JP2014028894A - Lubricant composition for metal powder metallurgy and method for producing said composition - Google Patents

Lubricant composition for metal powder metallurgy and method for producing said composition Download PDF

Info

Publication number
JP2014028894A
JP2014028894A JP2012169927A JP2012169927A JP2014028894A JP 2014028894 A JP2014028894 A JP 2014028894A JP 2012169927 A JP2012169927 A JP 2012169927A JP 2012169927 A JP2012169927 A JP 2012169927A JP 2014028894 A JP2014028894 A JP 2014028894A
Authority
JP
Japan
Prior art keywords
group
carbon atoms
general formula
represented
metal powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012169927A
Other languages
Japanese (ja)
Other versions
JP5878092B2 (en
Inventor
Yuko Mizuno
雄幸 水野
Yasushi Adachi
恭史 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adeka Corp
Adeka Chemical Supply Corp
Original Assignee
Adeka Corp
Adeka Chemical Supply Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adeka Corp, Adeka Chemical Supply Corp filed Critical Adeka Corp
Priority to JP2012169927A priority Critical patent/JP5878092B2/en
Publication of JP2014028894A publication Critical patent/JP2014028894A/en
Application granted granted Critical
Publication of JP5878092B2 publication Critical patent/JP5878092B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lubricants (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lubricant composition for metal powder metallurgy, which is a cold internal lubricant added to metal powder and enables a molded part to be easily released from a metal mold even at high pressure in molding by metallurgy.SOLUTION: The lubricant composition for metal powder metallurgy contains: a fatty acid amide represented by the following general formula (1), where Rrepresents a C15-C19 alkyl group or alkenyl group); an N,N'-alkylene bis fatty acid amide represented by the following general formula (2), where Rand Reach represent a C15-C19 alkyl group or alkenyl group and Rrepresents a C1-C6 alkylene group; and a fatty acid glyceride.

Description

本発明は、金属粉末を圧縮成型する冶金工程において、高い圧縮力で圧縮した場合でも容易に金型から成型品を抜き出すことができる高い潤滑性を持つ金属粉末冶金用潤滑剤組成物に関する。   TECHNICAL FIELD The present invention relates to a lubricant composition for metal powder metallurgy having high lubricity that can easily extract a molded product from a mold even when the metal powder is compressed with a high compressive force in a metallurgical process for compression molding metal powder.

金属粉末を金型に入れ、プレス機にて圧縮成型して部品を得る冶金では、金型から部品をスムーズに取り外すため金属石鹸や脂肪酸アミド等の潤滑剤が使用されている。これらの潤滑剤は、通常、金属粉末と均一に混合された後、700MPa程度の圧力で圧縮成型する冷間内添型の潤滑剤であるが、これ以上の高圧力で成型すると金型から部品がスムーズに取り外せない問題が生じてしまう。しかしながら市場からは高密度部品の要求が高く、800MPa程度の高圧力で連続して圧縮成型することが求められていた。   In metallurgy, in which metal powder is put into a mold and a part is obtained by compression molding with a press machine, a lubricant such as metal soap or fatty acid amide is used to smoothly remove the part from the mold. These lubricants are usually cold-added type lubricants that are uniformly mixed with metal powder and then compression-molded at a pressure of about 700 MPa. Will cause problems that cannot be removed smoothly. However, the market demands high-density parts, and there has been a demand for continuous compression molding at a high pressure of about 800 MPa.

高圧力で圧縮形成すると、金型から部品をスムーズに取り外せない問題が生じる。そのため、金型から部品をスムーズに取り外せるように潤滑性を高める必要がある。そうした方法として、金型に直接潤滑剤を塗布等する方法が知られている(例えば、特許文献1〜3を参照)。しかし金型に直接潤滑剤を塗布する方法は、金型や金属粉末を加熱して成型しなければならないため光熱費等の費用がかかり、塗布時間や加熱時間も必要になるため経済的に好ましくない。更に、潤滑剤を塗布するための専用設備も必要になることから、冷間内添型の潤滑剤で高圧力に対応できる潤滑性が求められていた。   When compression is formed at a high pressure, there arises a problem that the parts cannot be removed smoothly from the mold. Therefore, it is necessary to improve lubricity so that components can be removed smoothly from the mold. As such a method, a method of directly applying a lubricant to a mold is known (see, for example, Patent Documents 1 to 3). However, the method of directly applying the lubricant to the mold is economically preferable because the mold and the metal powder must be heated and molded, and thus there is a cost such as utility costs, and the application time and heating time are also required. Absent. Furthermore, since a dedicated facility for applying the lubricant is also required, a lubricity that can cope with a high pressure with a cold internal type lubricant has been demanded.

また、特許文献4では、融点の異なる2種類の潤滑剤を高温下で混合し、急速に冷却して得られる準安定な潤滑複合剤が開示されている。しかしながら、このような2種類の潤滑剤では潤滑剤としての効果が不十分である。   Patent Document 4 discloses a metastable lubricating composite obtained by mixing two types of lubricants having different melting points at high temperatures and rapidly cooling them. However, such two types of lubricants are not sufficient as a lubricant.

特開2000−144206号公報JP 2000-144206 A 特開2000−199002号公報JP 2000-199002 A 特開2005−256073号公報JP 2005-256073 A 特許4758045号公報Japanese Patent No. 4758045

従って、本発明が解決しようとする課題は、金属粉末に添加する冷間内添型の潤滑剤であって、冶金による成型において、高圧力でも金型から容易に成型部品を取り出せることのできる金属粉末冶金用潤滑剤組成物および該組成物の製造方法を提供することにある。   Accordingly, the problem to be solved by the present invention is a cold internal type lubricant added to metal powder, which can be easily taken out from the mold even at high pressure in metallurgical molding. The object is to provide a lubricant composition for powder metallurgy and a method for producing the composition.

そこで本発明者等は鋭意検討し高圧力でも良好な潤滑性を持つ内添型の金属粉末冶金用潤滑剤組成物を見出し、本発明に至った。即ち、本発明は、下記の一般式(1)で表される脂肪酸アミド(A)、下記の一般式(2)で表されるN,N’−アルキレンビス脂肪酸アミド(B)及び下記の一般式(3)で表される脂肪酸グリセリド(C)を含有することを特徴とする金属粉末冶金用の潤滑剤組成物である。   Thus, the present inventors diligently studied and found an internally added type lubricant composition for metal powder metallurgy having good lubricity even under high pressure, and led to the present invention. That is, the present invention includes a fatty acid amide (A) represented by the following general formula (1), an N, N′-alkylenebis fatty acid amide (B) represented by the following general formula (2), and the following general formula: It is a lubricant composition for metal powder metallurgy characterized by containing the fatty acid glyceride (C) represented by Formula (3).

