaust passage (51) through which exhaust from the internal combustion engine flows, and intake air from the exhaust passage. Recirculation passages (21, 41) that recirculate exhaust gas to the passages, valves (23a, 43a) that are provided in the recirculation passages and adjust the flow rate of exhaust gas that recirculates the recirculation passages, and a predetermined estimated timing has arrived Sometimes, the recirculation state acquisition unit (23b, 43b, 24, 44) for acquiring the recirculation state of the exhaust gas in the recirculation passage is compared with the acquired recirculation state and the reference state of the recirculation state stored in advance. Based on the comparison result, the determination unit (60) for determining whether or not the sticking avoidance operation for eliminating or preventing the sticking of the valve needs to be performed, and the determination unit determines that the sticking avoidance operation needs to be performed. Place , When the internal combustion engine is shifted from the rotating state to the stop state, characterized in that it comprises instruction information output unit for outputting the instruction information including the instructing execution of solid deposition avoidance operation (60), the.

上記構成によって、エンジン停止後の、「固着回避動作」を実施する時期を最適化でき、無駄なバルブ開閉動作を防止し、バルブの長寿命化および省電力化が可能となる。また、従来の内燃機関の構成を変更するものではなく、例えば内燃機関を制御するソフトウェアの変更のみで本発明の構成を実現することもでき、製造コストを抑えることもできる。   With the above configuration, it is possible to optimize the timing for performing the “sticking avoidance operation” after the engine is stopped, to prevent useless valve opening / closing operations, and to extend the life of the valve and save power. In addition, the configuration of the conventional internal combustion engine is not changed. For example, the configuration of the present invention can be realized only by changing the software for controlling the internal combustion engine, and the manufacturing cost can be reduced.

本発明の内燃機関の制御装置の構成を示す図。The figure which shows the structure of the control apparatus of the internal combustion engine of this invention. 固着回避制御処理を説明するフロー図。The flowchart explaining sticking avoidance control processing. 図2の固着回避制御の流れを示すタイミングチャート。The timing chart which shows the flow of sticking avoidance control of FIG. 固着回避制御処理の別例を説明するフロー図。The flowchart explaining another example of sticking avoidance control processing. 図4でEGR流量の基準値を算出するためのマップデータの例を示す図。The figure which shows the example of the map data for calculating the reference value of EGR flow volume in FIG. 図4の固着回避制御の概念を示す図。The figure which shows the concept of the sticking avoidance control of FIG. 図4の固着回避制御の流れを示すタイミングチャート。The timing chart which shows the flow of the sticking avoidance control of FIG.

以下、本発明の実施形態を、図面を参照しつつ説明する。図1に、本発明に係る内燃機関の制御装置1(以下、装置1)の概略を示す。装置1は、例えば、自動車車両の内燃機関(エンジン)に対して構成する。なお、図1では、ディーゼルエンジンを例示しているが、その構成は周知であるため、概略を述べるにとどめる。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an outline of a control device 1 (hereinafter, device 1) for an internal combustion engine according to the present invention. The device 1 is configured for an internal combustion engine (engine) of an automobile vehicle, for example. In addition, although the diesel engine is illustrated in FIG. 1, since the structure is well-known, only an outline will be described.

装置1は、エンジン10(シリンダ11、サプライポンプ12、コモンレールユニット13、インジェクタ14の総称)、吸気管15、排気管51、高圧EGRシステム20、低圧EGRシステム40、電子制御ユニット60(ECU:Electronic Control Unit)などを備える。   The apparatus 1 includes an engine 10 (a general term for a cylinder 11, a supply pump 12, a common rail unit 13, and an injector 14), an intake pipe 15, an exhaust pipe 51, a high pressure EGR system 20, a low pressure EGR system 40, and an electronic control unit 60 (ECU: Electronic). Control Unit).

例えばサージタンクと一体化された吸気マニホールド31から取り込まれた空気は、吸気管15を通じてエンジン10に供給される。エンジン10からの排気は排気管51を通じて車外に排出される。吸気管15は、吸気スロットル16、エアフロメータ32、インタークーラ35の他に、吸気マニホールド31内の温度を検出する温度センサおよび吸気マニホールド31内の圧力を検出する圧力センサ(いずれも図示せず)を備える。吸気スロットル16の開度調節によって吸気量が調節される。エアフロメータ32は吸気量を検出する。インタークーラ35により吸気が冷却されて、より多くの空気を吸気管15からエンジン10に送ることが可能となる。   For example, air taken in from the intake manifold 31 integrated with the surge tank is supplied to the engine 10 through the intake pipe 15. Exhaust gas from the engine 10 is discharged outside the vehicle through the exhaust pipe 51. The intake pipe 15 includes, in addition to the intake throttle 16, the air flow meter 32, and the intercooler 35, a temperature sensor that detects the temperature in the intake manifold 31 and a pressure sensor that detects the pressure in the intake manifold 31 (all not shown). Is provided. The intake air amount is adjusted by adjusting the opening of the intake throttle 16. The air flow meter 32 detects the intake air amount. The intake air is cooled by the intercooler 35, and more air can be sent from the intake pipe 15 to the engine 10.

排気管51には排気圧センサ58が備えられている。排気圧センサ58によって排気管51内の圧力を検出し、検出値に基づいて排気圧調整弁59の開閉を行う。過給器33は、排気管51にタービン33b、吸気管4にコンプレッサ33aを備えて、排気によって駆動されたタービン33bから駆動力を伝達されたコンプレッサ33aが吸気を圧縮して、より多くの空気をエンジン10に送る。   The exhaust pipe 51 is provided with an exhaust pressure sensor 58. The pressure in the exhaust pipe 51 is detected by the exhaust pressure sensor 58, and the exhaust pressure adjustment valve 59 is opened and closed based on the detected value. The supercharger 33 includes a turbine 33b in the exhaust pipe 51 and a compressor 33a in the intake pipe 4, and the compressor 33a to which driving force is transmitted from the turbine 33b driven by the exhaust compresses the intake air so that more air is supplied. Is sent to the engine 10.

DOC52は、ディーゼル用酸化触媒であり、エンジン10から排出された未燃焼ガス(HC,CO)を酸化する。   The DOC 52 is a diesel oxidation catalyst and oxidizes unburned gas (HC, CO) discharged from the engine 10.

DPF53は、エンジン10から排出されたPMを捕集するフィルタである。DPF53は、例えば、いわゆるハニカム構造において入口側と出口側を交互に目詰めした構造となっている。エンジン10の運転中に排出される排気に含まれたPMは、DPF53を通過するときに、DPF壁の内部あるいは表面に捕集される。DPF53は酸化触媒が担持された酸化触媒付きDPFとしてもよい。   The DPF 53 is a filter that collects PM discharged from the engine 10. For example, the DPF 53 has a structure in which the inlet side and the outlet side are alternately clogged in a so-called honeycomb structure. PM contained in the exhaust discharged during operation of the engine 10 is collected inside or on the surface of the DPF wall when passing through the DPF 53. The DPF 53 may be a DPF with an oxidation catalyst on which an oxidation catalyst is supported.

そして、DPF53に堆積したPM量の推定値が所定量を超えたと判定されたとき、例えばエンジン筒内でのメイン噴射後のポスト噴射などによってDPF53を昇温して堆積したPMを燃焼してDPF53を再生する。その際、DPF53におけるPM堆積量の推定方法としては、例えば、差圧センサ56を用いてDPF53の入口側と出口側における圧力差(前後差圧)を計測し、その計測値と、予め求めておいた差圧−PM堆積量間の関係を示すマップとから、PM堆積量を推定する。   When it is determined that the estimated value of the PM amount accumulated in the DPF 53 has exceeded a predetermined amount, for example, the DPF 53 is heated by post injection after the main injection in the engine cylinder, and the accumulated PM is burned to burn the DPF 53 Play. At this time, as an estimation method of the PM accumulation amount in the DPF 53, for example, the pressure difference (front-rear differential pressure) on the inlet side and the outlet side of the DPF 53 is measured using the differential pressure sensor 56, and the measured value is obtained in advance. The PM deposition amount is estimated from the map showing the relationship between the placed differential pressure and the PM deposition amount.

DOC52の上流側、DOC52の下流側(すなわち、DPF53の上流側)、およびDPF53の下流側には、それぞれ、DOC52およびDPF53を高温の排気ガスから保護するための、排気温センサ54、55、57を備える。   On the upstream side of the DOC 52, the downstream side of the DOC 52 (that is, the upstream side of the DPF 53), and the downstream side of the DPF 53, exhaust temperature sensors 54, 55, 57 for protecting the DOC 52 and the DPF 53 from high-temperature exhaust gas, respectively. Is provided.

高圧EGRシステム20および低圧EGRシステム40は、排気管51から吸気管15への排気再循環(EGR)のための配管である。高圧EGRシステム20は、EGR管21、EGRクーラ22、バルブユニット23、バルブ23aの上流側と下流側における排気の圧力差(差圧)を計測する差圧センサ24、流量センサ25を備え、タービン33bの上流側からコンプレッサ33aの下流側(さらに、吸気スロットル16の下流側)へ排気を還流する。また、バルブユニット23には、バルブ23aの他にバルブ23aの開度を検出する開度センサ23bも含まれている。   The high pressure EGR system 20 and the low pressure EGR system 40 are pipes for exhaust gas recirculation (EGR) from the exhaust pipe 51 to the intake pipe 15. The high-pressure EGR system 20 includes an EGR pipe 21, an EGR cooler 22, a valve unit 23, a differential pressure sensor 24 that measures a pressure difference (differential pressure) between the upstream side and the downstream side of the valve 23a, and a flow rate sensor 25. The exhaust gas is recirculated from the upstream side of 33b to the downstream side of the compressor 33a (further downstream of the intake throttle 16). The valve unit 23 also includes an opening degree sensor 23b that detects the opening degree of the valve 23a in addition to the valve 23a.

また、低圧EGRシステム40は、EGR管41、EGRクーラ42、バルブユニット43、バルブ43aの上流側と下流側における排気の圧力差(差圧)を計測する差圧センサ44、流量センサ45を備え、過給器33のタービン33bの下流側(さらにDPF53の下流側)からコンプレッサ33aの上流側へ排気を還流する。また、バルブユニット43には、バルブ43aの他にバルブ43aの開度を検出する開度センサ43bも含まれている。   Further, the low pressure EGR system 40 includes an EGR pipe 41, an EGR cooler 42, a valve unit 43, a differential pressure sensor 44 for measuring a pressure difference (differential pressure) between exhaust gas upstream and downstream of the valve 43a, and a flow rate sensor 45. The exhaust gas is recirculated from the downstream side of the turbine 33b of the supercharger 33 (further downstream of the DPF 53) to the upstream side of the compressor 33a. In addition to the valve 43a, the valve unit 43 includes an opening degree sensor 43b that detects the opening degree of the valve 43a.

高圧EGRシステム20および低圧EGRシステム40では、それぞれモータで駆動されるバルブ23a、43aの開度によって還流する排気量を調節する。例えば、高圧EGRシステム20では、流量センサ25が検出するEGR管21内の排気の流量が所定値となるように、ECU60からバルブ23aを駆動するモータに駆動信号を出力する。あるいは、開度センサ23bの検出値に基づいて、バルブ23aが定められた開度になるように、ECU60からバルブ23aを駆動するモータに駆動信号を出力する。低圧EGRシステム40も、同様の動作をする。   In the high-pressure EGR system 20 and the low-pressure EGR system 40, the amount of exhaust gas recirculated is adjusted by the opening degree of valves 23a and 43a driven by motors, respectively. For example, in the high pressure EGR system 20, the ECU 60 outputs a drive signal to the motor that drives the valve 23a so that the flow rate of the exhaust gas in the EGR pipe 21 detected by the flow sensor 25 becomes a predetermined value. Alternatively, a drive signal is output from the ECU 60 to the motor that drives the valve 23a so that the valve 23a has a predetermined opening based on the detection value of the opening sensor 23b. The low pressure EGR system 40 operates in the same manner.

また、EGRクーラ22、42により、還流する排気を冷却して、より多くの排気還流を可能にする。これらEGRシステムによる排気の再循環によって、エンジン内の燃焼温度が低下し、エンジンからのNOxの排出量を減少できる。   In addition, the exhaust gas that recirculates is cooled by the EGR coolers 22 and 42, thereby enabling more exhaust gas recirculation. By the exhaust gas recirculation by these EGR systems, the combustion temperature in the engine is lowered, and the NOx emission from the engine can be reduced.

エンジン10が高負荷状態では、過給器33による必要吸気圧を確保すること(タービン33b側への排気流量の確保)により、高圧EGRシステム20のみでは排気通路から還流できるEGR量が確保できないことがある。そこで、過給器33の過給による吸気圧上昇の影響を受けないよう、コンプレッサ33aよりも吸気通路上流側に連通する低圧EGRシステム40でEGRを実行する。これにより、高負荷域で吸気が過給されている状況下でも、十分なEGR量を確保できる。無論、低圧EGRシステム40を備えていない構成としてもよい。   When the engine 10 is in a high load state, it is impossible to secure an EGR amount that can be recirculated from the exhaust passage only by the high-pressure EGR system 20 by securing the necessary intake pressure by the supercharger 33 (securing the exhaust flow rate to the turbine 33b side). There is. Therefore, EGR is executed by the low pressure EGR system 40 communicating with the upstream side of the intake passage relative to the compressor 33a so as not to be affected by the intake pressure increase due to supercharging of the supercharger 33. As a result, a sufficient EGR amount can be ensured even under conditions where intake air is supercharged in a high load range. Of course, the low pressure EGR system 40 may not be provided.

なお、EGR管21が、排気通路に装備されたタービン(33b)よりも上流から、吸気通路に装備されたコンプレッサ(33a)よりも下流へ排気を還流する第1還流通路(21)に相当する。また、EGR管41が、排気通路に装備されたタービンよりも下流から、吸気通路に装備されたコンプレッサよりも上流へ排気を還流する第2還流通路(41)に相当する。   The EGR pipe 21 corresponds to the first recirculation passage (21) that recirculates the exhaust gas from the upstream side of the turbine (33b) equipped in the exhaust passage to the downstream side of the compressor (33a) equipped in the intake passage. . The EGR pipe 41 corresponds to a second recirculation passage (41) that recirculates exhaust gas from the downstream side of the turbine equipped in the exhaust passage to the upstream side of the compressor equipped in the intake passage.

ECU60は、CPU60a、不揮発性のメモリ60bやRAM(図示せず)、および信号入出力回路やA/D変換回路など(図示せず)を含む通常のコンピュータとして構成され、装置1の各種演算や制御を司る。図1には、点線によってECU60と装置1の各部との間の代表的な情報の授受が示されている。例えばECU60は、エンジン10のインジェクタ14における燃料噴射、吸気スロットル16の開度、バルブ23a、43aの開度などを制御する。   The ECU 60 is configured as a normal computer including a CPU 60a, a nonvolatile memory 60b and a RAM (not shown), a signal input / output circuit, an A / D conversion circuit, and the like (not shown). Control. In FIG. 1, transfer of representative information between the ECU 60 and each part of the apparatus 1 is shown by dotted lines. For example, the ECU 60 controls the fuel injection in the injector 14 of the engine 10, the opening degree of the intake throttle 16, the opening degree of the valves 23a and 43a, and the like.

また、ECU60は、エアフロメータ32、差圧センサ(24、44)、流量センサ(25、45)、差圧センサ56、排気温センサ54、55、57、排気圧センサ58等の計測値を取得する。さらに、ECU60は、エンジン10の回転数を検出するエンジン回転センサ17、エンジン10の始動/停止を行うためのイグニッションスイッチ61の状態も取得する。   Further, the ECU 60 acquires measured values of the air flow meter 32, the differential pressure sensors (24, 44), the flow rate sensors (25, 45), the differential pressure sensor 56, the exhaust temperature sensors 54, 55, 57, the exhaust pressure sensor 58, and the like. To do. Further, the ECU 60 also acquires the state of the engine rotation sensor 17 that detects the rotation speed of the engine 10 and the ignition switch 61 for starting / stopping the engine 10.

図2を用いて、ECU60のメモリ60bに記憶されたプログラムに含まれ、CPU60aが実行する固着回避制御処理について説明する。まず、エンジンが始動したか否かを判定する。すなわち、イグニッションスイッチ61の状態を取得して、イグニッションスイッチ61がオン状態であるか否かを判定する。   The sticking avoidance control process included in the program stored in the memory 60b of the ECU 60 and executed by the CPU 60a will be described with reference to FIG. First, it is determined whether or not the engine has been started. That is, the state of the ignition switch 61 is acquired, and it is determined whether or not the ignition switch 61 is on.

イグニッションスイッチ61がオン状態でエンジンが始動したとき(S11:Yes)、エンジン回転センサ17の状態を取得して、エンジン10の回転数が予め定められたアイドル回転数領域に含まれているアイドル状態であるか否かを判定する。この構成が、内燃機関の回転状態がアイドル状態に遷移したときに、推定タイミングが到来したとするものに相当する。アイドル状態は、走行状態に比べてエンジン10の回転数の変動が小さいので、バルブの開度、EGR流量、あるいは差圧センサの値も変動が少なく、より正確に固着回避動作を実行する必要があるか否かを判定することができる。   When the engine is started with the ignition switch 61 turned on (S11: Yes), the state of the engine speed sensor 17 is acquired, and the engine speed of the engine 10 is included in a predetermined idle speed region. It is determined whether or not. This configuration corresponds to the case where the estimated timing has arrived when the rotational state of the internal combustion engine transitions to the idle state. In the idle state, since the fluctuation of the rotation speed of the engine 10 is smaller than that in the traveling state, the valve opening degree, the EGR flow rate, or the value of the differential pressure sensor is less changed, and it is necessary to execute the sticking avoidance operation more accurately. It can be determined whether or not there is.

エンジン10がアイドル状態であるとき(S12:Yes)、バルブ23a、43aの状態(以下、「バルブ状態」と称する)を取得する。(S13)なお、バルブ状態は、以下のうちの少なくとも一方を用いる。
・バルブ(23a、43a)の開度(CPU60aで演算して各バルブユニット(23、43)に出力する指令値、あるいは開度センサ(23b、43b)の電圧値)。
・差圧センサ(24、44)の出力値。差圧センサは、圧力値に応じた電圧を出力するので、この電圧値を取得し、A/D変換等を行って差圧を算出する。
When the engine 10 is in the idle state (S12: Yes), the state of the valves 23a and 43a (hereinafter referred to as “valve state”) is acquired. (S13) The valve state uses at least one of the following.
Opening degree of valve (23a, 43a) (command value calculated by CPU 60a and output to each valve unit (23, 43) or voltage value of opening degree sensor (23b, 43b)).
The output value of the differential pressure sensor (24, 44). Since the differential pressure sensor outputs a voltage corresponding to the pressure value, the voltage value is acquired and A / D conversion or the like is performed to calculate the differential pressure.

エンジン10がアイドル状態であるとき(S12:No)、本処理を終了してもよい。   When the engine 10 is in an idle state (S12: No), this process may be terminated.

次に、上述のバルブ状態の基準値が記憶済みであるか否かを調べる。この基準値は、通常は、車両の工場出荷時の検査段階で、メモリ60bに記憶するようになっている(いわゆる、初期値)。また、ディーラーあるいは整備工場でエンジンの動作状態の初期化(メモリ60bのクリア)を行った後に、記憶することもできる。   Next, it is checked whether or not the above-described valve state reference value has been stored. This reference value is normally stored in the memory 60b at the inspection stage when the vehicle is shipped from the factory (so-called initial value). Further, it can be stored after the engine operating state is initialized (the memory 60b is cleared) at the dealer or the maintenance shop.

バルブ状態の基準値が記憶済みでないとき(S14:No)、取得したバルブ状態を基準値としてメモリ60bに記憶する(S15)。その後、本処理を終了する。   When the reference value of the valve state is not stored (S14: No), the acquired valve state is stored in the memory 60b as a reference value (S15). Thereafter, this process is terminated.

