JP2014029202A - Rolling bearing unit for wheel support - Google Patents

Rolling bearing unit for wheel support Download PDF

Info

Publication number
JP2014029202A
JP2014029202A JP2013079173A JP2013079173A JP2014029202A JP 2014029202 A JP2014029202 A JP 2014029202A JP 2013079173 A JP2013079173 A JP 2013079173A JP 2013079173 A JP2013079173 A JP 2013079173A JP 2014029202 A JP2014029202 A JP 2014029202A
Authority
JP
Japan
Prior art keywords
ring raceway
diameter
outer ring
inner ring
bearing unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013079173A
Other languages
Japanese (ja)
Inventor
Hiroshige Sakota
裕成 迫田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2013079173A priority Critical patent/JP2014029202A/en
Priority to CN201320324811.8U priority patent/CN203453296U/en
Publication of JP2014029202A publication Critical patent/JP2014029202A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/585Details of specific parts of races of raceways, e.g. ribs to guide the rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/50Other types of ball or roller bearings
    • F16C19/505Other types of ball or roller bearings with the diameter of the rolling elements of one row differing from the diameter of those of another row
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/70Diameters; Radii
    • F16C2240/76Osculation, i.e. relation between radii of balls and raceway groove
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/70Diameters; Radii
    • F16C2240/80Pitch circle diameters [PCD]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Support Of The Bearing (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To attain a structure that is a different diameter PCD type, ensures rolling fatigue life and moment rigidity, and ensures durability by suppressing occurrence of an edge load.SOLUTION: The cross sectional shapes of an outside outer ring track 6 and an outside inner ring track 15 are the shapes that in plural kinds of arc with respective different curvature radii, respective edges are smoothly continued in respective tangential directions. The curvature radius of each arc becomes small at width directional center parts 21a, 21b of the outside outer ring track 6 and the outside inner ring track 15, which is a direction of a contact angle of each ball 4a, and becomes large at width directional both end parts 22a, 22b, 22c, 22d.

Description

この発明は、自動車の車輪を懸架装置に対して回転自在に支持する為の車輪支持用転がり軸受ユニットの改良に関する。特に本発明は、複列に配置した玉のピッチ円直径が互いに異なる車輪支持用転がり軸受ユニットで、軌道面肩部に玉の転動面が乗り上げ難くする事により、十分な耐久性を確保し易い構造の実現を図るものである。   The present invention relates to an improvement of a wheel bearing rolling bearing unit for rotatably supporting a vehicle wheel with respect to a suspension device. In particular, the present invention is a rolling bearing unit for supporting a wheel in which pitch circle diameters of balls arranged in a double row are different from each other, and it makes it difficult for the ball rolling surface to ride on the shoulder portion of the raceway surface, thereby ensuring sufficient durability. It is intended to realize an easy structure.

自動車の車輪及び制動用回転部材は、車輪支持用転がり軸受ユニットにより、懸架装置に対して回転自在に支持する。この様な車輪支持用転がり軸受ユニットには、自動車が旋回走行する際に大きなモーメントが加わる。従って、旋回走行時の走行安定性を確保する為には、大きなモーメント剛性を確保する必要がある。この為従来から、車輪支持用転がり軸受ユニットとして、玉を複列に配置すると共に、これら両列の玉に、予圧並びに背面組み合わせ型(DB型)の接触角を付与した構造が、一般的に使用されている。更に近年、大型化を抑えつつ、より大きなモーメント剛性を確保する為に、例えば特許文献1に記載されている様な、両列の玉のピッチ円直径(PCD)を互いに異ならせた構造(異径PCD構造)が提案されている。   The wheel of the automobile and the rotating member for braking are rotatably supported with respect to the suspension device by the wheel bearing rolling bearing unit. A large moment is applied to such a wheel-supporting rolling bearing unit when the automobile turns. Therefore, it is necessary to ensure a large moment rigidity in order to ensure traveling stability during turning. For this reason, conventionally, as a rolling bearing unit for supporting a wheel, a structure in which balls are arranged in a double row and a contact angle of a preload and a back combination type (DB type) is given to the balls in both rows is generally used. It is used. Further, in recent years, in order to secure a larger moment rigidity while suppressing an increase in size, a structure in which pitch circle diameters (PCD) of both rows of balls are made different from each other as described in, for example, Patent Document 1 (differentiated). (Diameter PCD structure) has been proposed.

図1は、この様な異径PCD型の車輪支持用転がり軸受ユニットの1例を示している。この車輪支持用転がり軸受ユニット1は、外輪2と、ハブ3と、複数個の玉4a、4bとを備える。
このうちの外輪2は、外周面に外向フランジ状の取付部5を、内周面に複列の外輪軌道である、軸方向外側に位置する外側外輪軌道6と、軸方向内側に位置する内側外輪軌道7とを設けている。これら外側、内側両外輪軌道6、7のうち、外側外輪軌道6の内径は、内側外輪軌道7の内径よりも大きい。尚、軸方向に関して外とは、車両への組み付け状態で幅方向外側となる側で、図1の左側を言い、同じく内とは、車両への組み付け状態で幅方向中央側となる側で、図1の右側を言う。又、前記取付部5は、前記外輪2を懸架装置を構成するナックル(図示省略)に結合固定する為の部分である。従って、この外輪2は使用時にも回転しない。
FIG. 1 shows an example of such a different diameter PCD type wheel bearing rolling bearing unit. The wheel support rolling bearing unit 1 includes an outer ring 2, a hub 3, and a plurality of balls 4a and 4b.
Outer ring 2 includes an outer flange-shaped mounting portion 5 on the outer peripheral surface, an outer outer ring raceway 6 positioned on the outer side in the axial direction, and an inner side positioned on the inner side in the axial direction. An outer ring raceway 7 is provided. Among these outer and inner outer ring raceways 6, 7, the inner diameter of the outer outer ring raceway 6 is larger than the inner diameter of the inner outer ring raceway 7. Note that the outside in the axial direction is the side that is the outer side in the width direction when assembled to the vehicle, and refers to the left side of FIG. 1, and the inner side is the side that is the center side in the width direction in the assembled state to the vehicle. The right side of FIG. The mounting portion 5 is a portion for coupling and fixing the outer ring 2 to a knuckle (not shown) constituting a suspension device. Therefore, the outer ring 2 does not rotate during use.

又、前記外側、内側両外輪軌道6、7は、それぞれ断面形状が円弧形である。尚、本明細書及び特許請求の範囲中での断面形状とは、前記車輪支持用転がり軸受ユニット1の中心軸(外輪2及びハブ3の中心軸と一致)を含む仮想平面に関する断面形状を言う。
又、前記外側外輪軌道6の軸方向内端部に内径が小さくなった外側外輪溝肩部8を、前記内側外輪軌道7の軸方向外端部に内径が小さくなった内側外輪溝肩部9を、それぞれ形成している。
The outer and inner outer raceways 6 and 7 each have an arc shape in cross section. In addition, the cross-sectional shape in the present specification and claims refers to a cross-sectional shape related to a virtual plane including the central axis of the wheel-supporting rolling bearing unit 1 (coincident with the central axis of the outer ring 2 and the hub 3). .
Further, an outer outer ring groove shoulder portion 8 having a reduced inner diameter is formed at the inner end portion in the axial direction of the outer outer ring raceway 6, and an inner outer ring groove shoulder portion 9 having an inner diameter reduced at the outer end portion in the axial direction of the inner outer ring raceway 7. Are formed respectively.

又、前記ハブ3は、ハブ本体10と内輪11とを非分離に結合固定して成る。即ち、このハブ本体10の軸方向内端寄り部分に設けた小径段部12に前記内輪11を締り嵌めにより外嵌し、このハブ本体10の軸方向内端部を径方向外方に塑性変形して成るかしめ部13により前記内輪11を抑え付けている。この様に構成している前記ハブ3は、外周面の軸方向外端寄り部分に車輪を支持する為の取付フランジ14を、同じく中間部及び軸方向内端寄り部分に、複列の内輪軌道であり、それぞれの断面形状が円弧形である、外側内輪軌道15と内側内輪軌道16とを設けている。このうちの外側内輪軌道15は前記ハブ本体10の中間部外周面に、内側内輪軌道16は前記内輪11の外周面に、それぞれ形成している。これら外側、内側両内輪軌道15、16のうち、外側内輪軌道15の外径は、内側内輪軌道16の外径よりも大きい。
又、前記外側内輪軌道15の軸方向外端部に外径が大きくなった外側内輪溝肩部17を、前記内側内輪軌道16の軸方向内端部に外径が大きくなった内側内輪溝肩部18を、それぞれ形成している。
The hub 3 is formed by coupling and fixing the hub body 10 and the inner ring 11 in a non-separable manner. That is, the inner ring 11 is externally fitted to the small-diameter step 12 provided near the inner end of the hub body 10 by an interference fit, and the inner end of the hub body 10 is plastically deformed radially outward. The inner ring 11 is held down by a caulking portion 13 formed as described above. The hub 3 configured in this manner has a mounting flange 14 for supporting a wheel on the outer peripheral portion of the outer peripheral surface in the axial direction and a double row inner ring raceway on the intermediate portion and the inner portion in the axial direction. And an outer inner ring raceway 15 and an inner inner ring raceway 16 each having a circular arc shape are provided. Of these, the outer inner ring raceway 15 is formed on the outer peripheral surface of the intermediate portion of the hub body 10, and the inner inner ring raceway 16 is formed on the outer peripheral surface of the inner ring 11. Of these outer and inner inner raceways 15, 16, the outer diameter of the outer inner raceway 15 is larger than the outer diameter of the inner inner raceway 16.
Further, an outer inner ring groove shoulder 17 having an increased outer diameter is formed at an axially outer end portion of the outer inner ring raceway 15, and an inner inner ring groove shoulder having an outer diameter increased at an axial inner end portion of the inner inner ring raceway 16. Each part 18 is formed.

前記各玉4a、4bのうち、外側列の玉4a、4aは前記外側外輪軌道6と前記外側内輪軌道15との間に、内側列の玉4b、4bは、前記内側外輪軌道7と前記内側内輪軌道16との間に、それぞれ保持器19a、19bにより保持された状態で、転動自在に設けられている。又、前記各玉4a、4bに、背面接触型の接触角と共に予圧を付与している。この為に、前記内輪11を前記小径段部12に外嵌し、これら内輪11の軸方向外端面とこの小径段部12の軸方向外端部に存在する段差面20とを突き当てた状態で、前記各玉4a、4bの転動面と前記各軌道6、7、15、16との転がり接触部が僅かに弾性変形する様に、各部の形状及び寸法を規制している。この様に、前記車輪支持用転がり軸受ユニット1を組み立てた状態で、外側列の玉4a、4aのピッチ円直径PCDOUTは、内側列の玉4b、4bのピッチ円直径PCDINよりも大きい(PCDOUT>PCDIN)。尚、図示の例では、前記特許文献1の図3、4に記載された構造と同様に、外側列の玉4a、4aの直径を内側列の玉4b、4bの直径よりも小さくし、この外側列の玉4a、4aの数を内側列の玉4b、4bの数よりも多くしている。但し、これら両列の玉4a、4bの直径(玉径)を互いに等しくする構造に就いても、前記特許文献1の図1、2に記載される等により、従来から知られている。 Of the balls 4a and 4b, the balls 4a and 4a in the outer row are between the outer outer ring raceway 6 and the outer inner raceway 15, and the balls 4b and 4b in the inner row are the inner outer ring raceway 7 and the inner side. It is provided between the inner ring raceway 16 and the inner ring raceway 16 so that it can roll while being held by the cages 19a and 19b. Further, a preload is applied to each of the balls 4a and 4b together with a contact angle of a back contact type. For this purpose, the inner ring 11 is externally fitted to the small-diameter stepped portion 12, and the axially outer end surface of the inner ring 11 and the stepped surface 20 existing at the axially outer end portion of the small-diameter stepped portion 12 are abutted. Thus, the shape and size of each part are regulated so that the rolling contact parts between the rolling surfaces of the balls 4a, 4b and the tracks 6, 7, 15, 16 are slightly elastically deformed. Thus, in the state where the wheel support rolling bearing unit 1 is assembled, the pitch circle diameter PCD OUT of the balls 4a, 4a in the outer row is larger than the pitch circle diameter PCD IN of the balls 4b, 4b in the inner row ( PCD OUT > PCD IN ). In the illustrated example, the diameter of the balls 4a and 4a in the outer row is made smaller than the diameter of the balls 4b and 4b in the inner row, as in the structure described in FIGS. The number of balls 4a, 4a in the outer row is larger than the number of balls 4b, 4b in the inner row. However, even in the structure in which the diameters (ball diameters) of the balls 4a and 4b in both rows are equal to each other, it is conventionally known as described in FIGS.

上述の様に構成する異径PCD型の車輪支持用転がり軸受ユニット1は、外側列の玉4a、4aのピッチ円直径PCDOUTを大きくする分、モーメント剛性を高くできる。即ち、車輪支持用転がり軸受ユニット1のモーメント剛性は、複列に配置された各玉4a、4bの接触角を表す仮想直線α、βと、この車輪支持用転がり軸受ユニット1の中心軸Xとの交点同士の距離である、軸受スパンLが長い程大きくなる。異径PCD型の車輪支持用転がり軸受ユニット1の場合には、前記外側列の玉4a、4aのピッチ円直径PCDOUTが大きい分だけ前記軸受スパンLを長くできて、モーメント剛性を高くでき、車両の走行安定性向上の面から有利になる。
一方、内側列の玉4b、4bのピッチ円直径PCDINは、複列の玉のピッチ円直径が互いに等しい、一般的な車輪支持用転がり軸受ユニットと同等に抑えられる。従って、前記外輪2を支持固定する為のナックルは、この一般的な車輪支持用転がり軸受ユニットを組み付けるものと同じものが使用できて、懸架装置に対する車輪支持部の大型化を抑えられる。
The different diameter PCD type wheel bearing rolling bearing unit 1 configured as described above can increase the moment rigidity by increasing the pitch circle diameter PCD OUT of the balls 4a and 4a in the outer row. In other words, the moment stiffness of the wheel support rolling bearing unit 1 is calculated based on virtual straight lines α and β representing the contact angles of the balls 4a and 4b arranged in double rows, and the central axis X of the wheel support rolling bearing unit 1. The longer the bearing span L, which is the distance between the intersections, the larger the distance. In the case of the rolling bearing unit 1 for supporting wheels of different diameter PCD type, the bearing span L can be lengthened by the larger pitch circle diameter PCD OUT of the balls 4a, 4a in the outer row, and the moment rigidity can be increased. This is advantageous in terms of improving the running stability of the vehicle.
On the other hand, the pitch circle diameters PCD IN of the inner rows of balls 4b and 4b are suppressed to be equal to those of a general wheel support rolling bearing unit in which the pitch circle diameters of the balls of the double rows are equal to each other. Therefore, the same knuckle for fixing and fixing the outer ring 2 can be used as the one for assembling this general wheel support rolling bearing unit, and the enlargement of the wheel support portion for the suspension device can be suppressed.

上述の様に、異径PCD型の車輪支持用転がり軸受ユニット1はモーメント剛性を高くできて、懸架装置に対する車輪の支持剛性を向上させ、直進安定性向上、旋回走行時の安定性向上等、当該車両の走行性能の向上に寄与できるが、剛性確保と耐久性確保とを両立させる面からは改良の余地がある。即ち、車輪支持用転がり軸受ユニット1のモーメント剛性は、前記軸受スパンLだけでなく、前記各玉4a、4bの転動面と前記各軌道6、7、15、16との転がり接触部に存在する接触楕円の大きさ(面積)にも大きく影響される。この接触楕円が大きく(面積が広く)、前記各転がり接触部の面圧が低い程、これら各転がり接触部の面圧を低く抑えて、モーメント作用時に於ける、前記各玉4a、4bや前記各軌道6、7、15、16の弾性変形量を少なく抑え、前記車輪支持用転がり軸受ユニット1のモーメント剛性を高くできる。そして、前記接触楕円を大きくする為には、前記各軌道6、7、15、16の断面形状の曲率半径を、当該軌道6、7、15、16と転がり接触する、前記各玉4a、4bの転動面の曲率半径に近づける、即ち、前記各軌道6、7、15、16の断面形状の曲率半径を、前記各玉4a、4bの直径(玉径)の1/2に近づける(玉径の50%よりも少しだけ大きな値にする)事が有効である。   As described above, the different diameter PCD type wheel support rolling bearing unit 1 can increase the moment rigidity, improve the wheel support rigidity with respect to the suspension device, improve the straight running stability, improve the stability during turning, etc. Although it can contribute to the improvement of the running performance of the vehicle, there is room for improvement in terms of ensuring both rigidity and durability. That is, the moment stiffness of the wheel-supporting rolling bearing unit 1 exists not only in the bearing span L but also in the rolling contact portion between the rolling surfaces of the balls 4a and 4b and the tracks 6, 7, 15 and 16. It is also greatly influenced by the size (area) of the contact ellipse. The larger the contact ellipse (the larger the area) and the lower the surface pressure of each of the rolling contact portions, the lower the surface pressure of each of the rolling contact portions, so that the balls 4a, 4b and the The amount of elastic deformation of each of the tracks 6, 7, 15, 16 can be suppressed to be small, and the moment rigidity of the wheel bearing rolling bearing unit 1 can be increased. In order to enlarge the contact ellipse, the curvature radius of the cross-sectional shape of each of the tracks 6, 7, 15, 16 is in rolling contact with the track 6, 7, 15, 16. That is, the radius of curvature of the cross-sectional shape of each of the tracks 6, 7, 15 and 16 is made close to ½ of the diameter (ball diameter) of each of the balls 4a and 4b (balls). It is effective to make the value slightly larger than 50% of the diameter).

ところが、前記各軌道6、7、15、16の断面形状の曲率半径を前記各玉4a、4bの玉径の50%に近づけると、これら各玉4a、4bの転動面が前記各軌道6、7、15、16の幅方向端部に存在する前記各溝肩部8、9、17、18に乗り上げ易くなる。この様な乗り上げが発生すると、前記各玉4a、4bの転動面が前記各軌道6、7、15、16から外れ(所謂接触楕円の欠けが発生し)、これら各玉4a、4bの転動面にエッジロードに基づく過大な面圧が加わる。この結果、これら各玉4a、4bの転動面に傷等の損傷が発生し、前記車輪支持用転がり軸受ユニット1の耐久性が損なわれる。   However, when the radius of curvature of the cross-sectional shape of each of the tracks 6, 7, 15, 16 approaches 50% of the ball diameter of each of the balls 4 a, 4 b, the rolling surface of each of the balls 4 a, 4 b becomes the track 6. 7, 15, 16 can easily ride on the respective groove shoulder portions 8, 9, 17, 18 existing at the end portions in the width direction. When such a ride-up occurs, the rolling surfaces of the balls 4a, 4b come off from the tracks 6, 7, 15, 16 (so-called contact ellipse chipping occurs), and the balls 4a, 4b roll. Excessive surface pressure based on edge load is applied to the moving surface. As a result, damage such as scratches occurs on the rolling surfaces of the balls 4a and 4b, and the durability of the wheel bearing rolling bearing unit 1 is impaired.

この様な乗り上げに起因する問題は、特に、前記外側列の玉4a、4aの直径を前記内側列の玉4b、4bの直径よりも小さくする構造で顕著になる。即ち、これら外側列の玉4a、4aの直径を小さくすると、通常時に各接触楕円が存在する位置から溝肩部までの距離が短くなり、比較的小さなモーメントでも、これら各接触楕円が溝肩部に達し易くなる。前記各軌道6、7、15、16の断面形状の曲率半径を大きくすれば、上述の様な不都合の原因となる乗り上げを生じ難くできるが、前記各転がり接触部の接触楕円が小さくなる(面積が狭くなる)。この結果、これら各転がり接触部を構成する各面の転がり疲れ寿命が低下するだけでなく、前記車輪支持用転がり軸受ユニット1のモーメント剛性が低くなり、異径PCD型の構造を採用する意味が損なわれるので、そのまま採用する事はできない。   The problem caused by such riding is particularly noticeable in the structure in which the diameters of the balls 4a and 4a in the outer row are smaller than the diameters of the balls 4b and 4b in the inner row. That is, when the diameters of the balls 4a and 4a in the outer row are reduced, the distance from the position where each contact ellipse is present to the groove shoulder at a normal time is shortened. It becomes easy to reach. Increasing the radius of curvature of the cross-sectional shape of each of the tracks 6, 7, 15 and 16 can make it difficult for the above-described disadvantageous riding to occur, but the contact ellipse of each rolling contact portion is reduced (area). Becomes narrower). As a result, not only the rolling fatigue life of each surface constituting each rolling contact portion is reduced, but also the moment rigidity of the wheel supporting rolling bearing unit 1 is lowered, and the meaning of adopting a different diameter PCD type structure is adopted. Because it is damaged, it cannot be adopted as it is.

特許文献2〜4には、それぞれが断面円弧状である外輪軌道及び内輪軌道のうち、各玉の接触角の方向であり、通常時に各玉の転動面が転がり接触する部分の断面形状の曲率半径を小さくし(各玉の直径の50%を少しだけ超える程度の値とし)、これから外れる部分の曲率半径を大きく(各玉の直径の50%を超える程度を大きく)した、玉軸受の構造に関する発明が記載されている。この様な構造によれば、通常状態で各転がり接触部に存在する接触楕円の大きさを適切にしつつ(過小にせずに)、各玉の転動面が各軌道の軸方向端部に存在する溝肩部に乗り上げる事を防止できる。但し、前記特許文献2〜4に記載された発明の構造は何れも、単列深溝型玉軸受に関するものである(特許文献3、4に記載された発明の場合)か、複列に配置された玉のピッチ円直径が互いに等しい、等径PCD型の車輪支持用転がり軸受ユニットに関するものである(特許文献2に記載された発明の場合)。要するに、従来は、異径PCD型の車輪支持用転がり軸受ユニットで、転がり疲れ寿命及びモーメント剛性を確保しつつ、エッジロードの発生を抑えて耐久性確保を図る事に就いては、特に考慮されていなかった。   In Patent Documents 2 to 4, the outer ring raceway and the inner ring raceway, each of which has a circular arc shape, are in the direction of the contact angle of each ball, and the cross-sectional shape of the portion where the rolling surface of each ball is in rolling contact is normal. A ball bearing with a small radius of curvature (a value that slightly exceeds 50% of the diameter of each ball) and a large radius of curvature at a portion that deviates from this (largely exceeds the diameter of 50% of each ball) An invention relating to structure is described. According to such a structure, the rolling surface of each ball is present at the axial end of each track while making the size of the contact ellipse present at each rolling contact in the normal state appropriate (without making it too small). It is possible to prevent riding on the shoulder of the groove. However, the structures of the inventions described in Patent Documents 2 to 4 are all related to single-row deep groove ball bearings (in the case of the inventions described in Patent Documents 3 and 4) or arranged in double rows. The present invention relates to an equal-diameter PCD type wheel bearing rolling bearing unit in which pitch diameters of the balls are equal to each other (in the case of the invention described in Patent Document 2). In short, the conventional rolling bearing unit for wheel support of different diameter PCD type is particularly considered for ensuring durability by suppressing the occurrence of edge load while ensuring the rolling fatigue life and moment rigidity. It wasn't.

特開2004−108449号公報JP 2004-108449 A 特開2004−052784号公報Japanese Unexamined Patent Application Publication No. 2004-052784 特開2008−169920号公報JP 2008-169920 A 特開2009−174691号公報JP 2009-174691 A

本発明は、上述の様な事情に鑑みて、異径PCD型の車輪支持用転がり軸受ユニットで、転がり疲れ寿命及びモーメント剛性を確保しつつ、エッジロードの発生を抑えて耐久性確保を図れる構造を実現すべく発明したものである。   In view of the circumstances as described above, the present invention is a rolling bearing unit for supporting a wheel of a different diameter PCD type, which ensures the durability by suppressing the occurrence of edge load while ensuring the rolling fatigue life and moment rigidity. Invented to realize the above.

本発明の車輪支持用転がり軸受ユニットは、外輪と、ハブと、複数個の玉とを備える。
このうちの外輪は、それぞれが断面円弧形の外側、内側両外輪軌道を、内周面の軸方向外端寄り部分と軸方向内端寄り部分とに、それぞれ設けており、使用時にも回転しない。そして、このうちの軸方向外端寄り部分に設けた外側外輪軌道の軸方向内端部に、内径が小さくなった外側外輪溝肩部を設けている。又、軸方向内端寄り部分に設けた、前記外側外輪軌道とは直径が異なる内側外輪軌道の軸方向外端部に、内径が小さくなった内側外輪溝肩部を設けている。
又、前記ハブは、外周面の軸方向外端寄り部分に取付フランジを、同じく中間部に外側内輪軌道を、同じく軸方向内端寄り部分に内側内輪軌道を、それぞれ設けている。このうちの取付フランジは、車輪を支持する為のものである。又、前記外側内輪軌道は、断面円弧形で、軸方向外端部に外径が大きくなった外側内輪溝肩部を設けている。又、前記内側内輪軌道は、断面円弧形で、前記外側内輪軌道とは直径が異なり、軸方向内端部に外径が大きくなった内側内輪溝肩部を設けている。
又、前記各玉は、前記外側、内側両外輪軌道と前記外側、内側両内輪軌道との間にそれぞれ複数個ずつ、転動自在に設けたもので、背面接触型の接触角と共に予圧を付与している。
The wheel support rolling bearing unit of the present invention includes an outer ring, a hub, and a plurality of balls.
Outer rings of these are provided with outer and inner outer ring raceways, each with an arc cross section, on the inner peripheral surface near the axially outer end and axially inner end, respectively, and rotate during use. do not do. An outer outer ring groove shoulder having a smaller inner diameter is provided at the inner end in the axial direction of the outer outer ring raceway provided near the outer end in the axial direction. Further, an inner outer ring groove shoulder portion having a smaller inner diameter is provided at an outer end portion in the axial direction of the inner outer ring raceway provided at a portion near the inner end in the axial direction and having a diameter different from that of the outer outer race raceway.
The hub is provided with a mounting flange on the outer peripheral surface near the outer end in the axial direction, an outer inner ring raceway in the middle, and an inner inner ring raceway in the same portion near the inner end in the axial direction. Of these, the mounting flange is for supporting the wheel. The outer inner ring raceway has an arc shape in cross section, and an outer inner ring groove shoulder portion having an outer diameter increased at the outer end portion in the axial direction. The inner inner ring raceway has a circular arc cross section, and has a diameter different from that of the outer inner ring raceway, and an inner inner ring groove shoulder having a larger outer diameter is provided at the inner end in the axial direction.
Each of the balls is provided between the outer and inner outer raceways and the outer and inner inner raceways so as to be able to roll, and preload is applied together with the contact angle of the back contact type. doing.

更に、前記外側外輪軌道及び前記外側内輪軌道の断面形状を、曲率半径が互いに異なる複数種類の円弧を互いの端縁同士を互いの接線方向に滑らかに連続させた形状としている。そして、これら各円弧の曲率半径を、前記接触角の方向である前記外側外輪軌道及び前記外側内輪軌道の幅方向中央部で小さく、同じく幅方向両端のうちで少なくとも前記外側外輪溝肩部及び前記外側内輪溝肩部の側で大きくしている。
尚、各円弧の曲率半径に関する範囲を規制する為の接触角の方向は、車輪支持用転がり軸受ユニットを組み立てて、各方向の荷重やモーメントが加わっていない状態での方向であり、この点は、本明細書及び特許請求の範囲全体で同じである。
Further, the cross-sectional shapes of the outer outer ring raceway and the outer inner ring raceway are formed such that a plurality of types of arcs having different radii of curvature are smoothly connected to each other in the tangential direction. And the radius of curvature of each of these arcs is small in the width direction center of the outer outer ring raceway and the outer inner ring raceway, which is the direction of the contact angle, and at least the outer outer ring groove shoulder and It is enlarged on the outer inner ring groove shoulder side.
The direction of the contact angle for restricting the range of the radius of curvature of each arc is the direction when the wheel bearing rolling bearing unit is assembled and no load or moment is applied in each direction. , And throughout the specification and claims.

上述の様な本発明を実施する場合に好ましくは、請求項2に記載した発明の様に、前記内側外輪軌道の直径を前記外側外輪軌道の直径よりも小さく、前記内側内輪軌道の直径が前記外側内輪軌道の直径よりも小さくする。
この様な請求項2に記載した発明を実施する場合により、請求項3に記載した発明の様に、前記外側外輪軌道と前記外側内輪軌道との間に設けられた前記各玉の直径を、前記内側外輪軌道と前記内側内輪軌道との間に設けられた前記各玉の直径よりも小さくする。
When the present invention as described above is implemented, preferably, as in the invention described in claim 2, the diameter of the inner outer ring raceway is smaller than the diameter of the outer outer ring raceway, and the diameter of the inner inner ring raceway is The diameter is smaller than the diameter of the outer inner ring raceway.
When the invention described in claim 2 is carried out, the diameter of each ball provided between the outer outer ring raceway and the outer inner ring raceway, as in the invention described in claim 3, The diameter of each ball provided between the inner outer ring raceway and the inner inner ring raceway is made smaller.

上述の様な本発明を実施する場合、具体的には、請求項4に記載した発明の様に、前記外側外輪軌道の幅方向中央部の範囲を、前記接触角の方向を中心とする±15〜25度の範囲(30〜50度の角度範囲)とする。そして、この幅方向中央部の曲率半径を、前記外側外輪軌道と前記外側内輪軌道との間に設けられた前記各玉の直径の52〜54%とし、前記外側外輪軌道のうちで前記外側溝肩部寄り部分の曲率半径を同じく53〜55%とする。
又、前記外側内輪軌道の幅方向中央部の範囲を、前記接触角の方向を中心とする±20〜30度の範囲(40〜60度の角度範囲)とする。そして、この幅方向中央部の曲率半径を前記外側外輪軌道と前記外側内輪軌道との間に設けられた前記各玉の直径の51〜53%とし、前記外側外輪軌道のうちで前記外側溝肩部寄り部分の曲率半径を同じく52〜54%とする。
When implementing the present invention as described above, specifically, as in the invention described in claim 4, the range of the central portion in the width direction of the outer outer ring race is ± on the basis of the direction of the contact angle. The range is 15 to 25 degrees (angle range of 30 to 50 degrees). The radius of curvature of the central portion in the width direction is set to 52 to 54% of the diameter of each ball provided between the outer outer ring raceway and the outer inner ring raceway, and the outer groove of the outer outer ring raceway is set. Similarly, the radius of curvature of the shoulder portion is 53 to 55%.
Further, the range of the central portion in the width direction of the outer inner ring raceway is set to a range of ± 20 to 30 degrees (an angle range of 40 to 60 degrees) centered on the direction of the contact angle. The radius of curvature of the central portion in the width direction is set to 51 to 53% of the diameter of each ball provided between the outer outer ring raceway and the outer inner ring raceway, and the outer groove shoulder of the outer outer ring raceway is included. Similarly, the radius of curvature of the portion near the portion is set to 52 to 54%.

又、本発明を実施する場合に好ましくは、請求項5に記載した発明の様に、前記外側外輪軌道及び前記外側内輪軌道の断面形状に加えて、前記内側外輪軌道及び前記内側内輪軌道の断面形状を、曲率半径が互いに異なる複数種類の円弧を互いに端縁同士を互いの接線方向に滑らかに連続させた形状とする。そして、これら各円弧の曲率半径を、前記接触角の方向である前記内側外輪軌道及び前記内側内輪軌道の幅方向中央部で小さく、同じく幅方向両端のうちで少なくとも前記内側外輪溝肩部及び前記内側内輪溝肩部の側で大きくする。   When the present invention is implemented, preferably, as in the invention described in claim 5, in addition to the cross-sectional shapes of the outer outer ring raceway and the outer inner ring raceway, cross sections of the inner outer ring raceway and the inner inner ring raceway. The shape is a shape in which a plurality of types of arcs having different radii of curvature are smoothly connected with each other in the tangential direction. And the radius of curvature of each arc is small at the center in the width direction of the inner outer ring raceway and the inner inner ring raceway, which is the direction of the contact angle, and at least the inner outer ring groove shoulder and Enlarge on the inner inner ring groove shoulder side.

又、本発明は、請求項6に記載した発明の様に、前記内側外輪軌道の直径が、前記外側外輪軌道の直径よりも大きく、前記内側内輪軌道の直径が前記外側内輪軌道の直径よりも大きい構造で実施する事もできる。
この様な請求項6に記載した発明を実施する場合に好ましくは、請求項7に記載した発明の様に、前記外側外輪軌道と前記外側内輪軌道との間に設ける前記各玉の直径を、前記内側外輪軌道と前記内側内輪軌道との間に設ける前記各玉の直径よりも小さくする。
Further, according to the present invention, as in the invention described in claim 6, the diameter of the inner outer ring raceway is larger than the diameter of the outer outer ring raceway, and the diameter of the inner inner ring raceway is larger than the diameter of the outer inner ring raceway. It can also be implemented with a large structure.
When carrying out the invention described in claim 6, preferably, as in the invention described in claim 7, the diameter of each ball provided between the outer outer ring raceway and the outer inner ring raceway, The diameter of each ball provided between the inner outer ring raceway and the inner inner ring raceway is made smaller.

上述の様に構成する本発明によれば、異径PCD型の車輪支持用転がり軸受ユニットで、転がり疲れ寿命及びモーメント剛性を確保しつつ、エッジロードの発生を抑えて耐久性確保を図れる構造を実現できる。
例えば、請求項2に記載した発明によれば、外側列の各玉のピッチ円直径を大きくする事で、ナックルへの取付部を大型化する事なく軸受スパンを長くできて、モーメント剛性を向上させられる。
又、請求項6に記載した発明によれば、軸受スパンの短縮を抑え、モーメント剛性の低下を抑えつつ、外輪の直径を小さくして、車輪支持用転がり軸受ユニットの小型・軽量化を図れる。
又、各軌道の断面形状の曲率半径を、各軌道のうちで接触角の方向である各軌道の幅方向中央部で小さくしているので、通常状態でこれら各軌道と各玉の転動面との転がり接触部に存在する接触楕円を大きくできる。従って、これら各転がり接触部の弾性変形量を少なく抑える事による剛性及び転がり疲れ寿命の確保を図れる。
更に、各軌道の断面形状の曲率半径を、溝肩部側の幅方向端部で大きくしているので、前記各玉の転動面をこの溝肩部に乗り上げ難くでき、これら各玉の転動面にエッジロードが作用する事を防止できて、これら各玉の転動面の損傷に基づく耐久性低下を防止できる。
According to the present invention configured as described above, a rolling bearing unit for supporting a wheel of a different diameter PCD type is capable of ensuring durability by suppressing the occurrence of edge load while ensuring the rolling fatigue life and moment rigidity. realizable.
For example, according to the invention described in claim 2, by increasing the pitch circle diameter of each ball in the outer row, the bearing span can be lengthened without increasing the mounting portion to the knuckle and the moment rigidity is improved. Be made.
According to the sixth aspect of the present invention, the wheel support rolling bearing unit can be reduced in size and weight by reducing the diameter of the outer ring while suppressing the shortening of the bearing span and suppressing the decrease in moment rigidity.
In addition, since the radius of curvature of the cross-sectional shape of each track is reduced at the center of each track in the width direction, which is the direction of the contact angle, the rolling surface of each track and each ball in a normal state. The contact ellipse existing at the rolling contact portion can be enlarged. Accordingly, it is possible to secure rigidity and rolling fatigue life by suppressing the amount of elastic deformation of each rolling contact portion.
Furthermore, since the radius of curvature of the cross-sectional shape of each track is increased at the end in the width direction on the side of the groove shoulder, the rolling surface of each ball can hardly ride on the groove shoulder, and The edge load can be prevented from acting on the moving surface, and the durability can be prevented from being lowered due to the damage of the rolling surface of each ball.

本発明の対象となる車輪支持用転がり軸受ユニットの第1例を示す断面図。Sectional drawing which shows the 1st example of the rolling bearing unit for wheel support used as the object of this invention. 本発明の実施の形態の第1例を示す、図1のA部拡大図。The A section enlarged view of FIG. 1 which shows the 1st example of embodiment of this invention. 本発明の対象となる車輪支持用転がり軸受ユニットの第2例を示す断面図。Sectional drawing which shows the 2nd example of the rolling bearing unit for wheel support used as the object of this invention.

[実施の形態の第1例]
請求項1〜5に対応する、本発明の実施の形態の第1例に就いて、図2により説明する。尚、本例を含めて本発明の特徴は、各軌道の断面形状を工夫する事により、転がり疲れ寿命及びモーメント剛性を確保しつつ、エッジロードの発生を抑えて耐久性確保を図る点にある。本例に関して、車輪支持用転がり軸受ユニット1の基本構造に就いては、前述した図1に示した通りであるから、重複する説明は省略若しくは簡略にし、以下、本例の特徴部分を中心に、必要に応じて図1を参照しつつ、図2により説明する。
[First example of embodiment]
A first example of an embodiment of the present invention corresponding to claims 1 to 5 will be described with reference to FIG. In addition, the feature of the present invention including this example is that, by devising the cross-sectional shape of each track, the endurance is ensured by suppressing the occurrence of edge load while ensuring the rolling fatigue life and moment rigidity. . Regarding the present example, the basic structure of the wheel-supporting rolling bearing unit 1 is as shown in FIG. 1 described above. Therefore, the overlapping description is omitted or simplified. 2 will be described with reference to FIG. 1 if necessary.

本例の車輪支持用転がり軸受ユニット1の場合には、外側外輪軌道6及び外側内輪軌道15の断面形状を、曲率半径rO1、rO2、rI1、rI2が互いに異なる複数種類の円弧を、互いの端縁同士を互いの接線方向に滑らかに連続させた、複合円弧形状としている。そして、これら各円弧の曲率半径rO1、rO2、rI1、rI2を、各玉4aの接触角の方向を中心とする所定範囲である、前記外側外輪軌道6及び前記外側内輪軌道15の幅方向中央部21a、21bで、比較的小さな値(rO1、rI1)としている。これに対して、この幅方向中央部21a、21bを幅方向両側から挟む位置に存在する、幅方向両端部22a、22b、22c、22dの曲率半径を、比較的大きな値(rO2、rI2)としている(rO1<rO2、rI1<rI2)。 In the case of the wheel support rolling bearing unit 1 of the present example, the outer outer ring raceway 6 and the outer inner ring raceway 15 are made to have a plurality of types of arcs having different curvature radii r O1 , r O2 , r I1 , r I2. The composite arc shape is such that the edges of each other are smoothly continuous in the tangential direction of each other. The radius of curvature r O1 , r O2 , r I1 , r I2 of each arc is a predetermined range centered on the direction of the contact angle of each ball 4a, and the outer outer ring raceway 6 and the outer inner ring raceway 15 The width direction center portions 21a and 21b have relatively small values (r O1 and r I1 ). On the other hand, the curvature radii of the width direction both end portions 22a, 22b, 22c, and 22d existing at positions sandwiching the width direction center portions 21a and 21b from both sides in the width direction are relatively large values ( rO2 , rI2). (R O1 <r O2 , r I1 <r I2 ).

具体的には、前記外側外輪軌道6の幅方向中央部21aの範囲を、前記接触角の方向を中心とする±15〜25度の範囲としている。そして、この幅方向中央部21aの曲率半径rO1を、前記各玉4aの直径の52〜54%としている。これに対して、この幅方向中央部21aを幅方向両側から挟む、前記幅方向両端部22a、22bの曲率半径rO2を、前記各玉4aの直径の53〜55%としている。 Specifically, the range of the central portion 21a in the width direction of the outer outer ring raceway 6 is set to a range of ± 15 to 25 degrees centered on the direction of the contact angle. Then, the curvature radius r O1 of the widthwise central portion 21a, is set to 52 to 54% of the diameter of the respective balls 4a. In contrast, sandwiching the widthwise central portion 21a from both sides in the width direction, the both widthwise end portions 22a, the curvature radius r O2 in 22b, is set to 53 to 55% of the diameter of the respective balls 4a.

又、前記外側内輪軌道15の幅方向中央部21bの範囲を、前記接触角の方向を中心とする±20〜30度の範囲としている。そして、この幅方向中央部21bの曲率半径rI1を、前記各玉4aの直径の51〜53%としている。これに対して、この幅方向中央部21bを幅方向両側から挟む、前記幅方向両端部22c、22dの曲率半径rI2を、前記各玉4aの直径の52〜54%としている。尚、前記外側外輪軌道6の曲率半径rO1、rO2に比べて前記外側内輪軌道15の曲率半径rI1、rI2が、それぞれの対応する部分で小さい理由は、前記外側外輪軌道6が周方向に関して凹形状であるのに対して、前記外側内輪軌道15が周方向に関して凸形状である為である。この様な周方向形状の相違に対応して、前記断面形状の複数種類の円弧の曲率半径に差を設定し、前記各玉4aの転動面と前記外側外輪軌道6及び前記外側内輪軌道15との転がり接触部に存在する接触楕円の大きさに顕著な差が生じない様にしている。 The range of the central portion 21b in the width direction of the outer inner ring raceway 15 is a range of ± 20 to 30 degrees with the direction of the contact angle as the center. Then, the curvature radius r I1 of the widthwise central portion 21b, is set to 51 to 53% of the diameter of the respective balls 4a. On the other hand, the curvature radius r I2 of the width direction both end portions 22c and 22d sandwiching the width direction central portion 21b from both sides in the width direction is set to 52 to 54% of the diameter of each ball 4a. The reason why the curvature radii r I1 and r I2 of the outer inner ring raceway 15 are smaller in the corresponding portions than the curvature radii r O1 and r O2 of the outer outer ring raceway 6 is that the outer outer ring raceway 6 This is because the outer inner ring raceway 15 has a convex shape with respect to the circumferential direction, whereas it has a concave shape with respect to the direction. Corresponding to such a difference in the circumferential shape, a difference is set in the radius of curvature of the plurality of types of arcs of the cross-sectional shape, and the rolling surface of each ball 4a, the outer outer ring raceway 6 and the outer inner ring raceway 15 are set. Thus, there is no significant difference in the size of the contact ellipse existing at the rolling contact portion.

上述の様に構成する本例の構造によれば、異径PCD型の車輪支持用転がり軸受ユニット1で、転がり疲れ寿命及びモーメント剛性を確保しつつ、エッジロードの発生を抑えて耐久性確保を図れる構造を実現できる。
即ち、外側列の各玉4aのピッチ円直径を大きくする事で、ナックルへの取付部5を大型化する事なく軸受スパンLを長くできて、モーメント剛性を向上させられる。
又、前記外側外輪軌道6及び前記外側内輪軌道15の断面形状の曲率半径を、幅方向中央部21a、21bで小さくしているので、通常状態でこれら両軌道6、15と前記各玉4aの転動面との転がり接触部に存在する接触楕円を大きくできる。従って、これら各転がり接触部の弾性変形量を少なく抑える事による剛性及び転がり疲れ寿命の確保を図れる。
更に、前記外側外輪軌道6及び前記外側内輪軌道15の断面形状の曲率半径を、外側外輪、外側内輪両溝肩部8、17側を含め、これら両軌道6、15の幅方向両端部22a、22b、22c、22dで大きくしているので、一時的に大きなモーメントが加わった場合でも、前記各玉4aの転動面を前記両溝肩部8、17に乗り上げ難くできる。この結果、これら各玉4aの転動面にエッジロードが作用する事を防止できて、これら各玉4aの転動面の損傷に基づく耐久性低下を防止できる。
According to the structure of the present example configured as described above, the rolling bearing unit 1 for supporting a wheel of different diameter PCD type ensures durability by suppressing the occurrence of edge load while ensuring the rolling fatigue life and moment rigidity. A structure that can be realized can be realized.
That is, by increasing the pitch circle diameter of each ball 4a in the outer row, the bearing span L can be lengthened without increasing the size of the attachment portion 5 to the knuckle, and the moment rigidity can be improved.
In addition, since the curvature radii of the cross-sectional shapes of the outer outer ring raceway 6 and the outer inner ring raceway 15 are reduced at the central portions 21a and 21b in the width direction, both the tracks 6 and 15 and the balls 4a are in a normal state. The contact ellipse existing at the rolling contact portion with the rolling surface can be enlarged. Accordingly, it is possible to secure rigidity and rolling fatigue life by suppressing the amount of elastic deformation of each rolling contact portion.
Further, the radius of curvature of the cross-sectional shape of the outer outer ring raceway 6 and the outer inner ring raceway 15 includes both the outer outer ring and outer inner ring both groove shoulder portions 8 and 17 side, and both end portions 22a in the width direction of both raceways 6 and 15; 22b, 22c, and 22d, it is difficult to ride the rolling surfaces of the balls 4a onto the groove shoulder portions 8 and 17 even when a large moment is temporarily applied. As a result, it is possible to prevent an edge load from acting on the rolling surfaces of the balls 4a, and it is possible to prevent a decrease in durability due to damage to the rolling surfaces of the balls 4a.

[実施の形態の第2例]
請求項1、6、7に対応する、実施の形態の第2例に就いて、図3により説明する。本例の車輪支持用転がり軸受ユニット1aの場合には、前述の図1に示した構造とは逆に、外側列の玉4aのピッチ円直径PCDOUTを、内側列の玉4bのピッチ円直径PCDINよりも小さく(PCDOUT<PCDIN)している。そして、このうちの内側列の玉4bのピッチ円直径PCDINを、複列の玉のピッチ円直径が互いに等しい、一般的な車輪支持用転がり軸受ユニットと同等に抑えている。逆に言えば、本例の構造の場合には、前記外側列の玉4aのピッチ円直径PCDOUTを、前記一般的な車輪支持用転がり軸受ユニットよりも小さくしている。尚、図3に示した車輪支持用転がり軸受ユニット1aは、駆動輪用である為、ハブ3aを構成するハブ本体10aの中心部にスプライン孔23を形成している。
[Second Example of Embodiment]
A second example of the embodiment corresponding to claims 1, 6, and 7 will be described with reference to FIG. In the case of the wheel support rolling bearing unit 1a of this example, the pitch circle diameter PCD OUT of the balls 4a in the outer row is set to the pitch circle diameter of the balls 4b in the inner row, contrary to the structure shown in FIG. It is smaller than PCD IN (PCD OUT <PCD IN ). Of these, the pitch circle diameter PCD IN of the balls 4b in the inner row is suppressed to be equivalent to that of a general wheel support rolling bearing unit in which the pitch circle diameters of the balls in the double row are equal to each other. Conversely, in the case of the structure of this example, the pitch circle diameter PCD OUT of the balls 4a in the outer row is made smaller than that of the general wheel support rolling bearing unit. Since the wheel-supporting rolling bearing unit 1a shown in FIG. 3 is for driving wheels, a spline hole 23 is formed at the center of the hub body 10a constituting the hub 3a.

この様な本例の構造によれば、前記一般的な車輪支持用転がり軸受ユニットと比べて、軸受スパンLの短縮を抑え、モーメント剛性の低下を抑えつつ、外輪2aの直径を小さくして、前記車輪支持用転がり軸受ユニット1aの小型・軽量化を図れる。即ち、車輪の接地性を高めて乗り心地や旋回性等の走行性能を向上させるべく、バネ下荷重を軽減する為に、車輪支持用転がり軸受ユニットの小型・軽量化を図る為、外輪の小径化を求められる場合がある。この様な場合に、前記一般的な車輪支持用転がり軸受ユニットの構造のままで外輪を小径化すると、軸受スパンLが極端に短くなり、必要とするモーメント剛性を確保する事が難しくなる。これに対して、前記図3に示した本例の構造によれば、内側列の玉4bのピッチ円直径PCDINを小さくする事なく、外側列の玉4aのピッチ円直径PCDOUTのみを小さくしている。この為、前記軸受スパンLの短縮を抑え、モーメント剛性の低下を抑え(必要なモーメント剛性を確保し)つつ、前記外輪2aの直径を小さくして、前記車輪支持用転がり軸受ユニット1aの小型・軽量化を図れる。 According to such a structure of this example, the diameter of the outer ring 2a is reduced while suppressing the shortening of the bearing span L and suppressing the decrease in moment rigidity as compared with the general wheel support rolling bearing unit. The wheel support rolling bearing unit 1a can be reduced in size and weight. In other words, to reduce the unsprung load in order to improve the wheel grounding performance and improve the driving performance such as ride comfort and turning performance, to reduce the size and weight of the wheel bearing rolling bearing unit, May be required. In such a case, if the diameter of the outer ring is reduced while maintaining the structure of the general wheel support rolling bearing unit, the bearing span L becomes extremely short, and it becomes difficult to ensure the required moment rigidity. On the other hand, according to the structure of this example shown in FIG. 3, only the pitch circle diameter PCD OUT of the balls 4a in the outer row is reduced without reducing the pitch circle diameter PCD IN of the balls 4b in the inner row. doing. For this reason, the diameter of the outer ring 2a is reduced while the shortening of the bearing span L is suppressed and the decrease in moment rigidity is ensured (to ensure the required moment rigidity), and the wheel supporting rolling bearing unit 1a is reduced in size. Weight reduction can be achieved.

本例の場合には、この様に、必要なモーメント剛性を確保しつつ小型・軽量化を図れる、前記車輪支持用転がり軸受ユニット1aの構造に関して、前述の図2により説明した実施の形態の第1例に係る構造と同様に、前記外輪2aの内周面に形成した外側外輪軌道6及びハブ3aの外周面に形成した外側内輪軌道15の断面形状の曲率半径を、外側外輪、外側内輪両溝肩部8、17側を含め、これら両軌道6、15の幅方向両端部で大きくしている。これにより、一時的に大きなモーメントが加わった場合でも、前記各玉4aの転動面を前記両溝肩部8、17に乗り上げ難くしている。そして、これら各玉4aの転動面にエッジロードが作用する事を防止して、これら各玉4aの転動面の損傷に基づく耐久性低下を防止する様にしている。その他の部分の構成及び作用は、前述の図1〜2に示した実施の形態の第1例と同様であるから、重複する説明は省略する。   In the case of the present example, the structure of the rolling bearing unit 1a for supporting a wheel that can achieve a reduction in size and weight while ensuring the necessary moment rigidity in this way is the first embodiment described with reference to FIG. Similar to the structure according to one example, the curvature radii of the cross-sectional shapes of the outer outer ring raceway 6 formed on the inner peripheral surface of the outer ring 2a and the outer inner ring raceway 15 formed on the outer peripheral surface of the hub 3a are set to both outer outer ring and outer inner ring. The width is increased at both ends in the width direction of both the tracks 6 and 15 including the groove shoulder portions 8 and 17 side. Accordingly, even when a large moment is temporarily applied, it is difficult to ride the rolling surfaces of the balls 4a on the groove shoulder portions 8 and 17. The edge load is prevented from acting on the rolling surfaces of these balls 4a, and the durability is prevented from being deteriorated due to the damage of the rolling surfaces of these balls 4a. Since the configuration and operation of the other parts are the same as those in the first example of the embodiment shown in FIGS.

上述した実施の形態の各例では、前記外側外輪軌道6及び前記外側内輪軌道15の断面形状の曲率半径を幅方向両端部22a、22b、22c、22dで幅方向中央部21a、21bよりも大きくしている。但し、乗り上げに基づいて各玉4a、4aの転動面にエッジロードが加わるのは、主として前記外側外輪溝肩部8及び前記外側内輪溝肩部17の側である。例えば、前記外側外輪軌道6の大径側端縁及び前記外側内輪軌道15の小径側端縁がそれぞれ、そのまま接線方向に連続するカウンタボア形状の場合には、これら外側外輪軌道6の大径側端縁及び外側内輪軌道15の小径側端縁では、前記各玉4a、4aの転動面にエッジロードが加わる事はない。従って、この様な場合には、前記外側外輪軌道6及び前記外側内輪軌道15の断面形状の曲率半径を、前記外側外輪溝肩部8及び前記外側内輪溝肩部17の側のみで大きくすれば足りる。勿論、この様な場合にも、前記曲率半径を幅方向両端部22a、22b、22c、22dで幅方向中央部21a、21bよりも大きくする事は自由である。   In each example of the embodiment described above, the curvature radii of the cross-sectional shapes of the outer outer ring raceway 6 and the outer inner ring raceway 15 are larger at the width direction end portions 22a, 22b, 22c, and 22d than the width direction center portions 21a and 21b. doing. However, it is mainly the outer outer ring groove shoulder portion 8 and the outer inner ring groove shoulder portion 17 that the edge load is applied to the rolling surfaces of the balls 4a and 4a based on the riding. For example, when the large-diameter side end edge of the outer outer ring raceway 6 and the small-diameter side end edge of the outer inner ring raceway 15 have a counterbore shape that continues in the tangential direction as they are, At the edge and the small-diameter side edge of the outer inner ring raceway 15, no edge load is applied to the rolling surfaces of the balls 4a, 4a. Accordingly, in such a case, if the radius of curvature of the cross-sectional shape of the outer outer ring raceway 6 and the outer inner ring raceway 15 is increased only on the outer outer ring groove shoulder portion 8 and the outer inner ring groove shoulder portion 17 side. It ’s enough. Of course, even in such a case, it is free to make the radius of curvature larger at the width direction end portions 22a, 22b, 22c and 22d than at the width direction center portions 21a and 21b.

又、車輪支持用転がり軸受ユニット1(1a)にモーメントが加わった状態で、溝肩部への玉4a、4bの乗り上げに伴ってこれら各玉4a、4bの転動面にエッジロードが加わり易いのは、外側列の玉4a、4aである。従って、内側外輪軌道7及び内側内輪軌道16の断面形状に関しては、必ずしも内側外輪溝肩部9や内側内輪溝肩部18寄り部分の曲率半径を、幅方向中央部に比べて大きくする必要はない。但し、前記内側外輪軌道7及び内側内輪軌道16の断面形状に関しても、内側列の玉4b、4bの転動面が前記両肩部9、18に乗り上げ難くする為に、前記内側外輪軌道7及び内側内輪軌道16の断面形状の曲率半径を、前記両肩部9、18寄りの端部で、幅方向中央部よりも大きくしても良い(請求項5に記載した発明)。   In addition, when a moment is applied to the wheel bearing rolling bearing unit 1 (1a), an edge load is easily applied to the rolling surfaces of the balls 4a and 4b as the balls 4a and 4b ride on the groove shoulders. Are the outer rows of balls 4a, 4a. Accordingly, regarding the cross-sectional shapes of the inner outer ring raceway 7 and the inner inner ring raceway 16, it is not always necessary to make the radius of curvature near the inner outer ring groove shoulder 9 and the inner inner ring groove shoulder 18 larger than the central portion in the width direction. . However, with respect to the cross-sectional shapes of the inner outer ring raceway 7 and the inner inner ring raceway 16, the inner outer ring raceway 7 and the inner outer raceway 7 and The radius of curvature of the cross-sectional shape of the inner inner ring raceway 16 may be made larger than the center portion in the width direction at the end portions near the shoulder portions 9 and 18 (invention according to claim 5).

更に、本発明による効果は、前記外側列の玉4a、4aの直径を前記内側列の玉4b、4bの直径よりも小さくする構造に適用した場合に顕著になる(請求項3、7に記載した発明)。この理由は、前述した様に、前記外側列の玉4a、4aの直径を前記内側列の玉4b、4bの直径よりも小さくする構造では、通常時に各接触楕円が存在する位置から溝肩部までの距離が短くなり、比較的小さなモーメントでも、これら各接触楕円が溝肩部に達し易くなる為である。但し、本発明は、前記両列の玉4a、4bの直径を互いに等しくした構造で実施しても、一定の効果を得られる。   Further, the effect of the present invention becomes prominent when applied to a structure in which the diameters of the balls 4a and 4a in the outer row are made smaller than the diameters of the balls 4b and 4b in the inner row (claims 3 and 7). Invention). The reason for this is that, as described above, in the structure in which the diameters of the balls 4a, 4a in the outer row are smaller than the diameters of the balls 4b, 4b in the inner row, the groove shoulder portion starts from the position where each contact ellipse normally exists. This is because each contact ellipse easily reaches the groove shoulder even with a relatively small moment. However, even when the present invention is implemented with a structure in which the diameters of the balls 4a and 4b in both rows are equal to each other, a certain effect can be obtained.

1、1a 車輪支持用転がり軸受ユニット
2、2a 外輪
3、3a ハブ
4a、4b 玉
5 取付部
6 外側外輪軌道
7 内側外輪軌道
8 外側外輪溝肩部
9 内側外輪溝肩部
10、10a ハブ本体
11 内輪
12 小径段部
13 かしめ部
14 取付フランジ
15 外側内輪軌道
16 内側内輪軌道
17 外側内輪溝肩部
18 内側内輪溝肩部
19a、19b 保持器
20 段差面
21a、21b 幅方向中央部
22a、22b、22c、22d 幅方向端部
23 スプライン孔
DESCRIPTION OF SYMBOLS 1, 1a Rolling bearing unit for wheel support 2, 2a Outer ring 3, 3a Hub 4a, 4b Ball 5 Mounting portion 6 Outer outer ring raceway 7 Inner outer ring raceway 8 Outer outer ring groove shoulder portion 9 Inner outer ring groove shoulder portion 10, 10a Hub body 11 Inner ring 12 Small diameter step portion 13 Caulking portion 14 Mounting flange 15 Outer inner ring raceway 16 Inner inner ring raceway 17 Outer inner ring groove shoulder portion 18 Inner inner ring groove shoulder portion 19a, 19b Cage 20 Stepped surface 21a, 21b Width direction center portion 22a, 22b, 22c, 22d Width direction end 23 Spline hole

Claims (7)

外輪と、ハブと、複数個の玉とを備え、
このうちの外輪は、軸方向内端部に内径が小さくなった外側外輪溝肩部を備えた断面円弧形の外側外輪軌道を内周面の軸方向外端寄り部分に、軸方向外端部に内径が小さくなった内側外輪溝肩部を備え、断面円弧形で前記外側外輪軌道とは直径が異なる内側外輪軌道を内周面の軸方向内端寄り部分に、それぞれ有し、使用時にも回転しないものであり、
前記ハブは、車輪を支持する為の取付フランジを外周面の軸方向外端寄り部分に、軸方向外端部に外径が大きくなった外側内輪溝肩部を備えた断面円弧形の外側内輪軌道を外周面の中間部に、軸方向内端部に外径が大きくなった内側内輪溝肩部を備え、断面円弧形で前記外側内輪軌道とは直径が異なる内側内輪軌道を外周面の軸方向内端部に、それぞれ有するものであり、
前記各玉は、前記外側、内側両外輪軌道と前記外側、内側両内輪軌道との間にそれぞれ複数個ずつ転動自在に設けられたものであり、
前記各玉に背面接触型の接触角と共に予圧を付与しており、
且つ、前記外側外輪軌道及び前記外側内輪軌道の断面形状を、曲率半径が互いに異なる複数種類の円弧を互いの端縁同士を互いの接線方向に滑らかに連続させた形状とし、これら各円弧の曲率半径を、前記接触角の方向である前記外側外輪軌道及び前記外側内輪軌道の幅方向中央部で小さく、同じく幅方向両端のうちで少なくとも前記外側外輪溝肩部及び前記外側内輪溝肩部の側で大きくしている
車輪支持用転がり軸受ユニット。
An outer ring, a hub, and a plurality of balls,
Of these, the outer ring has an outer outer ring raceway having an arc cross section with an outer outer ring groove shoulder having a reduced inner diameter at the inner end in the axial direction, and the outer end in the axial direction at a portion near the outer end in the axial direction of the inner peripheral surface. Inner outer ring groove shoulders with a smaller inner diameter at the inner part, each having an inner outer ring raceway having a circular arc shape and a diameter different from the outer outer ring raceway on the inner peripheral surface of the inner peripheral surface. Sometimes it does not rotate,
The hub has an outer cross-sectional arc shape with a mounting flange for supporting the wheel on the outer peripheral surface near the axial outer end, and an outer outer ring groove shoulder with a larger outer diameter at the outer axial end. The inner ring raceway is provided with an inner inner ring groove shoulder having an outer diameter increased at the inner end portion in the axial direction at the intermediate portion of the outer peripheral surface, and the inner inner ring raceway having a circular arc shape and a diameter different from that of the outer inner ring raceway. At the inner end in the axial direction of
Each ball is provided between the outer and inner outer ring raceways and the outer and inner both inner raceways so as to be capable of rolling.
Preload is applied to each ball together with the contact angle of the back contact type,
In addition, the cross-sectional shapes of the outer outer ring raceway and the outer inner ring raceway are formed by smoothly connecting a plurality of types of arcs having different radii of curvature to each other's edges in the tangential direction, and the curvature of each arc. The radius is small at the width direction central portion of the outer outer ring raceway and the outer inner ring raceway, which is the direction of the contact angle, and at least the outer outer ring groove shoulder portion and the outer inner ring groove shoulder portion side of both ends in the width direction. Rolling bearing unit for wheel support.
前記内側外輪軌道の直径が、前記外側外輪軌道の直径よりも小さく、前記内側内輪軌道の直径が前記外側内輪軌道の直径よりも小さい、請求項1に記載した車輪支持用転がり軸受ユニット。   The wheel bearing rolling bearing unit according to claim 1, wherein a diameter of the inner outer ring raceway is smaller than a diameter of the outer outer ring raceway, and a diameter of the inner inner ring raceway is smaller than a diameter of the outer inner ring raceway. 前記外側外輪軌道と前記外側内輪軌道との間に設けられた前記各玉の直径が、前記内側外輪軌道と前記内側内輪軌道との間に設けられた前記各玉の直径よりも小さい、請求項2に記載した車輪支持用転がり軸受ユニット。   The diameter of each ball provided between the outer outer ring raceway and the outer inner ring raceway is smaller than the diameter of each ball provided between the inner outer ring raceway and the inner inner ring raceway. Rolling bearing unit for wheel support described in 2. 前記外側外輪軌道の幅方向中央部の範囲が、前記接触角の方向を中心とする±15〜25度の範囲であって、この幅方向中央部の曲率半径が前記外側外輪軌道と前記外側内輪軌道との間に設けられた前記各玉の直径の52〜54%、前記外側外輪軌道のうちで前記外側溝肩部寄り部分の曲率半径が同じく53〜55%であり、前記外側内輪軌道の幅方向中央部の範囲が、前記接触角の方向を中心とする±20〜30度の範囲であって、この幅方向中央部の曲率半径が前記外側外輪軌道と前記外側内輪軌道との間に設けられた前記各玉の直径の51〜53%、前記外側外輪軌道のうちで前記外側溝肩部寄り部分の曲率半径が同じく52〜54%である、請求項1〜3のうちの何れか1項に記載した車輪支持用転がり軸受ユニット。   The range of the central portion in the width direction of the outer outer ring raceway is a range of ± 15 to 25 degrees centering on the direction of the contact angle, and the radius of curvature of the central portion in the width direction is the outer outer ring raceway and the outer inner ring. 52 to 54% of the diameter of each ball provided between the outer race and the outer outer ring raceway, the radius of curvature of the outer groove shoulder portion is also 53 to 55%. The range of the central portion in the width direction is a range of ± 20 to 30 degrees centered on the direction of the contact angle, and the radius of curvature of the central portion in the width direction is between the outer outer ring raceway and the outer inner ring raceway. The diameter of each said ball provided is 51 to 53%, and the curvature radius of the portion near the outer groove shoulder in the outer outer ring raceway is also 52 to 54%. The rolling bearing unit for wheel support described in item 1. 前記外側外輪軌道及び前記外側内輪軌道の断面形状に加えて、前記内側外輪軌道及び前記内側内輪軌道の断面形状を、曲率半径が互いに異なる複数種類の円弧を互いの端縁同士を互いの接線方向に滑らかに連続させた形状とし、これら各円弧の曲率半径を、前記接触角の方向である前記内側外輪軌道及び前記内側内輪軌道の幅方向中央部で小さく、同じく幅方向両端のうちで少なくとも前記内側外輪溝肩部及び前記内側内輪溝肩部の側で大きくしている、請求項1〜4のうちの何れか1項に記載した車輪支持用転がり軸受ユニット。   In addition to the cross-sectional shapes of the outer outer ring raceway and the outer inner ring raceway, the cross-sectional shapes of the inner outer ring raceway and the inner inner ring raceway are a plurality of types of arcs having different radii of curvature. The radius of curvature of each arc is small at the center in the width direction of the inner outer ring raceway and the inner inner ring raceway, which is the direction of the contact angle, and at least the width direction at both ends. The wheel bearing rolling bearing unit according to any one of claims 1 to 4, wherein the wheel bearing rolling bearing unit is enlarged on the inner outer ring groove shoulder and the inner inner ring groove shoulder side. 前記内側外輪軌道の直径が、前記外側外輪軌道の直径よりも大きく、前記内側内輪軌道の直径が前記外側内輪軌道の直径よりも大きい、請求項1に記載した車輪支持用転がり軸受ユニット。   The wheel bearing rolling bearing unit according to claim 1, wherein a diameter of the inner outer ring raceway is larger than a diameter of the outer outer ring raceway, and a diameter of the inner inner ring raceway is larger than a diameter of the outer inner ring raceway. 前記外側外輪軌道と前記外側内輪軌道との間に設けられた前記各玉の直径が、前記内側外輪軌道と前記内側内輪軌道との間に設けられた前記各玉の直径よりも小さい、請求項6に記載した車輪支持用転がり軸受ユニット。   The diameter of each ball provided between the outer outer ring raceway and the outer inner ring raceway is smaller than the diameter of each ball provided between the inner outer ring raceway and the inner inner ring raceway. The rolling bearing unit for wheel support described in 6.
JP2013079173A 2012-07-05 2013-04-05 Rolling bearing unit for wheel support Pending JP2014029202A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013079173A JP2014029202A (en) 2012-07-05 2013-04-05 Rolling bearing unit for wheel support
CN201320324811.8U CN203453296U (en) 2012-07-05 2013-06-05 Rolling bearing unit for wheel bearing

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012151293 2012-07-05
JP2012151293 2012-07-05
JP2013079173A JP2014029202A (en) 2012-07-05 2013-04-05 Rolling bearing unit for wheel support

Publications (1)

Publication Number Publication Date
JP2014029202A true JP2014029202A (en) 2014-02-13

Family

ID=50201893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013079173A Pending JP2014029202A (en) 2012-07-05 2013-04-05 Rolling bearing unit for wheel support

Country Status (1)

Country Link
JP (1) JP2014029202A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016205578A (en) * 2015-04-27 2016-12-08 株式会社ジェイテクト Bearing device for wheel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016205578A (en) * 2015-04-27 2016-12-08 株式会社ジェイテクト Bearing device for wheel

Similar Documents

Publication Publication Date Title
JP3690821B2 (en) Double row angular contact ball bearings for wheels
JP5250951B2 (en) Rolling bearing unit for wheel support
JP2010111386A (en) Wheel bearing assembly
WO2010147135A1 (en) Wheel bearing
WO2008044880A1 (en) Hub bearing unit provided with multiple rows of rolling elements
US10180160B2 (en) Hub unit
US20150191044A1 (en) Bearing module
US8714828B2 (en) Wheel hub assembly with dual rows of rolling elements
JP5471282B2 (en) Pinion shaft rotation support device
JP2014029202A (en) Rolling bearing unit for wheel support
CN203453296U (en) Rolling bearing unit for wheel bearing
JP2014084907A (en) Hub unit bearing
JP2008110659A (en) Rolling bearing device for wheel
JP4225006B2 (en) Double row angular contact ball bearings for wheels
JP2008215567A (en) Rolling bearing unit for supporting wheel
JP5340866B2 (en) Wheel bearing device
US11788578B2 (en) Wheel hub assembly with optimized raceways
US20220290717A1 (en) Wheel hub assembly having low friction and high performance
JP3709867B2 (en) Double row angular contact ball bearings for wheels
JP5966851B2 (en) Wheel support hub unit
JP5668586B2 (en) Vehicle bearing device
JP2024037095A (en) Bearing device for wheels
US10780735B2 (en) Hub unit
US20130062929A1 (en) Hub unit
JP2024063635A (en) Wheel bearing device