JP2014033580A - Charger - Google Patents

Charger Download PDF

Info

Publication number
JP2014033580A
JP2014033580A JP2012174085A JP2012174085A JP2014033580A JP 2014033580 A JP2014033580 A JP 2014033580A JP 2012174085 A JP2012174085 A JP 2012174085A JP 2012174085 A JP2012174085 A JP 2012174085A JP 2014033580 A JP2014033580 A JP 2014033580A
Authority
JP
Japan
Prior art keywords
voltage
charging
secondary battery
rate
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012174085A
Other languages
Japanese (ja)
Other versions
JP5561327B2 (en
Inventor
Toshihiro Amei
俊裕 飴井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMK Corp
Original Assignee
SMK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMK Corp filed Critical SMK Corp
Priority to JP2012174085A priority Critical patent/JP5561327B2/en
Priority to CN201310336576.0A priority patent/CN103580105B/en
Publication of JP2014033580A publication Critical patent/JP2014033580A/en
Application granted granted Critical
Publication of JP5561327B2 publication Critical patent/JP5561327B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a charger for rapidly charging secondary batteries with appropriate charge current Ic depending on battery capacity, even when the secondary batteries have different battery capacity, without executing capacity measurement processing for detecting battery capacity of the secondary batteries before the rapid charge.SOLUTION: A charger performs variable control of charge current of DC power so that a voltage rise change rate calculated by calculation means is to be a predetermined set rise change rate, while setting charge voltage of the DC power to be terminal voltage of a secondary battery; while a power supply unit charges the secondary battery with the DC power.

Description

本発明は、二次電池を充電する充電装置に関し、更に詳しくは、急速充電モードにおいて、充電する二次電池の電池容量が異なっていても、その電池容量に合わせた最適な充電電流で充電する充電装置に関する。   The present invention relates to a charging device for charging a secondary battery, and more specifically, in a quick charge mode, even when the battery capacity of a secondary battery to be charged is different, charging is performed with an optimal charging current according to the battery capacity. The present invention relates to a charging device.

従来、リチウムイオンなどの二次電池は、通常、図3に示すCCCV(定電流定電圧:Constand Current Constant Voltage)充電方式により充電している。CCCV充電方式では、同図(b)に示すように、微小な充電電流Icを加えて二次電池の端子間の電圧(端子電圧という)Vbの上昇を確認するプリ充電を行った後、一定電流Ik1の充電電流Icで充電する急速充電を行い、端子電圧Vb(t)がその二次電池で定められる最大充電電圧Veに達するかその直前に、最大充電電圧Ve付近の端子電圧Vb(t)を維持するように充電電流Ic(t)を徐々に減少させる定電圧充電を行う。ここで、最大充電電圧Veは、二次電池を充電する際に許容される最大の充電電圧であり、これを越える電圧で充電すると過充電となって二次電池が劣化したり、破壊に至る危険がある。この二次電池の最大充電電圧Veは、電池容量にかかわらず、その種類によりほぼ一定であり、リチウムイオン電池の場合には、4.2Vとなっている。   Conventionally, a secondary battery such as lithium ion is normally charged by a CCCV (constant current constant voltage) charging method shown in FIG. In the CCCV charging method, as shown in FIG. 4B, after a pre-charge is performed to confirm a rise in voltage Vb between the terminals of the secondary battery (referred to as terminal voltage) Vb by adding a minute charging current Ic, a constant value is obtained. Rapid charging is performed with the charging current Ic of the current Ik1, and the terminal voltage Vb (t) near the maximum charging voltage Ve is just before or until the terminal voltage Vb (t) reaches the maximum charging voltage Ve determined by the secondary battery. ) Is maintained at a constant voltage that gradually decreases the charging current Ic (t). Here, the maximum charging voltage Ve is the maximum charging voltage that is allowed when the secondary battery is charged. If charging is performed at a voltage exceeding this, the secondary battery is deteriorated or destroyed. There is danger. The maximum charging voltage Ve of the secondary battery is substantially constant depending on the type regardless of the battery capacity, and is 4.2 V in the case of a lithium ion battery.

一方、急速充電中に、一定の充電電流Ik1で上昇する端子電圧Vb(t)の上昇率(傾き)は、充電しようとする二次電池の電池容量により異なり、電池容量に比べて充電電流Ik1が小さければ、急速充電の充電時間が延び、逆に大きいと二次電池の自然な化学変化速度を超えて充電されるので、二次電池が耐用年数が短縮する。そこで、公称容量値で満充電した二次電池を定電流放電し、1時間で放電終了(SOC(State of Charge)が0%)となるときの放電電流値を1C(Cは定格放電容量値)として、充電しようとする二次電池の電池容量毎に定まる1Cに、図3(a)に示す一定電流Ik1を設定し、1C前後の充電電流Icを定電流出力する充電装置を用いて、急速充電中にいわゆる1C充電を行っている。1C充電により急速充電を行えば、二次電池の自然な化学変化速度を越えずに、最短時間で満充電まで充電できる。   On the other hand, the rate of increase (inclination) of the terminal voltage Vb (t) that rises at a constant charging current Ik1 during rapid charging differs depending on the battery capacity of the secondary battery to be charged, and the charging current Ik1 compared to the battery capacity. If it is small, the charging time of rapid charging will be extended. Conversely, if it is large, the battery will be charged beyond the natural chemical change rate of the secondary battery, so that the secondary battery will have a shorter service life. Therefore, the secondary battery fully charged with the nominal capacity value is discharged with constant current, and the discharge current value when the discharge is completed in 1 hour (SOC (State of Charge) is 0%) is 1 C (C is the rated discharge capacity value). ), A constant current Ik1 shown in FIG. 3 (a) is set to 1C determined for each battery capacity of the secondary battery to be charged, and a charging device that outputs a constant current Ic around 1C is used. So-called 1C charging is performed during rapid charging. If rapid charging is performed by 1C charging, the battery can be fully charged in the shortest time without exceeding the natural chemical change rate of the secondary battery.

しかしながら、充電しようとする二次電池の電池容量毎にIk1を設定する専用の充電装置を用意しなければならず、この問題を解決するために、急速充電中に定電流制御する充電電流Icを、二次電池の電池容量に合わせた一定電流Ik2に二次電池側から設定し、汎用の充電装置であっても異なる電池容量の二次電池を、その電池容量毎に適正値に設定された充電電流Ik2で充電する充電方式も知られている。この充電方式では、図4に示すように、二次電池の最大充電電圧Veより充分に高い直流電圧Vkを充電電圧Vcとして定電圧出力する充電装置を用い、二次電池を収容する機器側の定電流制御回路で、急速充電中の充電電流Ik2が、二次電池の電池容量に合わせた1Cとなるように定電流制御している。従って、急速充電中は、二次電池を1C充電し、ほぼ1時間経過後に、端子電圧Vb(t)が最大充電電圧Veに達すると、充電電流Ic(t)を低下させて端子電圧Vbを最大充電電圧Veに維持する定電圧充電を行う。   However, a dedicated charging device for setting Ik1 must be prepared for each battery capacity of the secondary battery to be charged. In order to solve this problem, the charging current Ic for constant current control during the rapid charging is set. A constant current Ik2 that matches the battery capacity of the secondary battery is set from the secondary battery side, and even with a general-purpose charging device, a secondary battery with a different battery capacity is set to an appropriate value for each battery capacity. A charging method for charging with a charging current Ik2 is also known. In this charging method, as shown in FIG. 4, a charging device that outputs a constant voltage as a charging voltage Vc using a DC voltage Vk that is sufficiently higher than the maximum charging voltage Ve of the secondary battery is used. In the constant current control circuit, the constant current control is performed so that the charging current Ik2 during the rapid charging becomes 1C according to the battery capacity of the secondary battery. Therefore, during the rapid charging, the secondary battery is charged by 1C, and after approximately 1 hour, when the terminal voltage Vb (t) reaches the maximum charging voltage Ve, the charging current Ic (t) is decreased to reduce the terminal voltage Vb. Constant voltage charging is performed to maintain the maximum charging voltage Ve.

また、急速充電前に予め充電する二次電池の電池容量を検出する容量測定処理を実行し、検出した電池容量に基づいて設定した充電電流Icで急速充電中に定電流充電処理を実行する充電装置も知られている(特許文献1)。二次電池の電池容量は、容量測定処理中に充電装置から二次電池へ容量検出用の既知の充電電流Ioを流す充電路を開閉制御し、充電電流Ioが流れる一定時間Δtの間隔を隔てて検出する二つのSOC1、SOC2(単位は%)から得られる。   In addition, a capacity measurement process for detecting a battery capacity of a secondary battery to be charged in advance before the quick charge is performed, and a constant current charge process is performed during the quick charge with a charge current Ic set based on the detected battery capacity. An apparatus is also known (Patent Document 1). The battery capacity of the secondary battery is controlled by opening and closing a charging path through which a known charging current Io for capacity detection is passed from the charging device to the secondary battery during the capacity measurement process, and at intervals of a certain time Δt in which the charging current Io flows. Obtained from the two SOC1 and SOC2 (unit:%) detected.