Figure 2014028894
Figure 2014028894

(式中、Rは炭素数15〜19のアルキル基又はアルケニル基を表す。) (In the formula, R 1 represents an alkyl group or an alkenyl group having 15 to 19 carbon atoms.)

Figure 2014028894
Figure 2014028894

(式中、R及びRはそれぞれ炭素数15〜19のアルキル基又はアルケニル基を表し、Rは炭素数1〜6のアルキレン基を表す。) (In the formula, R 2 and R 3 each represent an alkyl group or an alkenyl group having 15 to 19 carbon atoms, and R 4 represents an alkylene group having 1 to 6 carbon atoms.)

Figure 2014028894
Figure 2014028894

(式中、R〜Rは、それぞれ独立して水素原子または一般式(4)で表される基を表す。ただし、R〜Rのいずれか1つ以上は一般式(4)で表される基でなければならない。) (In the formula, R 5 to R 7 each independently represent a hydrogen atom or a group represented by the general formula (4). However, any one or more of R 5 to R 7 are represented by the general formula (4). It must be a group represented by

Figure 2014028894
Figure 2014028894

(式中、Rは炭素数11〜23のアルキル基、炭素数11〜23のアルケニル基、炭素数11〜23のヒドロキシアルキル基及び炭素数11〜23のヒドロキシアルケニル基の群から選択されるいずれかの基を表す。) Wherein R 8 is selected from the group consisting of an alkyl group having 11 to 23 carbon atoms, an alkenyl group having 11 to 23 carbon atoms, a hydroxyalkyl group having 11 to 23 carbon atoms, and a hydroxyalkenyl group having 11 to 23 carbon atoms. Represents any group.)

さらに、本発明は、上記の脂肪酸アミド(A)、N,N’−アルキレンビス脂肪酸アミド(B)及び脂肪酸グリセリド(C)を含む混合物を、該混合物が融解する温度(融点)以上に加熱して液体の形態にして、これをスプレー噴霧する工程を含む、金属粉末冶金用潤滑剤組成物の製造方法も提供する。   Furthermore, this invention heats the mixture containing said fatty acid amide (A), N, N'-alkylenebis fatty acid amide (B), and fatty acid glyceride (C) more than the temperature (melting | fusing point) at which this mixture melts. There is also provided a method for producing a lubricant composition for metal powder metallurgy, which comprises a step of spraying the liquid into a liquid form.

本発明の効果は、金属粉末に添加する冷間内添型の潤滑剤であって、冶金による成型において、高圧力でも金型から容易に成型部品を取り出せることのできる金属粉末冶金用潤滑剤組成物を提供したことにある。   The effect of the present invention is a cold-added type lubricant to be added to metal powder, and in metallurgy molding, a metal powder metallurgical lubricant composition that allows a molded part to be easily taken out from a mold even at high pressure. It is in providing the thing.

実施例7のX線結晶構造解析の結果を示す図である。6 is a diagram showing the results of X-ray crystal structure analysis of Example 7. FIG. 実施例13のX線結晶構造解析の結果を示す図である。It is a figure which shows the result of the X-ray crystal structure analysis of Example 13. 実施例7の示差走査熱量測定の結果を示す図である。It is a figure which shows the result of the differential scanning calorimetry of Example 7. 実施例13の示差走査熱量測定の結果を示す図である。It is a figure which shows the result of the differential scanning calorimetry of Example 13.

本発明の金属粉末冶金用潤滑剤組成物の1成分である脂肪酸アミド(A)は、下記の一般式(1)で表される。   The fatty acid amide (A) which is one component of the lubricant composition for metal powder metallurgy of the present invention is represented by the following general formula (1).

Figure 2014028894
Figure 2014028894

(式中、Rは炭素数15〜19のアルキル基又はアルケニル基を表す。) (In the formula, R 1 represents an alkyl group or an alkenyl group having 15 to 19 carbon atoms.)

一般式(1)のRは、炭素数15〜19のアルキル基又はアルケニル基を表す。こうした基としては、例えば、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イソペンタデシル基、イソヘキサデシル基、イソヘプタデシル基、イソオクタデシル基、イソノナデシル基等のアルキル基;ペンタデセニル基、ヘキサデセニル基、ヘプタデセニル基、オクタデセニル基、ノナデセニル基、イソペンタデセニル基、イソヘキサデセニル基、イソヘプタデセニル基、イソオクタデセニル基、イソノナデセニル基等のアルケニル基が挙げられる。これらの中でも潤滑性が高いことからアルキル基が好ましい。なお、脂肪酸アミド(A)として一般的に入手できるものとしては、例えば、パルミチン酸アミド、ステアリン酸アミド、オレイン酸アミド等が挙げられる。 R 1 in the general formula (1) represents an alkyl group or an alkenyl group having 15 to 19 carbon atoms. Examples of such groups include pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, isopentadecyl group, isohexadecyl group, isoheptadecyl group, isooctadecyl group, isononadecyl group and other alkyl groups; pentadecenyl group, hexadecenyl group Alkenyl groups such as a group, a heptadecenyl group, an octadecenyl group, a nonadecenyl group, an isopentadecenyl group, an isohexadecenyl group, an isoheptadecenyl group, an isooctadecenyl group, and an isononadecenyl group. Of these, alkyl groups are preferred because of their high lubricity. Examples of the fatty acid amide (A) that is generally available include palmitic acid amide, stearic acid amide, and oleic acid amide.

本発明の金属粉末冶金用の潤滑剤組成物の1成分であるN,N’−アルキレンビス脂肪酸アミド(B)は、下記の一般式(2)で表される。   N, N′-alkylenebisfatty acid amide (B), which is one component of the lubricant composition for metal powder metallurgy of the present invention, is represented by the following general formula (2).

Figure 2014028894
Figure 2014028894

(式中、R及びRはそれぞれ炭素数15〜19のアルキル基又はアルケニル基を表し、Rは炭素数2〜6のアルキレン基を表す。) (In the formula, R 2 and R 3 each represent an alkyl group or an alkenyl group having 15 to 19 carbon atoms, and R 4 represents an alkylene group having 2 to 6 carbon atoms.)

一般式(2)のR及びRは、炭素数15〜19のアルキル基又はアルケニル基を表す。こうした基としては、例えば、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イソペンタデシル基、イソヘキサデシル基、イソヘプタデシル基、イソオクタデシル基、イソノナデシル基等のアルキル基;ペンタデセニル基、ヘキサデセニル基、ヘプタデセニル基、オクタデセニル基、ノナデセニル基、イソペンタデセニル基、イソヘキサデセニル基、イソヘプタデセニル基、イソオクタデセニル基、イソノナデセニル基等のアルケニル基が挙げられる。これらの中でも潤滑性が高いことからアルキル基が好ましい。R及びRは同一でも異なっていてもよいが、同一であることが好ましい。製法としては、例えば、エチレンジアミンとオレイン酸やステアリン酸あるいはこうした脂肪酸の混合物等とを、既存の方法でアミド化反応すればよい。 R 2 and R 3 in the general formula (2) represent an alkyl group or an alkenyl group having 15 to 19 carbon atoms. Examples of such groups include pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, isopentadecyl group, isohexadecyl group, isoheptadecyl group, isooctadecyl group, isononadecyl group and other alkyl groups; pentadecenyl group, hexadecenyl group Alkenyl groups such as a group, a heptadecenyl group, an octadecenyl group, a nonadecenyl group, an isopentadecenyl group, an isohexadecenyl group, an isoheptadecenyl group, an isooctadecenyl group, and an isononadecenyl group. Of these, alkyl groups are preferred because of their high lubricity. R 2 and R 3 may be the same or different, but are preferably the same. As a production method, for example, ethylenediamine and oleic acid, stearic acid, or a mixture of these fatty acids may be amidated by an existing method.

一般式(2)のRは1〜6のアルキレン基を表す。こうした基としては、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ターシャリブチレン基、ペンチレン基、ヘキシレン基等が挙げられる。これらの中でも、原料事情がよく安価に入手できることからRはエチレン基であることが好ましい。 R 4 in the general formula (2) represents an alkylene group of 1 to 6. Examples of such groups include a methylene group, an ethylene group, a propylene group, a butylene group, a tertiary butylene group, a pentylene group, and a hexylene group. Among these, R 4 is preferably an ethylene group because the raw material conditions are good and it can be obtained at low cost.

本発明の金属粉末冶金用潤滑剤組成物の1成分である脂肪酸グリセリド(C)は、下記の一般式(3)で表される。   The fatty acid glyceride (C) which is one component of the lubricant composition for metal powder metallurgy of the present invention is represented by the following general formula (3).

Figure 2014028894
Figure 2014028894

(式中、R〜Rは、それぞれ独立して水素原子または一般式(4)で表される基を表す。ただし、R〜Rのいずれか1つ以上は一般式(4)で表される基でなければならない。) (In the formula, R 5 to R 7 each independently represent a hydrogen atom or a group represented by the general formula (4). However, any one or more of R 5 to R 7 are represented by the general formula (4). It must be a group represented by

Figure 2014028894
Figure 2014028894

(式中、Rは炭素数11〜23のアルキル基、炭素数11〜23のアルケニル基、炭素数11〜23のヒドロキシアルキル基及び炭素数11〜23のヒドロキシアルケニル基の群から選択されるいずれかの基を表す。) Wherein R 8 is selected from the group consisting of an alkyl group having 11 to 23 carbon atoms, an alkenyl group having 11 to 23 carbon atoms, a hydroxyalkyl group having 11 to 23 carbon atoms, and a hydroxyalkenyl group having 11 to 23 carbon atoms. Represents any group.)

一般式(3)のR〜Rは、それぞれ独立して水素原子または一般式(4)で表される基を表すが、すべてが水素原子になることはなく、いずれか1つ以上は一式(4)で表される基となる。具体的には、一般式(4)で表される基が1つ入るとモノグリセリドとなり、2つ入るとジグリセリドとなり、3つ入るとトリグリセリドとなる。 R 5 to R 7 in the general formula (3) each independently represent a hydrogen atom or a group represented by the general formula (4), but not all become a hydrogen atom, and at least one of them is This is a group represented by Formula (4). Specifically, when one group represented by the general formula (4) is contained, it becomes a monoglyceride, when two groups are contained, it becomes a diglyceride, and when three groups are contained, it becomes a triglyceride.

一般式(4)のRは炭素数11〜23のアルキル基、炭素数11〜23のアルケニル基、炭素数11〜23のヒドロキシアルキル基及び炭素数11〜23のヒドロキシアルケニル基の群から選択されるいずれかの基を表す。炭素数11〜23のアルキル基としては、例えば、ウンデシル基、イソウンデシル基、ドデシル基、イソドデシル基、トリデシル基、イソトリデシル基、テトラデシル基、イソテトラデシル基、ペンタデシル基、イソペンタデシル基、ヘキサデシル基、イソヘキサデシル基、ヘプタデシル基、イソヘプタデシル基、オクタデシル基、イソオクタデシル基、ノナデシル基、イソノナデシル基、エイコシル基、イソエイコシル基、ヘンエイコシル基、イソヘンエイコシル基、ドコシル基、イソドコシル基、トリエイコシル基、イソトリエイコシル基等が挙げられる。 R 8 in the general formula (4) is selected from the group consisting of an alkyl group having 11 to 23 carbon atoms, an alkenyl group having 11 to 23 carbon atoms, a hydroxyalkyl group having 11 to 23 carbon atoms, and a hydroxyalkenyl group having 11 to 23 carbon atoms. Represents any group of Examples of the alkyl group having 11 to 23 carbon atoms include undecyl group, isoundecyl group, dodecyl group, isododecyl group, tridecyl group, isotridecyl group, tetradecyl group, isotetradecyl group, pentadecyl group, isopentadecyl group, hexadecyl group, Isohexadecyl group, heptadecyl group, isoheptadecyl group, octadecyl group, isooctadecyl group, nonadecyl group, isononadecyl group, eicosyl group, isoeicosyl group, heneicosyl group, isoheneicosyl group, docosyl group, isodocosyl group, trieicosyl group, isotricyl group Examples include an eicosyl group.

炭素数11〜23のアルケニル基としては、例えば、ウンデセニル基、イソウンデセニル基、ドデセニル基、イソドデセニル基、トリデセニル基、イソトリデセニル基、テトラデセニル基、イソテトラデセニル基、ペンタデセニル基、イソペンタデセニル基、ヘキサデセニル基、イソヘキサデセニル基、ヘプタデセニル基、イソヘプタデセニル基、オクタデセニル基、イソオクタデセニル基、ノナデセニル基、イソノナデセニル基、エイコセニル基、イソエイコセニル基、ヘンエイコセニル基、イソヘンエイコセニル基、ドコセニル基、イソドコセニル基、トリエイコセニル基、イソトリエイコセニル基等が挙げられる。   Examples of the alkenyl group having 11 to 23 carbon atoms include an undecenyl group, an isoundecenyl group, a dodecenyl group, an isododecenyl group, a tridecenyl group, an isotridecenyl group, a tetradecenyl group, an isotetradecenyl group, a pentadecenyl group, and an isopentadecenyl group. Hexadecenyl group, Isohexadecenyl group, Heptadecenyl group, Isoheptadecenyl group, Octadecenyl group, Isooctadecenyl group, Nonadecenyl group, Isononadecenyl group, Eicocenyl group, Isoeicosenyl group, Heneicosenyl group, Isohenecocenyl group Nyl group, dococenyl group, isodococenyl group, trieicocenyl group, isotrieicocenyl group and the like can be mentioned.

