JP2014034507A - Piezoelectric ceramic and piezoelectric actuator using the same - Google Patents

Piezoelectric ceramic and piezoelectric actuator using the same Download PDF

Info

Publication number
JP2014034507A
JP2014034507A JP2012178205A JP2012178205A JP2014034507A JP 2014034507 A JP2014034507 A JP 2014034507A JP 2012178205 A JP2012178205 A JP 2012178205A JP 2012178205 A JP2012178205 A JP 2012178205A JP 2014034507 A JP2014034507 A JP 2014034507A
Authority
JP
Japan
Prior art keywords
piezoelectric
piezoelectric ceramic
reverse voltage
constant
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012178205A
Other languages
Japanese (ja)
Other versions
JP5935187B2 (en
Inventor
Yoshibumi Takei
義文 武井
Yoshihiro Asai
義博 浅井
Masako Kataoka
昌子 片岡
Tomoyoshi Kato
友好 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTK Ceratec Co Ltd
Original Assignee
Nihon Ceratec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Ceratec Co Ltd filed Critical Nihon Ceratec Co Ltd
Priority to JP2012178205A priority Critical patent/JP5935187B2/en
Publication of JP2014034507A publication Critical patent/JP2014034507A/en
Application granted granted Critical
Publication of JP5935187B2 publication Critical patent/JP5935187B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a piezoelectric ceramic and a piezoelectric actuator having great specific permittivities and d constants and capable of mitigating depolarizations arising in accordance with drives thereof.SOLUTION: The provided piezoelectric ceramic has a PZT-type perovskite structure, includes, as compositional elements, Pb, Sr, Mg, Nb, Zr, and Ti, has a specific permittivity of 3000 or above and a piezoelectric strain constant dof 200 or above, and yields, in a case where the impressed voltage retention time at room temperature is assumed to be 1 sec, an insulation resistance-minimizing impression reverse voltage of 670 V/mm or above. It accordingly becomes possible to mitigate depolarization arising in accordance with the impression of a reverse voltage against the polarizing direction while the specific permittivity and d constant are increased.

Description

本発明は、PZT系ペロブスカイト構造を有する圧電セラミックスおよびこれを用いたバイモルフ構造を有する圧電アクチュエータに関する。   The present invention relates to a piezoelectric ceramic having a PZT perovskite structure and a piezoelectric actuator having a bimorph structure using the same.

従来、高い圧電特性を有することから、いわゆるPZT(チタン酸ジルコン酸鉛)を主成分とし、ペロブスカイト構造を有する圧電セラミックスが、圧電アクチュエータ用材料として用いられている。   Conventionally, piezoelectric ceramics having a perovskite structure mainly composed of so-called PZT (lead zirconate titanate) have been used as piezoelectric actuator materials because of their high piezoelectric characteristics.

たとえば、特許文献1には、xPb(Mg1/3Nb2/3)O−yPbTiO−zPbZrO系磁器組成物のうち、Pb原子の一部をSr、Ba、Ca群から選ばれた少なくとも1つの原子で20原子%まで置換され、x=87.5〜1、y=81.3〜0、z=95.0〜0、x+y+z=100(いずれもモル%)、である強誘電性磁器組成物が開示されている。このような組成により、その電気機械結合係数、誘電率を大きくし、共振抵抗を小さくしている。 For example, in Patent Document 1, a part of Pb atoms in xPb (Mg 1/3 Nb 2/3 ) O 3 —yPbTiO 3 —zPbZrO 3 based ceramic composition was selected from the Sr, Ba, and Ca groups. Ferroelectricity substituted with at least one atom up to 20 atomic percent, x = 87.5-1, y = 81.3-0, z = 95.0-0, x + y + z = 100 (both mole percent) A characteristic porcelain composition is disclosed. With such a composition, the electromechanical coupling coefficient and dielectric constant are increased, and the resonance resistance is decreased.

特許文献2には、(Pb1−a−b)(Mg1/3Nb2/3TiZrで表される酸化物組成物において、b=0.005〜0.05であって、Mは、Sr、Ba、Caのうち少なくとも1種の原子であり、a=0.01〜0.1、x=0.10〜0.50、y=0.30〜0.50、z=0.10〜0.50、x+y+z=1(いずれも原子比)であるチタン酸ジルコン酸鉛系酸化物組成物が開示されている。このような組成により、比誘電率および電気機械結合係数を大きくしている。 Patent Document 2 discloses that in an oxide composition represented by (Pb 1-ab M a ) (Mg 1/3 Nb 2/3 ) x Ti y Zr z O 3 , b = 0.005 to 0 .05, and M is at least one atom of Sr, Ba, and Ca, a = 0.01 to 0.1, x = 0.10 to 0.50, y = 0.30. A lead zirconate titanate-based oxide composition in which 0.50, z = 0.10 to 0.50, and x + y + z = 1 (all in atomic ratio) is disclosed. With such a composition, the relative dielectric constant and the electromechanical coupling coefficient are increased.

特許文献3には、(Pb1−xSr)(ZrTi1−y)O3+z′〔式中、MはNb、Sr、TaまたはLaから選ばれる1種以上の元素を表わし、0.08≦x≦0.14、0.49≦y−0.5x≦0.51、0.005≦z≦0.02、z′はLaが3/2z、MがSb、Ta又はNbのとき5/2zのようにMz′を化学量論的化合物にする値である。〕で表される組成を有することを特徴とする圧電磁器組成物が開示されている。これにより、圧電歪み定数が大きく、キュリー温度が高く、特に自動車等に用いるのに適した材料を提供可能にしている。 Patent Document 3, in (Pb 1-x Sr x) (Zr y Ti 1-y M z) O 3 + z ' [wherein, M represents one or more elements selected from Nb, Sr, Ta, or La 0.08 ≦ x ≦ 0.14, 0.49 ≦ y−0.5x ≦ 0.51, 0.005 ≦ z ≦ 0.02, z ′ is 3 / 2z for La, M is Sb, Ta or In the case of Nb, M z O z ′ is a value that makes the stoichiometric compound like 5 / 2z. A piezoelectric ceramic composition having a composition represented by the following formula is disclosed. This makes it possible to provide a material that has a large piezoelectric strain constant, a high Curie temperature, and is particularly suitable for use in automobiles and the like.

特許文献4には、組成式Pb〔(TiZr1−x1−y〕O(ただし、Mは、Nb、Sb、Wのうち少なくとも1種)の組成で表される積層圧電素子用圧電磁器組成物が開示されている。その組成式中のx、yは、0.45≦x≦0.52、0.005≦y≦0.03であり、かつ、その組成式中のzが0.95≦z≦0.998となるようにPbを化学量論組成より減じている。これにより、変位性能、耐熱性に優れかつ低消費電力のアクチュエータを提供可能にしている。 In Patent Document 4, it is represented by the composition of the composition formula Pb z [(Ti x Zr 1-x ) 1-y M y ] O 3 (where M is at least one of Nb, Sb, and W). A piezoelectric ceramic composition for laminated piezoelectric elements is disclosed. X and y in the composition formula are 0.45 ≦ x ≦ 0.52 and 0.005 ≦ y ≦ 0.03, and z in the composition formula is 0.95 ≦ z ≦ 0.998. Thus, Pb is reduced from the stoichiometric composition. This makes it possible to provide an actuator with excellent displacement performance and heat resistance and low power consumption.

特公昭44−17103号公報Japanese Examined Patent Publication No. 44-17103 特公平4−78582号公報Japanese Patent Publication No. 4-78582 特公平7−110786号公報Japanese Patent Publication No.7-110786 特許4752156号公報Japanese Patent No. 4752156

上記の特許文献1、2記載の材料を圧電アクチュエータに用いた場合、比誘電率が大きく、d定数も大きいことから、十分な駆動変位が得られる。しかしながら、圧電素子を駆動する際には、圧電体に分極方向と逆方向に電圧をかけ続けるため、駆動に伴い減極が発生し、駆動変位が低下する。一方、特許文献3、4記載の材料を用いた場合には、キュリー温度が高い等の特性を有することから減極を低減できると考えられるが、圧電特性が特許文献1、2記載の材料より劣っている。   When the materials described in Patent Documents 1 and 2 are used for the piezoelectric actuator, the relative permittivity is large and the d constant is large, so that a sufficient drive displacement can be obtained. However, when the piezoelectric element is driven, a voltage is continuously applied to the piezoelectric body in the direction opposite to the polarization direction. Therefore, depolarization occurs with the drive, and the drive displacement decreases. On the other hand, when the materials described in Patent Documents 3 and 4 are used, it is considered that depolarization can be reduced because they have characteristics such as a high Curie temperature. Inferior.

本発明は、このような事情に鑑みてなされたものであり、大きい比誘電率およびd定数を有し、駆動に伴い発生する減極を低減できる圧電セラミックスおよびこれを用いた圧電アクチュエータを提供することを目的とする。   The present invention has been made in view of such circumstances, and provides a piezoelectric ceramic having a large relative permittivity and a d constant and capable of reducing depolarization that occurs during driving, and a piezoelectric actuator using the piezoelectric ceramic. For the purpose.