すなわち、二次電池の電池容量は、
電池容量=充電電流Io・一定時間Δt・100/(SOC2−SOC1)
から算定される。ここで、電池残量であるSOC(State of Charge)は、二次電池を満充電した際を100%として、二次電池の端子間の開放電圧の変化分に比例して増減するので、SOC1とSOC2は、充電時間Δtを隔てた前後で充電路を開制御する二次電池の開放電圧から求める。
That is, the battery capacity of the secondary battery is
Battery capacity = charging current Io · fixed time Δt · 100 / (SOC2-SOC1)
Calculated from Here, the SOC (State of Charge), which is the remaining battery level, increases or decreases in proportion to the change in the open-circuit voltage between the terminals of the secondary battery, assuming that the secondary battery is fully charged as 100%. And SOC2 are obtained from the open voltage of the secondary battery that controls the opening of the charging path before and after the charging time Δt.

特開2008−61373号公報JP 2008-61373 A

上述の従来の図3に示すCCCV充電方式では、二次電池の電池容量毎に専用の充電装置を用意する必要があり、急速充電中に電池容量に比べて過大な充電電流Icを流すと、二次電池の劣化の原因となり、耐用年数が短くなる。逆に、電池容量に比べて過小な充電電流Icで定電流充電を行うと、満充電までの充電時間が延び、急速充電ができない。   In the conventional CCCV charging method shown in FIG. 3 described above, it is necessary to prepare a dedicated charging device for each battery capacity of the secondary battery, and if an excessive charging current Ic is passed compared to the battery capacity during rapid charging, This causes deterioration of the secondary battery and shortens the service life. On the other hand, if constant current charging is performed with a charging current Ic that is smaller than the battery capacity, the charging time until full charging is extended and rapid charging cannot be performed.

一方、二次電池の電池容量に合わせて、充電する二次電池側若しくは二次電池を収容する機器側から急速充電中の充電電流Ic(t)を一定電流Ik2に制御する図4に示す充電方式では、急速充電中に二次電池の端子電圧Vb(t)が上昇しても、二次電池若しくは機器側から充電装置から出力される充電電圧Vcを制御できないので、充電装置から、二次電池の最大充電電圧Veより充分に高い直流電圧Vkを定電圧出力している。その結果、特に急速充電中の初期には、充電電圧Vcである直流電圧Vkと二次電池の端子電圧Vb(t)との電位差が大きく、一定電流Ik2が流れることにより、電力損失が大きく、また、損失エネルギーが熱エネルギーなどに換わって意図しない温度上昇が発生する。   On the other hand, in accordance with the battery capacity of the secondary battery, the charging current Ic (t) during the rapid charging is controlled to a constant current Ik2 from the side of the secondary battery to be charged or the device containing the secondary battery, as shown in FIG. In the method, even if the terminal voltage Vb (t) of the secondary battery increases during the rapid charging, the charging voltage Vc output from the charging device from the secondary battery or device side cannot be controlled. A DC voltage Vk sufficiently higher than the maximum charging voltage Ve of the battery is output at a constant voltage. As a result, particularly in the initial stage of rapid charging, the potential difference between the DC voltage Vk, which is the charging voltage Vc, and the terminal voltage Vb (t) of the secondary battery is large, and the constant current Ik2 flows, resulting in a large power loss. In addition, the loss energy is replaced with thermal energy, and an unintended temperature rise occurs.

また、特許文献1に記載の充電装置では、急速充電前に二次電池の電池容量を検出する容量測定処理を行う必要があり、容量測定処理では、充電路を開閉制御して複数回、二次電池の開放電圧を測定するという煩わしさがあり、その制御が複雑となっていた。   Further, in the charging device described in Patent Document 1, it is necessary to perform a capacity measurement process for detecting the battery capacity of the secondary battery before rapid charging. In the capacity measurement process, the charging path is controlled to open and close multiple times. There is the trouble of measuring the open-circuit voltage of the secondary battery, and its control is complicated.

更に、電池残量(SOC)を検出する毎に、充電路を開制御して二次電池の端子電圧が大きく低下するので、容量測定処理中は実質的に充電が進行せず、充電効率が悪いという問題があった。   Furthermore, every time the remaining battery level (SOC) is detected, the charging path is controlled to open and the terminal voltage of the secondary battery greatly decreases, so that charging does not proceed substantially during the capacity measurement process, and charging efficiency is improved. There was a problem of being bad.

本発明は、急速充電前に二次電池の電池容量を検出する容量測定処理を実行せずに、異なる電池容量の二次電池であっても、その電池容量に応じた適正な充電電流Ic(t)で急速充電を行う充電装置を提供することを目的とする。   The present invention does not execute the capacity measurement process for detecting the battery capacity of the secondary battery before rapid charging, and even if the secondary battery has a different battery capacity, an appropriate charging current Ic ( It is an object of the present invention to provide a charging device that performs quick charging at t).

また、急速充電中の充電装置から出力する充電電圧Vcと二次電池の端子電圧Vb(t)が一致し、電力損失なく急速充電を実行する充電装置を提供すること目的とする。   It is another object of the present invention to provide a charging device that performs rapid charging with no power loss because the charging voltage Vc output from the charging device during rapid charging matches the terminal voltage Vb (t) of the secondary battery.

上述の目的を達成するため、請求項1の充電装置は、二次電池を直流電力で充電する電源部と、前記二次電池の端子電圧が予め定められる終止電圧に到達するまで、前記電源部の充電動作を制御する電源制御部とを備えた充電装置であって、電源制御部は、前記二次電池の端子電圧を検出する電圧検出部と、経過時間を計時するタイマー手段と、微小単位経過時間中の端子電圧増加分ΔVで表される電圧上昇変化率を逐次算出する算定手段とを有し、電源部が二次電池を直流電力で充電する間に、前記直流電力の充電電圧を二次電池の端子電圧としながら、算定手段で算出する電圧上昇変化率が予め定めた設定上昇変化率となるように、前記直流電力の充電電流を可変制御することを特徴とする。   In order to achieve the above-described object, the charging device according to claim 1 includes a power supply unit that charges a secondary battery with DC power, and the power supply unit until a terminal voltage of the secondary battery reaches a predetermined end voltage. A power supply control unit that controls the charging operation of the battery, wherein the power supply control unit includes a voltage detection unit that detects a terminal voltage of the secondary battery, a timer unit that measures an elapsed time, and a minute unit Calculation means for successively calculating a rate of change in voltage expressed by a terminal voltage increase ΔV during the elapsed time, and while the power supply unit charges the secondary battery with DC power, the charging voltage of the DC power is The charging current of the DC power is variably controlled so that the voltage rise change rate calculated by the calculation means becomes a preset rise change rate while using the terminal voltage of the secondary battery.

電源制御部は、電源部が二次電池を直流電力で充電する間に、タイマー手段が計時する微小単位経過時間の前後で電圧検出部が検出する二次電池の端子電圧の電位差から端子電圧増加分ΔVを得て、前記微小単位経過時間中の電圧上昇変化率を算出する。算出した電圧上昇変化率は、二次電池の充電速度を表し、充電電流に比例するので、電圧上昇変化率が設定上昇変化率となるように、充電電流を可変制御することにより、二次電池の電池容量にかかわらず、二次電池に適した最適な充電速度で充電できる。   The power supply control unit increases the terminal voltage from the potential difference of the secondary battery terminal voltage detected by the voltage detection unit before and after the minute unit elapsed time measured by the timer means while the power supply unit charges the secondary battery with DC power. The minute ΔV is obtained, and the voltage increase rate during the minute unit elapsed time is calculated. The calculated voltage rise change rate represents the charging speed of the secondary battery and is proportional to the charging current. Therefore, the secondary battery is variably controlled so that the voltage rise change rate becomes the set rise change rate. Regardless of the battery capacity, the battery can be charged at the optimum charging speed suitable for the secondary battery.

請求項2の充電装置は、終止電圧が、二次電池に許容される最大充電電圧であり、電源制御部が、二次電池の端子電圧が最大充電電圧よりわずかに低い目標電圧に達するまで急速充電モードで前記電源部の充電動作を制御し、急速充電モードでの前記設定上昇変化率を、公称容量値の二次電池を定電流放電し、1時間で放電終了となる電流値を1Cとして、1Cの充電電流で充電した場合の電圧上昇変化率近傍に定めることを特徴とする。   The charging device according to claim 2, wherein the end voltage is a maximum charging voltage allowed for the secondary battery, and the power supply control unit rapidly increases until the terminal voltage of the secondary battery reaches a target voltage slightly lower than the maximum charging voltage. The charging operation of the power supply unit is controlled in the charging mode, and the set increase rate in the rapid charging mode is set to 1C, where the secondary battery having the nominal capacity value is discharged at a constant current, and the current value at which discharge ends in 1 hour is 1C. It is characterized in that it is determined in the vicinity of the rate of change in voltage rise when charged with a charging current of 1C.

二次電池の端子電圧が最大充電電圧よりわずかに低い目標電圧に達するまで、二次電池の端子電圧は、ほぼ1Cの充電電流で充電した場合の電圧上昇変化率で上昇する。急速充電モードで、二次電池は、その電池容量にかかわらず、自然放電速度にほぼ等しい充電速度で充電される。   Until the terminal voltage of the secondary battery reaches a target voltage that is slightly lower than the maximum charging voltage, the terminal voltage of the secondary battery increases at a rate of change in voltage increase when charging with a charging current of approximately 1C. In the fast charge mode, the secondary battery is charged at a charge rate approximately equal to the natural discharge rate regardless of the battery capacity.

請求項3の充電装置は、目標電圧が、充電電流に比例する電圧上昇変化率が低下し始める変曲点電圧であることを特徴とする。   The charging device according to claim 3 is characterized in that the target voltage is an inflection point voltage at which a rate of change in voltage increase proportional to the charging current starts to decrease.

二次電池の端子電圧が変曲点電圧を越えると、同一の充電電流を加えても端子電圧の上昇率は急激に低下し、二次電池に供給される電気エネルギーが熱エネルギーに変換される割合が増加して充電効率が悪化する。従って、充電効率が悪化する直前の変曲点電圧に達した時点で、端子電圧をほぼ1Cの充電電流で充電した場合の電圧上昇変化率で上昇させる急速充電モードを終了させる。   If the terminal voltage of the secondary battery exceeds the inflection point voltage, the rate of increase of the terminal voltage will drop rapidly even if the same charging current is applied, and the electrical energy supplied to the secondary battery will be converted into thermal energy. The rate increases and charging efficiency deteriorates. Therefore, when the inflection point voltage is reached immediately before the charging efficiency deteriorates, the quick charge mode in which the terminal voltage is increased at the rate of voltage increase when charging with a charging current of approximately 1 C is terminated.

請求項4の充電装置は、電源制御部が、二次電池の端子電圧が前記目標電圧に達した後、最大充電電圧に達するまで微調整充電モードで前記電源部の充電動作を制御し、微調整充電モードでの前記設定上昇変化率を、急速充電モードでの前記設定上昇変化率より充分に低い値に定めることを特徴とする。   According to a fourth aspect of the present invention, the power supply control unit controls the charging operation of the power supply unit in the fine adjustment charging mode until the maximum charging voltage is reached after the terminal voltage of the secondary battery reaches the target voltage. The set increase rate of change in the adjustment charge mode is set to a value sufficiently lower than the set increase rate of change in the quick charge mode.

二次電池の端子電圧が前記目標電圧に達した後、最大充電電圧に達するまで、二次電池の端子電圧の電圧上昇変化率は、急速充電モードより充分に低下するので、端子電圧は徐々に最大充電電圧に近づき、端子電圧が最大充電電圧を超える過充電とならない。   After the terminal voltage of the secondary battery reaches the target voltage, until the maximum charging voltage is reached, the rate of change in the voltage of the secondary battery terminal voltage is sufficiently lower than in the quick charge mode. The maximum charging voltage is approached and the terminal voltage does not become overcharged exceeding the maximum charging voltage.

目標電圧が変曲点電圧であれば、変曲点電圧に達した後に充電電流が低下するので、発熱を抑制しつつ、端子電圧が最大充電電圧に達する。   If the target voltage is the inflection point voltage, the charging current decreases after reaching the inflection point voltage, so that the terminal voltage reaches the maximum charging voltage while suppressing heat generation.

請求項5の充電装置は、電源部が、終止電圧より少なくとも高い直流電圧の直流入力電圧間に直列に接続されたスイッチング素子の開閉により二次電池の充電端子間に前記直流電力を出力するチョッパ式降圧コンバータであり、電源制御部は、前記算定手段で算出する電圧上昇変化率が前記設定上昇変化率に一致するように、前記スイッチング素子を開閉制御するパルス幅変調信号のONデューティを増減し、前記電圧上昇変化率を調整することを特徴とする請求項1乃至請求項4のいずれか1項に記載の充電装置。   The charging device according to claim 5, wherein the power supply unit outputs the DC power between the charging terminals of the secondary battery by opening and closing a switching element connected in series between the DC input voltages having a DC voltage higher than the end voltage. The power step-down converter increases or decreases the ON duty of the pulse width modulation signal that controls opening and closing of the switching element so that the voltage increase change rate calculated by the calculating means matches the set increase change rate. The charging device according to claim 1, wherein the rate of change in voltage rise is adjusted.

チョッパ式降圧コンバータから出力される直流電力の大きさは、スイッチング素子を閉じ制御するパルス幅変調信号のONデューティに依存するので、ONデューティの増減に応じて二次電池を充電する直流電力が増減する。チョッパ式降圧コンバータの出力電圧は、二次電池の端子電圧であるので、直流電力の増減は充電電流の増減として表れ、充電電流に比例する電圧上昇変化率も増減する。従って、パルス幅変調信号のONデューティを調整することにより、算定手段で算出する電圧上昇変化率を設定上昇変化率に一致させることができる。   Since the magnitude of the DC power output from the chopper type step-down converter depends on the ON duty of the pulse width modulation signal for closing and controlling the switching element, the DC power for charging the secondary battery increases and decreases according to the increase and decrease of the ON duty. To do. Since the output voltage of the chopper type step-down converter is the terminal voltage of the secondary battery, the increase / decrease in DC power appears as an increase / decrease in charging current, and the rate of increase in voltage proportional to the charging current also increases / decreases. Therefore, by adjusting the ON duty of the pulse width modulation signal, the voltage increase change rate calculated by the calculating means can be matched with the set increase change rate.

請求項1の発明によれば、急速充電前に二次電池の電池容量を検出する容量測定処理を実行せずに、異なる電池容量の二次電池であっても、設定上昇変化率を任意に設定することにより、その電池容量に応じた最適な充電速度で二次電池を充電できる。従って、充電しようとする二次電池毎に専用の充電装置を用意することなく、複数種類の二次電池を充電する充電装置として汎用することができる。   According to the first aspect of the present invention, it is possible to arbitrarily set the rate of increase in setting even for secondary batteries having different battery capacities without executing the capacity measurement process for detecting the battery capacity of the secondary battery before the quick charge. By setting, the secondary battery can be charged at an optimal charging speed according to the battery capacity. Therefore, it can be widely used as a charging device for charging a plurality of types of secondary batteries without preparing a dedicated charging device for each secondary battery to be charged.

また、充電電圧を二次電池の端子電圧に一致させながら、二次電池を充電するので、両者の差電圧による電力損失が少なく、無駄な発熱を生じることなく充電できる。   Further, since the secondary battery is charged while making the charging voltage coincide with the terminal voltage of the secondary battery, the power loss due to the voltage difference between the two is small, and the battery can be charged without causing unnecessary heat generation.

請求項2の発明によれば、充電する二次電池の電池容量にかかわらず、二次電池を劣化させない最速の充電速度で充電できる。   According to invention of Claim 2, it can charge with the fastest charging speed which does not degrade a secondary battery irrespective of the battery capacity of the secondary battery to charge.

請求項3の発明によれば、変曲点電圧に達した時点で、電圧上昇変化率が高い急速充電モードを終了するので、充電効率の低下を防止できる。   According to the third aspect of the present invention, when the inflection point voltage is reached, the rapid charging mode with a high rate of change in voltage rise is terminated, so that a reduction in charging efficiency can be prevented.

請求項4の発明によれば、過充電により二次電池を劣化させる恐れがない。   According to the invention of claim 4, there is no fear that the secondary battery is deteriorated by overcharge.

また、目標電圧が変曲点電圧であれば、変曲点電圧を超えた微調整充電モードで、充電電圧が充分に低下するので、発熱が抑制され、充電効率を大きく低下させずに最大充電電圧まで充電できる。   In addition, if the target voltage is the inflection point voltage, the charging voltage is sufficiently reduced in the fine adjustment charging mode that exceeds the inflection point voltage, so heat generation is suppressed and maximum charging is performed without significantly reducing charging efficiency. Can charge up to voltage.

請求項5の発明によれば、充電電圧を端子電圧としながら、スイッチング素子を開閉制御するパルス幅変調信号のONデューティを調整するだけで、電圧上昇変化率を設定上昇変化率に一致させることができる。   According to the fifth aspect of the present invention, the voltage increase rate can be made to coincide with the set increase rate only by adjusting the ON duty of the pulse width modulation signal for controlling opening and closing of the switching element while using the charging voltage as the terminal voltage. it can.

二次電池10を充電する本発明の一実施の形態に係る充電装置1の回路図である。1 is a circuit diagram of a charging device 1 according to an embodiment of the present invention that charges a secondary battery 10. FIG. 充電装置1で二次電池10を充電する間の(a)は、充電装置1から出力される充電電圧Vcと充電電流Icの関係を、(b)は、端子電圧波形Vb(t)と充電電流波形Ic(t)を、示すグラフである。During charging of the secondary battery 10 with the charging device 1, (a) shows the relationship between the charging voltage Vc and the charging current Ic output from the charging device 1, and (b) shows the charging with the terminal voltage waveform Vb (t). It is a graph which shows current waveform Ic (t). 従来のCCCV充電方式により二次電池を充電する間の(a)は、充電装置から出力される充電電圧Vcと充電電流Icの関係を、(b)は、端子電圧波形Vb(t)と充電電流波形Ic(t)を、示すグラフである。During charging of the secondary battery by the conventional CCCV charging method, (a) shows the relationship between the charging voltage Vc and charging current Ic output from the charging device, and (b) shows the terminal voltage waveform Vb (t) and charging. It is a graph which shows current waveform Ic (t). 従来の他の充電方式により二次電池を充電する間の(a)は、充電装置から出力される充電電圧Vcと充電電流Icの関係を、(b)は、端子電圧波形Vb(t)と充電電流波形Ic(t)を、示すグラフである。While charging the secondary battery by another conventional charging method, (a) shows the relationship between the charging voltage Vc and charging current Ic output from the charging device, and (b) shows the terminal voltage waveform Vb (t). It is a graph which shows charging current waveform Ic (t).

以下、本発明の一実施の形態における充電装置1を、図1と図2で説明する。図1に示すように、充電装置1は、二次電池10を直流電力で充電する電源部2と、電源部2の出力を制御する電源制御部3から構成されている。   Hereinafter, a charging device 1 according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2. As shown in FIG. 1, the charging device 1 includes a power supply unit 2 that charges the secondary battery 10 with DC power and a power supply control unit 3 that controls the output of the power supply unit 2.

電源部2は、一対の入力2a、2b間に接続された平滑コンデンサ11により平滑化された直流電源20の入力電圧Vinを降圧して一対の出力2c、2d間に出力するチョッパ式降圧コンバータで構成され、低圧側入力2bと低圧側出力2d間に接続されたスイッチ素子4と、高圧側入力2aと高圧側出力2c間に接続されたインダクタ6と、一対の出力2c、2d間に接続されたコンデンサ7と、高圧側入力2aと低圧側出力2d間に接続された逆流防止用スイッチ素子とを備えている。   The power supply unit 2 is a chopper type step-down converter that steps down the input voltage Vin of the DC power supply 20 smoothed by the smoothing capacitor 11 connected between the pair of inputs 2a and 2b and outputs the voltage between the pair of outputs 2c and 2d. The switch element 4 configured between the low-voltage side input 2b and the low-voltage side output 2d, the inductor 6 connected between the high-voltage side input 2a and the high-voltage side output 2c, and the pair of outputs 2c and 2d. And a capacitor 7 and a backflow prevention switch element connected between the high voltage side input 2a and the low voltage side output 2d.

スイッチ素子4は、ドレインとソースをそれぞれ低圧側出力2dと低圧側入力2bに、ゲートを電源制御部3の後述するドライブ回路17へ接続した3端子型電界効果トランジスタであり、ドライブ回路17から出力されるフォワードスイッチ制御信号によってドレイン−ソース間が開閉制御される。   The switch element 4 is a three-terminal field effect transistor in which a drain and a source are connected to a low-voltage side output 2d and a low-voltage side input 2b, respectively, and a gate is connected to a drive circuit 17 described later of the power supply control unit 3. The open / close control is performed between the drain and the source by the forward switch control signal.

逆流防止用スイッチ素子もドレインを高圧側入力2aに、ソースを低圧側出力2dに、ゲートを電源制御部3のドライブ回路17へ接続した3端子型電界効果トランジスタであり、ドライブ回路17から出力されるフライバック制御信号によって、スイッチ素子4が閉じ制御されている間、高圧側入力2aから低圧側入力2bへ流れる電流を阻止するように、ドレイン−ソース間が遮断制御され、スイッチ素子4が開制御されている間、インダクタ6のフライバック動作によって生じる低圧側出力2d側から高圧側出力2cへの放電電流を流すように、ドレイン−ソース間が導通制御される。従って、この逆流防止用スイッチ素子に代えて、低圧側入力2bから高圧側入力2aを順方向とするダイオードを用いてもよい。   The backflow prevention switch element is also a three-terminal field effect transistor in which the drain is connected to the high-voltage side input 2 a, the source is connected to the low-voltage side output 2 d, and the gate is connected to the drive circuit 17 of the power supply control unit 3. While the switch element 4 is controlled to be closed by the flyback control signal, the drain-source is controlled to be cut off so that the current flowing from the high-voltage side input 2a to the low-voltage side input 2b is blocked, and the switch element 4 is opened. While being controlled, conduction between the drain and the source is controlled so that a discharge current from the low voltage side output 2d side to the high voltage side output 2c caused by the flyback operation of the inductor 6 flows. Therefore, a diode having a forward direction from the low voltage side input 2b to the high voltage side input 2a may be used instead of the backflow prevention switch element.

高圧側出力2cと低圧側出力2dは、それぞれ高圧側充電線8aと低圧側充電線8bを介して直接二次電池10の一対の端子10a、10bに接続している。これにより電源部(チョッパ式降圧コンバータ)2の一対の出力2c、2d間の出力電圧は、電源部2により充電する二次電池10の一対の端子10a、10b間の端子電圧Vbに一致している。   The high-voltage side output 2c and the low-voltage side output 2d are directly connected to the pair of terminals 10a and 10b of the secondary battery 10 through the high-voltage side charging line 8a and the low-voltage side charging line 8b, respectively. Thereby, the output voltage between the pair of outputs 2c and 2d of the power supply unit (chopper type step-down converter) 2 matches the terminal voltage Vb between the pair of terminals 10a and 10b of the secondary battery 10 charged by the power supply unit 2. Yes.

電源部2の直流電力で充電する二次電池10は、最大充電電圧が4.2V、公称電圧が3.7Vのリチウムイオン電池であり、リチウムイオン電池は、最大充電電圧を超える過電圧に弱いので、ここでは、充電を停止する終止電圧を最大充電電圧4.2Vとし、電源制御部3は、一対の出力2c、2d間の出力電圧、すなわち端子電圧Vbが4.2Vに達した時点で充電を停止する充電制御を行っている。上述の通り、電源部2には、入力電圧Vinを降圧するチョッパ式降圧コンバータを用いるので、直流電源20の入力電圧Vinは、少なくとも端子電圧Vbの最大値4.2Vより高い電圧となっている。   The secondary battery 10 charged with the DC power of the power supply unit 2 is a lithium ion battery having a maximum charging voltage of 4.2 V and a nominal voltage of 3.7 V, and the lithium ion battery is vulnerable to an overvoltage exceeding the maximum charging voltage. Here, the end voltage for stopping charging is set to the maximum charging voltage of 4.2 V, and the power supply control unit 3 charges when the output voltage between the pair of outputs 2 c and 2 d, that is, the terminal voltage Vb reaches 4.2 V. The charging control is stopped. As described above, since the chopper type step-down converter that steps down the input voltage Vin is used for the power supply unit 2, the input voltage Vin of the DC power supply 20 is at least higher than the maximum value 4.2V of the terminal voltage Vb. .

電源制御部3は、図1に示すように、マイクロプロセッサ9と、出力2c、2d間の端子電圧Vbを数msecの周期で検出してマイクロプロセッサ9へ出力する端子電圧検出回路12と、マイクロプロセッサ9の実行プログラムの他、充電する二次電池10毎に定められた終止電圧や後述する目標電圧、設定上昇変化率等を記憶するROM13と、低圧側充電線8bに介在するシャント抵抗18の電圧降下から低圧側充電線8bに流れる充電電流Icを常時監視してマイクロプロセッサ9へ出力する充電電流検出回路14と、計時情報をマイクロプロセッサ9へ出力するタイマー回路15と、直流電源20の入力電圧Vinを検出してマイクロプロセッサ9へ出力する入力電圧検出回路16及びスイッチ素子4と逆流防止用スイッチ素子の動作を制御するドライブ回路17とを備えている。マイクロプロセッサ9は、更に二次電池10の近傍に配置された温度センサー19にも接続し、温度センサー19から二次電池10の温度情報を入力している。   As shown in FIG. 1, the power supply controller 3 includes a microprocessor 9, a terminal voltage detection circuit 12 that detects the terminal voltage Vb between the outputs 2 c and 2 d at a cycle of several milliseconds and outputs the detected voltage to the microprocessor 9, In addition to the execution program of the processor 9, a ROM 13 that stores a final voltage, a target voltage, a set increase rate of change, and the like that are determined for each secondary battery 10 to be charged, and a shunt resistor 18 that is interposed in the low-voltage side charging line 8b A charging current detection circuit 14 that constantly monitors the charging current Ic flowing in the low-voltage side charging line 8b from the voltage drop and outputs the charging current Ic to the microprocessor 9, a timer circuit 15 that outputs timing information to the microprocessor 9, and an input of the DC power source 20 The input voltage detection circuit 16 that detects the voltage Vin and outputs it to the microprocessor 9, the switch element 4, and the backflow prevention switch element And a drive circuit 17 for controlling the work. The microprocessor 9 is further connected to a temperature sensor 19 disposed in the vicinity of the secondary battery 10 and inputs temperature information of the secondary battery 10 from the temperature sensor 19.

後述する高速充電モードで、ドライブ回路17からスイッチ素子4(FETのゲート)を開閉制御するフォワードスイッチ制御信号は、1μsecの周期でHレベルとLレベルを繰り返す矩形波信号であり、矩形波信号がHレベルであるときに、低圧側出力2dと低圧側入力2bが導通する。また、ドライブ回路17から逆流防止用スイッチ素子5(FETのゲート)を開閉制御するフライバック制御信号は、上記フォワードスイッチ制御信号の極性を反転させてフォワードスイッチ制御信号に同期して出力されるもので、スイッチ素子4が閉制御される間、Lレベルの矩形波信号を逆流防止用スイッチ素子5へ出力して、高圧側入力2aと低圧側出力2d間を遮断する。従って、スイッチ素子4が閉じ制御されるON期間中は、直流電源20の入力電圧Vinと端子電圧Vbとの差電圧がインダクタ6に加わってインダクタ6が充電され、電気エネルギーは磁界エネルギーに変換される。   A forward switch control signal for controlling opening / closing of the switch element 4 (the gate of the FET) from the drive circuit 17 in a high-speed charging mode, which will be described later, is a rectangular wave signal that repeats an H level and an L level at a cycle of 1 μsec. When it is at the H level, the low voltage side output 2d and the low voltage side input 2b are conducted. Further, the flyback control signal for opening / closing the backflow prevention switch element 5 (the gate of the FET) from the drive circuit 17 is output in synchronization with the forward switch control signal by inverting the polarity of the forward switch control signal. Thus, while the switch element 4 is closed, an L level rectangular wave signal is output to the backflow prevention switch element 5 and the high voltage side input 2a and the low voltage side output 2d are blocked. Therefore, during the ON period in which the switch element 4 is closed and controlled, the differential voltage between the input voltage Vin of the DC power supply 20 and the terminal voltage Vb is applied to the inductor 6 to charge the inductor 6 and the electric energy is converted into magnetic field energy. The

一方、スイッチ素子4にLレベルの矩形波信号が出力され、スイッチ素子4が開制御されるOFF期間に、逆流防止用スイッチ素子5にはHレベルの矩形波信号が出力され、高圧側入力2aと低圧側出力2d間を導通させるので、ON期間中にインダクタ6に蓄えられた磁気エネルギーが電気エネルギーである充電電流Icとなって、インダクタ6の両端に並列に接続される二次電池10とコンデンサ7を充電する。   On the other hand, an L-level rectangular wave signal is output to the switch element 4, and an H-level rectangular wave signal is output to the backflow prevention switch element 5 during the OFF period in which the switch element 4 is controlled to open. And the secondary battery 10 connected in parallel to both ends of the inductor 6, the magnetic energy stored in the inductor 6 during the ON period becomes the charging current Ic which is electric energy. The capacitor 7 is charged.

ここで、ON期間とOFF期間の和である一周期(1μsec)に、電源部2の出力2c、2dに発生する電気エネルギーは、一周期中のON期間の比、すなわちONデューティに比例する。出力2c、2dに発生する電気エネルギーは、直流電力として二次電池10を充電するが、出力2c、2dは、二次電池10の一対の端子10a、10bに接続しているので、出力2c、2d間の出力電圧は、端子10a、10b間の端子電圧Vbに等しく、ONデューティに比例して増減する直流電力は、二次電池10を充電する充電電流Icの増減となって表れる。   Here, the electrical energy generated in the outputs 2c and 2d of the power supply unit 2 in one cycle (1 μsec) that is the sum of the ON period and the OFF period is proportional to the ratio of the ON period in one cycle, that is, the ON duty. The electrical energy generated at the outputs 2c and 2d charges the secondary battery 10 as DC power, but the outputs 2c and 2d are connected to the pair of terminals 10a and 10b of the secondary battery 10, so the output 2c, The output voltage between 2d is equal to the terminal voltage Vb between the terminals 10a and 10b, and the DC power increasing or decreasing in proportion to the ON duty appears as an increase or decrease in the charging current Ic for charging the secondary battery 10.

そこで、本実施の形態では、矩形波信号であるフォワードスイッチ制御信号を、マイクロプロセッサ9から出力する所定の制御データで変調したPWM(パルス幅変調)信号とし、二次電池10の充電状況に応じてマイクロプロセッサ9からドライブ回路17へ出力される制御データで、フォワードスイッチ制御信号のONデューティを可変し、充電電流Icを増減制御している。   Therefore, in the present embodiment, the forward switch control signal, which is a rectangular wave signal, is converted into a PWM (pulse width modulation) signal modulated by predetermined control data output from the microprocessor 9, and the secondary battery 10 is charged according to the charging status. The control data output from the microprocessor 9 to the drive circuit 17 varies the ON duty of the forward switch control signal and controls the charging current Ic to increase or decrease.

以下、リチウムイオン電池である二次電池10を終止電圧Veまで充電する充電装置1の充電過程を、図2(b)に示すプリ充電、急速充電、微調整充電の各モードに分けて、マイクロプロセッサ9の動作を中心に説明する。   Hereinafter, the charging process of the charging device 1 that charges the secondary battery 10, which is a lithium ion battery, to the end voltage Ve is divided into precharge, quick charge, and fine adjustment charge modes shown in FIG. The operation of the processor 9 will be mainly described.

(プリ充電モード A)
プリ充電モードでは、二次電池10を充電する前に、二次電池10や充電回路中に異常がないかを判定し、異常を認める場合には、急速充電モードに移行せずに、充電を中止する。
(Pre-charge mode A)
In the precharge mode, before charging the secondary battery 10, it is determined whether there is an abnormality in the secondary battery 10 or the charging circuit. If the abnormality is recognized, the charging is performed without shifting to the quick charge mode. Discontinue.

マイクロプロセッサ9は、プリ充電モードを開始するt時に、端子電圧検出回路12、充電電流検出回路14、入力電圧検出回路16、温度センサー19がそれぞれ検出する、端子電圧Vb、充電電流Ic、入力電圧Vin、二次電池10の温度Tbを記録しておき、同時に、ドライブ回路17へフォワードスイッチ制御信号とフライバック制御信号を出力させる制御データを出力して電源部2を動作させる。ここでドライブ回路17に出力される制御データは、パルス幅変調によりフォワードスイッチ制御信号のON期間を短時間とするもので、従って、図2のAに示すように、プリ充電モードでは、微小な充電電流Ic(t)で二次電池10が充電される。 The microprocessor 9 is sometimes t 0 starts pre-charging mode, the terminal voltage detection circuit 12, the charging current detection circuit 14, the input voltage detection circuit 16, the temperature sensor 19 detects each terminal voltages Vb, charging current Ic, input The voltage Vin and the temperature Tb of the secondary battery 10 are recorded, and at the same time, control data for outputting a forward switch control signal and a flyback control signal is output to the drive circuit 17 to operate the power supply unit 2. Here, the control data output to the drive circuit 17 is the one in which the ON period of the forward switch control signal is shortened by pulse width modulation. Therefore, as shown in FIG. The secondary battery 10 is charged with the charging current Ic (t).

その後、マイクロプロセッサ9は、タイマー回路15で計時する所定時間後のt時の端子電圧Vb、充電電流I、入力電圧Vin、二次電池10の温度Tbを、それぞれ端子電圧検出回路12、充電電流検出回路14、入力電圧検出回路16、温度センサー19から入力し、t時の値と比較し、いずれかの検出値に異常値がある場合、例えば、端子電圧Vb(t)が上昇しない、充電電流Ic(t)が制御データで予測する値の範囲にない、入力電圧Vinが終止電圧以下である、二次電池の温度Tbが異常に上昇する等となった場合には、充電を中止する。充電の中止は、ドライブ回路9から出力するフォワードスイッチ制御信号を常時Lレベルとして、スイッチ素子4を開制御する。 After that, the microprocessor 9 counts the terminal voltage Vb, the charging current I, the input voltage Vin, and the temperature Tb of the secondary battery 10 at t 1 after a predetermined time counted by the timer circuit 15, respectively, current detection circuit 14, the input voltage detection circuit 16, and input from the temperature sensor 19 is compared with the value of the time t 0, when there is an abnormal value in any of the detected value, for example, the terminal voltage Vb (t) does not rise If the charging current Ic (t) is not in the range predicted by the control data, the input voltage Vin is lower than the end voltage, or the temperature Tb of the secondary battery rises abnormally, the charging is performed. Discontinue. To stop charging, the forward switch control signal output from the drive circuit 9 is always set to L level, and the switch element 4 is controlled to open.

(急速充電モード B→B’→C)
時の検出値に異常がない場合には、急速充電モードに移行する。急速充電モードでは、二次電池10の定格放電速度にほぼ等しい充電速度で、端子電圧Vb(t)が最大充電電圧Veよりわずかに低い目標電圧Ve’に達するt時まで二次電池10を充電する。ここで、二次電池10の定格放電速度にほぼ等しい充電速度とは、満充電した公称容量値の二次電池10を定電流放電し、1時間で放電終了となる電流値を1Cとし、1Cの充電電流で二次電池10を充電した場合(これを、1C充電という)の電圧上昇変化率(単位時間あたりの端子電圧Vb(t)間の差電圧)にほぼ等しく端子電圧Vb(t)が上昇する速度である。また、本実施の形態では、急速充電モードを終了させる目標電圧Ve’を、充電電流Ic(t)に比例する電圧上昇変化率が低下し始める変曲点電圧とし、最大充電電圧Veの4.2Vよりわずかに低い4.0Vとしている。
(Quick charge mode B → B ′ → C)
If there is no abnormality in t detected value of 1:00 shifts to rapid charging mode. In the quick charge mode, the secondary battery 10 is turned on until t 2 when the terminal voltage Vb (t) reaches a target voltage Ve ′ that is slightly lower than the maximum charge voltage Ve at a charge rate substantially equal to the rated discharge rate of the secondary battery 10. Charge. Here, the charge rate substantially equal to the rated discharge rate of the secondary battery 10 is a constant current discharge of the fully charged secondary battery 10 having a nominal capacity value, and the current value at which discharge ends in 1 hour is 1C. The terminal voltage Vb (t) is approximately equal to the rate of change in voltage (the difference voltage between the terminal voltages Vb (t) per unit time) when the secondary battery 10 is charged with a charging current of Is the rate of rising. In the present embodiment, the target voltage Ve ′ for ending the quick charge mode is an inflection point voltage at which the rate of change in voltage increase proportional to the charge current Ic (t) starts to decrease, and the maximum charge voltage Ve of 4. The voltage is 4.0 V, which is slightly lower than 2V.

ROM13には、リチウムイオン電池である二次電池10の充電情報として、充電しようとする二次電池10を1C充電した場合の電圧上昇変化率(二次電池10の電池種別毎に異なる)をもとに設定する第1設定上昇変化率(ここでは、リチウムイオン電池の場合の変化率に設定)、第1設定上昇変化率より充分に低い値に設定する第2設定上昇変化率、目標電圧Ve’(4.0V)、終止電圧である最大充電電圧Ve(4.2V)が記憶されている。   In the ROM 13, as a charging information of the secondary battery 10 that is a lithium ion battery, a rate of change in voltage rise when the secondary battery 10 to be charged is charged by 1 C (different for each battery type of the secondary battery 10) is also stored. The first set increase rate of change (here, set to the change rate in the case of a lithium ion battery), the second set increase rate of change set to a value sufficiently lower than the first set increase rate, and the target voltage Ve '(4.0 V), the maximum charging voltage Ve (4.2 V) as the end voltage is stored.

マイクロプロセッサ9は、急速充電モードを開始するt時後に、フォワードスイッチ制御信号のONデューティを所定値とする制御データをドライブ回路17に出力し、ドライブ回路17からフォワードスイッチ制御信号と極性を反転させたフライバック制御信号を出力し、電源部2を動作させる。その後、数msecの微小時間Δtの前後(B、B’)で端子電圧検出回路12が検出する端子電圧Vb(t)間の差電圧から端子電圧増加分ΔVを得て、微小時間Δt時間あたりの端子電圧増加分ΔVである電圧上昇変化率を算定する。 The microprocessor 9 outputs control data for setting the ON duty of the forward switch control signal to a predetermined value to the drive circuit 17 at t 1 when the quick charge mode is started, and inverts the polarity of the forward switch control signal from the drive circuit 17. The generated flyback control signal is output, and the power supply unit 2 is operated. Thereafter, a terminal voltage increase ΔV is obtained from the difference voltage between the terminal voltages Vb (t) detected by the terminal voltage detection circuit 12 before and after (B, B ′) of a minute time Δt of several milliseconds, and per minute time Δt. The rate of change in voltage rise, which is the terminal voltage increase ΔV, is calculated.

続いて、算定した電圧上昇変化率をROM13から読み出す第1設定上昇変化率と比較し、算定した電圧上昇変化率が第1設定上昇変化率に一致するように、フォワードスイッチ制御信号のONデューティを変化させる制御データをドライブ回路17へ出力する。すなわち、算定した電圧上昇変化率が第1設定上昇変化率以下である場合には、フォワードスイッチ制御信号のONデューティを増加させる制御データをドライブ回路17へ出力し、充電電流Ic(t)を増加させ、逆に算定した電圧上昇変化率が第1設定上昇変化率以上である場合には、フォワードスイッチ制御信号のONデューティを減少させる制御データをドライブ回路17へ出力し、充電電流Ic(t)を減少させる。端子電圧Vb(t)の電圧上昇変化率は、充電電流Ic(t)の増減により増減するので、急速充電モード中に以上の処理を例えば数msecの周期で繰り返すことにより、二次電池10を、その電池容量の大きさにかかわらず、定格放電速度にほぼ等しい充電速度で充電できる。尚、微小時間Δtの長さ、即ち、上述の処理を繰り返す周期について、本実施の形態では数msecに設定しているが、必ずしもこのような長さである必要はなく、数秒〜数十秒程度の長さであっても本発明を実施し得る。   Subsequently, the calculated voltage rise change rate is compared with the first set rise change rate read from the ROM 13, and the ON duty of the forward switch control signal is set so that the calculated voltage rise change rate matches the first set rise change rate. The control data to be changed is output to the drive circuit 17. That is, when the calculated voltage increase rate is equal to or less than the first set rate of increase, the control data for increasing the ON duty of the forward switch control signal is output to the drive circuit 17 and the charging current Ic (t) is increased. Conversely, when the calculated rate of change in voltage increase is equal to or greater than the first set rate of increase, control data for reducing the ON duty of the forward switch control signal is output to the drive circuit 17, and the charging current Ic (t) Decrease. Since the rate of increase in voltage of the terminal voltage Vb (t) increases or decreases as the charging current Ic (t) increases / decreases, the secondary battery 10 can be recharged by repeating the above processing at a cycle of, for example, several milliseconds during the quick charging mode. Regardless of the size of the battery capacity, the battery can be charged at a charge rate substantially equal to the rated discharge rate. Note that the length of the minute time Δt, that is, the cycle in which the above-described processing is repeated is set to several msec in this embodiment, but it is not necessarily such a length, and it is not necessarily several seconds to several tens of seconds. The present invention can be implemented even with a length of about.

この急速充電モードでの充電電流Ic(t)は、理想的には、充電する二次電池10の種類とその電池容量から定まる充電電流値1Cの付近で変動することとなるが、従来の充電装置のように、既知の二次電池10について定められた充電電流値1Cで定電流制御するものではないので、二次電池10の内部抵抗の経年変化や充電線の抵抗値の変化といった充電条件が変化しても、充電電流Icが自動的に変化して設定され、その都度の充電条件にとって最適な充電速度を維持して充電できる。   The charging current Ic (t) in the rapid charging mode ideally varies in the vicinity of a charging current value 1C determined from the type of the secondary battery 10 to be charged and its battery capacity. As in the case of the device, the constant current control is not performed with the charging current value 1C determined for the known secondary battery 10, so that the charging conditions such as the secular change of the internal resistance of the secondary battery 10 and the change of the resistance value of the charging line are included. Even if the charging current changes, the charging current Ic is automatically changed and set, and charging can be performed while maintaining an optimal charging speed for the charging conditions in each case.

また、マイクロプロセッサ9は、数msecの周期で上記処理を繰り返す過程で、端子電圧検出回路12が検出する端子電圧Vb(t)をROM13から読み出した目標電圧Ve’(4.0V)と比較し、目標電圧Ve’(4.0V)に達したt時に、急速充電モードから微調整充電モードに移行する。 In addition, the microprocessor 9 compares the terminal voltage Vb (t) detected by the terminal voltage detection circuit 12 with the target voltage Ve ′ (4.0 V) read from the ROM 13 in the process of repeating the above process at a cycle of several milliseconds. Then, at time t 2 when the target voltage Ve ′ (4.0 V) is reached, the quick charge mode is shifted to the fine adjustment charge mode.

(微調整充電モードD)
微調整充電モードでは、二次電池10の充電効率が急激に低下する変曲点電圧を端子電圧Vb(t)が越えているので、二次電池10の充電電流Ic(t)を低下させて充電速度を落とし、過剰な充電電流Ic(t)が熱エネルギーに変換され充電効率が悪化することを防止するととともに、端子電圧Vbが最大充電電圧を越える過充電となり、二次電池10が劣化したり、破損することを防止する。
(Fine adjustment charging mode D)
In the fine adjustment charging mode, since the terminal voltage Vb (t) exceeds the inflection point voltage at which the charging efficiency of the secondary battery 10 rapidly decreases, the charging current Ic (t) of the secondary battery 10 is decreased. The charging speed is reduced and excessive charging current Ic (t) is converted into thermal energy to prevent the charging efficiency from deteriorating. At the same time, the terminal voltage Vb exceeds the maximum charging voltage, and the secondary battery 10 deteriorates. To prevent damage.

マイクロプロセッサ9は、急速充電モードから引き続いて、数msecの微小時間Δtの前後の端子電圧Vb(t)を検出して、微小時間Δt時間あたりの端子電圧増加分ΔVである電圧上昇変化率を算定し、算定した電圧上昇変化率が、ROM13から読み出した第2設定上昇変化率に一致するように、フォワードスイッチ制御信号のONデューティを変化させる制御データをドライブ回路17へ出力する。   The microprocessor 9 detects the terminal voltage Vb (t) before and after the minute time Δt of several milliseconds after the quick charge mode, and calculates the rate of change in voltage increase that is the terminal voltage increase ΔV per minute time Δt. The control data for changing the ON duty of the forward switch control signal is output to the drive circuit 17 so that the calculated voltage rise change rate matches the second set rise change rate read from the ROM 13.

第2設定上昇変化率は、第1設定上昇変化率に比べて充分に低く、0に近い値とするので、図2(b)に示すように、電圧上昇変化率を第2設定上昇変化率へ一致させる充電電流Icは、急速充電モードでの充電電流Ic(t)から急激に低下し、端子電圧Vb(t)は極めて緩やかな傾斜で上昇する。   The second set increase rate of change is sufficiently lower than the first set increase rate of change and is close to 0. Therefore, as shown in FIG. 2B, the voltage increase rate of change is changed to the second set increase rate of change. The charging current Ic to be matched with the voltage rapidly decreases from the charging current Ic (t) in the rapid charging mode, and the terminal voltage Vb (t) increases with a very gentle slope.

マイクロプロセッサ9は、数msecの周期で上記処理を繰り返す過程で、端子電圧検出回路12が検出する端子電圧Vb(t)を、ROM13から読み出した終止電圧である最大充電電圧Ve(4.2V)と比較し、終止電圧(4.2V)に達したt時に、ドライブ回路9から出力するフォワードスイッチ制御信号を常時Lレベルとして、スイッチ素子4を開制御し、充電を停止する。 The microprocessor 9 repeats the above process at a cycle of several milliseconds, and the terminal voltage Vb (t) detected by the terminal voltage detection circuit 12 is the maximum charging voltage Ve (4.2 V) that is the final voltage read from the ROM 13. compared to, at t 3 reaches the end voltage (4.2 V), as always L level forward switch control signal output from the drive circuit 9, and opening control of the switching element 4, to stop the charging.

以上の二次電池10の充電工程では、端子電圧Vb(t)が終止電圧(4.2V)に達したt時の後に、マイクロプロセッサ9は電圧上昇変化率を0とする制御データをドライブ回路17へ出力し、微少な充電電流Ic(t)を流して端子電圧Vbが終止電圧(4.2V)を維持するようにしてもよい。 In the above charging process of the rechargeable battery 10, the drive after the time t 3 when the terminal voltage Vb (t) has reached the final voltage (4.2 V), the microprocessor 9 sets the control data to 0 voltage rise rate of change The output may be made to the circuit 17 and a minute charging current Ic (t) may be supplied to maintain the terminal voltage Vb at the end voltage (4.2 V).

また、急速充電モードや微調整充電モードであっても、温度センサー19が検出する二次電池10の温度が異常に上昇したり、入力電圧Vinが終止電圧(4.2V)未満となった場合には、スイッチ素子4を開制御し、充電を停止する。   Even in the quick charge mode or the fine adjustment charge mode, when the temperature of the secondary battery 10 detected by the temperature sensor 19 rises abnormally or the input voltage Vin becomes less than the end voltage (4.2 V) In this case, the switch element 4 is controlled to be opened and charging is stopped.

本発明は、以上の実施の形態に限定されることなく、種々変形が可能であり、例えば、急速充電モードで電圧上昇変化率を一致させる第1設定上昇変化率は、必ずしも1Cの充電電流で充電した場合の電圧上昇変化率に設定する必要はなく、2C充電若しくは1/2C充電等任意の充電速度に合わせて設定することができる。   The present invention is not limited to the above-described embodiment, and various modifications are possible. For example, the first set increase change rate that matches the voltage increase change rate in the quick charge mode is not necessarily a charging current of 1C. It is not necessary to set the rate of change in voltage rise when charging, and it can be set according to an arbitrary charging rate such as 2C charging or 1 / 2C charging.

また、電圧上昇変化率を一致させる設定上昇変化率は、急速充電モードにおいて同一である必要はなく、異なる変化率に設定した複数の設定上昇変化率のいずれかに、充電状況の変化に応じて電圧上昇変化率を一致させてもよい。例えば、温度センサー19が検出する二次電池10の温度上昇に伴って、電圧上昇変化率を一致させる設定上昇変化率をより低い値に設定した設定上昇変化率に変更する。   In addition, the set increase change rate that matches the voltage increase change rate does not need to be the same in the quick charge mode, and is set to one of a plurality of set increase change rates set to different change rates according to the change in the charging state. The rate of change in voltage increase may be matched. For example, as the temperature of the secondary battery 10 detected by the temperature sensor 19 is increased, the set increase change rate for matching the voltage increase change rate is changed to a set increase change rate set to a lower value.

また、微小単位経過時間の前後で検出する端子電圧は、連続して検出する複数の端子電圧の相関から、異常値を除いたり平均値化する等の算定処理を行って特定してもよい。   Further, the terminal voltage detected before and after the minute unit elapsed time may be specified by performing a calculation process such as removing an abnormal value or averaging the correlation from a plurality of terminal voltages detected continuously.

また、電源部2は、出力電圧を端子電圧に連動させながら、二次電池を充電する出力電流(充電電流)を可変制御できるものであれば、チョッパ式降圧コンバータに限らず、任意の直流電源を用いることができる。   The power supply unit 2 is not limited to a chopper type step-down converter as long as the output current (charging current) for charging the secondary battery can be variably controlled while interlocking the output voltage with the terminal voltage. Can be used.

更に、二次電池も充電電流に応じて充電速度が変化する特性の二次電池であれば、リチウムイオン電池に限らず、ニッケルカドミウム電池など他の二次電池であってもよい。   Furthermore, the secondary battery is not limited to the lithium ion battery, and may be another secondary battery such as a nickel cadmium battery as long as the secondary battery has a characteristic that the charging speed changes according to the charging current.

本発明は、反転板バネを可動接点板として用いる充電装置に適している。   The present invention is suitable for a charging device using a reversing leaf spring as a movable contact plate.

1 充電装置
2 電源部
3 電源制御部
4 スイッチ素子(スイッチング素子)
9 マイクロプロセッサ(算定手段)
10 二次電池
12 端子電圧検出回路(電圧検出部)
15 タイマー回路(タイマー手段)
DESCRIPTION OF SYMBOLS 1 Charging apparatus 2 Power supply part 3 Power supply control part 4 Switch element (switching element)
9 Microprocessor (calculation means)
10 Secondary battery 12 Terminal voltage detection circuit (voltage detection unit)
15 Timer circuit (timer means)

Claims (5)

二次電池を直流電力で充電する電源部と、
前記二次電池の端子電圧が予め定められる終止電圧に到達するまで、前記電源部の充電動作を制御する電源制御部とを備えた充電装置であって、
電源制御部は、
前記二次電池の端子電圧を検出する電圧検出部と、
経過時間を計時するタイマー手段と、
微小単位経過時間中の端子電圧増加分ΔVで表される電圧上昇変化率を逐次算出する算定手段とを有し、
電源部が二次電池を直流電力で充電する間に、前記直流電力の充電電圧を二次電池の端子電圧としながら、前記算定手段で算出する電圧上昇変化率が予め定めた設定上昇変化率となるように、前記直流電力の充電電流を可変制御することを特徴とする充電装置。
A power supply unit for charging the secondary battery with DC power;
A charging device including a power supply control unit that controls a charging operation of the power supply unit until a terminal voltage of the secondary battery reaches a predetermined end voltage,
The power control unit
A voltage detector for detecting a terminal voltage of the secondary battery;
Timer means for measuring elapsed time;
A calculation means for sequentially calculating a voltage increase change rate represented by a terminal voltage increase ΔV during a minute unit elapsed time;
While the power supply unit charges the secondary battery with DC power, the voltage increase change rate calculated by the calculating means is set to a predetermined increase increase rate while the charging voltage of the DC power is the terminal voltage of the secondary battery. The charging device is characterized by variably controlling the charging current of the DC power.
終止電圧は、二次電池に許容される最大充電電圧であり、
電源制御部は、二次電池の端子電圧が最大充電電圧よりわずかに低い目標電圧に達するまで急速充電モードで前記電源部の充電動作を制御し、
急速充電モードでの前記設定上昇変化率を、公称容量値の二次電池を定電流放電し、1時間で放電終了となる電流値を1Cとして、1Cの充電電流で充電した場合の電圧上昇変化率近傍に定めることを特徴とする請求項1に記載の充電装置。
The end voltage is the maximum charging voltage allowed for the secondary battery,
The power supply control unit controls the charging operation of the power supply unit in the quick charge mode until the terminal voltage of the secondary battery reaches a target voltage slightly lower than the maximum charging voltage.
The rate of change in voltage increase when charging with a charging current of 1 C, assuming that the set rate of increase in the quick charge mode is constant current discharge of a secondary battery having a nominal capacity value and the current value at which discharge ends in 1 hour is 1 C. The charging device according to claim 1, wherein the charging device is determined in the vicinity of the rate.
目標電圧は、充電電流に比例する電圧上昇変化率が低下し始める変曲点電圧であることを特徴とする請求項2に記載の充電装置。   The charging device according to claim 2, wherein the target voltage is an inflection point voltage at which a rate of change in voltage increase proportional to the charging current starts to decrease. 電源制御部は、二次電池の端子電圧が前記目標電圧に達した後、最大充電電圧に達するまで微調整充電モードで前記電源部の充電動作を制御し、
微調整充電モードでの前記設定上昇変化率を、急速充電モードでの前記設定上昇変化率より充分に低い値に定めることを特徴とする請求項2又は請求項3のいずれか1項に記載の充電装置。
The power supply control unit controls the charging operation of the power supply unit in the fine adjustment charging mode until the maximum charging voltage is reached after the terminal voltage of the secondary battery reaches the target voltage,
4. The method according to claim 2, wherein the set increase rate of change in the fine adjustment charging mode is set to a value sufficiently lower than the set increase rate of change in the quick charge mode. 5. Charging device.
電源部は、終止電圧より少なくとも高い直流電圧の直流入力電圧間に直列に接続されたスイッチング素子の開閉により二次電池の充電端子間に前記直流電力を出力するチョッパ式降圧コンバータであり、電源制御部は、前記算定手段で算出する電圧上昇変化率が前記設定上昇変化率に一致するように、前記スイッチング素子を開閉制御するパルス幅変調信号のONデューティを増減し、前記電圧上昇変化率を調整することを特徴とする請求項1乃至請求項4のいずれか1項に記載の充電装置。
The power supply unit is a chopper type step-down converter that outputs the DC power between the charging terminals of the secondary battery by opening and closing a switching element connected in series between the DC input voltages of the DC voltage that is at least higher than the cut-off voltage. The unit adjusts the voltage rise change rate by increasing / decreasing the ON duty of the pulse width modulation signal for controlling the opening / closing of the switching element so that the voltage rise change rate calculated by the calculating means matches the set rise change rate. The charging device according to any one of claims 1 to 4, wherein the charging device is provided.
JP2012174085A 2012-08-06 2012-08-06 Charger Expired - Fee Related JP5561327B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012174085A JP5561327B2 (en) 2012-08-06 2012-08-06 Charger
CN201310336576.0A CN103580105B (en) 2012-08-06 2013-08-05 Charging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012174085A JP5561327B2 (en) 2012-08-06 2012-08-06 Charger

Publications (2)

Publication Number Publication Date
JP2014033580A true JP2014033580A (en) 2014-02-20
JP5561327B2 JP5561327B2 (en) 2014-07-30

Family

ID=50051297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012174085A Expired - Fee Related JP5561327B2 (en) 2012-08-06 2012-08-06 Charger

Country Status (2)

Country Link
JP (1) JP5561327B2 (en)
CN (1) CN103580105B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113447816A (en) * 2021-05-13 2021-09-28 浙江大学 Lithium battery online aging diagnosis method based on two-point aging characteristics

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110048180B (en) * 2019-03-26 2022-01-21 中国汽车技术研究中心有限公司 Charging method of nickel-cobalt-manganese ternary lithium ion battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04190640A (en) * 1990-11-22 1992-07-09 Hitachi Koki Co Ltd Apparatus for charging battery
JP2003299258A (en) * 2002-02-28 2003-10-17 Black & Decker Inc Method and apparatus for charging battery
JP2010523074A (en) * 2007-03-26 2010-07-08 ザ ジレット カンパニー Small super high speed battery charger
JP2011175859A (en) * 2010-02-24 2011-09-08 New Industry Research Organization Method for determination of full charge in secondary battery, and charging control method of secondary battery employing the same
JP2011530271A (en) * 2008-07-30 2011-12-15 スリーエム イノベイティブ プロパティズ カンパニー Lithium ion battery pack charging system and apparatus including the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101647174A (en) * 2007-03-26 2010-02-10 吉列公司 Compact ultra fast battery charger

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04190640A (en) * 1990-11-22 1992-07-09 Hitachi Koki Co Ltd Apparatus for charging battery
JP2003299258A (en) * 2002-02-28 2003-10-17 Black & Decker Inc Method and apparatus for charging battery
JP2010523074A (en) * 2007-03-26 2010-07-08 ザ ジレット カンパニー Small super high speed battery charger
JP2011530271A (en) * 2008-07-30 2011-12-15 スリーエム イノベイティブ プロパティズ カンパニー Lithium ion battery pack charging system and apparatus including the same
JP2011175859A (en) * 2010-02-24 2011-09-08 New Industry Research Organization Method for determination of full charge in secondary battery, and charging control method of secondary battery employing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113447816A (en) * 2021-05-13 2021-09-28 浙江大学 Lithium battery online aging diagnosis method based on two-point aging characteristics
CN113447816B (en) * 2021-05-13 2022-04-08 浙江大学 Lithium battery online aging diagnosis method based on two-point aging characteristics

Also Published As

Publication number Publication date
JP5561327B2 (en) 2014-07-30
CN103580105B (en) 2017-04-12
CN103580105A (en) 2014-02-12

Similar Documents

Publication Publication Date Title
CN108428951B (en) Control device, balance correction device, power storage system, and power storage device
JP5537992B2 (en) Secondary battery charging method, secondary battery charging control device, and battery pack
JP6177496B2 (en) Charge control device with protection function and battery pack
CN101083402B (en) Method of charging a rechargeable battery and protection circuit for a rechargeable battery
US10122188B2 (en) Battery pack
US10559963B2 (en) Balance correction apparatus and electric storage system
US8258756B2 (en) Current breaking method for rechargeable battery and battery pack using the same
US20130200847A1 (en) Charge control device including protective function and cell pack
US9780592B2 (en) Battery pack for selectively setting a high capacity mode having a high charge capacity until a full charge of a secondary battery
JP2011520408A (en) Method for detecting branch of cell charge and discharge states of series or group of batteries or capacitors
JP2008210694A (en) Charging method of battery pack
US20090096427A1 (en) Apparatus for detecting end-of-charge for a battery charger
US7180269B2 (en) Battery charging method
US11791504B2 (en) Battery pack and charging control method therefor
JP2008005693A (en) Battery device
JP2002199605A (en) Charging method and charger
JP5561327B2 (en) Charger
US10749363B2 (en) Semiconductor device, battery system, and battery control method
JP4372074B2 (en) Rechargeable battery charging method
JP2019041497A (en) Power source management device
KR20140131174A (en) Apparatus for battery management having precharge function with pulse width modulation and method thereof
JP2015029390A (en) Charger
CN105226767A (en) A kind of dual-purpose intelligent charger
JP2004235100A (en) Battery pack
JP2004187452A (en) Charging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131211

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20131211

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20131226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140526

R150 Certificate of patent or registration of utility model

Ref document number: 5561327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees