JP2014025869A - Aging method of gas sensor - Google Patents

Aging method of gas sensor Download PDF

Info

Publication number
JP2014025869A
JP2014025869A JP2012168072A JP2012168072A JP2014025869A JP 2014025869 A JP2014025869 A JP 2014025869A JP 2012168072 A JP2012168072 A JP 2012168072A JP 2012168072 A JP2012168072 A JP 2012168072A JP 2014025869 A JP2014025869 A JP 2014025869A
Authority
JP
Japan
Prior art keywords
aging
gas sensor
film
sensitivity
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012168072A
Other languages
Japanese (ja)
Other versions
JP5988362B2 (en
Inventor
Kenichi Yoshioka
謙一 吉岡
Tatsuya Tanihira
龍也 谷平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Figaro Engineering Inc
Original Assignee
Figaro Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50199643&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2014025869(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Figaro Engineering Inc filed Critical Figaro Engineering Inc
Priority to JP2012168072A priority Critical patent/JP5988362B2/en
Publication of JP2014025869A publication Critical patent/JP2014025869A/en
Application granted granted Critical
Publication of JP5988362B2 publication Critical patent/JP5988362B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance sensitivity of a MEMS gas sensor related to fuel gas by aging.SOLUTION: Aging is applied to a MEMS gas sensor while applying heater power intermittently to a heater film in an atmosphere of room temperature with high humidity. Thereby, methane sensitivity is improved.

Description

この発明は、MEMSガスセンサのエージングに関する。   The present invention relates to aging of a MEMS gas sensor.

Si基板に空洞上にブリッジあるいはダイアフラムを設け、このブリッジあるいはダイアフラムにガスセンサを設けることが知られている。この種類のガスセンサはMEMSガスセンサと呼ばれ、SnO2等の金属酸化物半導体を用いるものと、Pt-γAl2O3等の酸化触媒を用いるものとがある。MEMSガスセンサの動作条件は、周期的に短時間、動作温度まで加熱し、他は室温に置くものが多い。   It is known to provide a bridge or diaphragm on a cavity in a Si substrate and to provide a gas sensor on the bridge or diaphragm. This type of gas sensor is called a MEMS gas sensor, and there is one using a metal oxide semiconductor such as SnO2 and one using an oxidation catalyst such as Pt-γAl2O3. The operating condition of the MEMS gas sensor is that it is heated to the operating temperature periodically for a short time, and the rest is at room temperature.

エージングに関する先行技術を示す。特許文献1(JP2003-294668A)は、10℃で相対湿度(以下「RH」)95%等の雰囲気にガスセンサを放置する、エージングを提案している。ガスセンサの種類はMEMSタイプではなく、エージングにより、長期間高湿雰囲気においた際のガスセンサの経時的な変化を少なくできるとされている。特許文献2(JPH09-138209A)は、絶縁ガラス上にヒータ膜と金属酸化物半導体膜とを設けたガスセンサを、高温高湿中でエージングした際の結果を報告している。特許文献2によると、高温高湿で金属酸化物半導体膜に検出電圧を加えてエージングすると、絶縁ガラスからMgイオンが金属酸化物半導体膜中に拡散し、検出電圧により陰極側に偏析するとされている。   The prior art regarding aging is shown. Patent Document 1 (JP2003-294668A) proposes aging in which a gas sensor is left in an atmosphere such as 95% relative humidity (hereinafter “RH”) at 10 ° C. The type of gas sensor is not a MEMS type, and it is said that the aging of the gas sensor can be reduced by aging in a high humidity atmosphere for a long time. Patent Document 2 (JPH09-138209A) reports a result of aging a gas sensor in which a heater film and a metal oxide semiconductor film are provided on insulating glass in high temperature and high humidity. According to Patent Document 2, when a detection voltage is applied to a metal oxide semiconductor film at high temperature and high humidity and aging occurs, Mg ions diffuse from the insulating glass into the metal oxide semiconductor film and segregate to the cathode side due to the detection voltage. Yes.

JP2003-294668AJP2003-294668A JPH09-138209AJPH09-138209A

この発明は、エージングにより、MEMSガスセンサの燃料ガスへの感度を高めることを課題とする。   This invention makes it a subject to raise the sensitivity to the fuel gas of a MEMS gas sensor by aging.

この発明は、Si基板の空洞に設けた絶縁膜のブリッジまたは絶縁膜のダイアフラムに、金属酸化物半導体膜とヒータ膜とを設けたガスセンサのエージング方法において、
前記ヒータ膜に間欠的にヒータ電力を加えながら、室温の高湿雰囲気中でエージングすることを特徴とする。
The present invention relates to an aging method for a gas sensor in which a metal oxide semiconductor film and a heater film are provided on a bridge of an insulating film provided in a cavity of a Si substrate or a diaphragm of an insulating film,
Aging is performed in a high-humidity atmosphere at room temperature while intermittently applying heater power to the heater film.

RH(相対湿度)が100%付近の高湿雰囲気中で、MEMSガスセンサをエージングすると、メタン,LPG等の燃料ガスへの感度が向上し、水素感度は増加しないので、メタンあるいはLPGと水素との相対感度も向上する。従って簡単にMEMSガスセンサのメタン検出特性あるいはLPG検出特性を改善できる。またエージングは温度を管理した環境で行う必要が無く、RHが100%付近まで加湿した雰囲気にガスセンサを置いて行えば良く、簡単にエージングできる。エージングの効果は相対湿度が100%に近づけると大きくなるが、相対湿度を100%にする必要はなく、例えば90%以上にすればよい。またガスセンサ内の金属酸化物半導体が相対湿度100%付近の雰囲気に置かれれば良く、エージング室全体を相対湿度100%にする必要はない。   Aging a MEMS gas sensor in a high humidity atmosphere with RH (relative humidity) near 100% improves sensitivity to fuel gases such as methane and LPG, and does not increase hydrogen sensitivity. Relative sensitivity is also improved. Therefore, the methane detection characteristic or LPG detection characteristic of the MEMS gas sensor can be easily improved. Aging does not need to be performed in an environment where the temperature is controlled, and can be easily aged by placing the gas sensor in an atmosphere in which RH is near 100%. The effect of aging increases as the relative humidity approaches 100%, but the relative humidity does not need to be 100% and may be, for example, 90% or more. Further, it is sufficient that the metal oxide semiconductor in the gas sensor is placed in an atmosphere with a relative humidity of about 100%, and the entire aging chamber does not need to be set to a relative humidity of 100%.

室温は例えば0℃以上40℃以下、好ましくは10℃以上30℃以下の温度である。この発明ではエージング温度を正確に管理する必要がないので、恒温恒湿槽等を要しない。検出対象のガスはメタン,LPG等の燃料ガスであるが、水素は検出対象には含まない。燃料ガスの中でも、ガスセンサの感度が低いメタンへの感度を増すことが特に重要である。
The room temperature is, for example, a temperature of 0 ° C. or higher and 40 ° C. or lower, preferably 10 ° C. or higher and 30 ° C. or lower. In this invention, since it is not necessary to accurately manage the aging temperature, a constant temperature and humidity chamber or the like is not required. The detection target gas is a fuel gas such as methane or LPG, but hydrogen is not included in the detection target. Of the fuel gases, it is particularly important to increase sensitivity to methane, which has a low sensitivity of the gas sensor.

ガスセンサの断面図Cross section of gas sensor ガスセンサを25℃RH100%で、毎秒1回0.1秒ずつ加熱しながらエージングした際の特性図で、横軸はエージング期間を、縦軸はガス中と空気中との抵抗値の比を表す。A characteristic diagram when the gas sensor is aged while heating at 25 ° C. and 100% RH at a rate of 0.1 second once per second, the horizontal axis indicates the aging period, and the vertical axis indicates the ratio of the resistance value between the gas and the air. 図2のエージング結果を、縦軸が抵抗値を表すように示す特性図FIG. 2 is a characteristic diagram showing the aging results with the vertical axis representing the resistance value. エージング雰囲気の相違によるガス感度の変化を示す特性図で、ガスセンサを1秒毎に0.1秒ずつ加熱し、エージング期間は5日間である。It is a characteristic diagram showing the change in gas sensitivity due to the difference in aging atmosphere. The gas sensor is heated by 0.1 second every second, and the aging period is 5 days. エージング中の加熱周期によるガス感度の変化を示す特性図で、エージング雰囲気は25℃RH100%である。It is a characteristic diagram showing the change in gas sensitivity due to the heating cycle during aging, and the aging atmosphere is 25 ° C. and RH 100%.

以下に本発明を実施するための最適実施例を示す。   In the following, an optimum embodiment for carrying out the present invention will be shown.

図1〜図5に実施例を示す。図1は用いたMEMSガスセンサ2の構造を示し、4はSi基板で、エッチングにより空洞6が設けられ、その上部にSiO2,Si3N4,Ta2O5等の絶縁膜8がブリッジ状に設けられている。なお絶縁膜8をブリッジ状ではなく、貫通孔の空洞を覆うダイアフラム状にしても良い。絶縁膜8上にPt等のヒータ膜10が設けられ、SiO2,Si3N4,Ta2O5等の層間絶縁膜12を介して、厚膜状のSnO2膜14が設けられている。SnO2膜14は薄膜でも良く、In2O3膜等の他の金属酸化物半導体膜で良く、また層間絶縁膜12を設けず、ヒータ膜10をSnO2膜14の一方の電極に兼用しても良い。SnO2膜14には図示しない一対の電極膜が接続され、電極膜とヒータ膜10はリード線20を介してステム18に接続されている。なおSnO2膜14を被覆する触媒膜を設けても良い。16はベースで、Si基板4を支持し、22はキャップで、活性炭、ゼオライト等のフィルタ24を収容し、26は不織布で、フィルタ24から粉体がこぼれ出すのを防止し、28は不織布26を保持する押さえリング、30,31は開口、32は金網である。MEMSガスセンサ2の構造、材料等は任意である。   1 to 5 show an embodiment. FIG. 1 shows the structure of the MEMS gas sensor 2 used, 4 is a Si substrate, a cavity 6 is provided by etching, and an insulating film 8 such as SiO2, Si3N4, Ta2O5 is provided in a bridge shape on the cavity 6. The insulating film 8 may be formed in a diaphragm shape that covers the cavity of the through hole instead of the bridge shape. A heater film 10 such as Pt is provided on the insulating film 8, and a thick SnO2 film 14 is provided via an interlayer insulating film 12 such as SiO2, Si3N4, Ta2O5. The SnO2 film 14 may be a thin film, may be another metal oxide semiconductor film such as an In2O3 film, and the interlayer insulating film 12 may not be provided, and the heater film 10 may be used as one electrode of the SnO2 film 14. A pair of electrode films (not shown) are connected to the SnO 2 film 14, and the electrode film and the heater film 10 are connected to the stem 18 through lead wires 20. A catalyst film that covers the SnO2 film 14 may be provided. Reference numeral 16 denotes a base that supports the Si substrate 4, 22 is a cap, and accommodates a filter 24 such as activated carbon or zeolite, 26 is a nonwoven fabric, prevents powder from spilling out from the filter 24, and 28 is a nonwoven fabric 26. The holding ring 30 and 31 are openings, and 32 is a wire mesh. The structure, material, etc. of the MEMS gas sensor 2 are arbitrary.

ガスセンサ2は例えばメタンの検出用で、駆動条件は30秒に1回、470℃まで0.1秒間パルス的に加熱するものである。そして例えばパルス加熱と同期して検出電圧を加え、パルス加熱期間の終わりでのSnO2膜14の抵抗値からガスを検出する。なお駆動条件自体は任意である。   The gas sensor 2 is for detecting methane, for example, and the driving condition is to heat the pulse sensor to 470 ° C. for 0.1 second once every 30 seconds. Then, for example, a detection voltage is applied in synchronization with the pulse heating, and the gas is detected from the resistance value of the SnO2 film 14 at the end of the pulse heating period. The driving conditions themselves are arbitrary.

ガスセンサ2をエージングするには、例えば図示しないパレットにガスセンサをセットして、加湿した室内に保管し、室温でRHが約100%の雰囲気でエージングする。加湿は、例えば室内の相対湿度を湿度センサで監視しながら、加湿器から水蒸気を供給することにより行う。あるいはエージング用の容器に水を張っても良い。室温とは例えば0℃以上40℃以下の温度であり、好ましくは10℃以上30℃以下の温度で、温度を一定にする必要はない。また相対湿度は例えば90%以上100%以下で、SnO2膜14に結露する条件は好ましくない。相対湿度が100%で水蒸気が過飽和でない場合、ガスセンサ2は周期的に加熱されるので、SnO2膜14は結露しない。エージング中、ガスセンサ2を1秒間に1回0.1秒間470℃まで加熱する等の条件で駆動し、ヒータ電力を加える周期をガスセンサ2の通常の駆動周期よりも短縮する。またエージングの間、検出電圧をSnO2膜14に加えても加えなくても良く、好ましいエージング期間は3日以上10日以下である。   In order to age the gas sensor 2, for example, the gas sensor is set on a pallet (not shown), stored in a humidified room, and aged in an atmosphere having an RH of about 100% at room temperature. Humidification is performed, for example, by supplying water vapor from a humidifier while monitoring the indoor relative humidity with a humidity sensor. Alternatively, water may be filled in the aging container. The room temperature is, for example, a temperature of 0 ° C. or higher and 40 ° C. or lower, preferably a temperature of 10 ° C. or higher and 30 ° C. or lower, and the temperature need not be constant. Further, the relative humidity is, for example, 90% or more and 100% or less, and the condition for dew condensation on the SnO2 film 14 is not preferable. When the relative humidity is 100% and the water vapor is not supersaturated, the gas sensor 2 is periodically heated, so that the SnO2 film 14 does not condense. During aging, the gas sensor 2 is driven under the condition that it is heated to 470 ° C. once per second for 0.1 second, and the cycle for applying the heater power is shorter than the normal drive cycle of the gas sensor 2. During aging, the detection voltage may or may not be applied to the SnO2 film 14, and the preferred aging period is 3 days or more and 10 days or less.

図2〜図5はエージング結果を示し、いずれもセンサ数は各5個である。図2は、エージング期間の経過と共に、ガス中と空気中との抵抗値の比がどのように変化するかを示し、エージング雰囲気は25℃で相対湿度は約100%の空気で、ガスセンサ2のヒータには毎秒1回0.1秒間ヒータ電力を加え、最高温度が470℃まで加熱した。そしてエージング開始前と、1日後、2日後、5日後にガス中と空気中の抵抗値を測定した。   2 to 5 show the results of aging, and in each case, the number of sensors is five. FIG. 2 shows how the ratio of the resistance value between gas and air changes with the aging period. The aging atmosphere is 25 ° C. and the relative humidity is about 100% air. Heater power was applied to the heater once per second for 0.1 second, and the maximum temperature was heated to 470 ° C. The resistance values in the gas and air were measured before the start of aging, after 1 day, after 2 days, and after 5 days.

図2から明らかなように、エージングによりメタン感度が増し、この効果は1日のエージングで生じ、5日後にほぼ飽和した。図6は図2の測定でのデータを、抵抗値で表示したものである。空気中の抵抗値はエージングにより増加し、メタン中の抵抗値は減少するので、メタン感度が増加する。水素中の抵抗値は変化しないかやや増加するので、水素に対するメタンの相対感度もエージングにより向上する。   As can be seen from FIG. 2, aging increased methane sensitivity, and this effect occurred with 1 day aging and almost saturated after 5 days. FIG. 6 shows the data of the measurement of FIG. 2 as resistance values. The resistance value in the air increases by aging, and the resistance value in methane decreases, so the methane sensitivity increases. Since the resistance value in hydrogen does not change or slightly increases, the relative sensitivity of methane to hydrogen is also improved by aging.

図4はエージング雰囲気の影響を示し、左側は図2の5日目のデータと同じ25℃相対湿度100%で、右側では25℃RH55%である。他の点では図2,図3と同じ試験条件である。RH100%付近でのエージングでは、RH55%のエージングよりも、メタン感度が高くなる。   FIG. 4 shows the influence of the aging atmosphere. The left side is the same as the data on the fifth day in FIG. 2 at 25 ° C. relative humidity 100%, and the right side is 25 ° C. RH 55%. In other respects, the test conditions are the same as those in FIGS. In aging near RH 100%, methane sensitivity is higher than aging at RH 55%.

図5はエージング中の加熱周期の影響を示し、1秒に1回0.1秒の加熱、5秒に1回0.1秒の加熱、30秒に1回0.1秒の加熱、60秒に1回0.1秒の加熱の4種類の条件を示した。加熱時のSnO2膜の最高温度は470℃である。エージング雰囲気は25℃でRHが約100%で、エージング期間は5日間である。加熱周期を短くし、パルス加熱の回数を増すと、メタン感度が大きく増加する。好ましい加熱周期は0.5秒〜5秒で、1回の加熱時間は例えば20m秒〜0.5秒である。   Figure 5 shows the effect of the heating cycle during aging: 0.1 second heating once per second, 0.1 second heating once every 5 seconds, 0.1 second heating once every 30 seconds, 0.1 second once every 60 seconds Four types of heating conditions were shown. The maximum temperature of the SnO2 film during heating is 470 ° C. The aging atmosphere is 25 ° C., the RH is about 100%, and the aging period is 5 days. When the heating cycle is shortened and the number of pulse heating is increased, the methane sensitivity is greatly increased. A preferable heating cycle is 0.5 seconds to 5 seconds, and one heating time is, for example, 20 milliseconds to 0.5 seconds.

発明者はこれ以外に、40℃でRH95%でのエージングと、35℃でRH80%でのエージングとを行った。40℃でRH95%と25℃でRH100%とではエージング効果は類似で、25℃RH100%の方がエージング効果が高かった。また35℃でRH80%ではエージング効果が小さかった。これらのことから、エージングの効果は相対湿度で定まり、温度の影響は小さく、温度自体は重要ではないことが分かる。また相対湿度が高いとエージング効果が高いことは、SnO2膜の内部の細孔に水が凝縮することが重要であることを意味し、加熱周期が短いとエージング効果が高いことは、凝縮した水が急激に蒸発する過程でエージングが進行することを示唆している。   In addition to this, the inventor performed aging at RH 95% at 40 ° C. and aging at RH 80% at 35 ° C. The aging effect was similar between RH95% at 40 ° C and RH100% at 25 ° C, and the aging effect was higher at 25 ° C RH100%. The aging effect was small at RH 80% at 35 ° C. From these facts, it can be seen that the aging effect is determined by the relative humidity, the influence of the temperature is small, and the temperature itself is not important. In addition, the higher the relative humidity, the higher the aging effect means that it is important for water to condense in the pores inside the SnO2 film. The shorter the heating period, the higher the aging effect means that the condensed water This suggests that aging proceeds in the process of evaporating rapidly.

明細書ではメタンの感度とメタンと水素との相対感度を説明したが、室温の高湿中でのエージングにより、同様にLPGへの感度を増すことができる。
Although the specification describes the sensitivity of methane and the relative sensitivity of methane and hydrogen, aging in high humidity at room temperature can similarly increase the sensitivity to LPG.

2 ガスセンサ
4 Si基板
6 空洞
8 絶縁膜
10 ヒータ膜
12 層間絶縁膜
14 SnO2膜
16 ベース
18 ステム
20 リード線
22 キャップ
24 フィルタ
26 不織布
28 押さえリング
30,31 開口
32 金網
2 Gas sensor 4 Si substrate 6 Cavity 8 Insulating film 10 Heater film 12 Interlayer insulating film 14 SnO2 film 16 Base 18 Stem 20 Lead wire 22 Cap 24 Filter 26 Non-woven fabric 28 Press ring 30, 31 Opening 32 Metal mesh

Claims (3)

Si基板の空洞に設けた絶縁膜のブリッジまたは絶縁膜のダイアフラムに、金属酸化物半導体膜とヒータ膜とを設けたガスセンサのエージング方法において、
前記ヒータ膜に間欠的にヒータ電力を加えながら、室温の高湿雰囲気中でエージングすることを特徴とする、ガスセンサのエージング方法。
In an aging method of a gas sensor in which a metal oxide semiconductor film and a heater film are provided on an insulating film bridge or an insulating film diaphragm provided in a cavity of a Si substrate,
An aging method for a gas sensor, characterized by aging in a high humidity atmosphere at room temperature while intermittently applying heater power to the heater film.
エージングによりガスセンサのメタン感度を向上させることを特徴とする、請求項1のガスセンサのエージング方法。   2. The gas sensor aging method according to claim 1, wherein the methane sensitivity of the gas sensor is improved by aging. 前記室温は0℃以上40℃以下の温度であることを特徴とする、請求項1または2のガスセンサのエージング方法。   The gas sensor aging method according to claim 1, wherein the room temperature is a temperature of 0 ° C. or more and 40 ° C. or less.
JP2012168072A 2012-07-30 2012-07-30 Gas sensor aging method Active JP5988362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012168072A JP5988362B2 (en) 2012-07-30 2012-07-30 Gas sensor aging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012168072A JP5988362B2 (en) 2012-07-30 2012-07-30 Gas sensor aging method

Publications (2)

Publication Number Publication Date
JP2014025869A true JP2014025869A (en) 2014-02-06
JP5988362B2 JP5988362B2 (en) 2016-09-07

Family

ID=50199643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012168072A Active JP5988362B2 (en) 2012-07-30 2012-07-30 Gas sensor aging method

Country Status (1)

Country Link
JP (1) JP5988362B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017090188A (en) * 2015-11-09 2017-05-25 フィガロ技研株式会社 Gas detector and gas detection method
WO2020079966A1 (en) * 2018-10-15 2020-04-23 Nissha株式会社 Mems gas sensor and mems gas sensor manufacturing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54111398A (en) * 1978-02-20 1979-08-31 Matsushita Electric Ind Co Ltd Inflammable gas detecting element
JPS6383656A (en) * 1986-09-29 1988-04-14 Mazda Motor Corp Production of exhaust gas sensor
JPS6383657A (en) * 1986-09-29 1988-04-14 Mazda Motor Corp Production of exhaust gas sensor
JPS6390101A (en) * 1986-10-03 1988-04-21 日本油脂株式会社 Humidity sensor and manufacture of the same
JPH09138206A (en) * 1995-11-14 1997-05-27 Figaro Eng Inc Inspection method for gas sensor
JP2003294668A (en) * 2002-03-29 2003-10-15 Matsushita Electric Ind Co Ltd Aging method for gas sensor and gas sensor manufactured therewith
JP2009264996A (en) * 2008-04-28 2009-11-12 Fuji Electric Fa Components & Systems Co Ltd Membrane gas sensor and initial stabilizing treatment method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54111398A (en) * 1978-02-20 1979-08-31 Matsushita Electric Ind Co Ltd Inflammable gas detecting element
JPS6383656A (en) * 1986-09-29 1988-04-14 Mazda Motor Corp Production of exhaust gas sensor
JPS6383657A (en) * 1986-09-29 1988-04-14 Mazda Motor Corp Production of exhaust gas sensor
JPS6390101A (en) * 1986-10-03 1988-04-21 日本油脂株式会社 Humidity sensor and manufacture of the same
JPH09138206A (en) * 1995-11-14 1997-05-27 Figaro Eng Inc Inspection method for gas sensor
JP2003294668A (en) * 2002-03-29 2003-10-15 Matsushita Electric Ind Co Ltd Aging method for gas sensor and gas sensor manufactured therewith
JP2009264996A (en) * 2008-04-28 2009-11-12 Fuji Electric Fa Components & Systems Co Ltd Membrane gas sensor and initial stabilizing treatment method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017090188A (en) * 2015-11-09 2017-05-25 フィガロ技研株式会社 Gas detector and gas detection method
WO2020079966A1 (en) * 2018-10-15 2020-04-23 Nissha株式会社 Mems gas sensor and mems gas sensor manufacturing method
TWI818072B (en) * 2018-10-15 2023-10-11 日商日寫股份有限公司 Microelectromechanical system gas sensor and method of manufacturing microelectromechanical system gas sensor

Also Published As

Publication number Publication date
JP5988362B2 (en) 2016-09-07

Similar Documents

Publication Publication Date Title
JP5946004B2 (en) Gas detection apparatus and method
JP5961016B2 (en) Gas detector
JP2012247240A (en) Gas sensor and gas detection device
JP5988362B2 (en) Gas sensor aging method
JP5143591B2 (en) Gas detection device and gas detection method
TW201250239A (en) Gas detection device and gas detection method
JP2016148525A (en) Airtightness inspection device
JP2005134311A (en) Semiconductor type gas sensor, and method for monitoring gas by use of semiconductor type gas sensor
JP5159992B2 (en) Moisture concentration detector
CN105699433A (en) Graphene quantum dot-ZnO composite gas-sensitive material with high sensitivity to acetic acid gas
JP6218270B2 (en) Gas sensor
JP5914649B2 (en) Hydrogen sensor including active layer and method of manufacturing hydrogen sensor
JP4970584B2 (en) Thin film gas sensor
US11971381B2 (en) Gas detection device
JP6879093B2 (en) Oxidizing gas sensors, gas alarms, controls, and control methods
JP2014178198A (en) Gas detection device
JP7025232B2 (en) Gas concentration detection method and gas concentration detection device
JP5169622B2 (en) Gas detection method and gas detection apparatus for thin film gas sensor
JP2014130018A (en) Action pole for electrochemical gas sensor, and manufacturing method of the same
JP6203214B2 (en) Semiconductor gas sensor manufacturing method and gas detector
JP2018205210A (en) Gas sensor, gas alarm, controller, and control method
JP4133856B2 (en) Gas detection method and apparatus using adsorption combustion type gas sensor
JP5921845B2 (en) Sensitivity correction method for hot-wire semiconductor gas sensor and portable gas detector
JP4953253B2 (en) Method for initial stabilization of thin film gas sensor
JP5368950B2 (en) Gas detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160804

R150 Certificate of patent or registration of utility model

Ref document number: 5988362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250