(1)上記の目的を達成するため、本発明の圧電セラミックスは、PZT系ペロブスカイト構造を有する圧電セラミックスであって、組成元素にPb、Sr、Mg、Nb、Zr、Tiを含み、比誘電率が3000以上で、圧電歪定数d31が200以上であり、室温において、電圧印加の保持時間を1秒としたとき、絶縁抵抗が最小となる印加逆電圧が670V/mm以上であることを特徴としている。 (1) In order to achieve the above object, the piezoelectric ceramic of the present invention is a piezoelectric ceramic having a PZT-based perovskite structure, containing Pb, Sr, Mg, Nb, Zr, and Ti as constituent elements, and having a relative dielectric constant. Is 3000 or more, the piezoelectric strain constant d 31 is 200 or more, and the applied reverse voltage that minimizes the insulation resistance is 670 V / mm or more when the voltage application holding time is 1 second at room temperature. It is said.

このように、本発明の圧電セラミックスは、比誘電率およびd定数を大きくしつつ、分極方向に対する逆電圧の印加に伴い発生する減極を低減できる。その結果、圧電アクチュエータの駆動性能を向上できる。   As described above, the piezoelectric ceramic of the present invention can reduce depolarization caused by application of a reverse voltage with respect to the polarization direction while increasing the relative dielectric constant and the d constant. As a result, the drive performance of the piezoelectric actuator can be improved.

(2)また、本発明の圧電セラミックスは、(101)面によるX線の回折ピーク位置が2θ=31.2〜31.5度の範囲内であることを特徴としている。このような構造を有することにより、高い圧電特性を維持することができる。   (2) Moreover, the piezoelectric ceramic of the present invention is characterized in that the X-ray diffraction peak position by the (101) plane is in the range of 2θ = 31.2 to 31.5 degrees. By having such a structure, high piezoelectric characteristics can be maintained.

(3)また、本発明の圧電アクチュエータは、バイモルフ構造を有する圧電アクチュエータであって、金属製で弾性を有するシム板と、前記シム板の両主面に設けられ、上記の圧電セラミックスにより形成された圧電素子と、を備えることを特徴としている。これにより、高い駆動性能を有しつつ、駆動に伴い発生する減極を低減する圧電アクチュエータを実現できる。   (3) The piezoelectric actuator of the present invention is a piezoelectric actuator having a bimorph structure, which is formed of a metal-made shim plate and elastic main surfaces of both the shim plate and the piezoelectric ceramic. And a piezoelectric element. Accordingly, it is possible to realize a piezoelectric actuator that has high driving performance and reduces depolarization that occurs with driving.

本発明によれば、大きい比誘電率およびd定数を有し、駆動に伴い発生する減極を低減する圧電セラミックスを実現できる。   According to the present invention, it is possible to realize a piezoelectric ceramic that has a large relative dielectric constant and a d constant and reduces depolarization that occurs with driving.

(a)〜(d)いずれも各条件で作製した試料の圧電特性の測定結果を示すグラフである。(A)-(d) is a graph which shows the measurement result of the piezoelectric property of the sample produced on each condition. 実験の構成を示す回路図である。It is a circuit diagram which shows the structure of experiment. 室温(25℃)における各印加電圧による逆電圧印加時の絶縁抵抗を示すグラフである。It is a graph which shows the insulation resistance at the time of the reverse voltage application by each applied voltage in room temperature (25 degreeC). 各温度での絶縁抵抗が最小となる印加逆電圧を示すグラフである。It is a graph which shows the applied reverse voltage from which the insulation resistance in each temperature becomes the minimum. 31°付近における各試料の回折X線ピークを示すグラフである。It is a graph which shows the diffraction X-ray peak of each sample in 31 degree vicinity.

次に、本発明の実施の形態について、図面を参照しながら説明する。   Next, embodiments of the present invention will be described with reference to the drawings.

(圧電セラミックスの構成)
本発明の圧電セラミックスは、PZT系ペロブスカイト構造を有し、高い圧電特性を有するとともに、駆動に伴い発生する減極を低くすることができる。特に、バイモルフ型圧電アクチュエータの圧電素子への適用に好適である。
(Configuration of piezoelectric ceramics)
The piezoelectric ceramic of the present invention has a PZT perovskite structure, has high piezoelectric characteristics, and can reduce depolarization that occurs with driving. In particular, it is suitable for application to a piezoelectric element of a bimorph type piezoelectric actuator.

この圧電セラミックスは、組成元素にPb、Sr、Mg、Nb、Zr、Tiを含んで構成されている。そして、比誘電率が3000以上で、圧電歪定数d31が200以上であり、室温において、電圧印加の保持時間を1秒としたとき、絶縁抵抗が最小となる印加逆電圧が670V/mm以上である。このように、大きい比誘電率およびd定数を維持しつつ、分極方向に対する逆電圧の印加に伴い発生する減極を低減できる。 This piezoelectric ceramic is configured to contain Pb, Sr, Mg, Nb, Zr, and Ti as composition elements. When the relative dielectric constant is 3000 or more, the piezoelectric strain constant d 31 is 200 or more, and the applied voltage is 670 V / mm or more at which the insulation resistance is minimized when the voltage application holding time is 1 second at room temperature. It is. In this way, depolarization caused by application of a reverse voltage with respect to the polarization direction can be reduced while maintaining a large relative dielectric constant and d constant.

このように比誘電率およびd定数が大きいため、圧電アクチュエータの駆動性能を向上できる。このような特性を実現できるのは、圧電セラミックスを構成する結晶粒子が、圧電特性の高い結晶構造を有するためと考えられる。なお、各結晶粒子は、ペロブスカイト型の正方晶系結晶構造を有し、(101)面によるX線の回折ピーク位置が2θ=31.2〜31.5度の範囲内に生じる。この結晶粒子の構造は、圧電セラミックス全体で一様である。また、電気機械結合係数krは60%以上である。   Since the relative dielectric constant and the d constant are thus large, the driving performance of the piezoelectric actuator can be improved. The reason why such characteristics can be realized is that the crystal grains constituting the piezoelectric ceramic have a crystal structure with high piezoelectric characteristics. Each crystal particle has a perovskite-type tetragonal crystal structure, and an X-ray diffraction peak position by the (101) plane is generated in a range of 2θ = 31.2 to 31.5 degrees. The crystal grain structure is uniform throughout the piezoelectric ceramic. The electromechanical coupling coefficient kr is 60% or more.

また、室温において、電圧印加の保持時間1秒としたときの絶縁抵抗が最小となる印加逆電圧が670V/mm以上である。このような圧電セラミックスをバイモルフ型圧電アクチュエータに利用した場合には、十分な駆動変位を保ったまま、減極速度を低減できる。なお、電圧印加の保持時間1秒としたときの絶縁抵抗が最小となる印加逆電圧は700V/mm以上であればさらに好ましい。   The applied reverse voltage at which the insulation resistance is minimized when the voltage application holding time is 1 second at room temperature is 670 V / mm or more. When such a piezoelectric ceramic is used for a bimorph piezoelectric actuator, the depolarization speed can be reduced while maintaining a sufficient driving displacement. The applied reverse voltage that minimizes the insulation resistance when the voltage application holding time is 1 second is more preferably 700 V / mm or more.

(圧電セラミックスおよび圧電アクチュエータの製造方法)
まず、構成される元素の配合比が下記条件の(1)を満たす酸化物を第1の材料とし、構成される元素の配合比が下記条件の(2)を満たす酸化物を第2の材料としたときに、第1の材料となるようにPb、Sr等を含む各材料を秤量、混合し、仮焼して第1の材料を有する圧電セラミックス粉末を生成する。また、同様に、第2の材料を有する圧電セラミックス粉末を生成する。
(Method for manufacturing piezoelectric ceramics and piezoelectric actuator)
First, an oxide satisfying (1) of the following conditions in which the compounding ratio of the constituent elements is used as the first material, and an oxide satisfying (2) in the following conditions of the constituent elements is the second material: Then, each material containing Pb, Sr, etc. is weighed and mixed so as to be the first material, and calcined to produce a piezoelectric ceramic powder having the first material. Similarly, a piezoelectric ceramic powder having the second material is generated.

(1)PbSr(Mg1/3Nb2/3ZrTi
0.92≦a≦0.94、0.04≦b≦0.06、0.36≦c≦0.39、0.24≦d≦0.27、0.36≦e≦0.38、c+d+e=1
(2)PbSrNbZrTi
0.95≦f≦0.98、0.04≦g≦0.06、0.15≦h≦0.25、0.52≦j≦0.55、0.45≦k≦0.48、h+j+k=1
(1) Pb a Sr b (Mg 1/3 Nb 2/3 ) c Zr d Ti e O 3
0.92 ≦ a ≦ 0.94, 0.04 ≦ b ≦ 0.06, 0.36 ≦ c ≦ 0.39, 0.24 ≦ d ≦ 0.27, 0.36 ≦ e ≦ 0.38, c + d + e = 1
(2) Pb f Sr g Nb h Zr j Ti k O 3
0.95 ≦ f ≦ 0.98, 0.04 ≦ g ≦ 0.06, 0.15 ≦ h ≦ 0.25, 0.52 ≦ j ≦ 0.55, 0.45 ≦ k ≦ 0.48, h + j + k = 1

これらの原料粉末を、第1の材料:第2の材料=6:4〜8:2となる所定の比率で混合する。その際には、たとえばジルコニアボール等のボールとともにミル混合する。そして、造粒したものをプレス成形し、成形体を作製する。なお、予め所定の混合比率の組成の原料粉末を準備して、成形体を作製してもよい。   These raw material powders are mixed at a predetermined ratio of 1st material: 2nd material = 6: 4 to 8: 2. At that time, for example, mil mixing is performed with balls such as zirconia balls. Then, the granulated product is press-molded to produce a molded body. In addition, you may prepare the raw material powder of a composition of a predetermined | prescribed mixing ratio previously, and may produce a molded object.

次に、成形体を1150℃以上1200℃以下で焼成し、得られた圧電セラミックス焼結体を加工、研磨して、所定の電極を形成する。電極形成された焼結体を分極処理し、本発明の圧電セラミックスで圧電体を形成された圧電素子を得ることができる。焼成温度は、1200℃付近であることが好ましい。   Next, the formed body is fired at 1150 ° C. or more and 1200 ° C. or less, and the obtained piezoelectric ceramic sintered body is processed and polished to form a predetermined electrode. A piezoelectric element in which a piezoelectric body is formed with the piezoelectric ceramic of the present invention can be obtained by subjecting the sintered body on which the electrode is formed to a polarization treatment. The firing temperature is preferably around 1200 ° C.

なお、成形体を作製する際には、原料粉末を混合して得られたスラリーから、グリーンシートを作製し、所定の電極を印刷して、積層し、積層型圧電素子用の成形体を得てもよい。そして、焼成して電極を焼き付けた圧電素子を金属製で弾性を有するシム板の両主面に接着すれば、バイモルフ構造を有する圧電アクチュエータを作製することができる。   When producing a molded body, a green sheet is produced from a slurry obtained by mixing raw material powders, a predetermined electrode is printed and laminated, and a molded body for a laminated piezoelectric element is obtained. May be. A piezoelectric actuator having a bimorph structure can be manufactured by bonding the piezoelectric element, which is baked and baked with electrodes, to both main surfaces of a metal shim plate having elasticity.

(実験1:圧電特性)
次に、本発明の圧電セラミックスについて行なった実験を説明する。まず、第1の材料と第2の材料とを所定の混合比率で混合して、1200℃または1150℃で焼成して圧電セラミックス焼結体のペレット試料を作製し、それぞれの混合比率と焼成温度の試料に対する密度、比誘電率、kr、d31を測定した。
(Experiment 1: Piezoelectric characteristics)
Next, experiments conducted on the piezoelectric ceramic of the present invention will be described. First, the first material and the second material are mixed at a predetermined mixing ratio, and fired at 1200 ° C. or 1150 ° C. to produce a piezoelectric ceramic sintered pellet sample. density of to the sample, the dielectric constant, kr, was measured d 31.

混合比率は、それぞれ第1の材料:第2の材料=10:0、9:1、8:2、7:3、6:4として試料を作製した。密度の測定は、JIS R1634、比誘電率、krおよびd31の測定は、、JEITA EM−450に基づいて行なった。 Samples were prepared with mixing ratios of first material: second material = 10: 0, 9: 1, 8: 2, 7: 3, and 6: 4, respectively. Measurements of density, JIS R1634, the dielectric constant, measurement of kr and d 31 was carried out based on ,, JEITA EM-450.

図1(a)〜(d)は、各条件で作製した試料の圧電特性の測定結果を示すグラフである。また、以下に示す表1は、測定結果を表で示したものである。

Figure 2014034507
FIGS. 1A to 1D are graphs showing the measurement results of the piezoelectric characteristics of a sample manufactured under each condition. Table 1 below shows the measurement results in a table.
Figure 2014034507

このような実験結果により、1200℃で焼成した試料の方が緻密化が進んでおり、比誘電率、kr、d31についても優れた結果が得られた。また、1200℃で焼成した試料については、6:4の混合比率のものでも、比誘電率が3000以上、krが60%以上、d31が220×10−12m/V以上であり、十分な圧電特性を有することを確認できた。一方、混合比率が9:1の試料は、8:2で形成されたものと圧電特性上大きく異ならないことが分かった。 Such experimental results, and it has become baked densification towards the sample at 1200 ° C., the dielectric constant, kr, superior results for d 31 was obtained. Also, the fired sample at 1200 ° C., 6: be of mixing ratio of 4, relative dielectric constant of 3000 or more, kr is 60% or more, d 31 is 220 × 10 -12 m / V or more, sufficient It was confirmed that the piezoelectric properties were excellent. On the other hand, it was found that the sample having a mixing ratio of 9: 1 did not differ greatly in piezoelectric properties from that formed at 8: 2.

(実験2:減極速度)
上記の実験結果を考慮し、焼成温度1200℃で混合比率10:0、8:2、7:3、6:4の4つの試料について、減極速度に関する実験を行なった。上記条件の分極された圧電セラミックス試料を用意し、所定の逆電圧を1秒間印加し、絶縁抵抗を測定した。このようにして、絶縁抵抗が最小となるときの印加逆電圧を測定した。このようにして測定されたいわゆる「反転電圧」が高くなればなるほど、圧電セラミックスの「減極速度」は遅くなる。
(Experiment 2: Depolarization speed)
Considering the above experimental results, experiments on the depolarization rate were performed on four samples with a firing temperature of 1200 ° C. and mixing ratios of 10: 0, 8: 2, 7: 3, and 6: 4. A polarized piezoelectric ceramic sample having the above conditions was prepared, a predetermined reverse voltage was applied for 1 second, and the insulation resistance was measured. Thus, the applied reverse voltage when the insulation resistance was minimized was measured. The higher the so-called “reversal voltage” measured in this way, the slower the “depolarization speed” of the piezoelectric ceramic.

図2は、実験の構成を示す回路図である。図2に示すように、圧電セラミックス試料10を抵抗11およびコンデンサ12の並列回路と仮定したときの抵抗を測定することで、絶縁抵抗を測定した。   FIG. 2 is a circuit diagram showing the configuration of the experiment. As shown in FIG. 2, the insulation resistance was measured by measuring the resistance when the piezoelectric ceramic sample 10 was assumed to be a parallel circuit of a resistor 11 and a capacitor 12.

図3は、室温(25℃)における各印加電圧による逆電圧印加時の絶縁抵抗を示すグラフである。図3に示すように、混合比率が、10:0から6:4に近づくにつれて、絶縁抵抗が最小となる印加逆電圧が高くなっている。   FIG. 3 is a graph showing the insulation resistance when a reverse voltage is applied by each applied voltage at room temperature (25 ° C.). As shown in FIG. 3, as the mixing ratio approaches 10: 0 to 6: 4, the applied reverse voltage that minimizes the insulation resistance increases.

このような測定を、温度条件を変えて40℃、60℃、80℃についても行なった。図4は、各温度での絶縁抵抗が最小となる印加逆電圧を示すグラフである。また、以下に示す表2は、上記の測定結果を表で示したものである。

Figure 2014034507
Such measurement was also performed at 40 ° C., 60 ° C., and 80 ° C. under different temperature conditions. FIG. 4 is a graph showing the applied reverse voltage at which the insulation resistance at each temperature is minimized. Table 2 shown below shows the measurement results in a table.
Figure 2014034507

図4によれば、第1の材料と第2の材料の混合比率をx:(10−x)で表したときにx≦8を満たす組成を境にして、著しく印加逆電圧が大きくなっていることが分かる。このような傾向は、室温〜80℃の各温度で同様であった。   According to FIG. 4, when the mixing ratio of the first material and the second material is represented by x: (10−x), the applied reverse voltage is remarkably increased with the composition satisfying x ≦ 8 as a boundary. I understand that. Such a tendency was the same at each temperature of room temperature to 80 ° C.

(実験3:X線回折角)
混合比率10:0、8:2、7:3、6:4の4つの試料と、さらに第2の材料のみで形成した圧電セラミックス試料(混合比率0:10)について、X線回折ピークを測定した。いずれの試料も1200℃で焼成したものを使用した。
(Experiment 3: X-ray diffraction angle)
X-ray diffraction peaks were measured for four samples with mixing ratios of 10: 0, 8: 2, 7: 3, and 6: 4 and piezoelectric ceramic samples (mixing ratio of 0:10) formed with only the second material. did. All samples used were fired at 1200 ° C.

まず、標準試料ホルダーに試料をセットし、MultiFlexのゴニオメータに設置した。そして、固定モノクロメータで調整したCuKαのX線を試料に入射させ、X線強度と回折角とを測定した。回折角は3°から90°まで連続で測定した。   First, a sample was set in a standard sample holder and placed on a MultiFlex goniometer. Then, CuKα X-rays adjusted with a fixed monochromator were incident on the sample, and the X-ray intensity and diffraction angle were measured. The diffraction angle was measured continuously from 3 ° to 90 °.

図5は、31°付近における各試料の回折X線ピークを示すグラフである。31°付近に最も強いピークが観測されたため、図5では代表的にこれを示したものである。図5に示すように、混合比率0:10の試料で生じた回折ピークのみ30.9°付近に存在しており、他の試料の回折ピーク位置とは異なっている。一方、混合比率10:0、8:2、7:3、6:4の試料で生じた回折ピークは、31.3〜31.4付近に存在し、8:2〜6:4の混合比率の試料を構成する結晶粒子の構造は、いずれも第1の材料のみで作製したときの圧電セラミックスの結晶構造と同等であることが確認された。   FIG. 5 is a graph showing the diffraction X-ray peak of each sample near 31 °. Since the strongest peak was observed in the vicinity of 31 °, this is representatively shown in FIG. As shown in FIG. 5, only the diffraction peak generated in the sample having a mixing ratio of 0:10 exists in the vicinity of 30.9 °, which is different from the diffraction peak positions of other samples. On the other hand, the diffraction peaks generated in the samples having the mixing ratios of 10: 0, 8: 2, 7: 3, and 6: 4 are present in the vicinity of 31.3 to 31.4, and the mixing ratio is 8: 2 to 6: 4. It was confirmed that the structure of the crystal particles composing the sample of this sample is equivalent to the crystal structure of the piezoelectric ceramics when produced with only the first material.

10 圧電セラミックス試料
11 抵抗
12 コンデンサ
10 Piezoelectric ceramic sample 11 Resistance 12 Capacitor

Claims (3)

PZT系ペロブスカイト構造を有する圧電セラミックスであって、
組成元素にPb、Sr、Mg、Nb、Zr、Tiを含み、
比誘電率が3000以上で、圧電歪定数d31が200以上であり、
室温において、電圧印加の保持時間を1秒としたとき、絶縁抵抗が最小となる印加逆電圧が670V/mm以上であることを特徴とする圧電セラミックス。
Piezoelectric ceramics having a PZT perovskite structure,
The composition elements include Pb, Sr, Mg, Nb, Zr, Ti,
The relative dielectric constant is 3000 or more, the piezoelectric strain constant d 31 is 200 or more,
A piezoelectric ceramic, wherein an applied reverse voltage at which an insulation resistance is minimized is 670 V / mm or more when a voltage application holding time is 1 second at room temperature.
(101)面によるX線の回折ピーク位置が2θ=31.2〜31.5度の範囲内であることを特徴とする請求項1記載の圧電セラミックス。   2. The piezoelectric ceramic according to claim 1, wherein an X-ray diffraction peak position by the (101) plane is in a range of 2θ = 31.2 to 31.5 degrees. バイモルフ構造を有する圧電アクチュエータであって、
金属製で弾性を有するシム板と、
前記シム板の両主面に設けられ、請求項1または請求項2記載の圧電セラミックスにより形成された圧電素子と、を備えることを特徴とする圧電アクチュエータ。
A piezoelectric actuator having a bimorph structure,
A shim plate made of metal and having elasticity;
A piezoelectric actuator comprising: a piezoelectric element provided on both principal surfaces of the shim plate and formed of the piezoelectric ceramic according to claim 1.
JP2012178205A 2012-08-10 2012-08-10 Piezoelectric ceramics and piezoelectric actuator using the same Expired - Fee Related JP5935187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012178205A JP5935187B2 (en) 2012-08-10 2012-08-10 Piezoelectric ceramics and piezoelectric actuator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012178205A JP5935187B2 (en) 2012-08-10 2012-08-10 Piezoelectric ceramics and piezoelectric actuator using the same

Publications (2)

Publication Number Publication Date
JP2014034507A true JP2014034507A (en) 2014-02-24
JP5935187B2 JP5935187B2 (en) 2016-06-15

Family

ID=50283710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012178205A Expired - Fee Related JP5935187B2 (en) 2012-08-10 2012-08-10 Piezoelectric ceramics and piezoelectric actuator using the same

Country Status (1)

Country Link
JP (1) JP5935187B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59181585A (en) * 1983-03-31 1984-10-16 Toshiba Corp Displacement generator
JPS62187117A (en) * 1986-02-13 1987-08-15 Seitetsu Kagaku Co Ltd Production of piezoelectric ceramic raw material powder
JPH01298060A (en) * 1988-05-27 1989-12-01 Mitsui Petrochem Ind Ltd Ferroelectric ceramic
US4948767A (en) * 1988-05-27 1990-08-14 Mitsui Petrochemical Industries, Ltd. Ferroelectric ceramic material
JPH05315669A (en) * 1992-05-08 1993-11-26 Hitachi Metals Ltd Piezoelectric porcelain composition
JPH08104568A (en) * 1994-09-30 1996-04-23 Matsushita Electric Ind Co Ltd Piezoelectric ceramic and its production
JPH08225367A (en) * 1995-02-22 1996-09-03 Ngk Insulators Ltd Piezoelectric material
JP2001181033A (en) * 1999-12-28 2001-07-03 Tdk Corp Piezoelectric ceramic composition
JP2003055045A (en) * 2001-08-23 2003-02-26 Murata Mfg Co Ltd Piezoelectric ceramic composition for multilayer piezoelectric element, multilayer piezoelectric element, method for producing multilayer piezoelectric element and multilayer piezoelectric device
US20050236654A1 (en) * 2004-04-23 2005-10-27 Seiko Epson Corporation Ferroelectric film laminated body, ferroelectric memory, piezoelectric element, liquid jet head, and printer

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59181585A (en) * 1983-03-31 1984-10-16 Toshiba Corp Displacement generator
JPS62187117A (en) * 1986-02-13 1987-08-15 Seitetsu Kagaku Co Ltd Production of piezoelectric ceramic raw material powder
JPH01298060A (en) * 1988-05-27 1989-12-01 Mitsui Petrochem Ind Ltd Ferroelectric ceramic
US4948767A (en) * 1988-05-27 1990-08-14 Mitsui Petrochemical Industries, Ltd. Ferroelectric ceramic material
JPH05315669A (en) * 1992-05-08 1993-11-26 Hitachi Metals Ltd Piezoelectric porcelain composition
JPH08104568A (en) * 1994-09-30 1996-04-23 Matsushita Electric Ind Co Ltd Piezoelectric ceramic and its production
JPH08225367A (en) * 1995-02-22 1996-09-03 Ngk Insulators Ltd Piezoelectric material
JP2001181033A (en) * 1999-12-28 2001-07-03 Tdk Corp Piezoelectric ceramic composition
JP2003055045A (en) * 2001-08-23 2003-02-26 Murata Mfg Co Ltd Piezoelectric ceramic composition for multilayer piezoelectric element, multilayer piezoelectric element, method for producing multilayer piezoelectric element and multilayer piezoelectric device
US20050236654A1 (en) * 2004-04-23 2005-10-27 Seiko Epson Corporation Ferroelectric film laminated body, ferroelectric memory, piezoelectric element, liquid jet head, and printer
JP2005333105A (en) * 2004-04-23 2005-12-02 Seiko Epson Corp Ferroelectric film lamination, ferroelectric memory, piezoelectric element, liquid injection head, and printer

Also Published As

Publication number Publication date
JP5935187B2 (en) 2016-06-15

Similar Documents

Publication Publication Date Title
JP4929522B2 (en) Piezoelectric ceramic composition
JP5576365B2 (en) Piezoelectric ceramics, manufacturing method thereof, and piezoelectric device
US9105845B2 (en) Piezoelectric ceramic comprising an oxide and piezoelectric device
JP4450636B2 (en) Method for manufacturing piezoelectric ceramics
JPWO2006117952A1 (en) Piezoelectric ceramic composition and piezoelectric ceramic electronic component
US20110156540A1 (en) Piezoelectric ceramic, process for producing the piezoelectric ceramic, and piezoelectric device
JP5782457B2 (en) Piezoelectric ceramics, piezoelectric ceramic component, and piezoelectric device using the piezoelectric ceramic component
Chang et al. The effects of sintering temperature on the properties of (Na0. 5K0. 5) NbO3–CaTiO3 based lead-free ceramics
JPWO2008096761A1 (en) Piezoelectric ceramic and piezoelectric element
Chang et al. An investigation of (Na0. 5K0. 5) NbO3–CaTiO3 based lead-free ceramics and surface acoustic wave devices
JP5597368B2 (en) Multilayer electronic component and manufacturing method thereof
WO2016031995A1 (en) Piezoelectric ceramic, manufacturing method therefor, and electronic component
JP2007084408A (en) Piezoelectric ceramic
JP2008537927A (en) High power piezoelectric ceramic composition
Zhang et al. Processing, structure, and electrical properties of MnO2-doped Pb (Yb1/2Nb1/2) 0.10 (Zr0. 47Ti0. 53) 0.90 O3 ceramics
JP2016160166A (en) Dielectric composition and electronic component
JP5935187B2 (en) Piezoelectric ceramics and piezoelectric actuator using the same
JP5894222B2 (en) Multilayer electronic component and manufacturing method thereof
JP2008254961A (en) Piezoelectric composition
JP2001097774A (en) Piezoelectric porcelain composition
JPWO2006093002A1 (en) Piezoelectric ceramic composition
Kim et al. Effects of Zn/Ni ratio and doping material on piezoelectric characteristics of Pb ((Zn, Ni) 1/3Nb2/3) O3–Pb (Zr, Ti) O3 ceramics
JPH107460A (en) Piezoelectric porcelain composition
JP2010215423A (en) Piezoelectric or dielectric ceramic composition, piezoelectric device, and dielectric device
JP4013531B2 (en) Piezoelectric ceramic composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160412

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160421

R150 Certificate of patent or registration of utility model

Ref document number: 5935187

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

R150 Certificate of patent or registration of utility model

Ref document number: 5935187

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees