JP2014032274A - Optical modulator and drift control method therefor - Google Patents

Optical modulator and drift control method therefor Download PDF

Info

Publication number
JP2014032274A
JP2014032274A JP2012171974A JP2012171974A JP2014032274A JP 2014032274 A JP2014032274 A JP 2014032274A JP 2012171974 A JP2012171974 A JP 2012171974A JP 2012171974 A JP2012171974 A JP 2012171974A JP 2014032274 A JP2014032274 A JP 2014032274A
Authority
JP
Japan
Prior art keywords
optical modulator
light
bias voltage
modulation signal
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012171974A
Other languages
Japanese (ja)
Other versions
JP5768020B2 (en
Inventor
Yukiyasu Kimura
幸泰 木村
Akihito Otani
昭仁 大谷
Shigeo Arai
茂雄 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2012171974A priority Critical patent/JP5768020B2/en
Publication of JP2014032274A publication Critical patent/JP2014032274A/en
Application granted granted Critical
Publication of JP5768020B2 publication Critical patent/JP5768020B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To restrict drift without causing signal quality degradation, resulting from overlapping of low frequency signals.SOLUTION: An optical modulator is provided with ±N-order modulation light level detection means 30 for detecting a level Land a level L, which are separate from light emitted from the optical modulator 21, by N times of an integer of a modulation signal frequency, with the frequency of the incident light between them. After a DC bias voltage is initially set so that the operating point of the optical modulator 21 is appropriate, the level of a ±N-order modulation light component is detected every predetermined timing during a period in which a modulation signal Sm of non-modulated continuous wave is applied to the optical modulator 21. Based on its change with time, the drift direction of the optical modulator 21 is determined. Based on the determination result, the DC bias voltage is corrected so that the drift decreases.

Description

本発明は、光変調器のドリフト制御に関し、特に、不要な変調成分を生じさせることなく、光変調器に適切なバイアス電圧を与えるための技術に関する。   The present invention relates to drift control of an optical modulator, and more particularly to a technique for applying an appropriate bias voltage to an optical modulator without causing unnecessary modulation components.

光変調器として、従来から導波路型マッハ・ツェンダー型光強度変調器(LN変調器)が知られている。この変調器は、入力光を1:1に2分岐して二つの導波路を伝搬させて合波する光路構成をもち、その二つの導波路が、印加される電界の向きと大きさに応じて屈折率を変化させるLiNbO3 等の電気光学結晶からなる基板上に形成されていて、二つの導波路に印加される電界により導波路を通過する光位相を変化させて合波できるようになっている。 As an optical modulator, a waveguide type Mach-Zehnder type optical intensity modulator (LN modulator) is conventionally known. This modulator has an optical path configuration in which input light is split into two at 1: 1 and propagates through two waveguides to be combined, and the two waveguides depend on the direction and magnitude of the applied electric field. It is formed on a substrate made of an electro-optic crystal such as LiNbO 3 that changes the refractive index and can be multiplexed by changing the optical phase passing through the waveguide by the electric field applied to the two waveguides. ing.

そして、例えば二つの導波路に電界を与えなければ、二つの導波路を通過する光の位相差が0となって同相合波され、互いに強調し合って出射されるが、所定の大きさの電界を逆向きに与えると、一方の導波路の光の位相がπ/2進み、他方の導波路の光の位相がπ/2遅れて、両光の位相差がπとなって逆相合波され、互いに干渉して打ち消し合い、基板内部で散乱して出射されなくなる。この二つの導波路を通過する光の位相差がπとなるために必要な電圧を半波長電圧Vπと呼び、動作点を決める直流バイアス電圧を基準にして、半波長電圧Vπ以下の振幅の変調信号を光変調器に印加することで、その変調信号のレベルに応じて強度変調された光を出射させることができる。   For example, if an electric field is not applied to the two waveguides, the phase difference of the light passing through the two waveguides becomes 0, and the light is in-phase combined and emitted with emphasis on each other. When the electric field is applied in the opposite direction, the phase of the light in one waveguide advances by π / 2, the phase of the light in the other waveguide delays by π / 2, and the phase difference between the two lights becomes π, resulting in reverse phase multiplexing. Then, they interfere with each other, cancel each other, and are scattered inside the substrate and are not emitted. The voltage required for the phase difference of the light passing through these two waveguides to be π is called a half-wave voltage Vπ, and the amplitude of the half-wave voltage Vπ or less is modulated with reference to the DC bias voltage that determines the operating point. By applying the signal to the optical modulator, it is possible to emit light whose intensity is modulated according to the level of the modulation signal.

上記構造の光変調器では、直流バイアス電圧の印加量や使用環境の温度変化により、光変調器の出力特性が経時的に変化する、所謂ドリフト現象を起こすことが知られている。このドリフト現象により、印加されている直流バイアス電圧に対して光の出力特性がシフトして動作点がずれると、光の消光比が低下し、高いS/Nが得られなくなる。   It is known that the optical modulator having the above structure causes a so-called drift phenomenon in which the output characteristics of the optical modulator change with time due to the application amount of the DC bias voltage and the temperature change of the usage environment. Due to this drift phenomenon, when the output characteristics of light shift with respect to the applied DC bias voltage and the operating point shifts, the extinction ratio of light decreases, and a high S / N cannot be obtained.

このため、従来から光変調器のドリフト抑制のための技術が種々提案されている。その一つとして、特許文献1では、光変調器の変調信号に低周波信号を重畳させ、光変調器の出力光から低周波信号に係る光量変化をモニタし、この光量変化と低周波の相関をもとめ、実印加電圧に対するバイアス点の検出を行い、光変調器の直流バイアスを補正している。   For this reason, conventionally, various techniques for suppressing the drift of the optical modulator have been proposed. As one of them, in Patent Document 1, a low frequency signal is superimposed on a modulation signal of an optical modulator, a light amount change related to the low frequency signal is monitored from an output light of the optical modulator, and a correlation between the light amount change and the low frequency is monitored. The bias point for the actual applied voltage is detected to correct the DC bias of the optical modulator.

特開2005−309468号公報JP 2005-309468 A

しかしながら、上記特許文献1にみられるように、直流バイアス、変調信号のほかに、低周波信号を重畳させた場合、変調光出力の各側帯波あるいは変調光出力を受光して得られる高周波信号の各成分に、重畳した低周波信号とその高次側帯波の不要信号成分が現れてしまい、これら不要信号成分により信号品質が低下する。   However, as seen in Patent Document 1, when a low frequency signal is superimposed in addition to a DC bias and a modulation signal, each sideband of the modulated light output or a high frequency signal obtained by receiving the modulated light output is received. In each component, the superimposed low-frequency signal and unnecessary signal components of the higher-order sideband appear, and the signal quality deteriorates due to these unnecessary signal components.

本発明は、この問題を解決して、低周波信号の重畳による信号品質低下を招くことなく、ドリフトを抑制することができる光変調装置およびそのドリフト制御方法を提供することを目的としている。   An object of the present invention is to solve this problem and to provide an optical modulation device and a drift control method thereof that can suppress drift without causing signal quality degradation due to superposition of low-frequency signals.

前記目的を達成するために、本発明の請求項1の光変調装置は、
コヒーレント光を入射光として受けて2分岐して2つの導波路を伝搬させて結合する光路を有し、前記2つの導波路の少なくとも一方が、信号入力端子から入力された信号の電圧に応じて屈折率を変化させて当該導波路を伝搬する光の位相を変化させる特性を有する光変調器(21)と、
前記光変調器の動作点の基準となる電圧可変の直流バイアス電圧を発生するバイアス電圧発生手段(25)と、
所定振幅の無変調連続波の変調信号を出力する変調信号発生手段(26)と、
前記バイアス電圧発生手段が出力する直流バイアス電圧と前記変調信号発生手段が出力する変調信号とを重畳して前記光変調器の信号入力端子に与える信号重畳手段(27)と、
前記光変調器の出射光から、前記コヒーレント光の周波数を挟んで、前記変調信号の周波数の整数N倍離れた±N次変調光成分を抽出してそのレベル(L+N、L−N)を検出する±N次変調光レベル検出手段(30)と、
前記バイアス電圧発生手段が出力する直流バイアス電圧を、前記光変調器の動作点が適正となる値に初期設定し、該初期設定後で前記無変調連続波の変調信号を前記光変調器に与えている間の所定タイミング毎に前記±N次変調光成分のレベルを求め、該±N次変調光成分のレベルの経時変化に基づいて、前記光変調器の動作点のドリフト方向を判定し、該判定結果に基づいて前記ドリフトが小さくなるように直流バイアス電圧を補正する制御部(40)とを備えていることを特徴とする。
In order to achieve the above object, an optical modulation device according to claim 1 of the present invention includes:
An optical path that receives coherent light as incident light, splits into two, propagates through two waveguides, and is coupled, and at least one of the two waveguides depends on a voltage of a signal input from a signal input terminal. An optical modulator (21) having a characteristic of changing a phase of light propagating through the waveguide by changing a refractive index;
Bias voltage generating means (25) for generating a voltage-variable DC bias voltage serving as a reference of the operating point of the optical modulator;
Modulation signal generating means (26) for outputting a modulation signal of an unmodulated continuous wave having a predetermined amplitude;
A signal superimposing means (27) for superimposing a DC bias voltage output from the bias voltage generating means and a modulation signal output from the modulation signal generating means on a signal input terminal of the optical modulator;
From the light emitted from the optical modulator, a ± N-order modulated light component separated by an integer N times the frequency of the modulation signal is extracted across the frequency of the coherent light, and the level (L + N , L −N ) is extracted. ± Nth order modulated light level detecting means (30) for detecting;
The DC bias voltage output from the bias voltage generating means is initialized to a value at which the operating point of the optical modulator is appropriate, and the modulation signal of the unmodulated continuous wave is given to the optical modulator after the initial setting. Determining the level of the ± Nth order modulated light component at a predetermined timing during the operation, and determining the drift direction of the operating point of the optical modulator based on the change over time of the level of the ± Nth order modulated light component, And a control unit (40) for correcting a DC bias voltage so as to reduce the drift based on the determination result.

また、本発明の請求項2の光変調装置のドリフト制御方法は、
所定周波数のコヒーレント光を入射光として受けて2分岐して2つの導波路を伝搬させて結合する光路を有し、前記2つの導波路の少なくとも一方が、信号入力端子から入力された信号の電圧に応じて屈折率を変化させて当該導波路を伝搬する光の位相を変化させる特性を有する光変調器(21)に対して、その動作点の基準となる直流バイアス電圧に変調信号を重畳して与え、該変調信号で強度変調された光を出射する光変調装置のドリフト制御方法において、
前記直流バイアス電圧を、前記光変調器の動作点が適正となる値に初期設定する段階(S1〜S3、S1′、S2′)と、
前記直流バイアス電圧の初期設定後に、前記変調信号として無変調連続波を与えている期間中の所定タイミング毎に、前記コヒーレント光の周波数を挟んで、前記変調信号の周波数の整数N倍離れた±N次変調光成分のレベルを検出して記憶する段階(S4、S5、S3′)と、
前記検出した±N次変調光成分のレベルの経時変化に基づいて、前記光変調器の動作点のドリフト方向を判定し、該判定結果に基づいて前記ドリフトが小さくなるようにバイアス電圧を補正する段階(S6〜S8)とを含むことを特徴とする。
A drift control method for an optical modulation device according to claim 2 of the present invention is
An optical path that receives coherent light having a predetermined frequency as incident light, splits into two, propagates through two waveguides, and is coupled, and at least one of the two waveguides is a voltage of a signal input from a signal input terminal In response to the optical modulator (21) having a characteristic of changing the phase of light propagating through the waveguide by changing the refractive index in accordance with the modulation signal, the modulation signal is superimposed on the DC bias voltage serving as the reference of the operating point. In a drift control method of a light modulation device that emits light whose intensity is modulated by the modulation signal,
Initializing the DC bias voltage to a value at which the operating point of the optical modulator is appropriate (S1 to S3, S1 ′, S2 ′);
After the initial setting of the DC bias voltage, at a predetermined timing during a period in which an unmodulated continuous wave is given as the modulation signal, the frequency of the coherent light is sandwiched between the integers N times of the modulation signal frequency ± Detecting and storing the level of the Nth order modulated light component (S4, S5, S3 ');
The drift direction of the operating point of the optical modulator is determined based on the time-dependent change in the level of the detected ± Nth order modulated light component, and the bias voltage is corrected so that the drift is reduced based on the determination result. Stage (S6-S8).

このように、本発明では、光変調器の動作点が適正となるように直流バイアス電圧を初期設定して、所定振幅の無変調連続波の変調信号を与えている期間の所定タイミング毎に、入射光の周波数を挟んで変調信号周波数の整数N倍離れた±N次変調光成分のレベルを検出し、±N次変調光成分のレベルの経時変化に基づいて光変調器のドリフト方向を判定し、その判定結果に基づいてドリフトが小さくなるように直流バイアス電圧を補正している。   Thus, in the present invention, the DC bias voltage is initially set so that the operating point of the optical modulator is appropriate, and at each predetermined timing in a period in which a modulation signal of an unmodulated continuous wave having a predetermined amplitude is given, Detects the level of the ± Nth order modulated light component that is an integer N times the modulation signal frequency across the incident light frequency, and determines the drift direction of the optical modulator based on the temporal change in the level of the ± Nth order modulated light component The DC bias voltage is corrected so that the drift is reduced based on the determination result.

これは光変調器のドリフトに対して、+N次の変調光成分のレベル変化の傾向と−N次の変調光成分のレベル変化の傾向には波長による差があるという知見に基づくものであり、この構成により、本発明では、低周波信号の重畳による信号品質低下を招くことなく、光変調器のドリフトを抑制することができる。   This is based on the knowledge that there is a difference between the tendency of the level change of the + N-order modulated light component and the tendency of the level change of the −N-order modulated light component due to the wavelength with respect to the drift of the optical modulator, With this configuration, in the present invention, the drift of the optical modulator can be suppressed without incurring signal quality degradation due to the superposition of low frequency signals.

本発明の実施形態の構成を示す図The figure which shows the structure of embodiment of this invention 光変調器の特性を示す図Diagram showing characteristics of optical modulator 位相差0相当の直流バイアスを与えたときの光変調器の出射光のスペクトラム図Spectrum diagram of light emitted from the optical modulator when a DC bias equivalent to a phase difference of 0 is applied. 位相差π相当の直流バイアスを与えたときの光変調器の出射光のスペクトラム図Spectrum diagram of light emitted from the optical modulator when a DC bias equivalent to a phase difference of π is applied. ±N次の光変調成分の出力特性図Output characteristic diagram of ± Nth order light modulation component 実施形態の制御部の処理手順を示すフローチャートThe flowchart which shows the process sequence of the control part of embodiment 本発明の別の実施形態の構成を示す図The figure which shows the structure of another embodiment of this invention. 別の実施形態の制御部の処理手順を示すフローチャートThe flowchart which shows the process sequence of the control part of another embodiment.

以下、図面に基づいて本発明の実施の形態を説明する。
図1は、本発明を適用した光変調装置20の構成を示している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a configuration of a light modulation device 20 to which the present invention is applied.

図1において、光変調器21は、前記した導波路型マッハ・ツェンダー型光強度変調器(LN変調器)であり、LiNbO3 等の電気光学結晶からなる基板上に形成されている。 In FIG. 1, an optical modulator 21 is the above-described waveguide type Mach-Zehnder type optical intensity modulator (LN modulator), and is formed on a substrate made of an electro-optic crystal such as LiNbO 3 .

より具体的に言えば、入射光Pinを入射用導波路21aで受けて、分岐部21bで2分岐し、二つの導波路21c、21dを伝搬させて、結合部21eで合波し、同相合波される光については結合部21eと連続する出射用導波路21fを介して出射し、逆相合波される光については結合部21eで散乱し基板内に放射する光路構造を有している。そして、二つの導波路21c、21dが、信号入力端子21gに接続された図示しない電極に挟まれていて、電極から印加される電界の向きと大きさに応じて導波路21c、21dを通過する光位相を変化させて結合し、合波できるようになっている。なお、導波路に対する電界の印加は、二つの導波路に対して逆方向に行う場合だけでなく、一方の導波路に対してのみ印加を行う場合でもよい。   More specifically, the incident light Pin is received by the incident waveguide 21a, branched into two at the branching portion 21b, propagated through the two waveguides 21c and 21d, and combined at the coupling portion 21e, and in-phase combined. The light to be waved is emitted through an output waveguide 21f continuous with the coupling part 21e, and the light to be anti-phase-combined is scattered by the coupling part 21e and radiated into the substrate. The two waveguides 21c and 21d are sandwiched between electrodes (not shown) connected to the signal input terminal 21g and pass through the waveguides 21c and 21d according to the direction and magnitude of the electric field applied from the electrodes. The optical phase can be changed and combined to be combined. Note that the application of the electric field to the waveguide may be applied not only to the two waveguides in the opposite direction but also to only one of the waveguides.

この光変調器21には、波長λc(例えば1550nm、周波数fc)のコヒーレント光が入射光Pinとして入射され、二つの導波路21c、21dを伝搬して、信号入力端子21gに入力された信号の電圧に応じた位相差が与えられて合波され、その位相差により強め合ったり、弱め合ったりして出射されることになる。   The optical modulator 21 receives coherent light having a wavelength λc (for example, 1550 nm, frequency fc) as incident light Pin, propagates through the two waveguides 21c and 21d, and transmits the signal input to the signal input terminal 21g. A phase difference corresponding to the voltage is given and combined, and the light is emitted after being strengthened or weakened by the phase difference.

図2は、光変調器21に与えられる信号の電圧と出射光強度の関係を示す図であり、信号電圧の変化に対して周期的変化を示す出力特性を有しており、そのうち、逆相合波で打ち消し合う電圧V1と、同相合波で最大に強め合う電圧V2(=V1+Vπ)との差分に等しい振幅(Vπ)をもち、例えば、変調データ0に対して0ボルト、変調データ1に対してVπボルトでレベル遷移する変調信号Smを、動作点決定用の直流バイアス電圧Vb=V1に重畳して与えることで、変調信号Smのレベルに応じて強度が変調される光変調信号Pout を最大の消光比で出射させることができる。   FIG. 2 is a diagram showing the relationship between the voltage of the signal applied to the optical modulator 21 and the intensity of the emitted light, and has an output characteristic that shows a periodic change with respect to the change of the signal voltage. It has an amplitude (Vπ) equal to the difference between the voltage V1 that cancels out by the wave and the voltage V2 (= V1 + Vπ) that strengthens to the maximum by in-phase multiplexing. The modulation signal Sm whose level is changed at Vπ volts is superimposed on the DC bias voltage Vb = V1 for determining the operating point, so that the optical modulation signal Pout whose intensity is modulated according to the level of the modulation signal Sm is maximized. Can be emitted at an extinction ratio of.

この光変調器21の動作点を決める直流バイアス電圧Vbはバイアス電圧発生手段25から出力される。バイアス電圧発生手段25は、後述する制御部40の制御により、出力する直流バイアス電圧Vbを可変する。   A DC bias voltage Vb that determines the operating point of the optical modulator 21 is output from the bias voltage generating means 25. The bias voltage generator 25 varies the output DC bias voltage Vb under the control of the control unit 40 described later.

また、変調信号発生手段26の構成は、この装置の用途に応じて異なるが、例えば、100GHzの信号を得るための逓倍器の一部として用いる場合には、4逓倍なら25GHzの所定振幅の無変調連続波の変調信号Smを発生する。この変調信号Smの振幅は、前記した半波長電圧Vπ以下で、変調器21の変調特性の直線性のよい範囲に対応した値とする。   The configuration of the modulation signal generating means 26 differs depending on the application of this apparatus. For example, when used as a part of a multiplier for obtaining a 100 GHz signal, if the signal is multiplied by 4, there is no predetermined amplitude of 25 GHz. A modulation signal Sm of a modulated continuous wave is generated. The amplitude of the modulation signal Sm is set to a value corresponding to a range in which the modulation characteristic of the modulator 21 has good linearity, which is equal to or less than the half-wave voltage Vπ.

バイアス電圧Vbと変調信号Smは、信号重畳手段27によって重畳されて光変調器21の信号入力端子21gに与えられる。信号重畳手段27は、バイアスT等の加算器で構成することができ、また、変調信号発生手段26の出力の基準電位をバイアス電圧Vbに一致させる回路等で構成することもできる。   The bias voltage Vb and the modulation signal Sm are superimposed by the signal superimposing means 27 and given to the signal input terminal 21g of the optical modulator 21. The signal superimposing means 27 can be composed of an adder such as a bias T, and can also be composed of a circuit for matching the reference potential of the output of the modulation signal generating means 26 with the bias voltage Vb.

一方、光変調器21の出射光Pout は、第1光分岐手段28で分岐されて、その一方Pout1は装置出射光となり、他方Pout2が±N次変調光レベル検出手段30に入射される。   On the other hand, the outgoing light Pout of the optical modulator 21 is branched by the first light branching means 28, one of which Pout 1 becomes the apparatus outgoing light, and the other Pout 2 enters the ± Nth order modulated light level detecting means 30.

±N次変調光レベル検出手段30は、入射光Pout2を第2光分岐手段31で2分岐し、その一方を+N次変調光フィルタ32に入射し、他方を−N次変調光フィルタ33に入射する。   The ± Nth order modulated light level detecting means 30 splits the incident light Pout2 into two by the second light branching means 31, one of which is incident on the + Nth order modulated light filter 32 and the other is incident on the −Nth order modulated light filter 33. To do.

この二つのフィルタは、光変調器21の入射光Pinの周波数fcを挟んで、変調信号周波数fmの整数N倍離れた±N次変調光成分をそれぞれ抽出するためのフィルタであり、変調周波数fm=25GHzの場合、次数N=2とすれば、入射光周波数fcからプラス側とマイナス側にそれぞれ50GHz離れている光変調成分を抽出する。これらの変調成分は、入射光Pinの波長を1550nmとすると、それから50GHzに相当する波長約0.4nmだけ離れているが、これらの抽出は例えばFBG(ファイバブラッググレーティング)等を用いることで実現できる。   These two filters are filters for extracting ± N-order modulated light components separated by an integer N times the modulation signal frequency fm across the frequency fc of the incident light Pin of the optical modulator 21. The modulation frequency fm In the case of = 25 GHz, if the order is N = 2, light modulation components that are 50 GHz apart from the incident light frequency fc are extracted from the plus side and the minus side, respectively. These modulation components are separated by a wavelength of about 0.4 nm corresponding to 50 GHz when the wavelength of the incident light Pin is 1550 nm. These extractions can be realized by using, for example, an FBG (fiber Bragg grating) or the like. .

これら二つのフィルタで抽出された±N次変調光成分P+N、P−Nは、それぞれ受光器34、35に入射されてそのレベルL+N、L−Nが検出される。 The ± N-order modulated light components P + N and P −N extracted by these two filters are incident on the light receivers 34 and 35, respectively, and their levels L + N and L −N are detected.

ここで、光変調器21のバイアス電圧と出力光のスペクトラムの関係を説明する。
光変調器21には、バイアス電圧Vbと変調信号Smが重畳されて入力され、その入力信号が、二つの導波路に対して逆極性で印加されるものとする。二つの導波路を通過してきた光の位相差をφとすると、出力される光の振幅はcos φに比例する。
Here, the relationship between the bias voltage of the optical modulator 21 and the spectrum of the output light will be described.
It is assumed that the bias voltage Vb and the modulation signal Sm are superimposed and input to the optical modulator 21, and the input signal is applied to the two waveguides with opposite polarities. If the phase difference of the light that has passed through the two waveguides is φ, the amplitude of the output light is proportional to cos φ.

変調信号がないときに二つの導波路を通過した光が同相合波されるような直流バイアスが与えられた状態(直流バイアスよる光信号位相差が生じない状態)で、一方の導波路の光が、A sin ωtの位相変調を受けるとき、その位相変調光は、
exp (jA sin ωt)=ΣJ(a)ejnωt
と書ける。ただし、記号Σは、n=−∞〜+∞までの総和、Jは、n次の第1種ベッセル関数である。
Light in one waveguide with a DC bias applied (no optical signal phase difference due to DC bias) in which the light that has passed through the two waveguides is combined in phase when there is no modulation signal Is subjected to phase modulation of A sin ωt, the phase-modulated light is
exp (jA sin ωt) = ΣJ n (a) e jnωt
Can be written. However, symbol Σ is a total from n = −∞ to + ∞, and J n is an nth-order first-type Bessel function.

−n(x)=(−1)(x)の関係に注意すると、この位相変調光のスペクトルは、模式的に図3の(a)のように表される(光周波数fc、ω=2πfmとする)。 When attention is paid to the relationship of J −n (x) = (− 1) n J n (x), the spectrum of the phase-modulated light is schematically expressed as shown in FIG. , Ω = 2πfm).

また、このとき、他方の導波路の光は、逆位相の−A sin ωtの位相変調を受けるので、そのスペクトラムは、図3の(b)のように表される。   At this time, the light of the other waveguide is subjected to phase modulation of -A sin ωt having an opposite phase, so that the spectrum is expressed as shown in FIG.

これらの光を合波すると、図3の(c)の奇数次の側波帯成分が抑圧され、偶数次のみが残る。   When these lights are multiplexed, the odd-order sideband components in (c) of FIG. 3 are suppressed, and only the even-order remains.

逆に、変調信号がないときに二つの導波路を通過した光が逆相合波されるような直流バイアス電圧が印加された状態で、上記同様の変調信号を与えると、偶数次が抑圧され、奇数次のみが残る。   On the other hand, when a modulation signal similar to the above is applied in a state where a DC bias voltage is applied such that light passing through the two waveguides is antiphase-combined when there is no modulation signal, the even order is suppressed, Only odd order remains.

つまり、光変調器21の動作点を決める直流バイアスが、二つの導波路の光に位相差πを与える電圧に設定されている場合には、奇数次の側波帯成分が出力に現れ、二つの導波路の光に位相差0を与える電圧に設定されている場合には、搬送波および偶数次の側波帯成分が出力に現れることになる。   That is, when the DC bias that determines the operating point of the optical modulator 21 is set to a voltage that gives a phase difference π to the light in the two waveguides, odd-order sideband components appear in the output, and two If the voltage is set to give a phase difference of 0 to the light of one waveguide, the carrier wave and even-order sideband components will appear at the output.

図4の(a)は、直流バイアス電圧が位相差πを与える電圧に設定されている場合の変調器出力のスペクトラムを示すものであり、前記したように基本波fcの成分およびその基本波から変調周波数fmの偶数倍±2fm、±4fm、…離れた位置の偶数次の変調波成分(側波帯成分)は抑圧されて理論的にゼロとなる。   FIG. 4A shows the spectrum of the modulator output when the DC bias voltage is set to a voltage that gives the phase difference π. As described above, the component of the fundamental wave fc and its fundamental wave are shown in FIG. Even multiples of the modulation frequency fm ± 2fm, ± 4fm,... Even-order modulated wave components (sideband components) at distant positions are suppressed and theoretically become zero.

これに対し、ドリフトによって動作点がずれると、抑圧されていた基本波と偶数次の変調波成分が、図4の(b)のように現れることになる。   On the other hand, when the operating point is shifted due to drift, the suppressed fundamental wave and even-order modulated wave components appear as shown in FIG. 4B.

なお、図3に示したように、直流バイアスが位相差0を与える電圧に設定されている場合で、基本波fcから変調周波数fm(=2πω)の奇数倍±fm、±3fm、…離れた位置の奇数次の変調波成分(側波帯成分)が抑圧されている状態から、ドリフトによって動作点がずれると、抑圧されていた奇数次の変調波成分が現れることになる。   As shown in FIG. 3, when the DC bias is set to a voltage that gives a phase difference of 0, the fundamental frequency fc is an odd multiple of the modulation frequency fm (= 2πω) ± fm, ± 3fm,. If the operating point is shifted due to drift from the state where the odd-order modulation wave component (sideband component) at the position is suppressed, the suppressed odd-order modulation wave component appears.

したがって、直流バイアス電圧が光変調器21の動作点が適正となる値に初期設定された時点で、例えば最小に抑圧された次数の変調成分のレベルを監視し、そのレベルが所定値を越えたら、ドリフトによる動作点ずれが発生したものと判断し、動作点を修正すればよい。   Accordingly, when the DC bias voltage is initially set to a value at which the operating point of the optical modulator 21 is appropriate, for example, the level of the modulation component of the order suppressed to the minimum is monitored, and if the level exceeds a predetermined value. The operating point may be corrected by determining that the operating point shift due to drift has occurred.

ここで、ドリフトによって現れる±N変調光成分に注目すると、そのプラスとマイナスの変調光成分は、その間に2N・fm分の周波数差があるため、同じドリフト量であっても合波される時の位相差が異なってくる。これは変調周波数が高くなるほど、また、次数が高くなるほど顕著に表れる。   Here, paying attention to the ± N modulated light component that appears due to drift, the plus and minus modulated light components have a frequency difference of 2N · fm between them. The phase difference of becomes different. This becomes more conspicuous as the modulation frequency increases and the order increases.

例えば、±2次の変調光成分について言えば、図5に示す出力特性F1、F2のように、バイアス電圧軸に沿ってずれた特性となり、基本的に両者が交わる位置Qが本来の適正な動作点となる。   For example, in the case of ± second order modulated light components, the output characteristics F1 and F2 shown in FIG. 5 are shifted characteristics along the bias voltage axis, and the position Q at which the two cross each other is basically proper. It becomes an operating point.

そして、この特性F1、F2の交点からそれぞれの極小点までの範囲でみると、ドリフトによって、特性に対してバイアス点が左方に相対移動すると、特性F1の光のレベルが上がり、特性F2の光のレベルが下がる。逆に、特性に対してバイアス点が右方に相対移動すると、特性F1の光のレベルが下がり、特性F2の光のレベルが上がる。   In the range from the intersection of the characteristics F1 and F2 to the respective minimum points, if the bias point moves relative to the characteristics to the left due to drift, the light level of the characteristics F1 increases, and the characteristics F2 The light level goes down. Conversely, when the bias point moves to the right relative to the characteristic, the light level of characteristic F1 decreases and the light level of characteristic F2 increases.

したがって、交点Qに対応した適正な動作点からの±2次の変調波成分のレベル変化の傾向を把握すれば、動作点がずれている方向を特定することができる。   Therefore, if the tendency of the level change of the ± 2nd order modulated wave component from the appropriate operating point corresponding to the intersection point Q is grasped, the direction in which the operating point is shifted can be specified.

制御部40は、このドリフト制御の処理を含めた制御処理を行うものであり、装置起動時の初期設定処理およびドリフト制御処理を行う。   The control unit 40 performs control processing including the drift control processing, and performs initial setting processing and drift control processing when the apparatus is activated.

図6は、その処理手順を示すフローチャートである。以下このフローチャートに基づいて、この光変調装置20の動作を説明する。   FIG. 6 is a flowchart showing the processing procedure. The operation of the light modulation device 20 will be described below based on this flowchart.

初期設定処理は、装置起動時等に直流バイアスを光変調器21の動作点が適正となる値に設定するためのものであり、ここでは、変調信号Smを与えた状態で、バイアス電圧発生手段25が出力する直流バイアス電圧Vbを±Vπの範囲可変させ、±N次(偶数とする)の変調光成分のレベルL+N、L−Nを観測し、その和が最小となる値Vb1を初期設定する(S1〜S3)。 The initial setting process is for setting the DC bias to a value at which the operating point of the optical modulator 21 is appropriate at the time of starting the apparatus. Here, the bias voltage generating means is provided with the modulation signal Sm being applied. The DC bias voltage Vb output from the control unit 25 is varied within a range of ± Vπ, the levels L + N and L −N of ± N-order (even number) modulated light components are observed, and a value Vb1 that minimizes the sum is initially set. Set (S1 to S3).

この初期設定処理により、基本波および偶数次の変調波成分が十分に抑圧された図4の(a)の状態となり、光変調器21の出射光Pout には、周波数fc±fm、fc±3fm、…の奇数次の光変調成分が含まれることになる。   By the initial setting process, the fundamental wave and even-order modulation wave components are sufficiently suppressed, and the state shown in FIG. 4A is obtained. The emitted light Pout of the optical modulator 21 has frequencies fc ± fm and fc ± 3fm. ,... Are included.

ここで、出射光Pout は、2fmだけ周波数差がある±1次の変調光成分が合波されたものと見なせるから、これを受光器に入射すれば、周波数2fmの電気信号を得ることができ、変調信号Smに対する2逓倍処理が可能となる。   Here, since the emitted light Pout can be regarded as a combination of ± 1st order modulated light components having a frequency difference of 2fm, if this is incident on the light receiver, an electric signal having a frequency of 2fm can be obtained. Thus, it is possible to double the modulation signal Sm.

制御部40は、このような変調処理が行なわれている間の一定時間経過毎に、±N次の変調光成分のレベルL+N、L−Nをそれぞれ求めてM回(Mは1以上の整数)の平均化処理をし、その処理結果A(+N)、A(−N)の増減判定を行う(S4〜S6)。 The control unit 40 obtains the levels L + N and L −N of ± N-order modulated light components each time a certain time elapses during such modulation processing, and M times (M is 1 or more). An integer) averaging process is performed, and increase / decrease determination of the processing results A (+ N) and A (−N) is performed (S4 to S6).

前記したように、2次の変調光成分を観測している場合、出力特性が低電圧側に移動(動作点が高電圧側にドリフト)すると、+2次の変調光成分のレベルが下がり、−2次の変調光成分のレベルが上がる。逆に出力特性が高電圧側に移動(動作点が低電圧側にドリフト)すると、+2次の変調光成分のレベルが上がり、−2次の変調光成分のレベルが下がる。   As described above, when the second-order modulated light component is observed, if the output characteristic moves to the low voltage side (the operating point drifts to the high voltage side), the level of the + second-order modulated light component decreases, and − The level of the secondary modulated light component increases. Conversely, when the output characteristic moves to the high voltage side (the operating point drifts to the low voltage side), the level of the + 2nd order modulated light component increases and the level of the −2nd order modulated light component decreases.

したがって、平均値A(+N)が減少変化し、平均値A(−N)が増大変化した場合には、動作点が高電圧側にドリフトしていると判断し、直流バイアス電圧Vbを所定量ΔV低く補正する(S7)。また、平均値A(+N)が増大変化し、平均値A(−N)が減少変化した場合には、動作点が低電圧側にドリフトしていると判断し、直流バイアス電圧Vbを所定量ΔV高く補正する(S8)。なお、増減変化がない場合には、動作点が適正な位置に保持されていると判断して処理S4に戻る。   Therefore, when the average value A (+ N) decreases and the average value A (−N) increases, it is determined that the operating point drifts to the high voltage side, and the DC bias voltage Vb is set to a predetermined amount. Correction is made to reduce ΔV (S7). Further, when the average value A (+ N) increases and the average value A (−N) decreases, it is determined that the operating point drifts to the low voltage side, and the DC bias voltage Vb is set to a predetermined amount. Correction is made higher by ΔV (S8). When there is no increase / decrease change, it is determined that the operating point is held at an appropriate position, and the process returns to step S4.

以上の処理により、光変調器21の動作点のドリフトを、無用な低周波信号を重畳することなく、抑圧することができる。   With the above processing, the drift of the operating point of the optical modulator 21 can be suppressed without superimposing unnecessary low-frequency signals.

なお、上記実施例では、観測する変調光成分の次数を±2次としていたが、±4次、±6次などのより高次の信号でもよい。   In the above embodiment, the order of the modulated light component to be observed is ± 2nd order, but higher order signals such as ± 4th order and ± 6th order may be used.

また、動作点が適正な状態にあるときにレベルが最小となる偶数次だけでなく、動作点が適正な状態にあるときにレベルが最大となる±1次、±3次等の奇数次の変調光成分を抽出する構成とし、直流バイアス電圧を奇数次の変調光成分が最大となる電圧に初期設定してから、それらのレベルの経時変化に基づいてドリフトの方向を判定してもよい。   Moreover, not only the even order that minimizes the level when the operating point is in an appropriate state, but also the odd order such as ± 1st order and ± 3rd order that the level is maximized when the operating point is in an appropriate state. The configuration may be such that the modulated light component is extracted, and after the DC bias voltage is initially set to a voltage at which the odd-order modulated light component is maximized, the direction of drift may be determined based on the change with time of these levels.

また、前記実施形態では、光変調器21の動作点が適正となるための直流バイアス電圧を初期設定する際に、変調信号を入力した状態で、±N次変調光成分のレベル和が最小(あるいは最大)となる電圧を求めていたが、光変調器21の動作点が適正となるバイアス電圧の初期設定は、変調信号を入力しないで行うこともできる。   In the above embodiment, when the DC bias voltage for initializing the operating point of the optical modulator 21 is initially set, the level sum of the ± Nth order modulated light components is minimized (when the modulation signal is input). Alternatively, the initial setting of the bias voltage at which the operating point of the optical modulator 21 is appropriate can be performed without inputting a modulation signal.

その場合には、図7に示す光変調装置20′のように、光変調器21の出射光Pout のレベルを検出するための分岐手段51と受光器52を設けるか、あるいは、光変調器21の結合部21eで放射された放射光Prad のレベルを検出する受光器53を設ける。   In that case, branching means 51 and a light receiver 52 for detecting the level of the emitted light Pout of the light modulator 21 are provided as in the light modulation device 20 'shown in FIG. A light receiver 53 for detecting the level of the radiated light Prad radiated from the coupling portion 21e is provided.

そして、図8のフローチャートのように、初期設定時に、変調信号を入力しない状態で、バイアス電圧を±Vπの範囲で可変させながら、出射光Pout あるいは放射光Prad のレベルを記憶し(S1′)、出射光Pout が最小(あるいは放射光Prad のレベルが最大)となる電圧、または、出射光Pout のレベルが最大(あるいは放射光Prad のレベルが最小)となる電圧にバイアスを初期設定(S2′)してから、変調信号Smを入力(S3′)する。   Then, as shown in the flowchart of FIG. 8, the level of the emitted light Pout or the radiated light Prad is stored while varying the bias voltage within a range of ± Vπ without inputting a modulation signal at the time of initial setting (S1 ′). The bias is initially set to a voltage at which the output light Pout is minimum (or the level of the radiation light Prad is maximum) or a voltage at which the level of the output light Pout is maximum (or the level of the radiation light Prad is minimum) (S2 ′). After that, the modulation signal Sm is input (S3 ′).

20……光変調装置、21……光変調器、25……バイアス電圧発生手段、26……変調信号発生手段、27……信号重畳手段、28……第1光分岐手段、30……±N次変調光レベル検出手段、31……第2光分岐手段、32……+N次変調光フィルタ、33……−N次変調光フィルタ、34、35……受光器、40……制御部、51……分岐手段、52、53……受光器   DESCRIPTION OF SYMBOLS 20 ... Optical modulation apparatus, 21 ... Optical modulator, 25 ... Bias voltage generation means, 26 ... Modulation signal generation means, 27 ... Signal superimposition means, 28 ... First optical branching means, 30 ... ± N-order modulated light level detection means, 31... Second light branching means, 32... + N-order modulation light filter, 33... -N-order modulation light filter, 34 and 35. 51... Branching means, 52 and 53.

Claims (2)

コヒーレント光を入射光として受けて2分岐して2つの導波路を伝搬させて結合する光路を有し、前記2つの導波路の少なくとも一方が、信号入力端子から入力された信号の電圧に応じて屈折率を変化させて当該導波路を伝搬する光の位相を変化させる特性を有する光変調器(21)と、
前記光変調器の動作点の基準となる電圧可変の直流バイアス電圧を発生するバイアス電圧発生手段(25)と、
所定振幅の無変調連続波の変調信号を出力する変調信号発生手段(26)と、
前記バイアス電圧発生手段が出力する直流バイアス電圧と前記変調信号発生手段が出力する変調信号とを重畳して前記光変調器の信号入力端子に与える信号重畳手段(27)と、
前記光変調器の出射光から、前記コヒーレント光の周波数を挟んで、前記変調信号の周波数の整数N倍離れた±N次変調光成分を抽出してそのレベル(L+N、L−N)を検出する±N次変調光レベル検出手段(30)と、
前記バイアス電圧発生手段が出力する直流バイアス電圧を、前記光変調器の動作点が適正となる値に初期設定し、該初期設定後で前記無変調連続波の変調信号を前記光変調器に与えている間の所定タイミング毎に前記±N次変調光成分のレベルを求め、該±N次変調光成分のレベルの経時変化に基づいて、前記光変調器の動作点のドリフト方向を判定し、該判定結果に基づいて前記ドリフトが小さくなるように直流バイアス電圧を補正する制御部(40)とを備えていることを特徴とする光変調装置。
An optical path that receives coherent light as incident light, splits into two, propagates through two waveguides, and is coupled, and at least one of the two waveguides depends on a voltage of a signal input from a signal input terminal. An optical modulator (21) having a characteristic of changing a phase of light propagating through the waveguide by changing a refractive index;
Bias voltage generating means (25) for generating a voltage-variable DC bias voltage serving as a reference of the operating point of the optical modulator;
Modulation signal generating means (26) for outputting a modulation signal of an unmodulated continuous wave having a predetermined amplitude;
A signal superimposing means (27) for superimposing a DC bias voltage output from the bias voltage generating means and a modulation signal output from the modulation signal generating means on a signal input terminal of the optical modulator;
From the light emitted from the optical modulator, a ± N-order modulated light component separated by an integer N times the frequency of the modulation signal is extracted across the frequency of the coherent light, and the level (L + N , L −N ) is extracted. ± Nth order modulated light level detecting means (30) for detecting;
The DC bias voltage output from the bias voltage generating means is initialized to a value at which the operating point of the optical modulator is appropriate, and the modulation signal of the unmodulated continuous wave is given to the optical modulator after the initial setting. Determining the level of the ± Nth order modulated light component at a predetermined timing during the operation, and determining the drift direction of the operating point of the optical modulator based on the change over time of the level of the ± Nth order modulated light component, And a controller (40) that corrects a DC bias voltage so as to reduce the drift based on the determination result.
所定周波数のコヒーレント光を入射光として受けて2分岐して2つの導波路を伝搬させて結合する光路を有し、前記2つの導波路の少なくとも一方が、信号入力端子から入力された信号の電圧に応じて屈折率を変化させて当該導波路を伝搬する光の位相を変化させる特性を有する光変調器(21)に対して、その動作点の基準となる直流バイアス電圧に変調信号を重畳して与え、該変調信号で強度変調された光を出射する光変調装置のドリフト制御方法において、
前記直流バイアス電圧を、前記光変調器の動作点が適正となる値に初期設定する段階(S1〜S3、S1′、S2′)と、
前記直流バイアス電圧の初期設定後に、前記変調信号として無変調連続波を与えている期間中の所定タイミング毎に、前記コヒーレント光の周波数を挟んで、前記変調信号の周波数の整数N倍離れた±N次変調光成分のレベルを検出して記憶する段階(S4、S5、S3′)と、
前記検出した±N次変調光成分のレベルの経時変化に基づいて、前記光変調器の動作点のドリフト方向を判定し、該判定結果に基づいて前記ドリフトが小さくなるようにバイアス電圧を補正する段階(S6〜S8)とを含むことを特徴とする光変調装置のドリフト制御方法。
An optical path that receives coherent light having a predetermined frequency as incident light, splits into two, propagates through two waveguides, and is coupled, and at least one of the two waveguides is a voltage of a signal input from a signal input terminal In response to the optical modulator (21) having a characteristic of changing the phase of light propagating through the waveguide by changing the refractive index in accordance with the modulation signal, the modulation signal is superimposed on the DC bias voltage serving as the reference of the operating point. In a drift control method of a light modulation device that emits light whose intensity is modulated by the modulation signal,
Initializing the DC bias voltage to a value at which the operating point of the optical modulator is appropriate (S1 to S3, S1 ′, S2 ′);
After the initial setting of the DC bias voltage, at a predetermined timing during a period in which an unmodulated continuous wave is given as the modulation signal, the frequency of the coherent light is sandwiched between the integers N times of the modulation signal frequency ± Detecting and storing the level of the Nth order modulated light component (S4, S5, S3 ');
The drift direction of the operating point of the optical modulator is determined based on the time-dependent change in the level of the detected ± Nth order modulated light component, and the bias voltage is corrected so that the drift is reduced based on the determination result. A drift control method for an optical modulation device, comprising: steps (S6 to S8).
JP2012171974A 2012-08-02 2012-08-02 Optical modulator and drift control method thereof Active JP5768020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012171974A JP5768020B2 (en) 2012-08-02 2012-08-02 Optical modulator and drift control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012171974A JP5768020B2 (en) 2012-08-02 2012-08-02 Optical modulator and drift control method thereof

Publications (2)

Publication Number Publication Date
JP2014032274A true JP2014032274A (en) 2014-02-20
JP5768020B2 JP5768020B2 (en) 2015-08-26

Family

ID=50282140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012171974A Active JP5768020B2 (en) 2012-08-02 2012-08-02 Optical modulator and drift control method thereof

Country Status (1)

Country Link
JP (1) JP5768020B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015191130A (en) * 2014-03-28 2015-11-02 住友大阪セメント株式会社 Light generating device, and control method of light generating device
WO2021161383A1 (en) * 2020-02-10 2021-08-19 Nec Corporation Optical transmitter, optical transmission system, and method of transmitting an optical signal
CN115453778A (en) * 2022-08-04 2022-12-09 中国电子科技集团公司第十四研究所 Low-stray electro-optic modulator bias point control device and method
WO2023144868A1 (en) * 2022-01-25 2023-08-03 日本電信電話株式会社 Optical pulse generation device and generation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10115813A (en) * 1996-10-14 1998-05-06 Anritsu Corp Optical modulation device
JP2001244896A (en) * 1999-12-24 2001-09-07 Matsushita Electric Ind Co Ltd Optical transmission device
JP2002023119A (en) * 2000-06-30 2002-01-23 Mitsubishi Electric Corp Optical transmitter and control method for stabilizing output of light modulator using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10115813A (en) * 1996-10-14 1998-05-06 Anritsu Corp Optical modulation device
JP2001244896A (en) * 1999-12-24 2001-09-07 Matsushita Electric Ind Co Ltd Optical transmission device
JP2002023119A (en) * 2000-06-30 2002-01-23 Mitsubishi Electric Corp Optical transmitter and control method for stabilizing output of light modulator using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015191130A (en) * 2014-03-28 2015-11-02 住友大阪セメント株式会社 Light generating device, and control method of light generating device
WO2021161383A1 (en) * 2020-02-10 2021-08-19 Nec Corporation Optical transmitter, optical transmission system, and method of transmitting an optical signal
US12009864B2 (en) 2020-02-10 2024-06-11 Nec Corporation Optical transmitter, optical transmission system, and method of transmitting an optical signal
WO2023144868A1 (en) * 2022-01-25 2023-08-03 日本電信電話株式会社 Optical pulse generation device and generation method
CN115453778A (en) * 2022-08-04 2022-12-09 中国电子科技集团公司第十四研究所 Low-stray electro-optic modulator bias point control device and method
CN115453778B (en) * 2022-08-04 2024-02-27 中国电子科技集团公司第十四研究所 Low-spurious electro-optic modulator bias point control device and method

Also Published As

Publication number Publication date
JP5768020B2 (en) 2015-08-26

Similar Documents

Publication Publication Date Title
JP4083657B2 (en) Bias control method and apparatus for optical modulator
Chi et al. An approach to the measurement of microwave frequency based on optical power monitoring
JP5853386B2 (en) Light modulation device and light modulation control method
Lavrov et al. Electro-optic delay oscillator with nonlocal nonlinearity: Optical phase dynamics, chaos, and synchronization
EP2778771B1 (en) Carrier-suppressed light-generating device
US8059969B1 (en) Enhanced linearity RF photonic link
Shanmugapriya Frequency16-tupled optical millimeter wave generation using dual cascaded MZMs and 2.5 Gbps RoF transmission
JP2010028741A (en) Optical transmitter
US5323406A (en) Photonic mixer for photonically multiplying two electrical signals in two optically interconnected interferometric modulators operated at modulation outside the linear range
JP5768020B2 (en) Optical modulator and drift control method thereof
JP6488857B2 (en) Bias monitoring measurement method, apparatus, and optical transmitter
JP4494347B2 (en) Light modulator
US9281897B2 (en) Electro-optical single-sideband modulator
US9280032B2 (en) Method and device for converting optical frequency
Keshavarz et al. Low-drift AM–PM based optical single-sideband modulator without 2nd-order sideband with adjustable optical carrier-to-sideband ratio
Devgan et al. RF performance of single sideband modulation versus dual sideband modulation in a photonic link
Wang et al. Suppression of backscattering-induced noise in a resonator optic gyro by the dual-frequency modulation method
JP6456489B2 (en) Dummy light generation device, optical transmission device, and dummy light generation method
JP2009246579A (en) Optical transmission device, and optical test device
US8049950B2 (en) Tunable zero-chirp pulse generator using plasma dispersion phase modulator
US20040005154A1 (en) Optical transmitter
Takeuchi et al. Novel lightwave-interferometric phase detection for phase stabilization of two-tone coherent millimeter-wave/microwave carrier generation
Enokihara et al. Measurement of small chirp-parameter for Mach-Zehnder-type optical modulator
JP2003149083A (en) Method and apparatus for measuring wavelength dispersion
JP2007215165A (en) Angle modulation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150622

R150 Certificate of patent or registration of utility model

Ref document number: 5768020

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250