JP2014029932A - Thermoelectric conversion material, thermoelectric conversion sheet and manufacturing method therefor, and thermoelectric conversion module - Google Patents

Thermoelectric conversion material, thermoelectric conversion sheet and manufacturing method therefor, and thermoelectric conversion module Download PDF

Info

Publication number
JP2014029932A
JP2014029932A JP2012169844A JP2012169844A JP2014029932A JP 2014029932 A JP2014029932 A JP 2014029932A JP 2012169844 A JP2012169844 A JP 2012169844A JP 2012169844 A JP2012169844 A JP 2012169844A JP 2014029932 A JP2014029932 A JP 2014029932A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
thermoelectric
sheet
binder polymer
fibrous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012169844A
Other languages
Japanese (ja)
Inventor
Tetsuya Yoneda
哲也 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Valqua Industries Ltd
Nihon Valqua Kogyo KK
Original Assignee
Nippon Valqua Industries Ltd
Nihon Valqua Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Valqua Industries Ltd, Nihon Valqua Kogyo KK filed Critical Nippon Valqua Industries Ltd
Priority to JP2012169844A priority Critical patent/JP2014029932A/en
Publication of JP2014029932A publication Critical patent/JP2014029932A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermoelectric conversion material, in which a thermoelectric material can be blended and filled in a high ratio, and which has high conductivity and low thermal conductivity and is superior in flexibility; a thermoelectric conversion sheet using the same; a manufacturing method therefor; and a thermoelectric conversion module.SOLUTION: The thermoelectric conversion material includes a fibrous binder polymer such as fluoroethylene resin (PTFE) superior in heat resistance and flexibility, a fibrous conductive material such as carbon fiber and a carbon nano-tube, and a thermoelectric material blended therein, and is formed by rolling an obtained mixture into a sheet shape under such a condition that a polymer is fiberized.

Description

本発明は、フレキシブルな熱電変換材料、熱電変換シートおよびその製造方法ならびに熱電変換モジュールに関する。   The present invention relates to a flexible thermoelectric conversion material, a thermoelectric conversion sheet, a manufacturing method thereof, and a thermoelectric conversion module.

近年、未利用エネルギーを有効利用する手段として、熱エネルギーを電気エネルギーへ変換することができる熱電変換材料が、有効な廃熱利用技術の一つとして注目されている。熱電変換材料は、その材料の一方の端部ともう一方の端部に温度差が生じると発電するものである。また、熱電変換材料は、その熱電変換性能を高めるために、高い導電性を有すると共に、両端部の温度差を維持するために低い熱伝導性を有することが求められる。   In recent years, thermoelectric conversion materials capable of converting thermal energy into electrical energy have attracted attention as an effective waste heat utilization technique as a means for effectively utilizing unused energy. A thermoelectric conversion material generates electricity when a temperature difference occurs between one end and the other end of the material. In addition, the thermoelectric conversion material is required to have high conductivity in order to enhance its thermoelectric conversion performance and low thermal conductivity in order to maintain the temperature difference between both ends.

たとえば、高い電気伝導性を兼ね備えたカーボンナノチューブ等を利用した熱電変換材料として、例えばポリマー被覆カーボンナノチューブ、ポリマー被覆カーボンナノファイバーおよび導電性ポリマーを含有する熱電変換材料が検討されている(特許文献1)。しかしながら、この熱電変換材料は、カーボンナノチューブおよびカーボンナノファイバーがポリマーで被覆されているため、本来の高い電気伝導性を発現できないという問題を有している。   For example, as thermoelectric conversion materials using carbon nanotubes having high electrical conductivity, for example, thermoelectric conversion materials containing polymer-coated carbon nanotubes, polymer-coated carbon nanofibers, and conductive polymers have been studied (Patent Document 1). ). However, this thermoelectric conversion material has a problem that the original high electrical conductivity cannot be exhibited because the carbon nanotube and the carbon nanofiber are coated with the polymer.

また、担体に多孔質体を用いたものが各種検討されているが、これらは、熱電材料の多孔質体への固定化が弱く、また充填量も少ないという問題を有している(特許文献2、特許文献3)。   In addition, various studies have been made on the use of a porous body as a carrier, but these have problems that the thermoelectric material is weakly immobilized on the porous body and the filling amount is small (patent document). 2, Patent Document 3).

さらに、低コストを目的とした熱電変換材料として、パターン化された熱電材料、導電電極、絶縁物および空隙を有する熱電変換材料が検討されている(特許文献5)。また、従来と同等の機械的強度を維持しつつ、熱伝導率を向上させる目的として、絶縁体に気泡を有するウレタン系樹脂を用いる熱電変換材料が検討されている(特許文献6)。しかしながら、これらは熱電材料のパターン形成が必要であるため煩雑であるという問題点を有している。   Furthermore, as a thermoelectric conversion material aiming at low cost, a thermoelectric conversion material having a patterned thermoelectric material, a conductive electrode, an insulator, and a void has been studied (Patent Document 5). In addition, a thermoelectric conversion material using a urethane-based resin having bubbles in an insulator has been studied for the purpose of improving the thermal conductivity while maintaining the same mechanical strength as that of the prior art (Patent Document 6). However, these have a problem that they are complicated because it is necessary to form a pattern of the thermoelectric material.

さらにまた、薄膜形状の熱電材料および織物状の絶縁性支持体を用いたものも検討されているが、薄膜状の熱電材料は柔軟性に乏しく、また、支持体を織る工程を要するという問題を有している(特許文献7)。   Furthermore, a thin-film thermoelectric material and a fabric-like insulating support have been studied. However, the thin-film thermoelectric material is not flexible and requires a process of weaving the support. (Patent Document 7).

また、熱電材料等をナノワイヤまたはナノチューブに充填させた熱電変換材料が検討されたが、その充填量は充分なものではなかった(特許文献8)。
このような状況下、熱電材料を高充填で配合可能であり、高い導電性を有し、且つ低い熱伝導性を有し、柔軟性に優れた熱電変換材料の開発が望まれている現状にある。
Moreover, although the thermoelectric conversion material which filled the nanowire or the nanotube with the thermoelectric material etc. was examined, the filling amount was not enough (patent document 8).
Under such circumstances, development of a thermoelectric conversion material that can be compounded with high filling of thermoelectric materials, has high conductivity, low thermal conductivity, and excellent flexibility is desired. is there.

特開2004−87714号公報Japanese Patent Laid-Open No. 2004-87714 特表2011−512459号公報Special table 2011-512259 gazette 特開2006−128444号公報JP 2006-128444 A 特表2010−510682号公報Special table 2010-510682 gazette 特開平8−228027号公報JP-A-8-228027 特開2003−258323号公報JP 2003-258323 A 特開2009−100643号公報JP 2009-10063 A 特表2009−522454号公報Special table 2009-522454

本発明は、上記した如き状況に鑑みなされたもので、熱電材料を高充填で配合可能であり、高い導電性を有し、且つ低い熱伝導性を有し、柔軟性に優れた熱電変換材料、これを用いた熱電変換シートおよびその製造方法ならびに熱電変換モジュールを提供することを目的とする。   The present invention has been made in view of the situation as described above. A thermoelectric conversion material that can be compounded with high filling of thermoelectric materials, has high conductivity, has low heat conductivity, and is excellent in flexibility. An object of the present invention is to provide a thermoelectric conversion sheet using the same, a manufacturing method thereof, and a thermoelectric conversion module.

本発明は、たとえば以下の[1]〜[9]に関する。
[1]
繊維状バインダーポリマー、導電性物質および熱電材料を含有する熱電変換材料。
The present invention relates to the following [1] to [9], for example.
[1]
A thermoelectric conversion material comprising a fibrous binder polymer, a conductive substance and a thermoelectric material.

[2]
前記繊維状バインダーポリマー10〜30重量%、前記導電性物質1〜20重量%および前記熱電材料50〜89重量%を含有する上記[1]に記載の熱電変換材料。
[2]
The thermoelectric conversion material according to [1] above, containing 10 to 30% by weight of the fibrous binder polymer, 1 to 20% by weight of the conductive substance, and 50 to 89% by weight of the thermoelectric material.

[3]
前記繊維状バインダーポリマーがポリテトラフルオロエチレン(PTFE)である上記[1]または[2]に記載の熱電変換材料。
[3]
The thermoelectric conversion material according to the above [1] or [2], wherein the fibrous binder polymer is polytetrafluoroethylene (PTFE).

[4]
前記導電性物質が繊維状導電性物質である上記[1]〜[3]の何れかに記載の熱電変換材料。
[4]
The thermoelectric conversion material according to any one of [1] to [3], wherein the conductive substance is a fibrous conductive substance.

[5]
前記繊維状導電性物質が炭素繊維またはカーボンナノチューブである上記[4]に記載の熱電変換材料。
[5]
The thermoelectric conversion material according to [4], wherein the fibrous conductive substance is carbon fiber or carbon nanotube.

[6]
上記[1]〜[5]の何れかに記載の熱電変換材料からなる熱電変換シート。
[7]
繊維状バインダーポリマー、導電性物質および熱電材料を混合し、得られた混合物をシート化することを特徴とする熱電変換シートの製造方法。
[6]
The thermoelectric conversion sheet which consists of a thermoelectric conversion material in any one of said [1]-[5].
[7]
A method for producing a thermoelectric conversion sheet, comprising mixing a fibrous binder polymer, a conductive substance and a thermoelectric material, and forming the resulting mixture into a sheet.

[8]
繊維化し得るバインダーポリマー、導電性物質および熱電材料を混合し、得られた混合物を、前記ポリマーが繊維化する条件で圧延してシート化することを特徴とする熱電変換シートの製造方法。
[8]
A method for producing a thermoelectric conversion sheet, comprising mixing a binder polymer that can be made into a fiber, a conductive substance, and a thermoelectric material, and rolling the resulting mixture under conditions for fiberizing the polymer.

[9]
対向する一対の電極と前記電極の間に介在する上記[6]に記載の熱電変換シートとを具備する熱電変換モジュール。
[9]
A thermoelectric conversion module comprising a pair of electrodes facing each other and the thermoelectric conversion sheet according to [6] interposed between the electrodes.

本発明の熱電変換材料、熱電変換シートおよび熱電変換モジュールは、高充填で配合可能であり、高い導電性を有し、且つ低い熱伝導性を有し、柔軟性に優れている。
また、本発明の熱電変換シート製造方法によれば、パターン形成等の煩雑な工程を要せず容易に、熱電変換シートを製造することができる。
The thermoelectric conversion material, thermoelectric conversion sheet, and thermoelectric conversion module of the present invention can be blended with high filling, have high conductivity, have low thermal conductivity, and are excellent in flexibility.
Moreover, according to the thermoelectric conversion sheet manufacturing method of the present invention, a thermoelectric conversion sheet can be easily manufactured without requiring complicated steps such as pattern formation.

本発明の熱電変換モジュール等の一例である。It is an example of the thermoelectric conversion module etc. of this invention. 本発明の熱電変換モジュール等の一例である。It is an example of the thermoelectric conversion module etc. of this invention. 本発明の熱電変換モジュールの使用態様の一例(太陽光発電パネルとの併用)である。It is an example (combination use with a photovoltaic power generation panel) of the usage condition of the thermoelectric conversion module of this invention. 本発明の熱電変換モジュールの使用態様の一例(プラント配管廃熱利用)である。It is an example (utilization of plant pipe waste heat) of the usage aspect of the thermoelectric conversion module of this invention.

以下、本発明に係る熱電変換材料等についてさらに詳細に説明する。
〔熱電変換材料〕
本発明に係る熱電変換材料は、繊維状バインダーポリマー、導電性物質および熱電材料を含有する。
Hereinafter, the thermoelectric conversion material according to the present invention will be described in more detail.
[Thermoelectric conversion material]
The thermoelectric conversion material according to the present invention contains a fibrous binder polymer, a conductive substance, and a thermoelectric material.

〔繊維状バインダーポリマー〕
前記繊維状バインダーポリマーとしては、例えば綿繊維(セルロース繊維)、毛繊維(羊毛、獣毛)のような天然繊維、例えばポリテトラフルオロエチレン(PTFE)、ポリエステル、ポリエチレン、アクリル、ナイロン、ポリウレタン等の合成繊維などが挙げられ、中でも、耐熱性および柔軟性に優れたフッ化エチレン樹脂(PTFE)が好ましい。
本発明の熱電変換材料は、繊維状ポリマーを含有することにより空隙を多く含有させることができるため、本発明の熱電変換材料の熱伝導性は低い。
[Fibrous binder polymer]
Examples of the fibrous binder polymer include natural fibers such as cotton fibers (cellulose fibers) and wool fibers (wool and animal hair) such as polytetrafluoroethylene (PTFE), polyester, polyethylene, acrylic, nylon, and polyurethane. Examples thereof include synthetic fibers, and among them, fluorinated ethylene resin (PTFE) excellent in heat resistance and flexibility is preferable.
Since the thermoelectric conversion material of the present invention can contain a large amount of voids by containing a fibrous polymer, the thermal conductivity of the thermoelectric conversion material of the present invention is low.

〔導電性物質〕
前記導電性物質としては、熱電変換材料に用いられる従来公知の導電性物質を用いることができ、例えば銅、アルミニウム、銀、ニッケル、コバルト、鉄等の金属やこれらの酸化物、炭素系物質等が挙げられ、中でも、高い電気伝導性を有する炭素系物質が好ましい。炭素系物質の具体例としては、例えばカーボンブラック、炭素繊維、カーボンナノチューブ等が挙げられ、中でも、炭素繊維、カーボンナノチューブ等の繊維状のものが熱電材料を多く充填させることが可能となり、熱電材料との接点も増えるため好ましい。また、ここでいうカーボンナノチューブには、ナノカーボンの1種である、例えばカーボンナノファイバ、カーボンナノホーン等も含むものとする。
[Conductive substance]
As the conductive substance, conventionally known conductive substances used for thermoelectric conversion materials can be used, for example, metals such as copper, aluminum, silver, nickel, cobalt, iron, oxides thereof, carbon-based substances, etc. Among them, a carbon-based material having high electrical conductivity is preferable. Specific examples of the carbon-based material include, for example, carbon black, carbon fiber, carbon nanotube, etc. Among them, fibrous materials such as carbon fiber and carbon nanotube can be filled with a large amount of thermoelectric material. This is preferable because the number of contact points increases. In addition, the carbon nanotubes herein include one type of nanocarbon, such as carbon nanofibers and carbon nanohorns.

導電性物質の好ましい形態としては、繊維状が好ましく、平均繊維径が1nm〜20μm、平均繊維長が1μm〜1mmであり、好ましくは熱電材料の平均粒子径より大きいものが、熱電材料との接点が増えるため特に好ましい。また、繊維長の異なる導電性物質を併用してもよい。
前記導電性物質が繊維状であり、かつその繊維長方向が略同一方向に揃っていると、本発明の熱電変換材料は、特にその方向への高い熱電変換能を発揮する。
As a preferable form of the conductive substance, a fibrous form is preferable, an average fiber diameter is 1 nm to 20 μm, an average fiber length is 1 μm to 1 mm, and a contact with the thermoelectric material is preferably larger than the average particle diameter of the thermoelectric material. Is particularly preferable. Moreover, you may use together the electroconductive substance from which fiber length differs.
When the conductive substance is fibrous and the fiber length direction is aligned in substantially the same direction, the thermoelectric conversion material of the present invention exhibits particularly high thermoelectric conversion ability in that direction.

〔熱電材料〕
前記熱電材料としては、熱電変換材料に用いられる従来公知の熱電材料を用いることができ、無機系でも有機系でもよく、またp型半導体またはn型半導体のどちらか一方を適宜選択して使用すればよい。無機系熱電材料としては、例えばBi、Sb、Ag、Pb、Ge、Cu、Sn、As、Se、Te、Fe、Mn、Co、Si、AlおよびZnから選択される少なくとも2種以上の元素を含む材料が挙げられる。また、p型熱電材料としては、例えばBi2Te3系、PbTe系、Zn4Sb3系、CoSb3系、ハーフホイスラー系、フルホイスラー系、SiGe系の材料が挙げられ、n型熱電材料としては、例えばBi2Te3系、PbTe系、Zn4Sb3系、CoSb3系、ハーフホイスラー系、フルホイスラー系、SiGe系、Mg2Si系、Mg2Sn系、CoSi系、AlO系、ZnO系の材料が挙げられる。
[Thermoelectric materials]
As the thermoelectric material, a conventionally known thermoelectric material used for a thermoelectric conversion material can be used, which may be inorganic or organic, and either a p-type semiconductor or an n-type semiconductor is appropriately selected and used. That's fine. Examples of the inorganic thermoelectric material include at least two elements selected from Bi, Sb, Ag, Pb, Ge, Cu, Sn, As, Se, Te, Fe, Mn, Co, Si, Al, and Zn. The material to include is mentioned. Examples of the p-type thermoelectric material include Bi 2 Te 3 , PbTe, Zn 4 Sb 3 , CoSb 3 , half-Heusler, full Heusler, and SiGe materials. For example, Bi 2 Te 3 system, PbTe system, Zn 4 Sb 3 system, CoSb 3 system, half-Heusler system, full Heusler system, SiGe system, Mg 2 Si system, Mg 2 Sn system, CoSi system, AlO system, ZnO Materials of the system.

有機系熱電材料としては、例えばポリピロール系、ポリフェニレンビニレン系、ポリアニリン系、ポリチオフェン系、ポリアセチレン系の材料および、これらの2種以上の混合物が挙げられる。また有機系熱電材料の導電性を高くするため、p型ドーパントまたはn型ドーパントを添加してもよい。p型ドーパントとしてはCl2、I2等のハロゲン、PF5、BF3、SO3等のルイス酸、HF、HNO3等のプロトン酸、FeCl3、WF6等の遷移金属化合物が挙げられる。n型ドーパントとしては、Li、Na、K、Rb等のアルカリ金属、Ca、Sr、Ba等のアルカリ土類金属、Eu等のランタノイドが挙げられる。
熱電材料の形状としては、特に限定は無く、粒子状、薄板状、繊維状など従来公知の熱電材料を用いることができる。
Examples of organic thermoelectric materials include polypyrrole, polyphenylene vinylene, polyaniline, polythiophene, polyacetylene, and mixtures of two or more thereof. In order to increase the conductivity of the organic thermoelectric material, a p-type dopant or an n-type dopant may be added. Examples of the p-type dopant include halogens such as Cl 2 and I 2 , Lewis acids such as PF 5 , BF 3 and SO 3 , proton acids such as HF and HNO 3 , and transition metal compounds such as FeCl 3 and WF 6 . Examples of the n-type dopant include alkali metals such as Li, Na, K, and Rb, alkaline earth metals such as Ca, Sr, and Ba, and lanthanoids such as Eu.
The shape of the thermoelectric material is not particularly limited, and conventionally known thermoelectric materials such as particles, thin plates, and fibers can be used.

〔各成分の含有量〕
前記繊維状バインダーポリマーの含有量は、前記繊維状バインダーポリマー、前記導電性物質および前記熱電材料の合計100重量%のうち、通常10〜30重量%、好ましくは20〜30重量%である。
[Content of each component]
The content of the fibrous binder polymer is usually 10 to 30% by weight, preferably 20 to 30% by weight, out of a total of 100% by weight of the fibrous binder polymer, the conductive substance, and the thermoelectric material.

前記導電性物質の含有量は、前記繊維状バインダーポリマー、前記導電性物質および前記熱電材料の合計100重量%のうち、通常1〜20重量%、好ましくは5〜15重量%である。   The content of the conductive substance is usually 1 to 20% by weight, preferably 5 to 15% by weight, out of a total of 100% by weight of the fibrous binder polymer, the conductive substance and the thermoelectric material.

前記熱電材料の含有量は、前記繊維状バインダーポリマー、前記導電性物質および前記熱電材料の合計100重量%のうち、通常50〜89重量%、好ましくは60〜70重量%である。   The content of the thermoelectric material is usually 50 to 89% by weight, preferably 60 to 70% by weight, out of a total of 100% by weight of the fibrous binder polymer, the conductive substance, and the thermoelectric material.

〔空隙〕
本発明の熱電変換材料には、好ましくは空隙が分散しており、この空隙が存在することにより、本発明の熱電変換材料は低い熱伝導性を有する。
本発明の熱電変換材料の空隙率は、下記式で表される。
空隙率(%)=(1−d/d0)×100
(式中、dは熱電変換材料の比重(真密度)(重量/体積)を示し、d0は充実体となった場合の混合物の真比重を示す。)
[Void]
Preferably, voids are dispersed in the thermoelectric conversion material of the present invention, and the presence of the voids causes the thermoelectric conversion material of the present invention to have low thermal conductivity.
The porosity of the thermoelectric conversion material of the present invention is represented by the following formula.
Porosity (%) = (1−d / d 0 ) × 100
(In the formula, d represents the specific gravity (true density) (weight / volume) of the thermoelectric conversion material, and d 0 represents the true specific gravity of the mixture when it becomes a solid body.)

前記熱電変換材料の比重は、従来公知のアルキメデス法により求められる。また、充実体となった場合の混合物の真比重とは、本発明の熱電変換材料を構成する各成分の混合物が空隙を含まない場合に算出される比重のことであり、各成分密度と配合比率より理論的に算出される。   The specific gravity of the thermoelectric conversion material is determined by a conventionally known Archimedes method. In addition, the true specific gravity of the mixture when it becomes a solid body is the specific gravity calculated when the mixture of each component constituting the thermoelectric conversion material of the present invention does not contain voids, and the density and blending of each component Theoretically calculated from the ratio.

前記空隙率は、熱伝導率の低下、シート強度の維持、熱電材料の存在密度維持の観点より、通常5〜60%、好ましくは10〜40%である。この空隙率は、たとえば成型時の圧縮力を変えることによって増減させることができる。   The porosity is usually 5 to 60%, preferably 10 to 40%, from the viewpoints of lowering the thermal conductivity, maintaining the sheet strength, and maintaining the existing density of the thermoelectric material. This porosity can be increased or decreased by changing the compression force at the time of molding, for example.

〔熱電変換シート〕
本発明の熱電変換シートは、上述した本発明の熱電変換材料からなる。
前記熱電変換シートの製造方法としては、繊維状バインダーポリマー、導電性物質および熱電材料を混合し、得られた混合物をシート化する製造方法(1)、および繊維化し得るバインダーポリマー、導電性物質および熱電材料を混合し、得られた混合物を、前記ポリマーが繊維化する条件で圧延してシート化する製造方法(2)などが挙げられる。
[Thermoelectric conversion sheet]
The thermoelectric conversion sheet of this invention consists of the thermoelectric conversion material of this invention mentioned above.
As a method for producing the thermoelectric conversion sheet, a fibrous binder polymer, a conductive substance, and a thermoelectric material are mixed, and a production method (1) for forming the resulting mixture into a sheet, and a binder polymer that can be made into a fiber, a conductive substance, and Examples thereof include a production method (2) in which a thermoelectric material is mixed and the resulting mixture is rolled into a sheet under the condition that the polymer is fiberized.

前記繊維状バインダーポリマー、前記導電性物質および前記熱電材料の詳細(具体例、配合割合等)は上述のとおりである。
前記製造方法(1)において、混合物をシート化する方法としては、例えば圧縮成型法、押出成型法、射出成型法、注型成形法等が挙げられる。
Details (specific examples, blending ratio, etc.) of the fibrous binder polymer, the conductive substance, and the thermoelectric material are as described above.
In the production method (1), examples of the method for forming the mixture into a sheet include a compression molding method, an extrusion molding method, an injection molding method, and a cast molding method.

前記製造方法(2)で用いられる「繊維化し得るバインダーポリマー」とは、繊維化させることによって前記繊維状バインダーポリマーとなるポリマーである。前記繊維化し得るバインダーポリマーの形態は、たとえば粒子状ないし粉末状であってもよい。前記製造方法(2)においては、前記繊維化し得るバインダーポリマーとして、粒子状ないし粉末状の前記繊維化し得るバインダーポリマーを水、アルコール、グリコール等の分散媒に分散させたディスパージョンを用いてもよい。   The “binderable binder polymer” used in the production method (2) is a polymer that becomes the fibrous binder polymer by being fiberized. The form of the binder polymer that can be made into fibers may be, for example, particulate or powder. In the production method (2), as the binder polymer that can be made into a fiber, a dispersion in which the fiber-like binder polymer that is in the form of particles or powder is dispersed in a dispersion medium such as water, alcohol, or glycol may be used. .

前記製造方法(2)において、混合物をシート化する方法としては例えばロール圧延、プレス処理等の圧延処理が挙げられる。この圧延処理の際の条件は、前記繊維化し得るバインダーポリマーにせん断力が加えられ、このポリマーが繊維化するように設定される。   In the production method (2), examples of the method for forming the mixture into a sheet include rolling processes such as roll rolling and pressing. The conditions for the rolling treatment are set so that a shearing force is applied to the binder polymer that can be fiberized and the polymer is fiberized.

たとえば繊維状バインダーポリマーとしてPTFEを用いてロール圧延を行う場合であれば、ロール圧延は、以下の条件下で行われる。
(i)ロール圧縮圧力:通常0.01〜2t/cm、好ましくは0.1〜2t/cm
(ii)長手方向の圧延倍率:通常5〜1000倍、好ましくは10〜200倍
(iii)ロール圧延温度:通常20〜200℃、好ましくは20〜90℃
また、繊維状バインダーポリマーとしてPTFEを用いてプレス処理を行う場合であれば、プレス処理は以下の条件で行われる。
For example, if roll rolling is performed using PTFE as the fibrous binder polymer, the roll rolling is performed under the following conditions.
(I) Roll compression pressure: Usually 0.01 to 2 t / cm, preferably 0.1 to 2 t / cm
(Ii) Rolling ratio in the longitudinal direction: usually 5 to 1000 times, preferably 10 to 200 times (iii) Roll rolling temperature: Usually 20 to 200 ° C., preferably 20 to 90 ° C.
Moreover, if it is a case where a press process is performed using PTFE as a fibrous binder polymer, a press process is performed on the following conditions.

(i)プレス圧力:通常5〜100kg/cm2、好ましくは10〜50kg/cm2
(ii)プレス温度:通常20〜200℃、好ましくは20〜90℃
繊維化し得るバインダーポリマーのディスパージョンを用いる場合であれば、混合物をシート化する際、またはシート化後に前記分散媒を除去する。除去方法としては、加熱により分散媒を蒸発させる方法等が挙げられる。
(I) Press pressure: usually 5 to 100 kg / cm 2 , preferably 10 to 50 kg / cm 2
(Ii) Press temperature: Usually 20 to 200 ° C, preferably 20 to 90 ° C
If a dispersion of a binder polymer that can be made into a fiber is used, the dispersion medium is removed when the mixture is made into a sheet or after the mixture is made into a sheet. Examples of the removing method include a method of evaporating the dispersion medium by heating.

本発明の熱電変換シートは、バインダーとして繊維状のポリマーを含有しているため、柔軟性が高く汎用性が高い。
本発明の熱電変換シートは、熱電材料としてp型のものを含有するシート(以下、「p型熱電変換シート」と記す場合がある。)であってもよく、またn型のものを含有するシート(以下、「n型熱電変換シート」と記す場合がある。)であってもよい。
Since the thermoelectric conversion sheet of the present invention contains a fibrous polymer as a binder, it has high flexibility and high versatility.
The thermoelectric conversion sheet of the present invention may be a sheet containing a p-type thermoelectric material (hereinafter sometimes referred to as a “p-type thermoelectric conversion sheet”), and also contains an n-type one. A sheet (hereinafter may be referred to as an “n-type thermoelectric conversion sheet”) may be used.

〔熱電変換モジュール〕
本発明の熱電変換モジュールは、対向する一対の電極と前記電極間に介在する前記熱電変換シートとを具備することを特徴としている。
[Thermoelectric conversion module]
The thermoelectric conversion module of the present invention includes a pair of electrodes facing each other and the thermoelectric conversion sheet interposed between the electrodes.

前記熱電変換シートと前記電極とは、接着層を介して接続されることが好ましい。前記接着層としては、例えばTi、Al、Ni、Cu、Ag、Zr、Au、PtおよびCrのうちの1つ以上の元素を含む金属層または導電性/熱伝導性接着剤層が挙げられる。   The thermoelectric conversion sheet and the electrode are preferably connected via an adhesive layer. Examples of the adhesive layer include a metal layer containing one or more elements of Ti, Al, Ni, Cu, Ag, Zr, Au, Pt, and Cr, or a conductive / thermal conductive adhesive layer.

本発明の熱電変換モジュールを用いた熱電変換について、図面を参照しながら説明する。
図1および図2は、それぞれ本発明の熱電変換シートを利用した熱電変換モジュール等の概略図である。熱電変換モジュール1は、対向する一対の電極3とこれらの電極3の間に介在する熱電変換シート4とを具備している。2つの電極3をそれぞれ低温体2と高温体5に接触させると低温体2と高温体5との間の温度差によって、熱電変換シート4におけるゼーベック効果により2つの電極3の間で電位差が生じる。この2つの電極3に導線6を介して負荷回路7を接続すると前記電位差に基づく電力が取り出される。
Thermoelectric conversion using the thermoelectric conversion module of the present invention will be described with reference to the drawings.
1 and 2 are schematic views of a thermoelectric conversion module and the like using the thermoelectric conversion sheet of the present invention. The thermoelectric conversion module 1 includes a pair of opposing electrodes 3 and a thermoelectric conversion sheet 4 interposed between these electrodes 3. When the two electrodes 3 are brought into contact with the low temperature body 2 and the high temperature body 5, respectively, a temperature difference between the low temperature body 2 and the high temperature body 5 causes a potential difference between the two electrodes 3 due to the Seebeck effect in the thermoelectric conversion sheet 4. . When a load circuit 7 is connected to the two electrodes 3 via a conducting wire 6, electric power based on the potential difference is taken out.

〔本発明の熱電変換モジュールの用途〕
本発明の熱電変換モジュールは、該モジュールに構成される対向する一対の電極の一方を低温部へ接合させ、他方を高温部へ接合させることにより熱電変換を行うことが可能となるが、その一例としては、例えば太陽光発電パネルと併用する態様が挙げられる(図3)。本発明の熱電変換モジュール8の一側面を太陽光発電パネル9と接合し、他の側面を屋根等の設置部位10に接合させることにより、太陽光発電パネル接合部は高温状態となり、屋根等の設置部位は低温状態となるため、熱電変換モジュール8に温度差が生じ、熱電変換が可能となる。
[Use of thermoelectric conversion module of the present invention]
The thermoelectric conversion module of the present invention can perform thermoelectric conversion by joining one of a pair of opposing electrodes configured in the module to the low temperature part and joining the other to the high temperature part. As an example, an aspect used in combination with a photovoltaic power generation panel is exemplified (FIG. 3). By joining one side surface of the thermoelectric conversion module 8 of the present invention to the photovoltaic power generation panel 9 and joining the other side surface to the installation site 10 such as a roof, the photovoltaic power panel joining portion becomes a high temperature state, Since the installation site is in a low temperature state, a temperature difference occurs in the thermoelectric conversion module 8 and thermoelectric conversion is possible.

また、本発明の熱電変換モジュールとしての一例としてプラント配管廃熱を利用する態様が挙げられる(図4)。プラント配管11を熱電変換モジュール8で覆うことにより、プラント配管内を通過する熱流体12により該モジュールのプラント配管側が高温状態となるため、シートに温度差が生じ、熱電変換が可能となる。   Moreover, the aspect using plant pipe waste heat is mentioned as an example as a thermoelectric conversion module of this invention (FIG. 4). By covering the plant piping 11 with the thermoelectric conversion module 8, the plant piping side of the module is brought to a high temperature state by the thermal fluid 12 passing through the plant piping, so that a temperature difference occurs in the sheet and thermoelectric conversion becomes possible.

本発明の熱電変換材料およびこれにより形成される熱電変換シートは、パターン形成等の煩雑な工程を要せず、シート成型処理により容易に製造可能である。
また、本発明の熱電変換材料は、繊維状導電性物質を用いることにより、熱電材料を高い充填量で含有できるため、高い発電効率を有する。さらに、本発明の熱電変換材料は、繊維状バインダーポリマーとしてPTFEを用いることにより高い空隙率を有し、低い熱伝導率を有する。さらに、本発明の熱電変換シートは、高い耐熱性を有し、且つ柔軟性に優れている。
The thermoelectric conversion material of the present invention and the thermoelectric conversion sheet formed thereby can be easily manufactured by a sheet molding process without requiring complicated steps such as pattern formation.
Moreover, since the thermoelectric material of this invention can contain a thermoelectric material with a high filling amount by using a fibrous conductive substance, it has high electric power generation efficiency. Furthermore, the thermoelectric conversion material of the present invention has a high porosity and a low thermal conductivity by using PTFE as the fibrous binder polymer. Furthermore, the thermoelectric conversion sheet of the present invention has high heat resistance and excellent flexibility.

以下に実施例を挙げて本発明を更に具体的に説明するが、本発明はこれらにより何等限定されるものではない。   The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to these examples.

[実施例1]
n型熱電材料であるα-Al2O3(住友化学社製、AA-18)を60重量部、繊維状導電性物質であるVGCF-H(昭和電工製)を10重量部、繊維化し得るバインダーポリマー粒子であるPTFEディスパージョン(ダイキン工業社製、D-111、固形分60重量%の水分散液)50重量部(PTFE換算で30重量部)を準備した。
[Example 1]
60 parts by weight of α-Al 2 O 3 (Sumitomo Chemical Co., AA-18), which is an n-type thermoelectric material, and 10 parts by weight of VGCF-H (Showa Denko), which is a fibrous conductive material, can be made into fibers. 50 parts by weight (30 parts by weight in terms of PTFE) of PTFE dispersion (Daikin Kogyo Co., Ltd., D-111, 60% by weight solids aqueous dispersion) as binder polymer particles was prepared.

これらを、室温でプロペラ型攪拌子を用いて2時間攪拌混合した。得られた混合物を180℃で10分間加熱後、30kg/cm2でプレス成型することで厚さ約3mmのシート状に成型した。このシートから、30mm×3mm×3mmの大きさの試験片を切り出して下記評価を行った。 These were stirred and mixed at room temperature for 2 hours using a propeller-type stirrer. The obtained mixture was heated at 180 ° C. for 10 minutes and then press-molded at 30 kg / cm 2 to form a sheet having a thickness of about 3 mm. A test piece having a size of 30 mm × 3 mm × 3 mm was cut out from this sheet and evaluated as follows.

〔電気伝導率、熱伝導率およびゼーベック係数の測定〕
熱電変換測定装置(アルバック理工社製、ZEM3)を用いて、得られた試験片の電気伝導率、熱伝導率およびゼーベック係数を測定した。
[Measurement of electrical conductivity, thermal conductivity and Seebeck coefficient]
Using a thermoelectric conversion measurement device (ZEM3, manufactured by ULVAC-RIKO), the electrical conductivity, thermal conductivity, and Seebeck coefficient of the obtained test piece were measured.

〔空隙率測定〕
得られた試験片の体積および重量を測定して比重(重量/体積)dを算出した。一方、配合条件から、充実体となった場合の混合物の真比重d0を算出した。これら値に基づいて空隙率を下記式より求めた。
空隙率(%)=(1−d/d0)×100
(Porosity measurement)
The specific gravity (weight / volume) d was calculated by measuring the volume and weight of the obtained test piece. On the other hand, from the blending conditions, the true specific gravity d 0 of the mixture when it became a solid was calculated. Based on these values, the porosity was determined from the following formula.
Porosity (%) = (1−d / d 0 ) × 100

[比較例1]
n型熱電材料であるα-Al2O3(住友化学社製、AA-18)を60重量部、繊維状導電性物質であるVGCF-X(昭和電工製)を10重量部、熱硬化性フッ素ゴム(ダイキン工業社製、G-912)30重量部、ならびに該ゴムを硬化させるための架橋剤(日油社製、パーヘキサ25B)0.5重量部および架橋助剤(日油社製、TAIC)1.5重量部を準備した。これらをラボプラストミルミキサー(東洋精機製作所社製、100C)を用いて80℃で10分間混練し、得られた混合物を170℃で15分間プレス加硫し、厚さ約3mmのシートを得た。このシートから、30mm×3mm×3mmの大きさの試験片を切り出して実施例1と同様に評価を行った。
[Comparative Example 1]
60 parts by weight of α-Al 2 O 3 (manufactured by Sumitomo Chemical Co., Ltd., AA-18) as an n-type thermoelectric material, 10 parts by weight of VGCF-X (manufactured by Showa Denko) as a fibrous conductive material, thermosetting Fluororubber (Daikin Kogyo Co., Ltd., G-912) 30 parts by weight, and a crosslinking agent (manufactured by NOF Corporation, Perhexa 25B) for curing the rubber and a crosslinking aid (manufactured by NOF Corporation, TAIC) 1.5 parts by weight was prepared. These were kneaded for 10 minutes at 80 ° C. using a Laboplast mill mixer (Toyo Seiki Seisakusho, 100C), and the resulting mixture was press vulcanized at 170 ° C. for 15 minutes to obtain a sheet having a thickness of about 3 mm. . A test piece having a size of 30 mm × 3 mm × 3 mm was cut out from the sheet and evaluated in the same manner as in Example 1.

1 熱電変換モジュール
2 低温体
3 電極
4 熱電変換シート
5 高温体
6 導線
7 負荷回路
8 熱電変換モジュール
9 太陽光発電パネル
10 屋根などの設置部位
11 プラント配管
12 熱流体
DESCRIPTION OF SYMBOLS 1 Thermoelectric conversion module 2 Low temperature body 3 Electrode 4 Thermoelectric conversion sheet 5 High temperature body 6 Conductor 7 Load circuit 8 Thermoelectric conversion module 9 Solar power generation panel 10 Installation site | parts, such as a roof 11 Plant piping 12 Thermal fluid

Claims (9)

繊維状バインダーポリマー、導電性物質および熱電材料を含有する熱電変換材料。   A thermoelectric conversion material comprising a fibrous binder polymer, a conductive substance and a thermoelectric material. 前記繊維状バインダーポリマー10〜30重量%、前記導電性物質1〜20重量%および前記熱電材料50〜89重量%を含有する請求項1に記載の熱電変換材料。   The thermoelectric conversion material according to claim 1, comprising 10 to 30% by weight of the fibrous binder polymer, 1 to 20% by weight of the conductive substance, and 50 to 89% by weight of the thermoelectric material. 前記繊維状バインダーポリマーがポリテトラフルオロエチレンである請求項1または2に記載の熱電変換材料。   The thermoelectric conversion material according to claim 1 or 2, wherein the fibrous binder polymer is polytetrafluoroethylene. 前記導電性物質が繊維状導電性物質である請求項1〜3の何れかに記載の熱電変換材料。   The thermoelectric conversion material according to claim 1, wherein the conductive substance is a fibrous conductive substance. 前記繊維状導電性物質が炭素繊維またはカーボンナノチューブである請求項4に記載の熱電変換材料。   The thermoelectric conversion material according to claim 4, wherein the fibrous conductive substance is carbon fiber or carbon nanotube. 請求項1〜5の何れかに記載の熱電変換材料からなる熱電変換シート。   The thermoelectric conversion sheet which consists of a thermoelectric conversion material in any one of Claims 1-5. 繊維状バインダーポリマー、導電性物質および熱電材料を混合し、得られた混合物をシート化することを特徴とする熱電変換シートの製造方法。   A method for producing a thermoelectric conversion sheet, comprising mixing a fibrous binder polymer, a conductive substance and a thermoelectric material, and forming the resulting mixture into a sheet. 繊維化し得るバインダーポリマー、導電性物質および熱電材料を混合し、得られた混合物を、前記ポリマーが繊維化する条件で圧延してシート化することを特徴とする熱電変換シートの製造方法。   A method for producing a thermoelectric conversion sheet, comprising mixing a binder polymer that can be made into a fiber, a conductive substance, and a thermoelectric material, and rolling the resulting mixture under conditions for fiberizing the polymer. 対向する一対の電極と前記電極の間に介在する請求項6に記載の熱電変換シートとを具備する熱電変換モジュール。   A thermoelectric conversion module comprising a pair of opposing electrodes and the thermoelectric conversion sheet according to claim 6 interposed between the electrodes.
JP2012169844A 2012-07-31 2012-07-31 Thermoelectric conversion material, thermoelectric conversion sheet and manufacturing method therefor, and thermoelectric conversion module Pending JP2014029932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012169844A JP2014029932A (en) 2012-07-31 2012-07-31 Thermoelectric conversion material, thermoelectric conversion sheet and manufacturing method therefor, and thermoelectric conversion module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012169844A JP2014029932A (en) 2012-07-31 2012-07-31 Thermoelectric conversion material, thermoelectric conversion sheet and manufacturing method therefor, and thermoelectric conversion module

Publications (1)

Publication Number Publication Date
JP2014029932A true JP2014029932A (en) 2014-02-13

Family

ID=50202323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012169844A Pending JP2014029932A (en) 2012-07-31 2012-07-31 Thermoelectric conversion material, thermoelectric conversion sheet and manufacturing method therefor, and thermoelectric conversion module

Country Status (1)

Country Link
JP (1) JP2014029932A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015133536A1 (en) * 2014-03-07 2015-09-11 学校法人東京理科大学 Thermoelectric conversion material-containing resin composition and film formed from thermoelectric conversion material-containing resin composition
KR20150137889A (en) * 2014-05-30 2015-12-09 삼성전자주식회사 Stretchable thermoelectric material and thermoelectric device including the same
KR20160039170A (en) * 2016-03-23 2016-04-08 삼성전자주식회사 Stretchable thermoelectric material and thermoelectric device including the same
WO2016146855A1 (en) 2015-03-19 2016-09-22 Rockwool International A/S Composite material for thermoelectric devices
WO2017122627A1 (en) * 2016-01-13 2017-07-20 積水化学工業株式会社 Thermoelectric conversion material and thermoelectric conversion device
JP2020123744A (en) * 2015-01-05 2020-08-13 ザ・ボーイング・カンパニーThe Boeing Company Thermoelectric generator
WO2020203612A1 (en) * 2019-03-29 2020-10-08 リンテック株式会社 Thermoelectric material layer and method for producing same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015170766A (en) * 2014-03-07 2015-09-28 学校法人東京理科大学 Thermoelectric conversion material-containing resin composition, and film formed by thermoelectric conversion material-containing resin composition
KR102269045B1 (en) * 2014-03-07 2021-06-23 니폰 제온 가부시키가이샤 Thermoelectric conversion material-containing resin composition and film formed from thermoelectric conversion material-containing resin composition
KR20160130383A (en) * 2014-03-07 2016-11-11 니폰 제온 가부시키가이샤 Thermoelectric conversion material-containing resin composition and film formed from thermoelectric conversion material-containing resin composition
WO2015133536A1 (en) * 2014-03-07 2015-09-11 学校法人東京理科大学 Thermoelectric conversion material-containing resin composition and film formed from thermoelectric conversion material-containing resin composition
US10084124B2 (en) 2014-03-07 2018-09-25 Zeon Corporation Thermoelectric conversion material-containing resin composition and film formed from thermoelectric conversion material-containing resin composition
US10136854B2 (en) 2014-05-30 2018-11-27 Samsung Electronics Co., Ltd. Stretchable thermoelectric material and thermoelectric device including the same
KR20150137889A (en) * 2014-05-30 2015-12-09 삼성전자주식회사 Stretchable thermoelectric material and thermoelectric device including the same
JP2015228498A (en) * 2014-05-30 2015-12-17 三星電子株式会社Samsung Electronics Co.,Ltd. Stretchable thermoelectric composite and thermoelectric element including the same
KR101636908B1 (en) 2014-05-30 2016-07-06 삼성전자주식회사 Stretchable thermoelectric material and thermoelectric device including the same
JP2020123744A (en) * 2015-01-05 2020-08-13 ザ・ボーイング・カンパニーThe Boeing Company Thermoelectric generator
WO2016146855A1 (en) 2015-03-19 2016-09-22 Rockwool International A/S Composite material for thermoelectric devices
WO2017122627A1 (en) * 2016-01-13 2017-07-20 積水化学工業株式会社 Thermoelectric conversion material and thermoelectric conversion device
CN107615500A (en) * 2016-01-13 2018-01-19 积水化学工业株式会社 Thermo-electric converting material and thermoelectric conversion device
KR102161267B1 (en) * 2016-03-23 2020-09-29 삼성전자주식회사 Stretchable thermoelectric material and thermoelectric device including the same
KR20160039170A (en) * 2016-03-23 2016-04-08 삼성전자주식회사 Stretchable thermoelectric material and thermoelectric device including the same
WO2020203612A1 (en) * 2019-03-29 2020-10-08 リンテック株式会社 Thermoelectric material layer and method for producing same

Similar Documents

Publication Publication Date Title
Chakraborty et al. CuO@ NiO/Polyaniline/MWCNT nanocomposite as high-performance electrode for supercapacitor
JP2014029932A (en) Thermoelectric conversion material, thermoelectric conversion sheet and manufacturing method therefor, and thermoelectric conversion module
Gopi et al. Recent progress of advanced energy storage materials for flexible and wearable supercapacitor: From design and development to applications
Xiang et al. Facile green route to Ni/Co oxide nanoparticle embedded 3D graphitic carbon nanosheets for high performance hybrid supercapacitor devices
Zeng et al. Silver telluride nanowire assembly for high‐performance flexible thermoelectric film and its application in self‐powered temperature sensor
Jin et al. Synthesis of freestanding PEDOT: PSS/PVA@ Ag NPs nanofiber film for high-performance flexible thermoelectric generator
Hsieh et al. High thermoelectric power-factor composites based on flexible three-dimensional graphene and polyaniline
Yang et al. PEDOT: PSS/PVA/Te ternary composite fibers toward flexible thermoelectric generator
Lu et al. Phosphomolybdic acid cluster bridging carbon dots and polyaniline nanofibers for effective electrochemical energy storage
Liu et al. Large areal mass and high scalable and flexible cobalt oxide/graphene/bacterial cellulose electrode for supercapacitors
Verma et al. Facile synthesis of graphene oxide-polyaniline-copper cobaltite (GO/PANI/CuCo2O4) hybrid nanocomposite for supercapacitor applications
Ghosh et al. Enhanced supercapacitor performance and electromagnetic interference shielding effectiveness of CuS quantum dots grown on reduced graphene oxide sheets
Deka et al. Triboelectric nanogenerator-integrated structural supercapacitor with in situ MXene-dispersed N-doped Zn–Cu selenide nanostructured woven carbon fiber for energy harvesting and storage
Wu et al. Three-dimensional self-standing and conductive MnCO3@ graphene/CNT networks for flexible asymmetric supercapacitors
TWI610463B (en) Method for forming tellurium/telluride nanowire arrays on a conductive substrate and tellurium/telluride nanowire thermoelectric device
Sun et al. Perspective on micro-supercapacitors
Giri et al. A facile synthesis of a palladium-doped polyaniline-modified carbon nanotube composites for supercapacitors
TWI711577B (en) N-type conductive material and manufacturing method
Yesmin et al. In-situ grafting of Au and Cu nanoparticles over graphitic carbon nitride sheets and unveiling its superior supercapacitive performance as a hybrid composite electrode material
Bark et al. Enhanced thermoelectric performance of CNT thin film p/n junctions doped with N-containing organic molecules
Macherla et al. Improved performance of flexible supercapacitor using naphthalene sulfonic acid‐doped polyaniline/sulfur‐doped reduced graphene oxide nanocomposites
Zha et al. Intimately coupled hybrid of carbon black/nickel cobaltite for supercapacitors with enhanced energy-storage properties and ultra-long cycle life
Zhang et al. One-step microwave synthesis of in situ grown NiTe nanosheets for solid-state asymmetric supercapacitors and oxygen evolution reaction
CN109301060B (en) Preparation method of composite aerogel thermoelectric material
Kong et al. Tellurium-nanowire-doped thermoelectric hydrogel with high stretchability and seebeck coefficient for low-grade heat energy harvesting