炭素数11〜23のヒドロキシアルキル基としては、例えば、アルキル基として上記に挙げたいずれかの基の水素原子を水酸基に置換したもの等が挙げられる。また、炭素数11〜23のヒドロキシアルケニル基としては、例えば、アルケニル基として上記に挙げたいずれかの基の水素原子を水酸基に置換したもの等が挙げられる。   As a C1-C23 hydroxyalkyl group, what substituted the hydrogen atom of the group mentioned above as an alkyl group by the hydroxyl group etc. are mentioned, for example. Moreover, as a C1-C23 hydroxyalkenyl group, what substituted the hydrogen atom of the group mentioned above as an alkenyl group by the hydroxyl group etc. are mentioned, for example.

〜Rの3つの基がすべて一般式(4)で表される基の場合、一般式(3)はトリグリセリドになる。トリグリセリドは油脂として知られているが、本発明に使用するものは天然油脂でも合成油脂でもかまわない。天然油脂としては、例えば、アマニ油、オリーブ油、カカオ脂、ゴマ油、コメヌカ油、サフラワー油、大豆油、ツバキ油、コーン油、ナタネ油、パーム油、パーム核油、ひまし油、ひまわり油、綿実油、ヤシ油等の植物性油脂、牛脂、豚脂、ラノリン、乳脂、魚油、鯨油等の動物性油脂が挙げられる。合成油脂としては、例えば、種類の異なる天然油脂同士でのエステル交換や、天然油脂と任意の脂肪酸とのエステル交換によって得られるものが挙げられる。 When all three groups of R 5 to R 7 are groups represented by the general formula (4), the general formula (3) becomes a triglyceride. Triglycerides are known as fats and oils, but those used in the present invention may be natural fats or synthetic fats. Examples of natural fats and oils include linseed oil, olive oil, cacao butter, sesame oil, rice bran oil, safflower oil, soybean oil, camellia oil, corn oil, rapeseed oil, palm oil, palm kernel oil, castor oil, sunflower oil, cottonseed oil, Examples include vegetable oils such as coconut oil, animal fats such as beef tallow, pork tallow, lanolin, milk fat, fish oil, and whale oil. Examples of the synthetic fats and oils include those obtained by transesterification between different types of natural fats and oils and transesterification between natural fats and oils and arbitrary fatty acids.

〜Rの3つの基のうち、2つが一般式(4)で表される基で残りの1つが水素原子の場合、一般式(3)はジグリセリドになる。ジグリセリドとしては、例えば、上記に挙げたいずれかの油脂のアシル基を1つだけ水素原子に変えたものが挙げられる。
〜Rの3つの基のうち、1つが一般式(4)で表される基で残りの2つが水素原子の場合、一般式(3)はモノグリセリドになる。モノグリセリドとしては、例えば、上記に挙げたいずれかの油脂のアシル基2つを水素原子に変えたものが挙げられる。
Of the three groups of R 5 to R 7 , when two are groups represented by the general formula (4) and the remaining one is a hydrogen atom, the general formula (3) becomes a diglyceride. Examples of diglycerides include those obtained by changing only one acyl group of any of the oils listed above to hydrogen atoms.
When one of the three groups of R 5 to R 7 is a group represented by the general formula (4) and the remaining two are hydrogen atoms, the general formula (3) becomes a monoglyceride. Examples of monoglycerides include those obtained by changing two acyl groups of any of the oils listed above to hydrogen atoms.

これらの中でも、特に潤滑性が良好で成型密度を上げることができることから、水酸基を持つものが好ましい。具体的には、Rがヒドロキシアルキル基あるいはヒドロキシアルケニル基を含有する脂肪酸トリグリセリド、ジグリセリド及びモノグリセリドである。ジグリセリドは分子中に1つの水酸基を持ち、モノグリセリドは2つの水酸基を持ち、ヒドロキシアルキル基等を持つトリグリセリドは分子中に3つの水酸基を持つことから、ヒドロキシアルキル基等を持つトリグリセリドがより好ましい。なお水酸基を持つトリグリセリドとしては、天然油脂の中ではひまし油やラノリンを挙げることができる。 Among these, those having a hydroxyl group are preferable because the lubricity is particularly good and the molding density can be increased. Specifically, R 8 is a fatty acid triglyceride, diglyceride or monoglyceride containing a hydroxyalkyl group or a hydroxyalkenyl group. A diglyceride has one hydroxyl group in the molecule, a monoglyceride has two hydroxyl groups, and a triglyceride having a hydroxyalkyl group or the like has three hydroxyl groups in the molecule. Therefore, a triglyceride having a hydroxyalkyl group or the like is more preferable. Examples of triglycerides having a hydroxyl group include castor oil and lanolin among natural fats and oils.

脂肪酸アミド(A)、N,N’−アルキレンビス脂肪酸アミド(B)及び脂肪酸グリセリド(C)の配合量は特に規定されないが、潤滑性が良好になることから(A)/(B)=1/9〜9/1(質量比)であることが好ましく、(A)/(B)=3/7〜7/3(質量比)がより好ましい。また(C)成分は、(A)、(B)及び(C)の合計量に対して0.5〜10質量%であることが好ましく、1〜5質量%がより好ましい。0.5質量%未満になると冶金における高圧力での成型ができない場合があり、10質量%を超えると二次凝集が生じ焼結部品の密度が不均一となる恐れがある。   The blending amounts of the fatty acid amide (A), the N, N′-alkylenebis fatty acid amide (B) and the fatty acid glyceride (C) are not particularly specified, but (A) / (B) = 1 because the lubricity becomes good. / 9 to 9/1 (mass ratio) is preferable, and (A) / (B) = 3/7 to 7/3 (mass ratio) is more preferable. Moreover, it is preferable that (C) component is 0.5-10 mass% with respect to the total amount of (A), (B), and (C), and 1-5 mass% is more preferable. If it is less than 0.5% by mass, molding at high pressure in metallurgy may not be possible, and if it exceeds 10% by mass, secondary agglomeration may occur and the density of the sintered part may be non-uniform.

本発明の金属粉末冶金用の潤滑剤組成物は、(A)、(B)及び(C)の各成分を必須成分として含有する。これらの混合形態に規定はないが、潤滑性を最大限に引き出すために、上記3成分を均一に混合することが好ましい。均一に混合するためには、各成分の融点以上、例えば、150〜180℃程度の温度で全ての成分を溶解して均一に混合した後、常温に戻して固化させればよい。3成分を均一に混合した後の形態は、その後金属粉末と混合することから粉末状であることが好ましい。粉末状にするための方法は特に指定はなく、粉砕機による粉砕やスプレー噴霧等で粉末を得る方法が挙げられる。また、当該微粉末の形状は球状であることが好ましい。微粉末を球状にしての流動性を高めることで、微粒子のケーキングの予防や金属粉との混合性を高める効果があるからである。また、粒子径分布が狭い、均一な球状の粉末が得られる点でスプレー噴霧により製造することが好ましい。   The lubricant composition for metal powder metallurgy of the present invention contains the components (A), (B) and (C) as essential components. Although there is no regulation in these mixing forms, it is preferable to uniformly mix the three components in order to maximize the lubricity. In order to mix uniformly, after melt | dissolving and mixing all the components at the temperature more than melting | fusing point of each component, for example, about 150-180 degreeC, it should just make it return to normal temperature and solidify. The form after uniformly mixing the three components is preferably in the form of a powder because it is then mixed with the metal powder. The method for making the powder is not particularly specified, and examples thereof include a method of obtaining a powder by pulverization using a pulverizer, spray spraying, or the like. Moreover, it is preferable that the shape of the said fine powder is spherical. This is because by increasing the fluidity of the fine powder in a spherical shape, there is an effect of preventing the caking of the fine particles and improving the mixing property with the metal powder. Moreover, it is preferable to manufacture by spray spraying at the point from which uniform spherical powder with a narrow particle diameter distribution is obtained.

常温に戻して固化する際、急冷すると潤滑剤組成物が完全な結晶化に達せず、不安定な状態で安定するいわゆる準安定状態で固化する場合がある。この準安定状態で固化した相は準安定相(α相)と呼ばれるが、準安定相を含む潤滑剤組成物は、ゆっくり冷却することで得られる完全に結晶化した安定な相(β相)と比較して、金属圧粉体の成型密度が上がらない場合がある。よって溶融した潤滑剤組成物を冷却して固化する際は、急冷せずにゆっくり冷却することが好ましい。具体的には、溶融した潤滑剤組成物をスプレー噴霧等で粉末にする場合であれば、雰囲気温度を40℃以上で且つ上記3成分の混合物の融点未満(例えば、45℃〜100℃)にした槽の中に噴霧し、その後放置して室温と同じ温度まで下げることが好ましく(自然冷却)、20〜40℃のもとで1時間放置することが更に好ましい。なお、冷却方法にかかわらず、好ましい本発明の潤滑剤組成物は、得られる潤滑油組成物が完全に結晶化しているものである。得られる固化物に準安定相が含まれるかどうかは、X線結晶構造解析や示差走査熱量測定によって判断することができる。   When solidifying by returning to room temperature, the lubricant composition may not completely crystallize when rapidly cooled, and may solidify in a so-called metastable state in which it is stable in an unstable state. The phase solidified in this metastable state is called a metastable phase (α phase), but a lubricant composition containing a metastable phase is a completely crystallized stable phase (β phase) obtained by slow cooling. Compared with, there are cases where the molding density of the metal green compact does not increase. Therefore, when the molten lubricant composition is cooled and solidified, it is preferable to cool slowly without quenching. Specifically, if the molten lubricant composition is made into a powder by spraying or the like, the atmospheric temperature is 40 ° C. or higher and less than the melting point of the mixture of the above three components (for example, 45 ° C. to 100 ° C.). It is preferable to spray in the tank, and then let it stand and lower to the same temperature as room temperature (natural cooling), and more preferably leave it at 20 to 40 ° C. for 1 hour. Regardless of the cooling method, the preferred lubricant composition of the present invention is such that the resulting lubricating oil composition is completely crystallized. Whether the resulting solidified product contains a metastable phase can be determined by X-ray crystal structure analysis or differential scanning calorimetry.

更に微粉末の粒径はメディアン径で5〜100μmであることが好ましく、10〜30μmであることがより好ましい。5μm未満の粒径のものを得るには多大な労力を必要とし、100μmを超えると金属圧粉体の成形密度が上がらない場合がある。   Further, the particle diameter of the fine powder is preferably 5 to 100 μm, more preferably 10 to 30 μm in terms of median diameter. A large amount of labor is required to obtain a particle size of less than 5 μm, and if it exceeds 100 μm, the molding density of the metal green compact may not increase.

本発明の金属粉末冶金用潤滑剤は金属粉末と混合して使用する。使用できる金属粉末は特に限定されず、冶金用に用いられる公知の金属粉末を使用すればよい。こうした金属粉末としては、例えば、鉄、銅、チタン、タングステン、モリブデン、ニッケル、クロム等の金属粉末ほかに、鉄−ニッケル合金、鉄−コバルト合金、鉄−モリブデン合金、鉄−珪素合金、鉄−ニッケル−銅−モリブデン合金、鉄−クロム−ニッケル−モリブデン合金等の金属粉末が挙げられる。   The lubricant for metal powder metallurgy of the present invention is used by mixing with metal powder. The metal powder that can be used is not particularly limited, and a known metal powder used for metallurgy may be used. Examples of such metal powders include, in addition to metal powders such as iron, copper, titanium, tungsten, molybdenum, nickel, and chromium, iron-nickel alloys, iron-cobalt alloys, iron-molybdenum alloys, iron-silicon alloys, iron- Examples thereof include metal powders such as nickel-copper-molybdenum alloys and iron-chromium-nickel-molybdenum alloys.

本発明の金属粉末組成物における本発明の金属粉末冶金用潤滑剤の使用量は特に限定されないが、上記(A)成分の添加量が、金属粉末に対して好ましくは0.001〜10質量%、より好ましくは0.01〜5質量%、更に好ましくは0.1〜2質量%となる量であればよい。0.001質量%未満であると効果が得られない場合があり、10質量%を超えると流動度や見掛密度、あるいは金属圧粉体の成形密度が下がってしまう等悪影響を及ぼす場合がある。   Although the usage-amount of the lubricant for metal powder metallurgy of this invention in the metal powder composition of this invention is not specifically limited, The addition amount of the said (A) component is preferably 0.001-10 mass% with respect to metal powder. More preferably, the amount may be 0.01 to 5% by mass, and more preferably 0.1 to 2% by mass. If the amount is less than 0.001% by mass, the effect may not be obtained. If the amount exceeds 10% by mass, the fluidity, the apparent density, or the molding density of the metal green compact may be adversely affected. .

本発明の金属粉末組成物は、金属粉末冶金用潤滑剤に使用できる公知の添加剤の添加を拒むものではなく、使用目的に応じて、例えば、グラファイト、ポリエチレンワックス、熱可塑性エラストマ、ポリアミド、熱硬化性樹脂などの高分子材料、パラフィン、カルナバワックス、モンタンワックス、ペンタエリスリトール脂肪酸エステル、エチレングリコール脂肪酸エステルなどの合成エステル、ポリエーテル等を添加することができる。   The metal powder composition of the present invention does not refuse the addition of known additives that can be used in lubricants for metal powder metallurgy, and for example, graphite, polyethylene wax, thermoplastic elastomer, polyamide, heat, depending on the purpose of use. Polymer materials such as curable resins, synthetic esters such as paraffin, carnauba wax, montan wax, pentaerythritol fatty acid ester, ethylene glycol fatty acid ester, polyether, and the like can be added.

以下本発明を実施例により、具体的に説明する。尚、以下の実施例等において%は特に記載が無い限り質量基準である。   Hereinafter, the present invention will be specifically described by way of examples. In the following examples and the like,% is based on mass unless otherwise specified.

<潤滑剤の製造>
実施例1〜12及び比較例1〜13の各サンプルを160℃で溶融混合後、50℃の雰囲気に調整した空冷槽内にスプレー噴霧機を用いて圧縮空気圧0.25MPaで噴霧した。噴霧終了後、空冷槽の保温のための加熱をやめ、放置して室温まで冷却した。冷却後、166メッシュ(目開き90μm)の分級網を用いて大きな粒子を除去したあとに得られた粒子を試験に用いた。なお、実施例13は、空冷槽内の雰囲気を28℃に調整して噴霧後の粒子を急速冷却させた以外は、上記と同じ方法で試験用の潤滑剤を作成した。
<Manufacture of lubricant>
Each sample of Examples 1-12 and Comparative Examples 1-13 was melt-mixed at 160 ° C. and then sprayed at a compressed air pressure of 0.25 MPa using a spray sprayer in an air-cooled tank adjusted to an atmosphere of 50 ° C. After spraying, heating for keeping the air-cooled tank was stopped and the mixture was left to cool to room temperature. After cooling, particles obtained after removing large particles using a 166 mesh (mesh size: 90 μm) classification screen were used for the test. In Example 13, a test lubricant was prepared in the same manner as described above except that the atmosphere in the air-cooled tank was adjusted to 28 ° C. and the particles after spraying were rapidly cooled.

<試験方法>
酸化されていないアトマイズ純鉄粉486g、電解銅粉10g、グラファイト粉末4gの合計500gをガラス製V型混合機に投入し、下記の表1に示した潤滑剤を上記混合粉末金属粉末に対して0.8%添加し、混合機の回転速度を25〜30rpmに設定して15分間混合した。その後、圧縮性試験は日本粉末冶金工業会で定められたJPMA−P−13−1992「金属圧粉体の抜出力測定方法」に準拠し、圧粉試験用標準金型(内径φ:11.285mm、有効長:60mm)を用いた。具体的には、調製した混合粉末を7.0g精秤し、これを上記圧粉試験用金型のキャビティーに流し込み、上下パンチで挟み込んで成形荷重800MPaで圧縮し、上パンチのみ抜き取り円筒キャップをかぶせて抜出し圧を測定した。成形体の直径及び高さをノギスで測定して曲面の面積を求め、成形密度と単位面積あたりの応力、すなわち抜出し圧を求めて比較した。なお、成型密度の値は高いほどよく、抜出し圧の値は低いほどよい。
<Test method>
A total of 500 g of 486 g of unoxidized atomized pure iron powder, 10 g of electrolytic copper powder and 4 g of graphite powder was put into a glass V-type mixer, and the lubricant shown in Table 1 below was applied to the mixed powder metal powder. 0.8% was added, and the rotation speed of the mixer was set to 25 to 30 rpm and mixed for 15 minutes. Thereafter, the compressibility test was performed in accordance with JPMA-P-13-1992 “Method for measuring the output power of metal green compact” defined by the Japan Powder Metallurgy Industry Association. 285 mm, effective length: 60 mm). Specifically, 7.0 g of the prepared mixed powder is precisely weighed, poured into the cavity of the above compaction test mold, sandwiched by upper and lower punches, compressed with a molding load of 800 MPa, and only the upper punch is extracted and a cylindrical cap And the extraction pressure was measured. The diameter and height of the compact were measured with calipers to determine the area of the curved surface, and the molding density and stress per unit area, that is, the extraction pressure, were determined and compared. The higher the molding density value, the better, and the lower the extraction pressure value.

<冷却方法による結晶構造の差>
同じ組成であるが製造方法が異なる実施例7と実施例13の潤滑剤について、その結晶構造を確認するために、X線結晶構造解析と示差走査熱量測定を行った。測定に使用した機器は以下の通りである。それぞれの測定結果を図1〜図4に示す。
X線解析装置(XRD):Multi Flex(株式会社リガク社製)
示差走査熱量計(DSC):DSC6200(セイコーインスツル株式会社製)
<Difference in crystal structure by cooling method>
In order to confirm the crystal structure of the lubricants of Examples 7 and 13 having the same composition but different manufacturing methods, X-ray crystal structure analysis and differential scanning calorimetry were performed. The equipment used for the measurement is as follows. Each measurement result is shown in FIGS.
X-ray analyzer (XRD): Multi Flex (manufactured by Rigaku Corporation)
Differential scanning calorimeter (DSC): DSC6200 (manufactured by Seiko Instruments Inc.)

<使用サンプル>
A−1:オレイン酸アミド
A−2:パルミチン酸アミド
A−3:ステアリン酸アミド
B−1:N,N’−エチレンビス(オレイン酸アミド)
B−2:N,N’−エチレンビス(ステアリン酸アミド)
B−3:N,N’−プロピレンビス(ステアリン酸アミド)
C−1:菜種油(パルミチン酸3%、ステアリン酸1%、オレイン酸24%、リノール酸15%、リノレン酸7%、ガドレイン酸12%、エルカ酸35%、その他3%)
C−2:大豆油(パルミチン酸11%、ステアリン酸4%、オレイン酸23%、リノール酸53%、リノレン酸8%、その他1%)
C−3:ひまし油(ステアリン酸1%、オレイン酸3%、リノール酸4%、リシノレイン酸90%、その他2%)
C−4:牛脂(ミリスチン酸3%、パルミチン酸26%、パルミトレイン酸3%、ステアリン酸22%、オレイン酸39%、リノール酸2%、その他5%)
C−5:オレイン酸モノグリセリド(一般式(3)においてR及びRは水素原子、Rはオレイン酸残基)
C−6:ジオレイン酸モノグリセリド(一般式(3)においてRは水素原子、R及びRはオレイン酸残基)
C−7:ポリエチレンワックス(重量平均分子量8000)
C−8:ポリエチレングリコール(重量平均分子量11000)
C−9:グリセリン
C−10:エチレングリコールジオレート
<Sample used>
A-1: oleic acid amide A-2: palmitic acid amide A-3: stearic acid amide B-1: N, N′-ethylenebis (oleic acid amide)
B-2: N, N′-ethylenebis (stearic acid amide)
B-3: N, N′-propylenebis (stearic acid amide)
C-1: Colza oil (palmitic acid 3%, stearic acid 1%, oleic acid 24%, linoleic acid 15%, linolenic acid 7%, gadoleic acid 12%, erucic acid 35%, other 3%)
C-2: soybean oil (palmitic acid 11%, stearic acid 4%, oleic acid 23%, linoleic acid 53%, linolenic acid 8%, others 1%)
C-3: Castor oil (stearic acid 1%, oleic acid 3%, linoleic acid 4%, ricinoleic acid 90%, other 2%)
C-4: Beef tallow (myristic acid 3%, palmitic acid 26%, palmitoleic acid 3%, stearic acid 22%, oleic acid 39%, linoleic acid 2%, others 5%)
C-5: oleic acid monoglyceride (in general formula (3), R 5 and R 6 are hydrogen atoms, R 7 is an oleic acid residue)
C-6: Dioleic acid monoglyceride (in general formula (3), R 5 is a hydrogen atom, R 6 and R 7 are oleic acid residues)
C-7: Polyethylene wax (weight average molecular weight 8000)
C-8: Polyethylene glycol (weight average molecular weight 11000)
C-9: Glycerin C-10: Ethylene glycol diolate

Figure 2014028894
Figure 2014028894

Figure 2014028894
Figure 2014028894

XRDの分析結果より、実施例7と実施例13とでは明らかに異なる回折パターンが得られ、冷却方法の違いによって結晶面が大きく異なることが確認できる。両分析結果で最も大きな差は、2θの約21°付近にあるピークの強度差であり、実施例7はこのブラッグ反射強度が高いことから、結晶化度は実施例13よりも高く、安定なβ相が多いと推定される。   From the XRD analysis results, diffraction patterns clearly different between Example 7 and Example 13 are obtained, and it can be confirmed that the crystal planes differ greatly depending on the cooling method. The greatest difference between the two analysis results is the difference in the intensity of the peak in the vicinity of 2θ of about 21 °. Since Example 7 has a high Bragg reflection intensity, the crystallinity is higher than that of Example 13 and is stable. It is estimated that there are many β phases.

DSCの分析結果より、実施例13には61℃付近に準安定なα相のピークが認められ、95℃付近に安定なβ相が認められた。一方、実施例7には、準安定なα相がなく安定なβ相のみ認められた。
以上の結果より、実施例7は準安定なα相を含まず、結晶性の高い安定なβ相のみで構成され、実施例13は準安定なα相を含む結晶構造であることが確認できた。
From the DSC analysis results, in Example 13, a metastable α-phase peak was observed around 61 ° C., and a stable β-phase was observed around 95 ° C. On the other hand, in Example 7, there was no metastable α phase and only a stable β phase was observed.
From the above results, it can be confirmed that Example 7 does not include a metastable α phase and is composed only of a stable β phase having high crystallinity, and Example 13 has a crystal structure including a metastable α phase. It was.

Claims (6)

下記の一般式(1)で表される脂肪酸アミド(A)、下記の一般式(2)で表されるN,N’−アルキレンビス脂肪酸アミド(B)及び下記の一般式(3)で表される脂肪酸グリセリド(C)を含有することを特徴とする金属粉末冶金用潤滑剤組成物。
Figure 2014028894
(式中、Rは炭素数15〜19のアルキル基又はアルケニル基を表す。)
Figure 2014028894
(式中、R及びRはそれぞれ炭素数15〜19のアルキル基又はアルケニル基を表し、Rは炭素数1〜6のアルキレン基を表す。)
Figure 2014028894
(式中、R〜Rは、それぞれ独立して水素原子または一般式(4)で表される基を表す。ただし、R〜Rのいずれか1つ以上は一般式(4)で表される基でなければならない。)
Figure 2014028894
(式中、Rは炭素数11〜23のアルキル基、炭素数11〜23のアルケニル基、炭素数11〜23のヒドロキシアルキル基及び炭素数11〜23のヒドロキシアルケニル基の群から選択されるいずれかの基を表す。)
The fatty acid amide (A) represented by the following general formula (1), the N, N′-alkylenebis fatty acid amide (B) represented by the following general formula (2), and the following general formula (3) The lubricant composition for metal powder metallurgy characterized by containing the fatty-acid glyceride (C) made.
Figure 2014028894
(In the formula, R 1 represents an alkyl group or an alkenyl group having 15 to 19 carbon atoms.)
Figure 2014028894
(In the formula, R 2 and R 3 each represent an alkyl group or an alkenyl group having 15 to 19 carbon atoms, and R 4 represents an alkylene group having 1 to 6 carbon atoms.)
Figure 2014028894
(In the formula, R 5 to R 7 each independently represent a hydrogen atom or a group represented by the general formula (4). However, any one or more of R 5 to R 7 are represented by the general formula (4). It must be a group represented by
Figure 2014028894
Wherein R 8 is selected from the group consisting of an alkyl group having 11 to 23 carbon atoms, an alkenyl group having 11 to 23 carbon atoms, a hydroxyalkyl group having 11 to 23 carbon atoms, and a hydroxyalkenyl group having 11 to 23 carbon atoms. Represents any group.)
脂肪酸アミド(A)とN,N’−アルキレンビス脂肪酸アミド(B)との比が、質量比で(A)/(B)=1/9〜9/1であり、(A)、(B)及び脂肪酸グリセリド(C)の合計量に対して、(C)の割合が0.5〜10質量%であることを特徴とする請求項1に記載の金属粉末冶金用潤滑剤組成物。   The ratio of the fatty acid amide (A) to the N, N′-alkylenebisfatty acid amide (B) is (A) / (B) = 1/9 to 9/1 in terms of mass ratio, and (A), (B ) And the total amount of fatty acid glycerides (C), the ratio of (C) is 0.5 to 10% by mass. The lubricant composition for metal powder metallurgy according to claim 1. 脂肪酸グリセリド(C)のR〜Rのいずれか1つ以上が、炭素数11〜23のヒドロキシアルキル基またはヒドロキシアルケニル基であることを特徴とする請求項1または2に記載の金属粉末冶金用潤滑剤組成物。 3. The metal powder metallurgy according to claim 1, wherein any one or more of R 5 to R 7 of the fatty acid glyceride (C) is a hydroxyalkyl group or a hydroxyalkenyl group having 11 to 23 carbon atoms. Lubricant composition. 潤滑剤組成物の形状が、メディアン径5〜100μmの微粒子であることを特徴とする請求項1〜3のいずれかに記載の金属粉末冶金用潤滑剤組成物。   The lubricant composition for metal powder metallurgy according to any one of claims 1 to 3, wherein the lubricant composition is a fine particle having a median diameter of 5 to 100 µm. (i)下記の一般式(1)で表される脂肪酸アミド(A)、下記の一般式(2)で表されるN,N’−アルキレンビス脂肪酸アミド(B)及び下記の一般式(3)で表される脂肪酸グリセリド(C)を含む混合物を該混合物が融解する温度以上に加熱する工程、および(ii)該混合物をスプレー噴霧する工程を含むことを特徴とする金属粉末冶金用潤滑剤組成物の製造方法。
Figure 2014028894
(式中、Rは炭素数15〜19のアルキル基又はアルケニル基を表す。)
Figure 2014028894
(式中、R及びRはそれぞれ炭素数15〜19のアルキル基又はアルケニル基を表し、Rは炭素数1〜6のアルキレン基を表す。)
Figure 2014028894
(式中、R〜Rは、それぞれ独立して水素原子または一般式(4)で表される基を表す。ただし、R〜Rのいずれか1つ以上は一般式(4)で表される基でなければならない。)
Figure 2014028894
(式中、Rは炭素数11〜23のアルキル基、炭素数11〜23のアルケニル基、炭素数11〜23のヒドロキシアルキル基及び炭素数11〜23のヒドロキシアルケニル基の群から選択されるいずれかの基を表す。)
(I) Fatty acid amide (A) represented by the following general formula (1), N, N′-alkylenebis fatty acid amide (B) represented by the following general formula (2), and the following general formula (3 A step of heating the mixture containing the fatty acid glyceride (C) represented by formula (I) above the temperature at which the mixture melts, and (ii) a spray for spraying the mixture. A method for producing the composition.
Figure 2014028894
(In the formula, R 1 represents an alkyl group or an alkenyl group having 15 to 19 carbon atoms.)
Figure 2014028894
(In the formula, R 2 and R 3 each represent an alkyl group or an alkenyl group having 15 to 19 carbon atoms, and R 4 represents an alkylene group having 1 to 6 carbon atoms.)
Figure 2014028894
(In the formula, R 5 to R 7 each independently represent a hydrogen atom or a group represented by the general formula (4). However, any one or more of R 5 to R 7 are represented by the general formula (4). It must be a group represented by
Figure 2014028894
Wherein R 8 is selected from the group consisting of an alkyl group having 11 to 23 carbon atoms, an alkenyl group having 11 to 23 carbon atoms, a hydroxyalkyl group having 11 to 23 carbon atoms, and a hydroxyalkenyl group having 11 to 23 carbon atoms. Represents any group.)
前記混合物をスプレー噴霧する工程は、40℃以上かつ該混合物が融解する温度未満の雰囲気で行われ、その後自然冷却する工程をさらに含む、請求項5に記載の金属粉末冶金用潤滑剤組成物の製造方法。   6. The lubricant composition for metal powder metallurgy according to claim 5, wherein the step of spraying the mixture is performed in an atmosphere of 40 ° C. or higher and lower than a temperature at which the mixture melts, and further includes a step of naturally cooling. Production method.
JP2012169927A 2012-07-31 2012-07-31 Lubricant composition for metal powder metallurgy and method for producing the composition Active JP5878092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012169927A JP5878092B2 (en) 2012-07-31 2012-07-31 Lubricant composition for metal powder metallurgy and method for producing the composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012169927A JP5878092B2 (en) 2012-07-31 2012-07-31 Lubricant composition for metal powder metallurgy and method for producing the composition

Publications (2)

Publication Number Publication Date
JP2014028894A true JP2014028894A (en) 2014-02-13
JP5878092B2 JP5878092B2 (en) 2016-03-08

Family

ID=50201677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012169927A Active JP5878092B2 (en) 2012-07-31 2012-07-31 Lubricant composition for metal powder metallurgy and method for producing the composition

Country Status (1)

Country Link
JP (1) JP5878092B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06145701A (en) * 1992-11-04 1994-05-27 Kawasaki Steel Corp Iron base powder mixture for powder metallurgy
WO2011029759A1 (en) * 2009-09-08 2011-03-17 Höganäs Ab Metal powder composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06145701A (en) * 1992-11-04 1994-05-27 Kawasaki Steel Corp Iron base powder mixture for powder metallurgy
WO2011029759A1 (en) * 2009-09-08 2011-03-17 Höganäs Ab Metal powder composition

Also Published As

Publication number Publication date
JP5878092B2 (en) 2016-03-08

Similar Documents

Publication Publication Date Title
JP5313974B2 (en) Powder metallurgy composition containing carbon black as a flow enhancer
CA2580509C (en) Powder metal composition comprising secondary amides as lubricant and/or binder
TW199908B (en)
US8939758B2 (en) Candles comprising wax-monoesters
US7871453B2 (en) Coarse iron or iron-based powder composition containing specific lubricant
RU2254362C2 (en) Lubricant combination and a method for preparation thereof
JP5878092B2 (en) Lubricant composition for metal powder metallurgy and method for producing the composition
US20080019859A1 (en) Lubricants For Insulated Soft Magnetic Iron-Based Powder Compositions
Ornla‐ied et al. Synthesis of cocoa butter alternatives from palm kernel stearin, coconut oil and fully hydrogenated palm stearin blends by chemical interesterification
JP2008503653A5 (en) Powder composition and method for producing soft magnetic component
JP2010168614A (en) Lubricant for metal powder metallurgy
JP6874905B2 (en) Mixed powder for powder metallurgy
JP6346099B2 (en) Lubricant for metal powder metallurgy, method for producing the same, metal powder composition, and method for producing metal powder metallurgy product
JP2024036229A (en) Mixed powder for powder metallurgy
ES2356177T3 (en) COMPOSITION OF POWDER METAL THAT INCLUDES SECONDARY AMIDAS AS LUBRICANT AND / OR BINDER.
JPWO2019163263A1 (en) Mixed powder for powder metallurgy
JP2003206494A (en) Vegetable candle composition
JP6680422B1 (en) Mixed powder for powder metallurgy and lubricant for powder metallurgy
Rizikiana et al. Statistical Mixture Design for Modelling and Optimization of Feed Mixture in the Chemical Interesterification to produce Cocoa Butter Alternatives
JP4798994B2 (en) Mold adhesion lubricant
CN107427911B (en) Pressing aid for powder metallurgy
KR101202371B1 (en) Powder metallurgical composition comprising carbon black as flow enhancing agent
JP2019143200A (en) Mixed powders for powder metallurgy
JP2022090488A (en) Powdery mixture for powder metallurgy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160127

R150 Certificate of patent or registration of utility model

Ref document number: 5878092

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250