JP2014030784A - Method for manufacturing oxygen absorbent - Google Patents

Method for manufacturing oxygen absorbent Download PDF

Info

Publication number
JP2014030784A
JP2014030784A JP2012172208A JP2012172208A JP2014030784A JP 2014030784 A JP2014030784 A JP 2014030784A JP 2012172208 A JP2012172208 A JP 2012172208A JP 2012172208 A JP2012172208 A JP 2012172208A JP 2014030784 A JP2014030784 A JP 2014030784A
Authority
JP
Japan
Prior art keywords
oxygen
alloy
component
group
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012172208A
Other languages
Japanese (ja)
Inventor
Natsuko Matsushita
下 夏 子 松
Emi Shimoda
田 絵 美 下
Hirokazu Tanaka
中 宏 和 田
Tatsuo Iwai
井 辰 雄 岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2012172208A priority Critical patent/JP2014030784A/en
Publication of JP2014030784A publication Critical patent/JP2014030784A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing an oxygen absorbent capable of maintaining stable oxygen absorbing properties without excessive heat evolution in the atmosphere.SOLUTION: The method for manufacturing an oxygen absorbent includes: treating an alloy (X) which includes at least one transition metal (A) selected from the group consisting of the manganese group, the iron group, the platinum group, and the copper group, and at least one metal (B) selected from the group consisting of aluminum, zinc, tin, lead, magnesium, and silicon, with aqueous acid or alkaline solution so as to elute at least a portion of the component (B) for removal; and oxidizing the surface of an alloy (Y) having the portion of at least partially removed component (B) with oxygen gas so as to form a coating film of metal oxide on at least one part of the surface of the alloy (Y).

Description

本発明は、酸素吸収剤の製造方法に関し、より詳細には、大気雰囲気下での過度な発熱を抑え、安定して酸素吸収性能を維持できる酸素吸収剤を製造する方法に関する。   The present invention relates to a method for producing an oxygen absorbent, and more particularly to a method for producing an oxygen absorbent capable of suppressing excessive heat generation in an air atmosphere and stably maintaining oxygen absorption performance.

食品や医薬品などの保存技術の一つとして酸素吸収剤(脱酸素剤)による保存技術がある。具体的には、雰囲気中の酸素を除去する脱酸素剤を対象物と共に密閉包装体の内部に入れて、密閉包装体の内部を無酸素状態にすることによって、対象物の酸化劣化、カビ、変色などを抑制する技術である。   One storage technique for foods and pharmaceuticals is a storage technique using an oxygen absorbent (deoxygenating agent). Specifically, an oxygen scavenger that removes oxygen in the atmosphere is placed inside the sealed package together with the object, and the inside of the sealed package is made oxygen-free, thereby causing oxidative degradation, mold, This technology suppresses discoloration and the like.

これまでに雰囲気中の酸素を除去する脱酸素剤として、各種無機系材料からなるもの及び有機系材料からなるものが提案されている。例えば、無機系主剤として鉄などの金属粉、亜硫酸塩、亜硫酸水素塩、亜ニチオン酸塩などを用いたもの、有機系主剤としてL−アスコルビン酸、エリソルビン酸及びそれらの塩、グルコースなどの糖類、カテコール、ピロガロールなどの還元性多価アルコール類を用いたものなどが挙げられる。   So far, oxygen absorbers that remove oxygen in the atmosphere have been proposed from various inorganic materials and organic materials. For example, metal powder such as iron as an inorganic main ingredient, sulfite, bisulfite, nitrite, etc., organic main ingredient L-ascorbic acid, erythorbic acid and their salts, sugars such as glucose, Examples include those using reducing polyhydric alcohols such as catechol and pyrogallol.

しかしながら、これら従来の脱酸素剤は、使用時に水もしくは水分を供給するものがないと実用的な脱酸素能を得ることができないという問題点があった。すなわち、従来の脱酸素剤は、使用する際に水もしくは水分を保持させた物質、例えば、結晶水を持った化合物を混合するか、あるいは保存しようとする食品などから出てくる水蒸気を利用することによってはじめて実用的な脱酸素能を得ることができるものであった。このため、従来の脱酸素剤を、乾燥条件下にて使用または保存する必要のある医薬品または乾燥食品や、水もしくは水分の存在を嫌う金属製品の防錆保存について適用することは困難であった。   However, these conventional oxygen scavengers have a problem that a practical oxygen scavenging ability cannot be obtained unless water or moisture is supplied at the time of use. In other words, conventional oxygen scavengers use water or a substance that retains moisture, for example, a compound having water of crystallization, or water vapor generated from food to be stored. For the first time, practical deoxygenation ability could be obtained. For this reason, it has been difficult to apply conventional oxygen scavengers to rust prevention preservation of pharmaceuticals or dry foods that need to be used or stored under dry conditions, and metal products that dislike the presence of water or moisture. .

このため、これらの用途においては、酸素吸収の際に水分を必要としない酸素吸収剤が求められていた。このような要求に応えうる酸素吸収剤としては、例えば、酸素欠陥を利用した酸化セリウムを主剤とした脱酸素剤(特開2007−185653号公報)、酸素欠陥を有した酸化チタンを主剤とした脱酸素剤(特開2005−104064号公報)、水素還元を行った金属を主剤とした脱酸素剤(特開昭62−277148号公報)、および有機物の自動酸化を利用した脱酸素剤などが報告されている。   For this reason, in these applications, an oxygen absorbent that does not require moisture during oxygen absorption has been demanded. As an oxygen absorbent that can meet such demands, for example, a deoxygenating agent mainly using cerium oxide utilizing oxygen defects (Japanese Patent Laid-Open No. 2007-185653), and a titanium oxide having oxygen defects as a main agent. An oxygen scavenger (Japanese Patent Laid-Open No. 2005-104064), a oxygen scavenger based on a metal subjected to hydrogen reduction (Japanese Patent Laid-Open No. 62-277148), a oxygen scavenger utilizing auto-oxidation of organic matter, and the like It has been reported.

しかしながら、上記した脱酸素剤のうち、特開2007−185653号公報や特開2005−104064号公報に開示された脱酸素剤は、その原料となる金属がレアメタルであるため、希少で高価である。また海外からの輸入に頼らざるを得ず、情勢によっては仕入れが変動し安定した生産量が望めなくなる場合もある。このため、コストと安定供給の観点から必ずしも満足しうるものとは言えなかった。また、特開昭62−277148号公報に開示された脱酸素剤は、製造に際して大がかりな水素還元設備を付帯する必要があるため、簡便な手法ではなく、大気中での取り扱い性が良いとも言えない。さらに、上記した有機物の自動酸化を利用した脱酸素剤においては、主剤として有機物の酸化反応を利用しているため、酸素吸収後に発生する副生物の問題がある。   However, among the oxygen scavengers described above, the oxygen scavengers disclosed in Japanese Patent Application Laid-Open No. 2007-185653 and Japanese Patent Application Laid-Open No. 2005-104064 are rare and expensive because the raw metal is a rare metal. . In addition, imports from overseas must be relied on, and depending on the situation, purchases may fluctuate and stable production may not be expected. For this reason, it was not necessarily satisfactory from the viewpoint of cost and stable supply. In addition, the oxygen scavenger disclosed in JP-A-62-277148 needs to be accompanied by a large-scale hydrogen reduction facility in production, and thus it can be said that it is not a simple method and is easy to handle in the atmosphere. Absent. Furthermore, since the oxygen scavenger using the auto-oxidation of the organic substance described above uses an organic substance oxidation reaction as a main agent, there is a problem of by-products generated after oxygen absorption.

このため、水分が無いか殆ど無い雰囲気下であっても雰囲気中の酸素を吸収する能力をもつ酸素吸収剤であって、原料が安価で安定しており、副生物の問題も殆ど無く、水素還元を行う場合のような大規模な装置を付帯する必要のないものが、依然として望まれていた。   Therefore, it is an oxygen absorbent that has the ability to absorb oxygen in the atmosphere even in an atmosphere with little or no moisture, the raw material is inexpensive and stable, there are almost no problems of by-products, hydrogen There was still a desire for a device that does not require the attachment of a large-scale device as in the case of performing reduction.

特開2007−185653号公報JP 2007-185653 A 特開2005−104064号公報JP 2005-104064 A 特開昭62−277148号公報Japanese Patent Laid-Open No. 62-277148

本発明者らは、アルミニウムと鉄からなる合金、または、アルミニウムとニッケルからなる合金から水酸化ナトリウム水溶液を用いてアルミニウムのみを取り除いた金属が、30%RH(25℃)以下であるような水分が無いか殆ど無い雰囲気中であっても、雰囲気中の酸素を、従来の脱酸素剤と同等のレベルで、吸収・除去し得るとともに、このような金属であれば、水素還元を行う場合のような大規模な装置を用いなくても簡易かつ安価に製造することができることを見出し、この金属を脱酸素剤として使用すれば、水分が殆ど無い雰囲気中でも酸素を吸収することができるとの知見を得た。   The present inventors have found that the metal in which only aluminum is removed using an aqueous solution of sodium hydroxide from an alloy of aluminum and iron or an alloy of aluminum and nickel is 30% RH (25 ° C.) or less. Even in an atmosphere with little or no oxygen, the oxygen in the atmosphere can be absorbed and removed at a level equivalent to that of a conventional oxygen scavenger. Finding that it can be easily and inexpensively manufactured without using such a large-scale apparatus, and that this metal can be used as an oxygen scavenger to absorb oxygen even in an atmosphere with little moisture Got.

しかしながら、上記した金属は酸素吸収活性が非常に高く、大気雰囲気中でも酸素と反応して発熱する場合があり、酸素吸収剤を発熱させずに使用するような場合は、酸素吸収剤を特定の環境下(例えば、無酸素雰囲気下)で使用する必要がある。その場合、特定の環境にするには設備等を要するため、取扱いが煩雑になるとともに、取扱いコストの上昇を招く。   However, the above-mentioned metals have a very high oxygen absorption activity and may generate heat by reacting with oxygen even in the air atmosphere. When the oxygen absorbent is used without generating heat, the oxygen absorbent is used in a specific environment. It is necessary to use under (for example, under an oxygen-free atmosphere). In this case, since a facility or the like is required to obtain a specific environment, handling is complicated and handling costs are increased.

そして、本発明者らは、今般、上記金属を低酸素濃度の混合ガス流で徐々に酸化させて、金属表面に金属酸化物を形成することにより、酸素吸収活性を制御できることに気づき、この方法によれば、大気雰囲気下での過度な発熱を抑え、安定して酸素吸収性能を維持できる酸素吸収剤を製造することができるとの知見を得た。本発明はかかる知見によるものである。   And the present inventors have now noticed that the oxygen absorption activity can be controlled by gradually oxidizing the metal with a mixed gas stream having a low oxygen concentration to form a metal oxide on the metal surface. According to the present invention, it has been found that an oxygen absorbent capable of suppressing excessive heat generation in an air atmosphere and stably maintaining oxygen absorption performance can be produced. The present invention is based on this finding.

したがって、本発明の目的は、大気雰囲気下での過度な発熱を抑え、安定して酸素吸収性能を維持できる酸素吸収剤が得られる方法を提供することである。   Accordingly, an object of the present invention is to provide a method for obtaining an oxygen absorbent capable of suppressing excessive heat generation in an air atmosphere and stably maintaining oxygen absorption performance.

本発明による酸素吸収剤の製造方法は、
(A)マンガン族、鉄族、白金族および銅族からなる群より選択される少なくとも1種の遷移金属と、(B)アルミニウム、亜鉛、スズ、鉛、マグネシウムおよびケイ素からなる群より選択される少なくとも1種の金属と、を含む合金(X)を、酸またはアルカリの水溶液処理に供して、前記成分(B)の少なくとも一部を溶出除去し、
前記成分(B)の少なくとも一部が除去された合金(Y)の表面を酸化させて、合金(Y)の表面の少なくとも一部に金属酸化物からなる被膜を形成させる、
ことを含んでなるものである。
The method for producing an oxygen absorbent according to the present invention comprises:
(A) at least one transition metal selected from the group consisting of manganese, iron, platinum and copper; and (B) selected from the group consisting of aluminum, zinc, tin, lead, magnesium and silicon. And subjecting the alloy (X) containing at least one metal to an acid or alkali aqueous solution treatment to elute and remove at least a part of the component (B),
Oxidizing the surface of the alloy (Y) from which at least a part of the component (B) has been removed to form a film made of a metal oxide on at least a part of the surface of the alloy (Y);
It is meant to include.

本発明の態様によれば、前記成分(A)が、鉄、コバルト、ニッケル、および銅からなる群より選択されるものであってよい。   According to the aspect of the present invention, the component (A) may be selected from the group consisting of iron, cobalt, nickel, and copper.

また、本発明の態様によれば、前記成分(B)がアルミニウムであってもよい。   According to the aspect of the present invention, the component (B) may be aluminum.

また、本発明の態様によれば、前記合金(Y)に含まれる成分(B)の含有率が0.01〜50質量%となるまで、前記成分(B)の溶出除去を行ってもよい。   Moreover, according to the aspect of the present invention, elution removal of the component (B) may be performed until the content of the component (B) contained in the alloy (Y) becomes 0.01 to 50% by mass. .

また、本発明の態様によれば、前記酸またはアルカリの水溶液が水酸化ナトリウム水溶液であってもよい。   According to an aspect of the present invention, the acid or alkali aqueous solution may be a sodium hydroxide aqueous solution.

また、本発明の態様によれば、前記成分(A)と前記成分(B)とを含む合金(X)の粉末を、酸またはアルカリの水溶液処理に供して、前記成分(B)の少なくとも一部を溶出除去して、粉末状の合金(Y)を得てもよい。   According to the aspect of the present invention, the alloy (X) powder containing the component (A) and the component (B) is subjected to an acid or alkali aqueous solution treatment, so that at least one of the component (B) is obtained. The powdered alloy (Y) may be obtained by elution and removal of the part.

また、本発明の態様によれば、前記合金(Y)の酸化を、酸素濃度が0.1〜10体積%の混合ガス、または、0.5〜50kPaの減圧空気の気流下で行ってもよい。   Moreover, according to the aspect of the present invention, the alloy (Y) may be oxidized in a mixed gas having an oxygen concentration of 0.1 to 10% by volume or a stream of reduced pressure air of 0.5 to 50 kPa. Good.

本発明の別の態様によれば、上記した方法により得られた酸素吸収剤も提供される。   According to another aspect of the present invention, an oxygen absorbent obtained by the above-described method is also provided.

また、本発明の態様による酸素吸収剤は、前記成分(B)の少なくとも一部を溶出除去して得られる合金(Y)が、多孔質形状であってもよい。   In the oxygen absorbent according to the aspect of the present invention, the alloy (Y) obtained by eluting and removing at least a part of the component (B) may have a porous shape.

また、本発明による酸素吸収剤は、前記成分(B)の少なくとも一部を溶出除去して得られる合金(Y)の、BET法により測定される比表面積が、少なくとも10m/gであってもよい。 In the oxygen absorbent according to the present invention, the alloy (Y) obtained by eluting and removing at least part of the component (B) has a specific surface area measured by the BET method of at least 10 m 2 / g. Also good.

本発明の別の態様によれば、上記した酸素吸収剤を、通気性包装材を全部または一部に用いた包装材で包装してなる酸素吸収性包装体や、酸素吸収剤を熱可塑性樹脂に混合してなる、酸素吸収性樹脂組成物も提供される。   According to another aspect of the present invention, an oxygen-absorbing package formed by packaging the above-described oxygen absorbent with a packaging material using all or part of a breathable packaging material, and an oxygen absorbent as a thermoplastic resin. An oxygen-absorbing resin composition is also provided.

また、本発明の別の態様によれば、上記酸素吸収性樹脂組成物からなる酸素吸収性樹脂シートまたはフィルムも提供される。   Moreover, according to another aspect of this invention, the oxygen-absorbing resin sheet or film which consists of the said oxygen-absorbing resin composition is also provided.

本発明による酸素吸収剤の製造方法によれば、特定の遷移金属(A)と特定の金属(B)とを含む合金(X)から成分(B)の少なくとも一部を溶出除去して合金(Y)を得た後、合金(Y)の表面を酸化させて、合金(Y)の表面の少なくとも一部に金属酸化物からなる被膜を形成させることにより、大気雰囲気下での過度な発熱を抑え、安定して酸素吸収性能を維持できる酸素吸収剤を得ることができる。   According to the method for producing an oxygen absorbent according to the present invention, at least a part of the component (B) is eluted and removed from the alloy (X) containing the specific transition metal (A) and the specific metal (B). After obtaining Y), the surface of the alloy (Y) is oxidized to form a film made of a metal oxide on at least a part of the surface of the alloy (Y), thereby generating excessive heat generation in an air atmosphere. An oxygen absorbent that can suppress and stably maintain the oxygen absorption performance can be obtained.

<酸素吸収剤の製造方法>
本発明による酸素吸収剤の製造方法は、(1)特定の遷移金属(A)と特定の金属(B)とを含む合金(X)から成分(B)の少なくとも一部を溶出除去して合金(Y)を得る工程と、(2)前記成分(B)の少なくとも一部が除去された合金(Y)の表面を酸化させて、合金(Y)の表面の少なくとも一部に金属酸化物からなる被膜を形成させる工程とを含むものである。以下、酸素吸収剤を製造する方法の各工程について説明する。なお、なお、本明細書において、「酸素吸収剤」とは、かかる剤を設置した周囲の雰囲気中から酸素を選択的に吸収することができるものをいう。
<Method for producing oxygen absorbent>
The method for producing an oxygen absorbent according to the present invention includes (1) eluting and removing at least part of the component (B) from an alloy (X) containing a specific transition metal (A) and a specific metal (B). (Y) and (2) oxidizing the surface of the alloy (Y) from which at least a part of the component (B) has been removed, so that at least a part of the surface of the alloy (Y) is made of a metal oxide. Forming a coating film. Hereinafter, each process of the method for producing an oxygen absorbent will be described. In the present specification, the “oxygen absorber” refers to an agent that can selectively absorb oxygen from the ambient atmosphere in which the agent is installed.

成分(A)
酸素吸収剤を構成する成分(A)として使用可能な遷移金属は、マンガン族(マンガン、テクネチウム、レニウム)、鉄族(鉄、コバルト、ニッケル)、白金族(ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金)、銅族(銅、銀、金)から選択されるものである。上記した遷移金属は、単独でも2種以上を組み合わせて用いても良く、例えば、鉄とニッケルが選択される場合、成分(A)として、Fe−Ni合金を使用しても良い。
Ingredient (A)
Transition metals that can be used as component (A) constituting the oxygen absorber are manganese group (manganese, technetium, rhenium), iron group (iron, cobalt, nickel), platinum group (ruthenium, rhodium, palladium, osmium, iridium). , Platinum) and copper group (copper, silver, gold). The above transition metals may be used alone or in combination of two or more. For example, when iron and nickel are selected, an Fe—Ni alloy may be used as the component (A).

成分(A)としては、好ましくは、マンガン、鉄、コバルト、ニッケル、または銅であり、より好ましくは、鉄、コバルト、ニッケル、または銅であり、さらに好ましくは、鉄、またはニッケルであり、特に好ましくは、鉄である。このうち、鉄は、安全性が高く安価であるため好ましい。   The component (A) is preferably manganese, iron, cobalt, nickel, or copper, more preferably iron, cobalt, nickel, or copper, and still more preferably iron, nickel, Preferably, it is iron. Among these, iron is preferable because it is safe and inexpensive.

成分(B)
酸素吸収剤を構成する成分(B)としては、アルミニウム、亜鉛、スズ、鉛、マグネシウムおよびケイ素から選択されるものを使用する。これらは単独でも2種以上を組み合わせて用いても良い。成分(B)として例示したなかでも、アルミニウム、亜鉛、マグネシウムまたはケイ素から選択されるものが好ましく、より好ましくは、アルミニウム、亜鉛、マグネシウムまたはケイ素であり、さらに好ましくはアルミニウムである。このうち、アルミニウムは安価であるため好ましい。
Ingredient (B)
As the component (B) constituting the oxygen absorbent, one selected from aluminum, zinc, tin, lead, magnesium and silicon is used. These may be used alone or in combination of two or more. Among those exemplified as the component (B), those selected from aluminum, zinc, magnesium or silicon are preferable, aluminum, zinc, magnesium or silicon is more preferable, and aluminum is more preferable. Of these, aluminum is preferable because it is inexpensive.

本発明による酸素吸収剤は、上記した成分(A)と成分(B)とを含む合金(X)を調製するが、このとき、合金(X)には、添加金属として、さらに、モリブデン、クロム、チタン、バナジウム、タングステンなどを加えても良い。シアン酸類等の添加成分をさらに含有していても良い。   The oxygen absorbent according to the present invention prepares an alloy (X) containing the component (A) and the component (B) described above. At this time, the alloy (X) further contains molybdenum, chromium as an additive metal. , Titanium, vanadium, tungsten, or the like may be added. It may further contain additional components such as cyanic acids.

上記したような成分(A)と成分(B)とを含む合金(X)は、溶融法により調製することができる。このとき、成分(A)と成分(B)との組成の割合は、好ましくは、成分(A)が20〜80質量%であるとき、成分(B)は20〜80質量%であり、より好ましくは、成分(A)が30〜70質量%であるとき、成分(B)は30〜70質量%である。より具体的な例を挙げると、成分(A)が鉄またはニッケル、成分(B)がアルミニウムである場合、鉄またはニッケルの割合は30〜55質量%、アルミニウムの割合は45〜70質量%であることが好ましい。   The alloy (X) containing the component (A) and the component (B) as described above can be prepared by a melting method. At this time, the composition ratio of the component (A) and the component (B) is preferably 20 to 80% by mass when the component (A) is 20 to 80% by mass, and more Preferably, when the component (A) is 30 to 70% by mass, the component (B) is 30 to 70% by mass. To give a more specific example, when the component (A) is iron or nickel and the component (B) is aluminum, the proportion of iron or nickel is 30 to 55 mass%, and the proportion of aluminum is 45 to 70 mass%. Preferably there is.

得られる合金(X)は、そのまま、酸またはアルカリの水溶液処理に供してもよいが、通常は、微粉砕した後に、酸またはアルカリの水溶液処理に供する。なお、本明細書において「合金」とは、特定の結晶構造を有している単一組成のもののみならず、それらの混合物及び金属自体の混合物を含むものとする。   The obtained alloy (X) may be subjected to an acid or alkali aqueous solution treatment as it is, but is usually subjected to an acid or alkali aqueous solution treatment after being finely pulverized. In this specification, “alloy” includes not only a single composition having a specific crystal structure but also a mixture thereof and a mixture of metals themselves.

合金(X)を微粉砕する方法としては、慣用の金属の解砕・粉砕のための方法を適宜使用することができ、例えば、ジョークラッシャーや、ロールクラッシャー、ハンマーミル等で粉砕し、さらに必要に応じてボールミルで微粉砕することができる。あるいは、前記合金の溶湯をアトマイズ法等の急冷凝固法により微粉化してもよい。ここでアトマイズ法による場合には、アルゴンガス等の不活性ガス中で行なうのが好ましい。アトマイズ法としては、例えば特開平5−23597号公報に記載の方法を使用することができる。   As a method for finely pulverizing the alloy (X), a conventional method for pulverizing and pulverizing metals can be used as appropriate, for example, pulverizing with a jaw crusher, a roll crusher, a hammer mill, etc. Depending on the condition, it can be finely pulverized with a ball mill. Alternatively, the molten alloy may be pulverized by a rapid solidification method such as an atomizing method. Here, when the atomizing method is used, it is preferably performed in an inert gas such as an argon gas. As the atomizing method, for example, the method described in JP-A-5-23597 can be used.

得られる合金粉末の粒径は、5〜200μmの範囲内となることが好ましく、またこの粒径分布はできるだけ狭いことが好ましい。粒径の大きなものを排除したり、粒径分布をそろえたりする観点から、市販のメッシュ篩(例えば、200メッシュ篩など)を使用して篩い分け(分級)を適宜行っても良い。なお、アトマイズ法による場合、粉末は球状に近くなる傾向にあり、また、粒径分布を狭くできる傾向にある。   The particle size of the obtained alloy powder is preferably in the range of 5 to 200 μm, and the particle size distribution is preferably as narrow as possible. From the viewpoint of eliminating particles having a large particle size or aligning the particle size distribution, sieving (classification) may be appropriately performed using a commercially available mesh sieve (for example, a 200 mesh sieve). In the case of the atomizing method, the powder tends to be nearly spherical and the particle size distribution tends to be narrow.

次いで、上記のようにして得られた合金(X)またはその粉末を、酸またはアルカリの水溶液処理に供して、合金(X)から、成分(B)の少なくとも一部を溶出させ除去する。すなわち、本発明においては、上記合金(X)から成分(B)の少なくとも一部を溶出させ除去した後に得られる合金(Y)を酸素吸収剤として使用される。酸またはアルカリの水溶液としては、成分(A)が溶解しないか殆ど溶解せず、かつ、成分(B)が主として溶解するもの、あるいは、成分(A)および(B)のいずれもが溶解するが、成分(B)の溶解速度が成分(A)よりも高いものであれば特に制限はなく使用することができる。酸水溶液における酸としては、例えば、塩酸、硫酸、硝酸などを使用することができ、アルカリ水溶液におけるアルカリとしては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化テトラメチルアンモニウム(TMAH)、NaCO、KCO、アンモニアなどを使用することができる。これら酸およびアルカリ水溶液についてはそれぞれついて、必要に応じて2種以上を組み合わせて用いても良い。 Next, the alloy (X) or the powder thereof obtained as described above is subjected to an acid or alkali aqueous solution treatment to elute and remove at least a part of the component (B) from the alloy (X). That is, in the present invention, the alloy (Y) obtained after eluting and removing at least a part of the component (B) from the alloy (X) is used as an oxygen absorbent. As the aqueous solution of acid or alkali, the component (A) does not dissolve or hardly dissolves, and the component (B) mainly dissolves, or both the components (A) and (B) dissolve. As long as the dissolution rate of the component (B) is higher than that of the component (A), it can be used without any particular limitation. Examples of the acid in the aqueous acid solution include hydrochloric acid, sulfuric acid, and nitric acid. Examples of the alkali in the aqueous alkali solution include sodium hydroxide, potassium hydroxide, calcium hydroxide, and tetramethylammonium hydroxide (TMAH). ), Na 2 CO 3 , K 2 CO 3 , ammonia, and the like. About these acid and alkali aqueous solution, you may use it in combination of 2 or more type as needed.

本発明の好ましい態様によれば、酸またはアルカリの水溶液としてアルカリ水溶液を用いることが好ましく、より好ましくは、水酸化ナトリウム水溶液である。例えば、成分(B)としてアルミニウムを用いた場合、アルカリ水溶液として水酸化ナトリウムを用いると、水洗により過剰量の水酸化ナトリウムを除去し、また溶出したアルミニウムを除去することが容易であり、このため、水洗回数を削減できるという効果が期待できる。   According to a preferred embodiment of the present invention, an aqueous alkali solution is preferably used as the aqueous acid or alkali solution, more preferably an aqueous sodium hydroxide solution. For example, when aluminum is used as the component (B), when sodium hydroxide is used as the alkaline aqueous solution, excess sodium hydroxide can be easily removed by washing with water, and the eluted aluminum can be easily removed. The effect of reducing the number of washings can be expected.

酸またはアルカリの水溶液処理において、通常は、合金粉末であれば、合金粉末を酸またはアルカリの水溶液中へ攪拌しながら少しずつ投入するが、合金粉末を水中にいれておき、ここに濃厚な酸またはアルカリを滴下しても良い。   In the treatment with an acid or alkali aqueous solution, usually, if an alloy powder is used, the alloy powder is gradually added to the acid or alkali aqueous solution while stirring, but the alloy powder is put in water and concentrated acid solution is added. Alternatively, alkali may be dropped.

酸またはアルカリの水溶液処理において、使用する酸またはアルカリ水溶液の濃度は、例えば、5〜60質量%であり、より具体的には、例えば水酸化ナトリウムの場合、10〜40質量%が好ましい。   In the acid or alkali aqueous solution treatment, the concentration of the acid or alkali aqueous solution used is, for example, 5 to 60% by mass, and more specifically, for example, 10 to 40% by mass in the case of sodium hydroxide.

酸またはアルカリの水溶液処理においては、該水溶液の温度は、例えば、20〜120℃程度であることが好ましい。より好ましい温度は25〜100℃である。   In the acid or alkali aqueous solution treatment, the temperature of the aqueous solution is preferably about 20 to 120 ° C., for example. A more preferable temperature is 25 to 100 ° C.

合金または合金粉末を酸またはアルカリの水溶液処理に供しておく処理時間は、使用する合金の形状、状態、およびその量、酸またはアルカリの水溶液の濃度、処理する際の温度等により変化し得るが、通常は、30〜300分間程度で良い。処理時間を調整することで、合金からの成分(B)の溶出量を調節することもできる。   The treatment time for which the alloy or alloy powder is subjected to the acid or alkali aqueous solution treatment may vary depending on the shape and state of the alloy used, the amount thereof, the concentration of the acid or alkali aqueous solution, the temperature during the treatment, etc. Usually, it may be about 30 to 300 minutes. By adjusting the treatment time, the elution amount of the component (B) from the alloy can be adjusted.

本発明においては、酸またはアルカリの水溶液処理によって、合金(X)から、成分(B)の少なくとも一部を溶出除去する。ここで、「成分(B)の少なくとも一部」を溶出除去するとは、成分(A)および成分(B)を含む合金(X)から、成分(B)の一部を溶出させ除去することに加えて、成分(B)の全部を合金(X)から溶出させ除去する場合も包含する意味である。したがって、本発明において「合金(Y)」とは、成分(B)の全部が溶出した金属(すなわち、成分(A)のみからなる金属)も包含する概念である。なお、成分(B)の溶出の過程では、結果として成分(A)の一部が溶解する可能性も否定できないので、「成分(B)の少なくとも一部」には、成分(B)のみが酸またはアルカリの水溶液処理によって溶出される場合に限定して解釈する必要はない。   In the present invention, at least part of the component (B) is eluted and removed from the alloy (X) by treatment with an aqueous solution of acid or alkali. Here, “leaving and removing at least a part of the component (B)” means that a part of the component (B) is eluted and removed from the alloy (X) containing the component (A) and the component (B). In addition, it also includes the case where all of the component (B) is eluted and removed from the alloy (X). Therefore, in the present invention, the “alloy (Y)” is a concept including a metal from which all of the component (B) is eluted (that is, a metal composed only of the component (A)). In addition, in the process of elution of component (B), the possibility that a part of component (A) is dissolved as a result cannot be denied. Therefore, “at least a part of component (B)” includes only component (B). It is not necessary to interpret the present invention only when it is eluted with an aqueous solution of acid or alkali.

酸またはアルカリの水溶液処理によって、成分(B)(例えば、アルミニウム)の少なくとも一部、好ましくはその大部分が合金(X)から溶出する。合金(X)からの成分(B)の溶出の割合は、溶出除去によって得られる合金(Y)における成分(B)の含有率(質量基準)(残存率)で示すことができる。   By the aqueous solution treatment with acid or alkali, at least a part of component (B) (for example, aluminum), preferably most of the component (B) is eluted from the alloy (X). The rate of elution of the component (B) from the alloy (X) can be represented by the content (mass basis) (residual rate) of the component (B) in the alloy (Y) obtained by elution removal.

酸素吸収剤として用いられる金属(即ち、成分(B)を溶出した後の合金(Y))において、成分(B)の含有率は、好ましくは0.01〜50質量%であり、より好ましくは0.1〜40質量%である。より具体的には、例えば、合金(X)が、Al−Fe合金である場合、酸またはアルカリの水溶液処理によるアルミニウムの溶出除去によって得られる合金(Y)におけるアルミニウムの含有率は、好ましくは0.01〜50質量%であり、より好ましくは0.1〜40質量%、さらに好ましくは1〜5質量%である。なお、酸素吸収剤に用いられる合金(Y)中の成分(B)(例えば、アルミニウム)の含有量は、例えば、ICP法により測定することができる。   In the metal used as the oxygen absorbent (that is, the alloy (Y) after eluting the component (B)), the content of the component (B) is preferably 0.01 to 50% by mass, more preferably It is 0.1-40 mass%. More specifically, for example, when the alloy (X) is an Al—Fe alloy, the aluminum content in the alloy (Y) obtained by elution removal of aluminum by treatment with an aqueous solution of acid or alkali is preferably 0. It is 0.01-50 mass%, More preferably, it is 0.1-40 mass%, More preferably, it is 1-5 mass%. In addition, content of the component (B) (for example, aluminum) in the alloy (Y) used for an oxygen absorber can be measured by ICP method, for example.

次に、成分(B)の少なくとも一部が溶出除去された合金(Y)の表面を酸化させて、合金(Y)の表面の少なくとも一部に金属酸化物からなる被膜を形成する。成分(B)の金属の少なくとも一部が溶出した合金(Y)は、酸素吸収活性が非常に高く、大気雰囲気中でも酸素と反応して発熱する場合がある。上記のように、成分(B)の金属を溶出した後の合金(Y)の表面を微酸化させて、合金(Y)の表面の少なくとも一部に酸化被膜を形成させることにより酸素吸収性能を制御することができる。合金(Y)の表面に酸化被膜を形成させることにより酸素との反応による発熱が抑制される理由は定かではないが、以下のように考えられる。   Next, the surface of the alloy (Y) from which at least a part of the component (B) has been dissolved out is oxidized to form a film made of a metal oxide on at least a part of the surface of the alloy (Y). The alloy (Y) from which at least a part of the component (B) metal is eluted has a very high oxygen absorption activity, and may react with oxygen even in an air atmosphere to generate heat. As described above, the surface of the alloy (Y) after elution of the metal of the component (B) is slightly oxidized to form an oxide film on at least a part of the surface of the alloy (Y). Can be controlled. The reason why heat generation due to reaction with oxygen is suppressed by forming an oxide film on the surface of the alloy (Y) is not clear, but is considered as follows.

合金(Y)を酸化処理することによって、合金(Y)の表面に金属酸化物の被膜が形成される。この被膜により合金(Y)の細孔中への酸素の拡散が阻害され急激な酸化反応が起こらなくなり、その結果、発熱が抑制されるものと考えられる。   By oxidizing the alloy (Y), a metal oxide film is formed on the surface of the alloy (Y). It is considered that this coating inhibits the diffusion of oxygen into the pores of the alloy (Y) and does not cause a rapid oxidation reaction, and as a result, heat generation is suppressed.

上記のように合金表面を微酸化させる方法としては、低酸素濃度の混合ガス、例えば、酸素濃度が0.1〜10体積%である酸素/窒素混合ガス流下で合金を処理することにより、合金表面の微酸化を行うことができる。急激な酸化は、合金が発熱して危険なばかりか、酸素吸収性能を低下させてしまうため、上記のような微酸化が行われるような条件にて酸化処理を行うことが好ましい。したがって、酸素濃度が低い上記のような混合ガスだけでなく減圧した空気を用いて微酸化を行ってもよい。例えば、0.5〜50kPa程度の減圧空気の気流下で微酸化処理を行うことができる。   As described above, as a method for finely oxidizing the surface of the alloy, a low oxygen concentration mixed gas, for example, an alloy is treated by flowing an oxygen / nitrogen mixed gas stream having an oxygen concentration of 0.1 to 10% by volume. The surface can be finely oxidized. The rapid oxidation is not only dangerous due to heat generation of the alloy, but also deteriorates the oxygen absorption performance. Therefore, it is preferable to carry out the oxidation treatment under such conditions that fine oxidation is performed. Therefore, fine oxidation may be performed using not only the above mixed gas having a low oxygen concentration but also decompressed air. For example, the fine oxidation treatment can be performed under a stream of reduced pressure air of about 0.5 to 50 kPa.

合金の酸化処理の程度は、合金の酸素活性、合金処理量、混合ガスや減圧空気等の流量にもよるが、上記した混合ガスまたは減圧空気流下で合金を0.5〜5時間程度処理することにより、金属酸化物からなる被膜を合金(Y)の表面の一部に形成することができる。   The degree of the oxidation treatment of the alloy depends on the oxygen activity of the alloy, the amount of alloy treatment, the flow rate of the mixed gas or reduced pressure air, etc., but the alloy is treated for about 0.5 to 5 hours under the above mixed gas or reduced pressure air flow. By this, the film which consists of metal oxides can be formed in a part of surface of an alloy (Y).

成分(B)の金属を溶出除去した合金(Y)の微酸化処理は、溶出除去後の合金(Y)を水洗する際に行ってもよく、水洗した後の乾燥中に行ってもよく、また、乾燥後に行ってもよい。   The fine oxidation treatment of the alloy (Y) from which the metal of the component (B) is eluted and removed may be performed when the alloy (Y) after elution and removal is washed with water, or may be performed during drying after washing with water, Moreover, you may carry out after drying.

上記のようにして得られる酸素吸収剤は、大気雰囲気下での過度な発熱が抑えられ、安定して酸素吸収性能を維持できる。酸素吸収剤の使用用途にもよるが、大気中に酸素吸収剤を取り出した際の表面温度は、250℃以下であることが好ましく、200℃以下がより好ましく、150℃以下がさらに好ましく、100℃以下であることが特に好ましい。例えば、酸素吸収剤を無酸素環境下から大気中へ取り出して、熱可塑性樹脂等と混練して使用する場合、酸素吸収剤の表面温度が低い方が、耐熱性の低い熱可塑性樹脂との混練が可能となる。   The oxygen absorbent obtained as described above can suppress excessive heat generation in an air atmosphere and can stably maintain oxygen absorption performance. Although depending on the usage of the oxygen absorbent, the surface temperature when the oxygen absorbent is taken out into the atmosphere is preferably 250 ° C. or lower, more preferably 200 ° C. or lower, further preferably 150 ° C. or lower, 100 It is particularly preferable that the temperature is not higher than ° C. For example, when an oxygen absorbent is taken out from the oxygen-free environment into the atmosphere and kneaded with a thermoplastic resin or the like, the oxygen absorbent having a lower surface temperature is kneaded with a thermoplastic resin having lower heat resistance. Is possible.

<酸素吸収剤>
上記のようにして得られた合金(Y)は、多孔質形状(または多孔体)を有している。ここで、多孔質形状とは、電子顕微鏡にて確認できる程度の多数の細孔を表面および内部に有している状態をいう。本発明においては、合金(Y)が有する多孔質形状の程度は、その比表面積にて表すことができる。具体的には、本発明の酸素吸収剤に用いられる合金(Y)のBET法による比表面積は少なくとも10m/gであり、好ましくは、少なくとも20m/g、より好ましくは、少なくとも40m/gである。
<Oxygen absorber>
The alloy (Y) obtained as described above has a porous shape (or a porous body). Here, the porous shape means a state having a large number of pores on the surface and inside that can be confirmed with an electron microscope. In the present invention, the degree of the porous shape of the alloy (Y) can be expressed by its specific surface area. Specifically, the specific surface area by the BET method of the alloy used in the oxygen absorber of the present invention (Y) is at least 10 m 2 / g, preferably at least 20 m 2 / g, more preferably at least 40 m 2 / g.

例えば、本発明において、成分(A)として鉄を用い、成分(B)としてアルミニウムを用いた場合、得られる多孔質形状の合金(Y)の比表面積(BET法によるもの)は、20〜40m/g程度である一方で、多孔質ではない通常の鉄粉(還元鉄粉またはアトマイズ鉄粉)の場合、その比表面積は0.07〜0.13m/g程度であり、多孔質形状であるか否かは明らかである。 For example, in the present invention, when iron is used as the component (A) and aluminum is used as the component (B), the specific surface area (by the BET method) of the obtained porous alloy (Y) is 20 to 40 m. In the case of normal iron powder (reduced iron powder or atomized iron powder) that is about 2 / g but not porous, its specific surface area is about 0.07 to 0.13 m 2 / g, and is porous. It is clear whether or not.

また、合金(Y)が有する多孔質形状の程度は、かさ密度で表すこともできる。本発明の酸素吸収剤に用いられる合金(Y)のかさ密度は、2g/cm以下であり、好ましくは、1.5g/cm以下である。因みに、多孔質ではない通常の鉄粉(還元鉄粉またはアトマイズ鉄粉)の場合、そのかさ密度は、2〜3g/cm程度である。 Further, the degree of the porous shape of the alloy (Y) can also be expressed by bulk density. The bulk density of the alloy (Y) used for the oxygen absorbent of the present invention is 2 g / cm 3 or less, and preferably 1.5 g / cm 3 or less. Incidentally, in the case of normal iron powder (reduced iron powder or atomized iron powder) that is not porous, the bulk density is about 2 to 3 g / cm 3 .

本発明において、酸素吸収剤として用いられる多孔質の合金(Y)は、高い酸素吸収活性を有しているため、低湿度条件(例えば、30%RH(相対湿度)(25℃)以下の条件)の雰囲気下であっても、酸素吸収剤として好適に使用することができる。無論、高湿度条件(例えば、100%RH(相対湿度)(25℃)の条件)の雰囲気下であっても、酸素吸収剤として好適に使用できることは言うまでもない。   In the present invention, since the porous alloy (Y) used as an oxygen absorbent has high oxygen absorption activity, it is a condition under low humidity conditions (for example, 30% RH (relative humidity) (25 ° C.) or less. ) Can be suitably used as an oxygen absorbent. Needless to say, it can be suitably used as an oxygen absorbent even in an atmosphere of high humidity conditions (for example, conditions of 100% RH (relative humidity) (25 ° C.)).

したがって、上記のようにして得られた合金(Y)は、30%RH(相対湿度)(25℃)以下の低湿度の雰囲気において、少なくとも5mL/gの酸素、より好ましくは10mL/gの酸素、を吸収し得る。また、当該合金(Y)を酸素吸収剤として使用した場合の酸素吸収量は、例えば、30%RH(相対湿度)(25℃)以下の低湿度の雰囲気において、5〜150mL/gとなる。   Therefore, the alloy (Y) obtained as described above has at least 5 mL / g oxygen, more preferably 10 mL / g oxygen in a low humidity atmosphere of 30% RH (relative humidity) (25 ° C.) or less. , Can be absorbed. Moreover, when the said alloy (Y) is used as an oxygen absorber, the oxygen absorption amount will be 5-150 mL / g in the low humidity atmosphere below 30% RH (relative humidity) (25 degreeC), for example.

<酸素吸収剤の使用>
酸素吸収剤組成物、特に使用されている多孔質の合金(Y)は、大気中では酸化し劣化し易いものであることから、使用に際してはこの合金(Y)を熱可塑性樹脂に混合(混練)し、得られる酸素吸収性樹脂の形態で使用することができる。この酸素吸収性樹脂は、混練した後に押出延伸させることでフィルム化又はシート化し、酸素吸収性のフィルム又はシートとすることもできる。
<Use of oxygen absorbent>
Since the oxygen absorbent composition, particularly the porous alloy (Y) used, is easily oxidized and deteriorated in the atmosphere, the alloy (Y) is mixed with a thermoplastic resin (kneading) in use. And can be used in the form of an oxygen-absorbing resin obtained. This oxygen-absorbing resin can be formed into a film or a sheet by extruding and stretching after kneading to obtain an oxygen-absorbing film or sheet.

使用される熱可塑性樹脂としては、その種類に特に制限はないが、例えば、ポリエチレン、ポリプロピレン、エチレン−酢酸ビニル共重合体、エラストマー、またはこれらの混合物が使用できる。   The type of the thermoplastic resin used is not particularly limited, and for example, polyethylene, polypropylene, ethylene-vinyl acetate copolymer, elastomer, or a mixture thereof can be used.

また、酸素吸収剤を、通気性包装材を全部または一部に用いた包装材で包装した酸素吸収剤包装体としてもよい。包装材としては、2枚の通気性包装材を貼り合わせて袋状としたものや、1枚の通気性包装材と1枚の非通気性包装材とを貼り合わせて袋状としたもの、1枚の通気性包装材を折り曲げ、折り曲げ部を除く縁部同士をシールして袋状としたものが挙げられる。また、通気性包装材としては、酸素と二酸化炭素とを透過する包装材を使用できる。このような通気性包装材としては、紙や不織布の他、従来公知のプラスチックフィルムに通気性を付与したものが挙げられる。   Alternatively, the oxygen absorbent may be an oxygen absorbent package that is packaged with a packaging material that uses all or part of a breathable packaging material. As a packaging material, a bag-like shape obtained by bonding two air-permeable packaging materials, a bag-like shape obtained by bonding one breathable packaging material and one non-breathable packaging material, One example is one in which a single air-permeable packaging material is bent and the edges excluding the bent portion are sealed to form a bag. Further, as the breathable packaging material, a packaging material that transmits oxygen and carbon dioxide can be used. Examples of such a breathable packaging material include those obtained by imparting breathability to a conventionally known plastic film in addition to paper and non-woven fabric.

本発明による酸素吸収剤は、水分活性に無関係に酸素吸収を行い、水分活性の高い領域から低い領域まで適用可能である。また、水分活性が低く、低湿度の乾燥条件での保存が必要とされる物品に好適に適用できる。なお、水分活性とは物品中の自由水含有量を示す尺度で、0〜1の数字で示され、水分のない物品は0、純水は1となる。すなわち、ある物品の水分活性Awは、その物品を密封し平衡状態に到達した後の空間内の水蒸気圧をP、純水の水蒸気圧をP、同空間内の相対湿度をRH(%)、とした場合、
Aw=P/P=RH/100
と定義される。
The oxygen absorbent according to the present invention absorbs oxygen regardless of the water activity and can be applied from a region having a high water activity to a region having a low water activity. Further, it can be suitably applied to articles that have low water activity and need to be stored under dry conditions of low humidity. The water activity is a scale indicating the free water content in an article, and is represented by a number from 0 to 1, with 0 for an article without moisture and 1 for pure water. That is, the water activity Aw of a certain article is expressed as follows: the water vapor pressure in the space after the article is sealed and reached an equilibrium state is P, the water vapor pressure of pure water is P 0 , and the relative humidity in the space is RH (%). , And
Aw = P / P 0 = RH / 100
Is defined.

低湿度の保存条件を必要とする低水分含有物品を保存するためには、低水分含有物品を保存する雰囲気の相対湿度(RH)は、好ましくは20〜70%、より好ましくは20〜50%である。低水分含有物品の水分含有率は、好ましくは50質量%以下、より好ましくは30質量%以下、特に好ましくは10質量%以下のものが全て該当する。低湿度の保存条件を必要とする低水分含有物品(被包装物)として、例えば、粉末、顆粒食品類(粉末スープ、粉末飲料、粉末菓子、調味料、穀物粉、栄養食品、健康食品、着色料、着香料、香辛料)、粉末、顆粒薬品(散薬類、粉石鹸、歯磨粉、工業薬品)、これらの成形体(錠剤型)などの、水分の増加を嫌い、異物の混入を避ける必要のある食品、薬品等を例示することができる。特に、後記するような酸素吸収性包装体に、これら被包装物を充填した場合、水分が無いか殆ど無い雰囲気中であっても、雰囲気中の酸素を、従来の脱酸素剤と同等のレベルで、吸収・除去し得ることが可能である。したがって、従来の脱酸素剤の適用の難しかった水分を嫌う乾燥食品、医薬品、電子材料のパッケージの雰囲気中を脱酸素状態にするなどの用途に好適に使用することができる。例えば、粉末調味料、粉末コーヒー、コーヒー豆、米、茶、豆、おかき、せんべい等の乾燥食品や医薬品、ビタミン剤等の健康食品に好適に使用することができる。   In order to store low moisture content articles that require low humidity storage conditions, the relative humidity (RH) of the atmosphere in which the low moisture content articles are stored is preferably 20-70%, more preferably 20-50%. It is. The moisture content of the low moisture content article is preferably 50% by mass or less, more preferably 30% by mass or less, and particularly preferably 10% by mass or less. As low moisture content articles (packaged products) that require low humidity storage conditions, for example, powders, granular foods (powder soups, powdered beverages, powdered confectionery, seasonings, cereal flour, nutritional foods, health foods, coloring Such as fragrances, flavorings, spices), powders, granule drugs (powdered powders, powdered soaps, toothpastes, industrial chemicals), and molded articles (tablet type), etc. A certain food, medicine, etc. can be illustrated. In particular, when these packages are filled in an oxygen-absorbing package as described later, oxygen in the atmosphere is at a level equivalent to that of a conventional oxygen scavenger, even in an atmosphere with little or no moisture. It can be absorbed and removed. Therefore, it can be suitably used for applications such as deoxidizing the atmosphere of dry foods, pharmaceuticals, and electronic material packages that are difficult to apply conventional oxygen scavengers. For example, it can be suitably used for dry foods such as powder seasonings, powdered coffee, coffee beans, rice, tea, beans, rice crackers, rice crackers, and health foods such as pharmaceuticals and vitamins.

以下、本発明を実施例によりさらに具体的に説明するが、本発明は以下の実施例により特に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not particularly limited to the following examples.

実施例1
Al(アルミニウム)粉とFe(鉄)粉をそれぞれ50重量%の割合で混合し、窒素中で溶解して、Al−Fe合金を得た。得たAl−Fe合金はジョークラッシャー、ロールクラッシャー及びボールミルを用いて粉砕し、粉砕物を目開き200メッシュ(0.075mm)の網を用いて分級し、200メッシュ以下のAl−Fe合金粉を得た。得られたAl−Fe合金粉150gを、50℃の30重量%水酸化ナトリウム水溶液中で1時間攪拌混合した後、混合溶液を静置し、上層液を取り除いた。残った沈殿物をpHが10以下になるまで蒸留水で洗浄し、Al−Fe多孔質合金粉を得た。したがって、多孔質合金粉は、酸素に接触させることを回避すべく、水溶液中での反応により得た。
Example 1
Al (aluminum) powder and Fe (iron) powder were mixed at a ratio of 50% by weight and dissolved in nitrogen to obtain an Al-Fe alloy. The obtained Al—Fe alloy was pulverized using a jaw crusher, a roll crusher and a ball mill, and the pulverized product was classified using a mesh of 200 mesh (0.075 mm), and an Al—Fe alloy powder of 200 mesh or less was obtained. Obtained. After 150 g of the obtained Al—Fe alloy powder was stirred and mixed in a 30 wt% sodium hydroxide aqueous solution at 50 ° C. for 1 hour, the mixed solution was allowed to stand and the upper layer liquid was removed. The remaining precipitate was washed with distilled water until the pH became 10 or less to obtain an Al—Fe porous alloy powder. Therefore, the porous alloy powder was obtained by reaction in an aqueous solution to avoid contact with oxygen.

得られた多孔質合金粉を、200Pa以下、80℃で2時間真空乾燥してAl−Fe多孔質合金粉乾燥物を得た。得られた合金粉のかさ密度は1.3g/cm3であった(JIS Z2504に準拠して測定)。この0.3gを、通気性小袋内に包装し、乾燥剤と共にガスバリア袋(Al箔ラミネートプラスチック袋)に入れ、300mLの空気(酸素濃度20.9%)を充填して密封し、25℃で1日保存した後の酸素濃度は16.0%であり、ガスバリア袋内の減少した酸素濃度から酸素吸収量を算出した結果、酸素吸収量は58.3mL/gであった。 The obtained porous alloy powder was vacuum dried at 200 Pa or less and 80 ° C. for 2 hours to obtain a dried Al—Fe porous alloy powder. The bulk density of the obtained alloy powder was 1.3 g / cm 3 (measured according to JIS Z2504). This 0.3 g is packaged in a breathable sachet, put in a gas barrier bag (Al foil laminated plastic bag) together with a desiccant, filled with 300 mL of air (oxygen concentration 20.9%), sealed and sealed at 25 ° C. The oxygen concentration after 1-day storage was 16.0%. As a result of calculating the oxygen absorption amount from the reduced oxygen concentration in the gas barrier bag, the oxygen absorption amount was 58.3 mL / g.

また、得られたAl−Fe多孔質合金粉の平均粒径を、粒度・形状分布測定器(株式会社セイシン企業製「PITA−2」)を使用して測定したところ、平均粒径は31μmであった。さらに、得られたAl−Fe多孔質合金粉の比表面積を、自動比表面積測定装置(株式会社島津製作所製「ジェミニVII2390」を使用して測定したところ、比表面積は37.0m/gであった。 Moreover, when the average particle diameter of the obtained Al-Fe porous alloy powder was measured using a particle size / shape distribution measuring instrument (“PITA-2” manufactured by Seishin Enterprise Co., Ltd.), the average particle diameter was 31 μm. there were. Furthermore, when the specific surface area of the obtained Al—Fe porous alloy powder was measured using an automatic specific surface area measurement device (“Gemini VII2390” manufactured by Shimadzu Corporation), the specific surface area was 37.0 m 2 / g. there were.

次いで、上記のようにして得られたAl−Fe多孔質合金粉5gを、φ50×25mmのアルミカップに入れ、酸素1体積%、窒素ガス99体積%のガスを500mL/minで90分間流通させた。途中、多孔質合金粉をスパチュラでかき混ぜ、全体が均一に酸化処理されるようにした。その後、酸化処理を行ったAl−Fe多孔質合金粉を上記と同様にして酸素吸収量を算出した。   Next, 5 g of the Al—Fe porous alloy powder obtained as described above is placed in an aluminum cup of φ50 × 25 mm, and a gas of 1 vol% oxygen and 99 vol% nitrogen gas is circulated at 500 mL / min for 90 minutes. It was. On the way, the porous alloy powder was stirred with a spatula so that the whole was uniformly oxidized. Thereafter, the oxygen absorption amount of the oxidized Al—Fe porous alloy powder was calculated in the same manner as described above.

また、酸化処理を行ったAl−Fe多孔質合金粉1gを、窒素雰囲気中でグラスフィルターに包んで、ガスバリア袋(Al箔ラミネートプラスチック袋)に入れた後、大気中に取り出した。合金粉が入ったグラスフィルターの上に熱電対を置き、合金粉の温度変化を温度データロガーにて測定した。結果は下記の表1に示される通りであった。   Moreover, 1 g of the oxidized Al—Fe porous alloy powder was wrapped in a glass filter in a nitrogen atmosphere, put into a gas barrier bag (Al foil laminated plastic bag), and then taken out into the atmosphere. A thermocouple was placed on the glass filter containing the alloy powder, and the temperature change of the alloy powder was measured with a temperature data logger. The results were as shown in Table 1 below.

比較例1
実施例1において、酸化処理を行わなかった以外は実施例1と同様にして酸素吸収量および温度変化を測定した。結果は下記の表1に示される通りであった。
Comparative Example 1
In Example 1, the oxygen absorption amount and temperature change were measured in the same manner as in Example 1 except that the oxidation treatment was not performed. The results were as shown in Table 1 below.

Figure 2014030784
Figure 2014030784

Claims (13)

酸素吸収剤を製造する方法であって、
(A)マンガン族、鉄族、白金族および銅族からなる群より選択される少なくとも1種の遷移金属と、(B)アルミニウム、亜鉛、スズ、鉛、マグネシウムおよびケイ素からなる群より選択される少なくとも1種の金属と、を含む合金(X)を、酸またはアルカリの水溶液処理に供して、前記成分(B)の少なくとも一部を溶出除去し、
前記成分(B)の少なくとも一部が除去された合金(Y)の表面を酸化させて、前記合金(Y)の表面の少なくとも一部に金属酸化物からなる被膜を形成させる、
ことを含んでなる、酸素吸収剤の製造方法。
A method for producing an oxygen absorber, comprising:
(A) at least one transition metal selected from the group consisting of manganese, iron, platinum and copper; and (B) selected from the group consisting of aluminum, zinc, tin, lead, magnesium and silicon. And subjecting the alloy (X) containing at least one metal to an acid or alkali aqueous solution treatment to elute and remove at least a part of the component (B),
Oxidizing the surface of the alloy (Y) from which at least a part of the component (B) has been removed, to form a film made of a metal oxide on at least a part of the surface of the alloy (Y);
The manufacturing method of the oxygen absorber which comprises this.
前記成分(A)が、鉄、コバルト、ニッケル、および銅からなる群より選択される、請求項1に記載の方法。   The method of claim 1, wherein component (A) is selected from the group consisting of iron, cobalt, nickel, and copper. 前記成分(B)がアルミニウムである、請求項1または2に記載の方法。   The method of Claim 1 or 2 that the said component (B) is aluminum. 前記合金(Y)に含まれる成分(B)の含有率が0.01〜50質量%となるまで、前記成分(B)の溶出除去を行う、請求項1〜3のいずれか一項に記載の方法。   The elution removal of the said component (B) is performed until the content rate of the component (B) contained in the said alloy (Y) becomes 0.01-50 mass%. the method of. 前記酸またはアルカリの水溶液が水酸化ナトリウム水溶液である、請求項1〜4のいずれか一項に記載の方法。   The method according to any one of claims 1 to 4, wherein the aqueous acid or alkali solution is an aqueous sodium hydroxide solution. 前記成分(A)と前記成分(B)とを含む合金(X)の粉末を、酸またはアルカリの水溶液処理に供して、前記成分(B)の少なくとも一部を溶出除去して、粉末状の合金(Y)を得ることを含む、請求項1〜5のいずれか一項に記載の方法。   The alloy (X) powder containing the component (A) and the component (B) is subjected to an acid or alkali aqueous solution treatment, and at least a part of the component (B) is eluted and removed. The method according to any one of claims 1 to 5, comprising obtaining an alloy (Y). 前記合金(Y)の酸化が、酸素濃度が0.1〜10体積%の混合ガス、または、0.5〜50kPaの減圧空気の気流下で行われる、請求項1〜6のいずれか一項に記載の方法。   The oxidation of the alloy (Y) is performed in a mixed gas having an oxygen concentration of 0.1 to 10% by volume or a stream of reduced pressure air of 0.5 to 50 kPa. The method described in 1. 請求項1〜7のいずれか一項に記載の方法により得られた酸素吸収剤。   The oxygen absorber obtained by the method as described in any one of Claims 1-7. 前記成分(B)の少なくとも一部を溶出除去して得られる合金(Y)が、多孔質形状である、請求項8に記載の酸素吸収剤。   The oxygen absorbent according to claim 8, wherein the alloy (Y) obtained by eluting and removing at least a part of the component (B) has a porous shape. 前記成分(B)の少なくとも一部を溶出除去して得られる合金(Y)の、BET法により測定される比表面積が、少なくとも10m/gである、請求項8または9に記載の酸素吸収剤。 The oxygen absorption according to claim 8 or 9, wherein a specific surface area of the alloy (Y) obtained by eluting and removing at least a part of the component (B) is measured by BET method is at least 10 m 2 / g. Agent. 請求項8〜10のいずれか一項に記載の酸素吸収剤を、通気性包装材を全部または一部に用いた包装材で包装してなる、酸素吸収性包装体。   An oxygen-absorbing package formed by packaging the oxygen absorbent according to any one of claims 8 to 10 with a packaging material using all or part of a breathable packaging material. 請求項8〜10のいずれか一項に記載の酸素吸収剤を熱可塑性樹脂に混合してなる、酸素吸収性樹脂組成物。   The oxygen-absorbing resin composition formed by mixing the oxygen absorbent as described in any one of Claims 8-10 with a thermoplastic resin. 請求項12に記載の酸素吸収性樹脂組成物からなる酸素吸収性樹脂シートまたはフィルム。   An oxygen-absorbing resin sheet or film comprising the oxygen-absorbing resin composition according to claim 12.
JP2012172208A 2012-08-02 2012-08-02 Method for manufacturing oxygen absorbent Pending JP2014030784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012172208A JP2014030784A (en) 2012-08-02 2012-08-02 Method for manufacturing oxygen absorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012172208A JP2014030784A (en) 2012-08-02 2012-08-02 Method for manufacturing oxygen absorbent

Publications (1)

Publication Number Publication Date
JP2014030784A true JP2014030784A (en) 2014-02-20

Family

ID=50281035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012172208A Pending JP2014030784A (en) 2012-08-02 2012-08-02 Method for manufacturing oxygen absorbent

Country Status (1)

Country Link
JP (1) JP2014030784A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5499092A (en) * 1978-01-23 1979-08-04 Fujishima Daishiro Oxygen scavenger primarily made of reformed iron powder
EP0761348A1 (en) * 1995-09-07 1997-03-12 Ultrafine Technologies Ltd Method of producing high-purity ultra-fine metal powder by leaching
JPH09253481A (en) * 1996-03-22 1997-09-30 Sony Corp Deoxygenating agent and its manufacture
JPH1147585A (en) * 1997-07-30 1999-02-23 Mitsubishi Gas Chem Co Inc Oxygen scavenger
JPH11240095A (en) * 1998-02-24 1999-09-07 Mitsubishi Gas Chem Co Inc Deoxidized multi-layer film
JP2011508080A (en) * 2007-12-21 2011-03-10 シーマ ナノ テック イスラエル リミティド Method for producing metal nanoparticles
WO2012105457A1 (en) * 2011-01-31 2012-08-09 三菱瓦斯化学株式会社 Oxygen absorber and method for storing same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5499092A (en) * 1978-01-23 1979-08-04 Fujishima Daishiro Oxygen scavenger primarily made of reformed iron powder
EP0761348A1 (en) * 1995-09-07 1997-03-12 Ultrafine Technologies Ltd Method of producing high-purity ultra-fine metal powder by leaching
JPH09253481A (en) * 1996-03-22 1997-09-30 Sony Corp Deoxygenating agent and its manufacture
JPH1147585A (en) * 1997-07-30 1999-02-23 Mitsubishi Gas Chem Co Inc Oxygen scavenger
JPH11240095A (en) * 1998-02-24 1999-09-07 Mitsubishi Gas Chem Co Inc Deoxidized multi-layer film
JP2011508080A (en) * 2007-12-21 2011-03-10 シーマ ナノ テック イスラエル リミティド Method for producing metal nanoparticles
WO2012105457A1 (en) * 2011-01-31 2012-08-09 三菱瓦斯化学株式会社 Oxygen absorber and method for storing same

Similar Documents

Publication Publication Date Title
JP5246384B2 (en) Oxygen absorber and storage method thereof
KR20180121785A (en) Oxygen absorber compositions, oxygen-absorbing multilayer bodies, oxygen-absorbing packaging containers, and methods of preserving articles
JP5626488B2 (en) Method for producing oxygen absorbent
JP2015007148A (en) Oxygen-absorbing resin composition
JP5692671B2 (en) Oxygen absorber
JP2014030784A (en) Method for manufacturing oxygen absorbent
JP6578947B2 (en) How to store oxygen absorbers
JP2013172683A (en) Food quality retaining agent
JP2014027889A (en) Powder composition for retaining food product quality, agent for retaining food product quality, and production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160517

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161118