JP2014031567A - Catalyst solution for electroless copper plating, method for producing the same and electroless plating method using the same - Google Patents
Catalyst solution for electroless copper plating, method for producing the same and electroless plating method using the same Download PDFInfo
- Publication number
- JP2014031567A JP2014031567A JP2012274617A JP2012274617A JP2014031567A JP 2014031567 A JP2014031567 A JP 2014031567A JP 2012274617 A JP2012274617 A JP 2012274617A JP 2012274617 A JP2012274617 A JP 2012274617A JP 2014031567 A JP2014031567 A JP 2014031567A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst solution
- copper plating
- electroless
- electroless copper
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/31—Coating with metals
- C23C18/38—Coating with copper
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1633—Process of electroless plating
- C23C18/1655—Process features
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/31—Coating with metals
- C23C18/38—Coating with copper
- C23C18/40—Coating with copper using reducing agents
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemically Coating (AREA)
Abstract
Description
本発明は、無電解銅メッキ用触媒溶液、その製造方法、及びこれを利用した無電解メッキ方法に関する。 The present invention relates to a catalyst solution for electroless copper plating, a manufacturing method thereof, and an electroless plating method using the same.
無電解メッキは、その性能面で多様な分野で利用されている。無電解メッキは、通電が不可能な素材に触媒化処理をすることで容易にメッキを析出することができる。これで、電気伝導性がない性質でも表面を金属化させることができるようになるため、プラスチックの金属化やプリント配線板製造に多く使われている。ここで、触媒化処理に利用される触媒は、一般的にパラジウム(Palladium)が使われる。パラジウムは、高価金属であり、また、プリント配線板では回路形成時、エッチング(etching)後に触媒が残存するため、絶縁不良や最終工程である無電解Ni/Au工程などでブリッジ(bridge)不良の原因になる。従って、通常、回路形成時にパラジウム除去工程を導入、基板表面のパラジウムを除去する作業をしている。 Electroless plating is used in various fields in terms of performance. In electroless plating, plating can be easily deposited by applying a catalyst to a material that cannot be energized. This makes it possible to metallize the surface even if it has no electrical conductivity, and is therefore often used for plastic metallization and printed wiring board manufacture. Here, palladium is generally used as the catalyst used for the catalytic treatment. Palladium is an expensive metal, and a printed wiring board has a catalyst remaining after etching at the time of circuit formation. Therefore, it has poor insulation or bridging failure due to the electroless Ni / Au process which is the final process. Cause. Therefore, usually, a palladium removing step is introduced at the time of circuit formation, and an operation of removing palladium on the substrate surface is performed.
しかし、現在、パラジウムを代替する触媒はほぼ使われていない。その理由は、次の通りである。第一、パラジウムの触媒性は、相当優秀で、大部分の無電解メッキに使用可能である。第二、触媒付与技術が確立されており、他の触媒付与法によっては、析出不良などの問題が発生する可能性がある。しかし、パラジウムを代替する触媒開発は、必ず必要であり、実際に、次のような報告がある。 However, currently, catalysts that replace palladium are hardly used. The reason is as follows. First, the catalytic properties of palladium are quite excellent and can be used for most electroless plating. Second, a catalyst application technique has been established, and depending on other catalyst application methods, problems such as poor precipitation may occur. However, the development of a catalyst that replaces palladium is indispensable. In fact, there are reports as follows.
例えば、特許文献1に記載された触媒は、ロジウム(Rhodium)、パラジウム(Palladium)、白金、ルテニウム(Ruthenium)、金、銀の中から選択された貴金属塩の水溶液を陽イオン性、陰イオン性、非イオン性などの界面活性剤の存在下で還元処理をして貴金属ヒドロゾル(hydrosol)を形成させる特徴を有する貴金属触媒の製造方法がある。しかし、この方法で銀は比較的低価であるが、他の金属は相当高価で、そして、プリント配線に利用する場合には、エッチング(etching)で除去されず、基板上に残存するため、絶縁不良や最終工程の無電解Ni/Au工程などでブリッジ不良の原因になる。 For example, the catalyst described in Patent Document 1 is an aqueous solution of a noble metal salt selected from rhodium, palladium, platinum, ruthenium, gold, and silver. There is a method for producing a noble metal catalyst having a feature that a noble metal hydrosol is formed by reduction treatment in the presence of a nonionic surfactant or the like. However, silver is relatively low in this method, but other metals are considerably expensive, and when used for printed wiring, they are not removed by etching and remain on the substrate. Insufficient insulation or the last electroless Ni / Au process causes bridging defects.
そして、特許文献2では、鉄化合物、ニッケル(Nickel)化合物、及びコバルト(Cobalt)化合物から選択した少なくとも1種類以上の化合物、銀塩、陰イオン活性剤、及び還元剤を含有する無電解メッキ用触媒組成物が記載されている。これも貴金属である銀を利用している。そして、前記発明では、界面活性剤が使われている。界面活性剤は、このような微粒子を安定化させる作用をするが、プリント配線板のように金属と樹脂が混在している場合、金属上に界面活性剤が吸着され、次のメッキ工程により密着不良を起こす危険性を有している。 In Patent Document 2, for electroless plating containing at least one compound selected from an iron compound, a nickel (nickel) compound, and a cobalt (cobalt) compound, a silver salt, an anionic activator, and a reducing agent A catalyst composition is described. This also uses the precious metal silver. And in the said invention, surfactant is used. Surfactant acts to stabilize such fine particles. However, when a metal and a resin are mixed like a printed wiring board, the surfactant is adsorbed on the metal and adhered by the next plating step. There is a risk of failure.
本発明は、従来方式と違って、パラジウム触媒の代わりに銅塩とヨード化合物で製造された触媒溶液を使用する。これは銅塩とヨード化合物が反応すると、不溶性ヨウ化銅(I)を生成する反応を利用したものであり、従来のパラジウム触媒に比べて相当低廉で、また、高い安定性を有する。この触媒溶液を利用してプリント配線板を製作した場合、エッチング工程後に残渣が残らないため、絶縁不良や最終工程での無電解Ni/Au工程のブリッジ不良がなくなることを確認し、本発明はこれに基づいて完成された。 Unlike the conventional method, the present invention uses a catalyst solution made of a copper salt and an iodine compound instead of a palladium catalyst. This utilizes a reaction that forms insoluble copper (I) iodide when a copper salt and an iodine compound react with each other, and is considerably cheaper than a conventional palladium catalyst and has high stability. When a printed wiring board is manufactured using this catalyst solution, since no residue remains after the etching process, it is confirmed that there are no insulation defects and no bridging defects in the electroless Ni / Au process in the final process. Completed based on this.
従って、本発明の一つの目的は、パラジウム触媒の代わりに銅塩とヨード化合物を含有した触媒を利用した無電解銅メッキ用触媒溶液を提供することである。 Accordingly, one object of the present invention is to provide a catalyst solution for electroless copper plating using a catalyst containing a copper salt and an iodine compound instead of a palladium catalyst.
本発明の他の目的は、前記無電解銅メッキ用触媒溶液の製造方法を提供することである。 Another object of the present invention is to provide a method for producing the electroless copper plating catalyst solution.
本発明の更に他の目的は、前記無電解銅メッキ用触媒溶液を利用した無電解メッキ方法を提供することである。 Still another object of the present invention is to provide an electroless plating method using the electroless copper plating catalyst solution.
前記一つの目的を達成するための本発明の無電解銅メッキ用触媒溶液(以下、“第1発明”という)は、銅塩及びヨード化合物を含む。 The catalyst solution for electroless copper plating of the present invention (hereinafter referred to as “first invention”) for achieving the one object includes a copper salt and an iodine compound.
第1発明において、前記銅塩は、水酸化銅(II)または酸化銅(II)であることを特徴とする。 In the first invention, the copper salt is copper hydroxide (II) or copper oxide (II).
第1発明において、前記ヨード化合物は、1価の対イオンを有することを特徴とする。 In the first invention, the iodo compound has a monovalent counter ion.
第1発明において、前記ヨード化合物は、ヨウ化リチウム(Lithium Iodide)、ヨウ化ナトリウム(Sodium Iodide)、ヨウ化カリウム(Potassium Iodide)、またはヨウ化アンモニウム(Ammonium Iodide)の中から選択されることを特徴とする。 In the first invention, the iodine compound is selected from lithium iodide, sodium iodide, potassium iodide, or ammonium iodide. Features.
第1発明において、前記銅塩の濃度は、0.05〜5mol/lであることを特徴とする。 1st invention WHEREIN: The density | concentration of the said copper salt is 0.05-5 mol / l, It is characterized by the above-mentioned.
第1発明において、前記ヨード化合物の濃度は、前記銅塩濃度の8〜24mol倍であることを特徴とする。 1st invention WHEREIN: The density | concentration of the said iodo compound is 8-24 mol times the said copper salt density | concentration, It is characterized by the above-mentioned.
第1発明において、前記溶液は、pH調整剤、pH緩衝剤、界面活性剤、かび防止剤、または分析用指標物質をさらに含むことを特徴とする。 In the first invention, the solution further includes a pH adjusting agent, a pH buffering agent, a surfactant, an antifungal agent, or an analytical indicator substance.
本発明の他の目的を達成するための前記無電解銅メッキ用触媒溶液の製造方法(以下、“第2発明”という)は、ヨード化合物を水に溶解させる段階と、銅塩を水に分散させる段階と、前記溶解されたヨード化合物を攪拌しながら、前記分散された銅塩を添加する段階と、を含む。 In order to achieve another object of the present invention, the method for producing a catalyst solution for electroless copper plating (hereinafter referred to as “second invention”) comprises a step of dissolving an iodine compound in water, and a copper salt dispersed in water. And a step of adding the dispersed copper salt while stirring the dissolved iodine compound.
第2発明において、前記銅塩の濃度は、0.05〜5mol/lであることを特徴とする。 2nd invention WHEREIN: The density | concentration of the said copper salt is 0.05-5 mol / l, It is characterized by the above-mentioned.
第2発明において、前記ヨード化合物の濃度は、前記銅塩濃度の8〜24mol倍であることを特徴とする。 2nd invention WHEREIN: The density | concentration of the said iodo compound is 8-24 mol times the said copper salt density | concentration, It is characterized by the above-mentioned.
第2発明において、前記銅塩は、水酸化銅(II)または酸化銅(II)であることを特徴とする。 In the second invention, the copper salt is copper (II) hydroxide or copper (II) oxide.
第2発明において、前記ヨード化合物は、1価の対イオンを有することを特徴とする。 In the second invention, the iodo compound has a monovalent counter ion.
第2発明において、前記ヨード化合物は、ヨウ化リチウム(Lithium Iodide)、ヨウ化ナトリウム(Sodium Iodide)、ヨウ化カリウム(Potassium Iodide)、またはヨウ化アンモニウム(Ammonium Iodide)の中から選択されることを特徴とする。 In the second invention, the iodo compound is selected from lithium iodide, sodium iodide, potassium iodide, or ammonium iodide. Features.
第2発明において、前記触媒付与溶液製造時の温度は、10〜80℃であることを特徴とする。 2nd invention WHEREIN: The temperature at the time of the said catalyst provision solution manufacture is 10-80 degreeC, It is characterized by the above-mentioned.
第2発明において、前記触媒付与溶液製造時のpHは、2〜11であることを特徴とする。 2nd invention WHEREIN: pH at the time of the said catalyst provision solution manufacture is 2-11, It is characterized by the above-mentioned.
第2発明において、前記分散された銅塩を添加する段階は、pH調整剤、pH緩衝剤、界面活性剤、かび防止剤、または分析用指標物質を添加する段階をさらに含むことを特徴とする。 In the second invention, the step of adding the dispersed copper salt further includes the step of adding a pH adjuster, a pH buffering agent, a surfactant, an antifungal agent, or an analytical indicator substance. .
本発明の更に他の目的を達成するための無電解銅メッキ用触媒溶液を利用した無電解メッキ方法(以下、“第3発明”という)は、第1発明のうちいずれか一つに記載の触媒溶液を基材表面に塗布する段階と、前記触媒溶液が塗布された基材表面を還元剤で処理する段階と、前記還元剤処理された基材を化学銅メッキ液に浸漬させる段階と、を含む。 An electroless plating method (hereinafter referred to as “third invention”) using a catalyst solution for electroless copper plating to achieve still another object of the present invention is the method according to any one of the first inventions. Applying a catalyst solution to a substrate surface, treating the substrate surface coated with the catalyst solution with a reducing agent, immersing the reducing agent-treated substrate in a chemical copper plating solution, including.
第3発明において、前記還元剤は、ホルマリン(Formalin)、ヒドラジン(Hydrazine)、次亜リン酸塩(Hypophosphite)、ジメチルアミンボラン(Dimethylamineborane)、水素化ホウ素ナトリウム(Sodiumborohydride)の中から選択されることを特徴とする。 In the third invention, the reducing agent is selected from among formalin, hydrazine, hypophosphite, dimethylamine borane, and sodium borohydride. It is characterized by.
本発明によって、銅塩とヨード化合物で合成された触媒溶液を使用して無電解メッキをする場合、従来のパラジウム触媒に比べて相当低廉で、高い安定性を有する。 According to the present invention, when electroless plating is performed using a catalyst solution synthesized with a copper salt and an iodine compound, it is considerably cheaper and more stable than a conventional palladium catalyst.
また、前記触媒溶液を利用してプリント配線板を製作した場合、エッチング工程後に残渣が残らないため、絶縁不良や最終工程での無電解Ni/Au工程のブリッジ不良を防止し、製品の収率を向上させることができる。 In addition, when a printed wiring board is manufactured using the catalyst solution, since no residue remains after the etching process, it is possible to prevent insulation failure and bridging failure in the electroless Ni / Au process in the final process, and the product yield. Can be improved.
本発明による無電解銅メッキ用触媒溶液は、銅塩(copper salt)及びヨード化合物を含む。 The electroless copper plating catalyst solution according to the present invention includes a copper salt and an iodine compound.
前記銅塩は、基本的に水溶性でない2価の塩を利用し、具体的には、水酸化銅(II)または酸化銅(II)である。銅塩は、溶解されずに水中で分散させてヨード化合物と反応して1価になり、不溶性がさらに増大する。 The copper salt basically uses a divalent salt that is not water-soluble, and is specifically copper (II) hydroxide or copper (II) oxide. The copper salt is not dissolved but dispersed in water to react with the iodine compound to become monovalent, and the insolubility further increases.
前記ヨード化合物は、1価の対(counter)イオンを有するヨード化合物を利用することができる。前記ヨード化合物は、例えば、ヨウ化リチウム(Lithium Iodide)、ヨウ化ナトリウム(Sodium Iodide)、ヨウ化カリウム(Potassium Iodide)、またはヨウ化アンモニウム(Ammonium Iodide)などがある。このような物質は、水に相当よく溶解され、濃厚溶液を製造することができる。この濃厚溶液に銅塩を添加し、触媒溶液を合成する。 The iodo compound may be an iodo compound having a monovalent counter ion. Examples of the iodine compound include lithium iodide, sodium iodide, potassium iodide, and ammonium iodide. Such materials are fairly well dissolved in water and can produce concentrated solutions. A copper salt is added to the concentrated solution to synthesize a catalyst solution.
このような本発明による無電解銅メッキ用触媒溶液は、1価の対イオンを有するヨード化合物を水に溶解させる段階、銅塩を水に分散させる段階、及び前記溶解されたヨード化合物を攪拌しながら、前記分散された銅塩を添加する段階により製造することができる。 Such an electroless copper plating catalyst solution according to the present invention comprises a step of dissolving an iodine compound having a monovalent counter ion in water, a step of dispersing a copper salt in water, and stirring the dissolved iodine compound. However, it can be produced by adding the dispersed copper salt.
本発明において、銅塩は、基本的に水溶性でない2価の塩を利用し、具体的には水酸化銅(II)または酸化銅(II)である。ここで、銅塩は、溶解されずに水中で分散させ、下記式1及び式2のようにヨード化合物と反応して1価になり、不溶性がさらに増大する。 In the present invention, the copper salt basically uses a divalent salt that is not water-soluble, and is specifically copper (II) hydroxide or copper (II) oxide. Here, the copper salt is dispersed in water without being dissolved, reacts with an iodo compound as shown in the following formulas 1 and 2, becomes monovalent, and insolubility further increases.
生成されたヨードは、その上に他のヨード化合物と下記式3のように錯イオンを形成する。 The produced iodine forms a complex ion as shown in the following formula 3 with other iodine compounds.
形成された錯イオンは、電気陰極性が高い物質であるため、式1で生成したヨウ化銅(I)と簡単に配位し、下記式4の化合物を形成する。 Since the formed complex ion is a substance having a high electrocathodic property, it is easily coordinated with the copper (I) iodide produced in Formula 1 to form a compound of Formula 4 below.
前記式4で形成された物質は、分子量が1143になり、イオンにも拘わらず水に溶解されるのが相当難しい。しかし、ヨードが分子周囲を覆うような形態を帯びるため、電気陰性度が高く、簡単に水と水素結合を形成し、その結果、コロイド(colloid)状の懸濁物になる。この懸濁物は、自体的に陰イオン性を有するため、静電荷を有する物質と容易に結合する。そして、電気陰性度が高いため、最外郭空軌道を有する物質とも簡単に結合または吸着する。下記式5のように、この吸着物質を還元剤で還元することによって銅を金属とするようにし、触媒核として利用することができる。 The substance formed by Formula 4 has a molecular weight of 1143, and it is very difficult to dissolve in water despite ions. However, since iodine takes the form of covering the periphery of the molecule, the electronegativity is high, and hydrogen bonds are easily formed with water, resulting in a colloidal suspension. Since this suspension is anionic in nature, it easily binds to a substance having an electrostatic charge. And since the electronegativity is high, it easily binds or adsorbs to a substance having the outermost outer orbit. As shown in the following formula 5, the adsorbed material is reduced with a reducing agent so that copper is made into a metal and can be used as a catalyst nucleus.
本発明による無電解銅メッキ用触媒溶液の製造において、ヨード化合物は、1価の対(counter)イオンを有するヨード化合物を利用することができる。具体的には、ヨウ化リチウム(Lithium Iodide)、ヨウ化ナトリウム(Sodium Iodide)、ヨウ化カリウム(Potassium Iodide)、またはヨウ化アンモニウム(Ammonium Iodide)等である。このような物質は、水に相当よく溶解され、濃厚溶液を製造することができる。この濃厚溶液を利用して前述したように銅塩を添加し、触媒溶液を合成する。 In the production of the electroless copper plating catalyst solution according to the present invention, an iodo compound having a monovalent counter ion can be used as the iodo compound. Specifically, lithium iodide (Sodium Iodide), sodium iodide (Sodium Iodide), potassium iodide (Potassium Iodide), ammonium iodide (Ammonium Iodide), etc. are mentioned. Such materials are fairly well dissolved in water and can produce concentrated solutions. Using this concentrated solution, a copper salt is added as described above to synthesize a catalyst solution.
本発明による無電解銅メッキ用触媒溶液の製造方法を具体的に説明すると、1価の対イオンを有するヨード化合物を水に溶解させた後、銅塩を他の容器で水に分散させる。その後、前記溶解されたヨード化合物を攪拌しながら、前記分散された銅塩を添加して製造されることができる。この時、利用される銅塩の濃度は、0.05〜5mol/lであるのが好ましい。前記濃度が0.05mol/l未満に使用すると、Cu2I2が生成される前にCuI3 −になり、水中に溶解されてしまって、意図したとおり生成されない。そして、前記濃度が5mol/lを超える場合は、水に分散させるのが難しく、分散液が凝集沈殿を起こしてしまう。 The method for producing a catalyst solution for electroless copper plating according to the present invention will be described in detail. After an iodine compound having a monovalent counter ion is dissolved in water, the copper salt is dispersed in water in another container. Thereafter, the dispersed copper salt may be added while stirring the dissolved iodine compound. At this time, the concentration of the copper salt used is preferably 0.05 to 5 mol / l. If the concentration is less than 0.05 mol / l, Cu 2 I 2 becomes CuI 3 − before being produced and dissolved in water, and is not produced as intended. And when the said density | concentration exceeds 5 mol / l, it is difficult to disperse | distribute to water and a dispersion liquid will raise | generate aggregation precipitation.
また、ヨード化合物濃度は、銅塩の濃度に比例して使用し、その濃度比は、銅塩の濃度に対して8〜24mol倍が好ましい。前記濃度が8mol倍未満では、銅に対するヨード化合物の濃度が足りなくて、安定した分散性を得ることはできない。前記濃度が24mol倍を超える場合、ヨード化合物の水に対する溶解度観点で見ると、合成中に溶解されないヨード化合物が存在して触媒の安定性を低下させる。 The iodine compound concentration is used in proportion to the copper salt concentration, and the concentration ratio is preferably 8 to 24 mol times the copper salt concentration. When the concentration is less than 8 mol times, the concentration of the iodine compound relative to copper is insufficient, and stable dispersibility cannot be obtained. When the concentration exceeds 24 mol times, from the viewpoint of the solubility of the iodo compound in water, there is an iodo compound that is not dissolved during the synthesis, thereby reducing the stability of the catalyst.
合成時の温度は、10℃〜80℃で合成するのがよい。10℃未満では、反応速度が遅くて、Cu2I2の粒度が大きくなり安定性に影響を与える。80℃を超えると、生成したI2の揮発速度が速くて、安定した触媒を合成することができない。 The synthesis temperature is preferably 10 to 80 ° C. Is less than 10 ° C., with slow reaction rate, affecting particle size becomes large and the stability of Cu 2 I 2. If it exceeds 80 ° C., the volatilization rate of the produced I 2 is high, and a stable catalyst cannot be synthesized.
pHは、2〜11で合成するのが好ましい。pH2未満で合成すると、生成したCu2I2とI2が酸化還元反応を起こして溶解されてしまう。pH11を超えると、Cu2I2の合成反応がH+をしたがうため、H+不足で反応速度が低下されてしまう。合成時には、攪拌が必要であり、ビーカー(beaker)などで合成する場合には、攪拌器(stirrer)攪拌や超音波攪拌を併用するのが好ましい。ここで、攪拌速度や超音波の波長値強度には、特別な制限はない。 It is preferable to synthesize at pH 2-11. When synthesized at a pH of less than 2, the produced Cu 2 I 2 and I 2 undergo an oxidation-reduction reaction and are dissolved. If the pH exceeds 11, the synthesis reaction of Cu 2 I 2 follows H + , so the reaction rate is lowered due to lack of H + . Stirring is required at the time of synthesis, and when synthesizing with a beaker or the like, it is preferable to use a stirrer stirring or ultrasonic stirring together. Here, there is no special restriction | limiting in the stirring speed and the wavelength value intensity | strength of an ultrasonic wave.
そして、本発明において、触媒には、別にその効果を妨害しない物質を添加してもよい。例えば、水酸化ナトリウム(NaOH)や硫酸などのpH調整剤、クエン酸(Citric acid)やグリシン(Glycine)などのpH緩衝剤、界面活性剤、かび防止剤、分析用指標物質などである。 In the present invention, a substance that does not interfere with the effect may be added to the catalyst. For example, a pH adjuster such as sodium hydroxide (NaOH) or sulfuric acid, a pH buffer such as citric acid or glycine, a surfactant, an antifungal agent, an indicator material for analysis, and the like.
本発明による無電解銅メッキ用触媒溶液を利用した無電解メッキは、上記の方法により製造された触媒溶液を、例えば、エポキシ樹脂で構成された基材表面に塗布し、前記触媒溶液が塗布された基材表面を還元剤で処理した後、前記還元剤処理された基材を化学銅メッキ液に浸漬させる方法により遂行される。ここで、触媒の使用法は、浸漬またはスプレイ(spray)方式で資材表面に触媒付与を実施し、次いで適当な還元剤などで還元して金属銅を形成させる。還元剤は、下記に限定するものではなく、例えば、ホルマリン(Formalin)、ヒドラジン(Hydrazine)、次亜リン酸塩(Hypophosphite)、ジメチルアミンボラン(Dimethylamineborane)、水素化ホウ素ナトリウム(Sodiumborohydride)などを挙げることができる。このような還元剤に浸漬した後、水洗をして化学銅メッキ液に浸漬させる。 In the electroless plating using the electroless copper plating catalyst solution according to the present invention, the catalyst solution produced by the above-described method is applied to, for example, a substrate surface made of an epoxy resin, and the catalyst solution is applied. After the surface of the substrate is treated with a reducing agent, the substrate treated with the reducing agent is immersed in a chemical copper plating solution. Here, the catalyst is used by applying the catalyst to the material surface by dipping or spraying, and then reducing with an appropriate reducing agent to form metallic copper. The reducing agent is not limited to the following, and examples thereof include formalin, hydrazine, hypophosphite, dimethylamine borane, sodium borohydride, and the like. be able to. After being immersed in such a reducing agent, it is washed with water and immersed in a chemical copper plating solution.
以下、実施例により本発明をさらに具体的に説明するが、下記例に本発明の範疇が限定されるものではない。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the scope of the present invention is not limited to the following examples.
(実施例1)
酸化銅(II)(Wako chem.)7.95g(0.1mol)を正確に測定し、水500mlに分散させて酸化銅分散液を製造する。その後、ヨウ化カリウム(Wako chem.)167g(1mol)を正確に測定し、水500mlに溶解させてヨウ化カリウム水溶液を製造する。ヨウ化カリウム水溶液を0℃で加温しながら超音波を併用して攪拌器(stirrer)で攪拌を実施する。温度が60℃に達した時点で酸化銅分散液を徐々に添加する。分散液が黒色から白色に変化した時点で攪拌を止めて実温まで冷却する。
Example 1
Copper oxide (II) (Wako chem.) 7.95 g (0.1 mol) is accurately measured and dispersed in 500 ml of water to produce a copper oxide dispersion. Thereafter, 167 g (1 mol) of potassium iodide (Wako chem.) Is accurately measured and dissolved in 500 ml of water to produce an aqueous potassium iodide solution. While heating the potassium iodide aqueous solution at 0 ° C., stirring is performed with a stirrer in combination with ultrasonic waves. When the temperature reaches 60 ° C., the copper oxide dispersion is gradually added. When the dispersion changes from black to white, stirring is stopped and the mixture is cooled to actual temperature.
(実施例2)
水酸化銅(II)(Wako chem.)4.88g(0.05mol)を正確に測定し、水500mlに分散させ、水酸化銅分散液を製造する。その後、ヨウ化ナトリウム(Wako chem.)120g(0.8mol)を正確に測定し、水500mlに溶解させてヨウ化ナトリウム水溶液を製造する。ヨウ化ナトリウム水溶液を0℃で加温しながら超音波を併用して攪拌器(stirrer)で攪拌を実施する。温度が40℃に達した時点で水酸化銅分散液を徐々に添加する。分散液がうすい水色から白色に変化した時点で攪拌を止めて実温まで冷却する。
(Example 2)
4.88 g (0.05 mol) of copper (II) hydroxide (Wako chem.) Is accurately measured and dispersed in 500 ml of water to produce a copper hydroxide dispersion. Thereafter, 120 g (0.8 mol) of sodium iodide (Wako chem.) Is accurately measured and dissolved in 500 ml of water to produce an aqueous sodium iodide solution. While heating the sodium iodide aqueous solution at 0 ° C., stirring is performed with a stirrer in combination with ultrasonic waves. When the temperature reaches 40 ° C., the copper hydroxide dispersion is gradually added. When the dispersion changes from light blue to white, stirring is stopped and cooled to the actual temperature.
(比較例)
硫酸10molを水800mlに溶解し、ポリオキシエチレンステアリルエーテルフォスフェイト(Polyoxyethylene(3E.O.)stearyletherphosphate)を500mg含む水溶液100mlとジメチルアミンボラン(Dimethylamineborane)5molを含む水溶液50mlを強く攪拌しながら投入した。溶液の色が赤褐色に急変した時、硫酸ニッケル(Nickel sulfate)2molを含む水溶液50mlを添加して攪拌することによって、均一で赤褐色透明な銀微粒子分散液1000mlを得た。
(Comparative example)
10 mol of sulfuric acid was dissolved in 800 ml of water, and 100 ml of an aqueous solution containing 500 mg of polyoxyethylene stearyl ether phosphate (Polyoxyethylene (3E.O) stearyletherphosphate) and 50 ml of an aqueous solution containing 5 mol of dimethylamine borane (Dimethylamineborane) were added with vigorous stirring. . When the color of the solution suddenly changed to reddish brown, 50 ml of an aqueous solution containing 2 mol of nickel sulfate (Nickel sulfate) was added and stirred to obtain 1000 ml of a uniform reddish brown transparent silver fine particle dispersion.
(実施例3)
5×10cmのエポキシ基板を試片にし、前記実施例1及び2、比較例による触媒溶液の各々に約25℃で約5分間浸漬し、触媒付与を実施した。本実施例では還元処理で1%のホルムアルデヒド(Formaldehyde)水溶液に約25℃で約5分間浸漬した。そして、比較例は、触媒付与後、水洗せずに直接化学銅メッキ液に浸漬した。その後、使用した化学銅メッキ液(奥野製薬工業(株)のBuild−Copper)は、約45℃で約30分間無電解銅メッキを実施した後、硫酸銅メッキ液(硫酸銅5水化物70g/l、98%硫酸200g/l、及び奥野製薬工業(株)のTOP LUCINA81−HL2.5ml)を利用して25℃の液温度で30分間電気メッキを実施した。その後、このような各試片を酸性塩化銅エッチング(etching)液で下記条件で銅メッキ被膜をエッチングした。無電解銅メッキの状態、触媒金属の付着量、及びエッチング後の触媒残存量を測定した結果を表1に示す。
(Example 3)
A 5 × 10 cm epoxy substrate was used as a test piece, and immersed in each of the catalyst solutions according to Examples 1 and 2 and the comparative example at about 25 ° C. for about 5 minutes to perform catalyst application. In this example, the film was immersed in a 1% formaldehyde aqueous solution at about 25 ° C. for about 5 minutes by reduction treatment. And the comparative example was immersed in the chemical copper plating liquid directly, without water washing after catalyst provision. Thereafter, the used chemical copper plating solution (Build-Copper of Okuno Pharmaceutical Co., Ltd.) was subjected to electroless copper plating at about 45 ° C. for about 30 minutes, and then copper sulfate plating solution (copper sulfate pentahydrate 70 g / l, 98% sulfuric acid 200 g / l, and TOP LUCINA 81-HL 2.5 ml of Okuno Pharmaceutical Co., Ltd.) were used for electroplating at a liquid temperature of 25 ° C. for 30 minutes. Thereafter, the copper plating film was etched from each of these specimens with an acidic copper chloride etching solution under the following conditions. Table 1 shows the results of measuring the state of electroless copper plating, the amount of catalyst metal deposited, and the amount of catalyst remaining after etching.
前記表1から、実施例1及び実施例2、比較例における化学銅メッキ状態、触媒残存量を見ると、比較例ではメッキ液に気泡が発生した。比較例に含まれている界面活性剤が化学銅メッキ液内で脱落されたため、気泡が発生するようになり、一般的に化学銅メッキ液は空気攪拌を実施するため、このように気泡が発生すると、メッキ槽で気泡があふれてしまうようになる。 From Table 1 above, when the chemical copper plating state and the catalyst remaining amount in Examples 1 and 2 and the comparative example were observed, bubbles were generated in the plating solution in the comparative example. Since the surfactant contained in the comparative example is dropped in the chemical copper plating solution, bubbles are generated. Generally, the chemical copper plating solution is agitated with air, and thus bubbles are generated. Then, air bubbles overflow in the plating tank.
以上、本発明を具体的な実施例に基づいて詳細に説明したが、これは本発明を具体的に説明するためのものであり、本発明はこれに限定されず、該当分野において、通常の知識を有する者であれば、本発明の技術的思想内にての変形や改良が可能であることは明白であろう。 As described above, the present invention has been described in detail based on specific examples. However, the present invention is intended to specifically describe the present invention, and the present invention is not limited thereto. It will be apparent to those skilled in the art that modifications and improvements within the technical idea of the present invention are possible.
本発明の単純な変形乃至変更はいずれも本発明の領域に属するものであり、本発明の具体的な保護範囲は添付の特許請求の範囲により明確になるであろう。 All simple variations and modifications of the present invention belong to the scope of the present invention, and the specific scope of protection of the present invention will be apparent from the appended claims.
本発明は、無電解銅メッキ用触媒溶液、その製造方法、及びこれを利用した無電解メッキ方法に適用可能である。 The present invention is applicable to a catalyst solution for electroless copper plating, a production method thereof, and an electroless plating method using the same.
Claims (18)
銅塩を水に分散させる段階と、
前記溶解されたヨード化合物を攪拌しながら、前記分散された銅塩を添加する段階と、を含む無電解銅メッキ用触媒溶液の製造方法。 Dissolving an iodo compound in water;
Dispersing the copper salt in water;
A step of adding the dispersed copper salt while stirring the dissolved iodine compound, and a method for producing a catalyst solution for electroless copper plating.
前記触媒溶液が塗布された基材表面を還元剤で処理する段階と、
前記還元剤処理された基材を化学銅メッキ液に浸漬させる段階と、を含む無電解銅メッキ用触媒溶液を利用した無電解メッキ方法。 Applying the catalyst solution according to any one of claims 1 to 7 to a substrate surface;
Treating the substrate surface coated with the catalyst solution with a reducing agent;
Immersing the reducing agent-treated substrate in a chemical copper plating solution, and an electroless plating method using a catalyst solution for electroless copper plating.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2012-0085825 | 2012-08-06 | ||
KR1020120085825A KR20140019175A (en) | 2012-08-06 | 2012-08-06 | Catalyst solution for electroless copper plating, producing method thereof, and electroless copper plating method using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014031567A true JP2014031567A (en) | 2014-02-20 |
Family
ID=50044956
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012274617A Ceased JP2014031567A (en) | 2012-08-06 | 2012-12-17 | Catalyst solution for electroless copper plating, method for producing the same and electroless plating method using the same |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2014031567A (en) |
KR (1) | KR20140019175A (en) |
CN (1) | CN103572266A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52155138A (en) * | 1971-07-29 | 1977-12-23 | Kollmorgen Corp | Production method of metallized products |
-
2012
- 2012-08-06 KR KR1020120085825A patent/KR20140019175A/en active Search and Examination
- 2012-12-17 JP JP2012274617A patent/JP2014031567A/en not_active Ceased
- 2012-12-28 CN CN201210587409.9A patent/CN103572266A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52155138A (en) * | 1971-07-29 | 1977-12-23 | Kollmorgen Corp | Production method of metallized products |
Also Published As
Publication number | Publication date |
---|---|
CN103572266A (en) | 2014-02-12 |
KR20140019175A (en) | 2014-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103128308B (en) | Method for preparing compact silver-coated copper powder by using one pot method | |
JP2022116130A (en) | Method for manufacturing silver-coated copper nanowire having core-shell structure by using chemical reduction method | |
JP4128793B2 (en) | Utilization of metal nanoparticle activation liquid in electroless plating process | |
JP6201153B2 (en) | Nickel colloidal catalyst solution for electroless nickel or nickel alloy plating and electroless nickel or nickel alloy plating method | |
CN104040026B (en) | Chemical plating copper plating solution without formaldehyde | |
CN113020587B (en) | Preparation method of silver-coated copper powder | |
TW201231716A (en) | Plating catalyst and method | |
US9932676B2 (en) | Pretreatment solution for electroless plating and electroless plating method | |
CN106591809A (en) | Low-concentration colloid palladium activation solution for printed circuit board electroless copper | |
CN103451634A (en) | Method for chemical nickel plating on surface of micron silicon carbide powder | |
CN204966070U (en) | Conducting particles, insulating lining conducting particles, anisotropic electric conductivity bonding agent and connection structure body | |
CN105880633A (en) | Preparation method of silver-nickel-coated ball multi-system powder | |
JPH0613753B2 (en) | Method for producing solution containing fine metal body used for electroless plating | |
TWI614372B (en) | Method of electroless plating | |
JP2013108170A (en) | Electroless palladium plating solution | |
US7338686B2 (en) | Method for producing conductive particles | |
CN103998651B (en) | Chemical silvering on graphite | |
CN103572269A (en) | Method for manufacturing printed circuit board | |
JP2007184115A (en) | Manufacturing method of conductive fine particle | |
WO2010023895A1 (en) | Sensitizing solution for electroless plating and electroless plating method | |
JP2014031567A (en) | Catalyst solution for electroless copper plating, method for producing the same and electroless plating method using the same | |
CN103071788A (en) | Method of preparing nickel-silver nuclear shell structure nano-particles | |
CN109097800A (en) | A method of metal rhodium or rhodium alloy are prepared by electro-deposition or chemical deposition | |
CN108213415A (en) | The production method of corrosion-resistant and high-temperature resistant silver-bearing copper coated composite powder | |
CN103276375A (en) | Plating catalyst and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20151216 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20161003 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161004 |
|
AA92 | Notification of invalidation |
Free format text: JAPANESE INTERMEDIATE CODE: A971092 Effective date: 20161018 |