一方、バルブ状態の基準値が記憶済みであるとき(S14:Yes)、以下のうちの一つ以上の条件を用いて、このアイドル状態が、走行後のアイドル状態か否かを判定する。
・イグニッションスイッチ61がオン状態となってから所定時間が経過したときのアイドル状態を、走行後のアイドル状態とする。
・イグニッションスイッチ61がオン状態となってから、あるいはエンジン10がアイドル状態になってから、エンジン10の回転数がアイドル回転数領域を超える状態(「走行状態」と称することもある)が所定時間続いた後のアイドル状態を、走行後のアイドル状態とする。
On the other hand, when the reference value of the valve state has been stored (S14: Yes), it is determined whether this idle state is an idle state after traveling using one or more of the following conditions.
The idle state when a predetermined time has elapsed after the ignition switch 61 is turned on is the idle state after traveling.
A state where the rotational speed of the engine 10 exceeds the idle rotational speed region (sometimes referred to as “running state”) after the ignition switch 61 is turned on or the engine 10 is in an idle state is a predetermined time. Let the idle state after continuing be an idle state after a run.

走行後のアイドル状態でないとき(S22:No)、本処理を終了する。一方、走行後のアイドル状態であるとき(S22:Yes)、先に取得したバルブ状態と該基準値とを比較する(S16)。そして、両者の差が所定値以上であるか否かを判定する。判定部は、エンジンの状態が走行状態からアイドル状態に遷移したときに、固着回避動作を実行する必要があるか否かを判定する構成に相当する。これにより、デポジットの付着量は走行状態の方が多いので、必要なときにのみ該判定を行うことができ、ECU60の処理負荷を低減できる。   When it is not in the idle state after traveling (S22: No), this process is terminated. On the other hand, when the vehicle is in the idle state after traveling (S22: Yes), the previously acquired valve state is compared with the reference value (S16). Then, it is determined whether or not the difference between the two is a predetermined value or more. The determination unit corresponds to a configuration for determining whether or not the sticking avoidance operation needs to be performed when the state of the engine transitions from the traveling state to the idle state. As a result, since the deposit adhesion amount is greater in the running state, the determination can be made only when necessary, and the processing load on the ECU 60 can be reduced.

両者の差が所定値以上であるとき(S17:Yes)、メモリ60b上の固着回避動作フラグをセットする(S18)。一方、両者の差が所定値以上でないとき(S17:No)、何もしない。   When the difference between the two is equal to or greater than the predetermined value (S17: Yes), the sticking avoidance operation flag on the memory 60b is set (S18). On the other hand, when the difference between them is not greater than or equal to the predetermined value (S17: No), nothing is done.

そして、イグニッションスイッチ61がオフ状態となって、あるいはエンジン10がアイドルストップ状態となって、エンジン10が停止したとき(S19:Yes)、固着回避動作フラグがセットされているか否かを判定する。固着回避動作フラグがセットされていないとき(S20:No)、本処理を終了する。   Then, when the ignition switch 61 is turned off or the engine 10 is in the idle stop state and the engine 10 is stopped (S19: Yes), it is determined whether or not the sticking avoidance operation flag is set. When the sticking avoidance operation flag is not set (S20: No), this process ends.

一方、固着回避動作フラグがセットされているとき(S20:Yes)、上述のような、バルブ(23a、43a)を全閉位置付近で所定の開度だけ開閉動作させ、付着したデポジットをバルブによって掻き落とす固着回避動作を実行する(S21)。このとき、メモリ60b上の固着回避動作フラグをクリアする。   On the other hand, when the sticking avoidance operation flag is set (S20: Yes), as described above, the valves (23a, 43a) are opened and closed by a predetermined opening degree near the fully closed position, and the deposited deposit is made by the valve. The sticking avoidance operation for scraping off is executed (S21). At this time, the sticking avoidance operation flag on the memory 60b is cleared.

また、図2の、走行後のアイドル状態であるか否かの判定を行わず、ステップS22を実行しない構成としてもよい。走行前のアイドル状態におけるバルブ状態は、基準値とほぼ等しいと思われるので、固着回避動作フラグはセットされず、固着回避動作も実行されないと考えられるためである。   Moreover, it is good also as a structure which does not determine whether it is the idle state after driving | running | working of FIG. 2, and does not perform step S22. This is because it is considered that the sticking avoidance operation flag is not set and the sticking avoidance operation is not executed because the valve state in the idle state before traveling is considered to be substantially equal to the reference value.

なお、バルブ状態としてバルブ(23a、43a)の開度を用いる構成が、還流状態取得部は、バルブの開度を検出するバルブ開度検出部(23b,43b)を含み、判定部は、バルブの開度の検出値と、該開度の基準値との比較に基づいて、固着回避動作を行う必要があるか否かを判定するものに相当する。また、バルブ状態として差圧を用いる構成が、還流状態取得部は、バルブの上流側の排気と下流側の排気との圧力差である差圧を検出する差圧検出部(24,44)を含み、判定部は、差圧の検出値と、該差圧の基準値との比較に基づいて、固着回避動作を行う必要があるか否かを判定するものに相当する。   In addition, the structure which uses the opening degree of valve | bulb (23a, 43a) as a valve state, a recirculation | reflux state acquisition part contains the valve opening degree detection part (23b, 43b) which detects the opening degree of a valve, and a determination part is a valve | bulb. This corresponds to determining whether or not it is necessary to perform the sticking avoidance operation based on a comparison between the detected value of the opening and the reference value of the opening. Further, the configuration using the differential pressure as the valve state is such that the recirculation state acquisition unit has a differential pressure detection unit (24, 44) that detects a differential pressure that is a pressure difference between the exhaust on the upstream side and the exhaust on the downstream side of the valve. In addition, the determination unit corresponds to determining whether or not the sticking avoidance operation needs to be performed based on a comparison between the detected value of the differential pressure and the reference value of the differential pressure.

また、図2の処理のバルブ状態と該基準値との比較において、バルブ開度検出値と該開度の基準値との差が所定値を上回り、かつ、差圧と該差圧の基準値との差が所定値を上回るときに、固着回避動作を行う必要があると判定するようにしてもよい。このようにすることで、より正確にバルブおよびその近傍にデポジットが堆積しているか否かを判定できるとともに、本当に必要なときのみに固着回避動作を行うことができる。   Further, in the comparison between the valve state of the processing of FIG. 2 and the reference value, the difference between the valve opening detection value and the reference value of the opening exceeds a predetermined value, and the differential pressure and the reference value of the differential pressure When the difference between the values exceeds a predetermined value, it may be determined that the sticking avoidance operation needs to be performed. In this way, it is possible to determine whether or not deposits have accumulated on the valve and its vicinity more accurately, and it is possible to perform the sticking avoidance operation only when it is really necessary.

図3に、図2における、イグニッションスイッチ61の状態(IG)、エンジン10の回転数(NE)、EGR流量(すなわち、流量センサ値)、EGR差圧(すなわち、差圧センサ値)、およびバルブ開度(バルブの開度センサの値でもよい)の関係を示す。この関係は、高圧EGRシステム20および低圧EGRシステム40に適用される。   FIG. 3 shows the state (IG) of the ignition switch 61, the rotational speed (NE) of the engine 10, the EGR flow rate (that is, the flow rate sensor value), the EGR differential pressure (that is, the differential pressure sensor value), and the valve in FIG. The relationship of the opening (it may be the value of the valve opening sensor) is shown. This relationship applies to the high pressure EGR system 20 and the low pressure EGR system 40.

IGがOFF状態からON状態に遷移して、エンジン10がアイドル状態(IDL)になると、EGR流量、EGR差圧、バルブ開度は、それぞれ所定値(IDL流量、IDL差圧、IDL開度)となる(A1の状態)。   When the IG transitions from the OFF state to the ON state and the engine 10 enters the idle state (IDL), the EGR flow rate, EGR differential pressure, and valve opening are predetermined values (IDL flow, IDL differential pressure, IDL opening), respectively. (State of A1).

エンジン10の回転数がアイドル状態よりも高くなると、バルブ開度はエンジン10の所定回転数以上でゼロとなり、これに伴い、EGR流量もゼロとなる。また、EGR差圧は、排気圧力に依存するため、燃料噴射を行っている加速時(例えば、エンジン回転上昇時)はIDL差圧を上回り、燃料噴射を行っていない減速時(例えば、エンジン回転下降時)はIDL差圧を下回る。なお、図3で、エンジン回転数がアイドル状態より高い状態で略一定となっている走行時は、燃料噴射の状態により変化する。(B1、B2の状態)。   When the rotational speed of the engine 10 becomes higher than the idling state, the valve opening becomes zero when the engine rotational speed is equal to or higher than the predetermined rotational speed of the engine 10, and accordingly, the EGR flow rate becomes zero. In addition, since the EGR differential pressure depends on the exhaust pressure, the acceleration during fuel injection (for example, when the engine speed increases) exceeds the IDL differential pressure and the engine is not decelerated (for example, the engine speed). At the time of descent), it falls below the IDL differential pressure. In FIG. 3, when the engine is running at a constant speed when the engine speed is higher than the idling state, it varies depending on the state of fuel injection. (States of B1 and B2).

エンジン10が走行状態からアイドル状態に遷移すると、EGR流量、EGR差圧、バルブ開度は、それぞれ所定値(IDL流量、IDL差圧、IDL開度)となる(A2の状態)。   When the engine 10 transitions from the running state to the idle state, the EGR flow rate, the EGR differential pressure, and the valve opening become predetermined values (IDL flow rate, IDL differential pressure, IDL opening) (state A2).

エンジン10がアイドルストップ状態に遷移すると(このとき、IGはON状態)、EGR流量、バルブ開度、およびEGR差圧はゼロとなる。(Cの状態)。アイドルストップ状態からアイドル状態に遷移すると、EGR流量、EGR差圧、バルブ開度は、それぞれ所定値(IDL流量、IDL差圧、IDL開度)となる(A3の状態)。   When the engine 10 transitions to the idle stop state (in this case, IG is in the ON state), the EGR flow rate, the valve opening degree, and the EGR differential pressure become zero. (State C). When transitioning from the idling stop state to the idling state, the EGR flow rate, the EGR differential pressure, and the valve opening are respectively set to predetermined values (IDL flow rate, IDL differential pressure, IDL opening) (state A3).

バルブ(23a、43a)およびその近傍に、上述のデポジットが堆積すると、流量センサ(25、45)が検出する流量がIDL流量よりも少なくなるので、流量を増やすために、ECU60の指令により、バルブ開度を通常のIDL開度よりも大きくする。A4の状態では、EGRバルブ開度の実線で示されたものが実際のバルブ開度で、点線で示されたものがIDL開度(本来の開度、基準値)である。   When the deposit is deposited on the valve (23a, 43a) and the vicinity thereof, the flow rate detected by the flow sensor (25, 45) is smaller than the IDL flow rate. The opening is made larger than the normal IDL opening. In the state of A4, the actual valve opening is shown by the solid line of the EGR valve opening, and the IDL opening (original opening, reference value) is shown by the dotted line.

この、実際のバルブ開度とIDL開度との差が所定値以上となると、次に、エンジン停止状態(すなわち、イグニッションスイッチ61がオフ状態、あるいはアイドルストップ状態)となったときに、固着回避動作を実行する(Dの状態)。   When the difference between the actual valve opening and the IDL opening is greater than or equal to a predetermined value, the sticking is avoided when the engine is stopped (that is, the ignition switch 61 is turned off or idle stopped). The operation is executed (state D).

また、バルブ(23a、43a)およびその近傍に、上述のデポジットが堆積すると、差圧センサ(24、44)が検出するEGR差圧(実線で表示)がIDL差圧(すなわち、基準値:破線で表示)よりも小さくなる。この、実際のEGR差圧とIDL差圧との差が所定値以上となると、次に、エンジン停止状態となったときに、固着回避動作を実行する(Dの状態)。   Further, when the deposit is deposited on the valve (23a, 43a) and its vicinity, the EGR differential pressure (indicated by a solid line) detected by the differential pressure sensor (24, 44) is the IDL differential pressure (ie, reference value: broken line). Smaller than). When the difference between the actual EGR differential pressure and the IDL differential pressure is equal to or greater than a predetermined value, the sticking avoidance operation is executed next when the engine is stopped (state D).

図4を用いて、固着回避制御処理の別例について説明する。まず、エンジンが始動したか否かを判定する。すなわち、イグニッションスイッチ61の状態を取得して、イグニッションスイッチ61がオン状態であるか否かを判定する。   Another example of the sticking avoidance control process will be described with reference to FIG. First, it is determined whether or not the engine has been started. That is, the state of the ignition switch 61 is acquired, and it is determined whether or not the ignition switch 61 is on.

イグニッションスイッチ61がオン状態でエンジンが始動したとき(S31:Yes)、エンジン回転センサ17の状態を取得して、エンジン10の回転数が予め定められたアイドル回転数領域に含まれているアイドル状態であるか否かを判定する。   When the engine is started with the ignition switch 61 turned on (S31: Yes), the state of the engine speed sensor 17 is acquired and the engine speed of the engine 10 is included in a predetermined idle speed region. It is determined whether or not.

エンジン10がアイドル状態であるとき(S32:Yes)、EGR管(21、41)の排気の流量状態、すなわち、流量センサ(25、45)の値を取得する(S33)。続いて、バルブ23a、43aの状態(すなわち、「バルブ状態」)を取得する(S34)。なお、バルブ状態は、以下のうちの少なくとも一方を用いる(詳細は、図2と同様)。
・バルブ(23a、43a)の開度。
・差圧センサ(24、44)の出力値。
When the engine 10 is in the idle state (S32: Yes), the flow rate state of the exhaust gas in the EGR pipe (21, 41), that is, the value of the flow rate sensor (25, 45) is acquired (S33). Subsequently, the state of the valves 23a and 43a (ie, “valve state”) is acquired (S34). The valve state uses at least one of the following (details are the same as in FIG. 2).
-Opening degree of the valve (23a, 43a).
The output value of the differential pressure sensor (24, 44).

次に、バルブ状態に基づいて、排気の流量の基準値(すなわち、EGR管にデポジットが堆積していない状態における排気の流量値)を算出する(S35)。流量の基準値は、図5のように、バルブ(23a、43a)の開度と差圧との関係に基づくマップ値として、予めメモリ60bに記憶されている。これは、排気の流量の基準値は、バルブの開度と差圧との関係に基づくマップ値として予め記憶されている構成に相当する。これにより、排気の流量の基準値の算出および実測値との比較要する時間を短縮できる。   Next, based on the valve state, a reference value of the exhaust gas flow rate (that is, the exhaust gas flow rate value when no deposit is accumulated in the EGR pipe) is calculated (S35). As shown in FIG. 5, the reference value of the flow rate is stored in advance in the memory 60b as a map value based on the relationship between the opening degree of the valve (23a, 43a) and the differential pressure. This corresponds to a configuration in which the reference value of the exhaust gas flow rate is stored in advance as a map value based on the relationship between the opening degree of the valve and the differential pressure. As a result, the time required to calculate the reference value of the exhaust gas flow rate and to compare it with the actual measurement value can be shortened.

次に、図6のように、先に取得した流量状態(実測定値)と、バルブ状態に基づく流量の基準値とを比較する(S36)。そして、両者の差が所定値以上であるか否かを判定する。   Next, as shown in FIG. 6, the previously obtained flow rate state (actual measurement value) is compared with the reference value of the flow rate based on the valve state (S36). Then, it is determined whether or not the difference between the two is a predetermined value or more.

図4に戻り、両者の差が所定値以上であるとき(S37:Yes)、メモリ60b上の固着回避動作フラグをセットする(S38)。一方、両者の差が所定値以上でないとき(S37:No)、何もしない。   Returning to FIG. 4, when the difference between the two is equal to or greater than the predetermined value (S37: Yes), the sticking avoidance operation flag on the memory 60b is set (S38). On the other hand, when the difference between the two is not greater than or equal to the predetermined value (S37: No), nothing is done.

そして、イグニッションスイッチ61がオフ状態となって、あるいはエンジン10がアイドルストップ状態となって、エンジン10が停止したとき(S39:Yes)、固着回避動作フラグがセットされているか否かを判定する。固着回避動作フラグがセットされていないとき(S40:No)、本処理を終了する。   Then, when the ignition switch 61 is turned off or the engine 10 is in the idle stop state and the engine 10 is stopped (S39: Yes), it is determined whether or not the sticking avoidance operation flag is set. When the sticking avoidance operation flag is not set (S40: No), this process ends.

一方、固着回避動作フラグがセットされているとき(S40:Yes)、上述のような、バルブ(23a、43a)を全閉位置付近で所定の開度だけ開閉動作させ、付着したデポジットをバルブによって掻き落とす固着回避動作を実行する(S41)。このとき、メモリ60b上の固着回避動作フラグをクリアする。   On the other hand, when the sticking avoidance operation flag is set (S40: Yes), as described above, the valves (23a, 43a) are opened and closed by a predetermined opening degree near the fully closed position, and the deposited deposit is made by the valve. The sticking avoidance operation for scraping off is executed (S41). At this time, the sticking avoidance operation flag on the memory 60b is cleared.

なお、図4の構成が、還流状態取得部は、還流通路を流通する排気の流量を測定する排気流量測定部(25,45)を含み、判定部は、排気の流量の検出値と、該流量の基準値との比較に基づいて、固着回避動作を行う必要があるか否かを判定するものに相当する。   In the configuration of FIG. 4, the recirculation state acquisition unit includes an exhaust flow rate measurement unit (25, 45) that measures the flow rate of the exhaust gas flowing through the recirculation passage, and the determination unit includes the detected value of the exhaust flow rate, This corresponds to determining whether or not the sticking avoidance operation needs to be performed based on the comparison with the reference value of the flow rate.

図7に、図4における、イグニッションスイッチ61の状態(IG)、エンジン10の回転数(NE)、EGR流量(すなわち、流量センサ値)、EGR差圧(すなわち、差圧センサ値)、およびバルブ開度(バルブの開度センサの値でもよい)の関係を示す。この関係は、高圧EGRシステム20および低圧EGRシステム40に適用される。なお、図3と同様の状態については、同一の符号を付与し、ここでの詳細な説明は割愛する。   FIG. 7 shows the state (IG) of the ignition switch 61, the rotational speed (NE) of the engine 10, the EGR flow rate (ie, the flow rate sensor value), the EGR differential pressure (ie, the differential pressure sensor value), and the valve in FIG. The relationship of the opening (it may be the value of the valve opening sensor) is shown. This relationship applies to the high pressure EGR system 20 and the low pressure EGR system 40. In addition, about the state similar to FIG. 3, the same code | symbol is provided and detailed description here is omitted.

バルブ(23a、43a)およびその近傍に、上述のデポジットが堆積すると、流量センサ(25、45)が検出するEGR流量が通常よりも低下する、あるいは差圧センサ値が通常よりも低下するので、ECU60の制御により、流量を維持するためにバルブの開度を大きくする。しかし、このバルブの開度あるいは差圧センサ値に基づくEGR流量のマップデータ値(Eの状態の実線部)は、実測定値(Eの状態の破線部)よりも大きくなる。つまり、ECU60が指示したバルブの開度の割に、EGR流量が少ない状態である。   If the deposit is deposited on the valve (23a, 43a) and the vicinity thereof, the EGR flow rate detected by the flow rate sensor (25, 45) is lowered than usual, or the differential pressure sensor value is lowered than usual. Under the control of the ECU 60, the valve opening is increased in order to maintain the flow rate. However, the map data value of the EGR flow rate based on the valve opening or the differential pressure sensor value (the solid line portion in the E state) is larger than the actual measurement value (the broken line portion in the E state). That is, the EGR flow rate is small relative to the valve opening degree instructed by the ECU 60.

そこで、EGR流量の実測定値とマップデータ値(すなわち、基準値)との差が所定値以上となると、次に、エンジン停止状態(すなわち、イグニッションスイッチ61がオフ状態、あるいはアイドルストップ状態)となったときに、固着回避動作を実行する(Dの状態)。   Therefore, when the difference between the actual measured value of the EGR flow rate and the map data value (that is, the reference value) is equal to or greater than a predetermined value, the engine is then stopped (that is, the ignition switch 61 is in the off state or the idle stop state). The sticking avoidance operation is executed (state D).

以上、本発明の実施の形態を説明したが、これらはあくまで例示にすぎず、本発明はこれらに限定されるものではなく、特許請求の範囲の趣旨を逸脱しない限りにおいて、当業者の知識に基づく種々の変更が可能である。   Although the embodiments of the present invention have been described above, these are merely examples, and the present invention is not limited to these embodiments, and the knowledge of those skilled in the art can be used without departing from the spirit of the claims. Various modifications based on this are possible.

1 内燃機関の制御装置(装置)
10 エンジン(内燃機関)
15 吸気管(吸気通路)
21 高圧EGR管(第1還流通路)
23a バルブ
23b 開度センサ(還流状態取得部,バルブ開度検出部)
24 差圧センサ(還流状態取得部,差圧検出部)
25 流量センサ(還流状態取得部,排気流量測定部)
33a コンプレッサ
33b タービン
41 低圧EGR管(第2還流通路)
43a バルブ
43b 開度センサ(還流状態取得部,バルブ開度検出部)
44 差圧センサ(還流状態取得部,差圧検出部)
45 流量センサ(還流状態取得部,排気流量測定部)
51 排気管(排気通路)
60 電子制御ユニット(判定部,指示情報出力部)
1 Internal combustion engine control device
10 Engine (Internal combustion engine)
15 Intake pipe (intake passage)
21 High pressure EGR pipe (first reflux passage)
23a Valve 23b Opening sensor (recirculation state acquisition unit, valve opening detection unit)
24 Differential pressure sensor (recirculation state acquisition unit, differential pressure detection unit)
25 Flow sensor (recirculation state acquisition unit, exhaust flow measurement unit)
33a Compressor 33b Turbine 41 Low pressure EGR pipe (second return passage)
43a Valve 43b Opening sensor (recirculation state acquisition unit, valve opening detection unit)
44 Differential pressure sensor (recirculation state acquisition unit, differential pressure detection unit)
45 Flow sensor (recirculation state acquisition unit, exhaust flow measurement unit)
51 Exhaust pipe (exhaust passage)
60 Electronic control unit (determination unit, instruction information output unit)

Claims (7)

内燃機関(10)の吸気が流通する吸気通路(15)と、
前記内燃機関からの排気が流通する排気通路(51)と、
前記排気通路から前記吸気通路へ排気を還流させる還流通路(21,41)と、
前記還流通路に設けられ、該還流通路を還流する排気の流量を調節するバルブ(23a,43a)と、
予め定められた推定タイミングが到来したときに、前記還流通路における前記排気の還流状態を取得する還流状態取得部と、
取得した前記還流状態と、予め記憶された該還流状態の基準状態とを比較して、その比較結果に基づいて、前記バルブの固着を解消または防止する固着回避動作を行う必要があるか否かを判定する判定部(60)と、
前記判定部が前記固着回避動作を行う必要があると判定した場合、前記内燃機関が回転状態から停止状態に遷移したときに、該固着回避動作の実行を指示する旨を含む指示情報を出力する指示情報出力部(60)と、
を備えることを特徴とする内燃機関の制御装置。
An intake passage (15) through which intake air of the internal combustion engine (10) flows;
An exhaust passage (51) through which exhaust from the internal combustion engine flows;
A reflux passage (21, 41) for recirculating exhaust gas from the exhaust passage to the intake passage;
Valves (23a, 43a) that are provided in the reflux passage and adjust the flow rate of the exhaust gas that is refluxed through the reflux passage;
A recirculation state acquisition unit that acquires a recirculation state of the exhaust gas in the recirculation passage when a predetermined estimation timing arrives;
Whether the obtained reflux state and the reference state of the reflux state stored in advance are compared, and whether or not the sticking avoidance operation for eliminating or preventing sticking of the valve needs to be performed based on the comparison result. A determination unit (60) for determining
When the determination unit determines that it is necessary to perform the sticking avoidance operation, it outputs instruction information including an instruction to execute the sticking avoidance operation when the internal combustion engine transitions from the rotation state to the stop state. An instruction information output unit (60);
A control device for an internal combustion engine, comprising:
前記内燃機関の回転状態がアイドル状態に遷移したときに、前記推定タイミングが到来したとする請求項1に記載の内燃機関の制御装置。   The control apparatus for an internal combustion engine according to claim 1, wherein the estimated timing has arrived when the rotational state of the internal combustion engine transitions to an idle state. 前記還流状態取得部は、前記バルブの開度を検出するバルブ開度検出部(23b,43b)を含み、
前記判定部は、前記バルブの開度の検出値と、該開度の基準値との比較に基づいて、前記固着回避動作を行う必要があるか否かを判定する請求項1または請求項2に記載の内燃機関の制御装置。
The reflux state acquisition unit includes a valve opening degree detection unit (23b, 43b) for detecting the opening degree of the valve,
The determination unit determines whether or not the sticking avoidance operation needs to be performed based on a comparison between a detected value of the opening of the valve and a reference value of the opening. The control apparatus of the internal combustion engine described in 1.
前記還流状態取得部は、前記バルブの上流側の排気と下流側の排気との圧力差である差圧を検出する差圧検出部(24,44)を含み、
前記判定部は、前記差圧の検出値と、該差圧の基準値との比較に基づいて、前記固着回避動作を行う必要があるか否かを判定する請求項1ないし請求項3のいずれか1項に記載の内燃機関の制御装置。
The recirculation state acquisition unit includes a differential pressure detection unit (24, 44) that detects a differential pressure that is a pressure difference between the exhaust on the upstream side and the exhaust on the downstream side of the valve,
4. The method according to claim 1, wherein the determination unit determines whether the sticking avoidance operation needs to be performed based on a comparison between the detected value of the differential pressure and a reference value of the differential pressure. A control device for an internal combustion engine according to claim 1.
前記還流状態取得部は、前記還流通路を流通する排気の流量を測定する排気流量測定部(25,45)を含み、
前記判定部は、前記排気の流量の検出値と、該流量の基準値との比較に基づいて、前記固着回避動作を行う必要があるか否かを判定する請求項1ないし請求項4のいずれか1項に記載の内燃機関の制御装置。
The recirculation state acquisition unit includes an exhaust flow rate measurement unit (25, 45) for measuring a flow rate of exhaust gas flowing through the recirculation passage,
5. The determination unit according to claim 1, wherein the determination unit determines whether the sticking avoidance operation needs to be performed based on a comparison between a detected value of the flow rate of the exhaust gas and a reference value of the flow rate. A control device for an internal combustion engine according to claim 1.
前記還流通路は、前記排気通路に装備されたタービン(33b)よりも上流から、前記吸気通路に装備されたコンプレッサ(33a)よりも下流へ排気を還流する第1還流通路(21)である請求項1ないし請求項5のいずれか1項に記載の内燃機関の制御装置。   The recirculation passage is a first recirculation passage (21) for recirculating exhaust gas from an upstream side of a turbine (33b) equipped in the exhaust passage to a downstream side of a compressor (33a) equipped in the intake passage. The control device for an internal combustion engine according to any one of claims 1 to 5. 前記還流通路は、前記排気通路に装備されたタービンよりも下流から、前記吸気通路に装備されたコンプレッサよりも上流へ排気を還流する第2還流通路(41)である請求項1ないし請求項6のいずれか1項に記載の内燃機関の制御装置。   The recirculation passage is a second recirculation passage (41) for recirculating exhaust gas from a downstream side of a turbine provided in the exhaust passage to an upstream side of a compressor provided in the intake passage. The control device for an internal combustion engine according to any one of the above.
JP2012176346A 2012-08-08 2012-08-08 Control device of internal combustion engine Pending JP2014034921A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012176346A JP2014034921A (en) 2012-08-08 2012-08-08 Control device of internal combustion engine
DE102013108225.4A DE102013108225A1 (en) 2012-08-08 2013-07-31 Exhaust gas recirculation control device and method for an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012176346A JP2014034921A (en) 2012-08-08 2012-08-08 Control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2014034921A true JP2014034921A (en) 2014-02-24

Family

ID=49999306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012176346A Pending JP2014034921A (en) 2012-08-08 2012-08-08 Control device of internal combustion engine

Country Status (2)

Country Link
JP (1) JP2014034921A (en)
DE (1) DE102013108225A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016512292A (en) * 2013-03-01 2016-04-25 アカーテース パワー,インク. EGR for 2-stroke cycle engine without supercharger
JP2021067230A (en) * 2019-10-24 2021-04-30 トヨタ自動車株式会社 Engine device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0763122A (en) * 1993-08-20 1995-03-07 Aisin Seiki Co Ltd Abnormality deciding device for exhaust gas reflux pipe
JPH09280117A (en) * 1996-04-09 1997-10-28 Nissan Motor Co Ltd Control device for diesel engine
JPH10141150A (en) * 1996-11-13 1998-05-26 Nissan Motor Co Ltd Failure diagnostic system of engine exhaust circulation controlling device
JP2003343361A (en) * 2002-05-24 2003-12-03 Toyota Motor Corp Method of determining malfunction of exhaust gas recirculation control device
JP2004278307A (en) * 2002-05-24 2004-10-07 Denso Corp Egr device
JP2006336557A (en) * 2005-06-02 2006-12-14 Denso Corp Egr controller for internal combustion engine
JP2007032356A (en) * 2005-07-25 2007-02-08 Toyota Motor Corp Valve control device for internal combustion engine
JP2008008207A (en) * 2006-06-29 2008-01-17 Toyota Motor Corp Exhaust gas recirculation device for internal combustion engine
JP2009274671A (en) * 2008-05-16 2009-11-26 Toyota Motor Corp Hybrid vehicle and its control method
JP2009281285A (en) * 2008-05-22 2009-12-03 Isuzu Motors Ltd Fixing prevention device and method for exhaust gas control valve
JP2010190111A (en) * 2009-02-18 2010-09-02 Nissan Motor Co Ltd Exhaust gas recirculation device for internal combustion engine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006070852A (en) 2004-09-03 2006-03-16 Mitsubishi Electric Corp Exhaust gas recirculation device
JP4487887B2 (en) 2005-09-02 2010-06-23 トヨタ自動車株式会社 Valve control device for internal combustion engine
JP4655002B2 (en) 2006-08-02 2011-03-23 株式会社デンソー Control device for internal combustion engine
JP2008075517A (en) 2006-09-20 2008-04-03 Denso Corp Control device for internal combustion engine
JP2010174651A (en) 2009-01-27 2010-08-12 Toyota Motor Corp Intake control device for internal combustion engine

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0763122A (en) * 1993-08-20 1995-03-07 Aisin Seiki Co Ltd Abnormality deciding device for exhaust gas reflux pipe
JPH09280117A (en) * 1996-04-09 1997-10-28 Nissan Motor Co Ltd Control device for diesel engine
JPH10141150A (en) * 1996-11-13 1998-05-26 Nissan Motor Co Ltd Failure diagnostic system of engine exhaust circulation controlling device
JP2003343361A (en) * 2002-05-24 2003-12-03 Toyota Motor Corp Method of determining malfunction of exhaust gas recirculation control device
JP2004278307A (en) * 2002-05-24 2004-10-07 Denso Corp Egr device
JP2006336557A (en) * 2005-06-02 2006-12-14 Denso Corp Egr controller for internal combustion engine
JP2007032356A (en) * 2005-07-25 2007-02-08 Toyota Motor Corp Valve control device for internal combustion engine
JP2008008207A (en) * 2006-06-29 2008-01-17 Toyota Motor Corp Exhaust gas recirculation device for internal combustion engine
JP2009274671A (en) * 2008-05-16 2009-11-26 Toyota Motor Corp Hybrid vehicle and its control method
JP2009281285A (en) * 2008-05-22 2009-12-03 Isuzu Motors Ltd Fixing prevention device and method for exhaust gas control valve
JP2010190111A (en) * 2009-02-18 2010-09-02 Nissan Motor Co Ltd Exhaust gas recirculation device for internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016512292A (en) * 2013-03-01 2016-04-25 アカーテース パワー,インク. EGR for 2-stroke cycle engine without supercharger
JP2021067230A (en) * 2019-10-24 2021-04-30 トヨタ自動車株式会社 Engine device

Also Published As

Publication number Publication date
DE102013108225A1 (en) 2014-02-13

Similar Documents

Publication Publication Date Title
JP5839633B2 (en) Method and internal combustion engine system for keeping an exhaust gas aftertreatment system within an operating temperature range
JP6107677B2 (en) Abnormality diagnosis device and abnormality diagnosis method for variable valve mechanism
JP5393506B2 (en) Control device and control method for control valve used in engine intake system
US20120137675A1 (en) Control device for internal combustion engine with supercharger
CN101484684A (en) Exhaust gas recirculation device of internal combustion engine, and control method thereof
JP5187123B2 (en) Control device for internal combustion engine
JP4821700B2 (en) Exhaust gas recirculation device for vehicle internal combustion engine
JP7132798B2 (en) DPF regeneration control device and DPF regeneration control method
EP2674597A1 (en) Control device for internal combustion engine
US20160084206A1 (en) Diesel engine and method of controlling same
WO2013073409A1 (en) Exhaust purification system for internal combustion engine
JP2008075517A (en) Control device for internal combustion engine
JP2011510202A (en) Diesel engine emissions reduction methods and background and summary of diesel engines
JP5282695B2 (en) Control device for an internal combustion engine with a supercharger
JP6071799B2 (en) Fault detection device for engine exhaust gas recirculation system
US8447501B2 (en) Method for managing the automatic stoppage of an automobile
JP4893383B2 (en) Exhaust gas recirculation device for internal combustion engine
EP2913506B1 (en) Diesel engine control device
JP5332674B2 (en) Exhaust gas recirculation device for internal combustion engine
JP5212923B2 (en) Control device for internal combustion engine
JP2014034921A (en) Control device of internal combustion engine
JP2009121362A (en) Filter regeneration control device for internal combustion engine
KR101651167B1 (en) Method for managing the automatic stoppage of an automobile
JP2010043538A (en) Failure diagnosis device for exhaust gas recirculation device
JP2010090875A (en) Exhaust gas control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141031

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150213