JP2014024958A - Curable composition - Google Patents

Curable composition Download PDF

Info

Publication number
JP2014024958A
JP2014024958A JP2012166221A JP2012166221A JP2014024958A JP 2014024958 A JP2014024958 A JP 2014024958A JP 2012166221 A JP2012166221 A JP 2012166221A JP 2012166221 A JP2012166221 A JP 2012166221A JP 2014024958 A JP2014024958 A JP 2014024958A
Authority
JP
Japan
Prior art keywords
group
polymer
acid
compound
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012166221A
Other languages
Japanese (ja)
Inventor
Kazuo Hagiwara
一男 萩原
Keisuke Okuma
敬介 大熊
Masafumi Sakaguchi
雅史 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2012166221A priority Critical patent/JP2014024958A/en
Publication of JP2014024958A publication Critical patent/JP2014024958A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

PROBLEM TO BE SOLVED: To provide a room-temperature-curable heat-conductive composition excellent in terms of curability, storage stability, heat conductivity, and endurance, unlikely to entail contact faults attributed to cyclosiloxanes, etc. deemed problematic in the prior art, facilitating such operations as coating, etc. due to the low viscosity thereof, and rapidly curable at room temperature and a heat-conductive material provided by curing the composition.SOLUTION: The heat-conductive material is provided by coating, in-between a heat generator and a radiator, a fluid composition curable at room temperature which includes (A) a reactive silicon-containing oxyalkylene organic polymer having, atop a single silicon atom, three hydroxyl groups or at least one hydrolyzable group, (B) a (meth)acrylic acid ester-type organic polymer having, atop a single silicon atom, at least two hydroxyl groups or at least one hydrolyzable group, (C) a plasticizer, (D) a heat-conductive filler, (E) a metal carboxylate, (F) a carboxylic acid, and (G) a methyl ester-type compound and which exhibits a post-curing heat conductivity of 0.5 W/mK or above and by subsequently curing the composition in-between the heat generator and radiator.

Description

本発明は、パソコン、携帯電話、PDAなどの電子機器や、LED、EL等の照明及び表示機器など、種々の装置の放熱に利用される硬化性組成物に関する。更に詳しくは、(A)1個のケイ素原子上に3個の水酸基または加水分解性基を少なくとも1個有する反応性ケイ素含有オキシアルキレン有機系重合体、(B)1個のケイ素原子上に少なくとも2個の水酸基または加水分解性基を少なくとも1個有する(メタ)アクリル酸エステル系有機重合体、(C)可塑剤、(D)熱伝導性充填剤、(E)カルボン酸金属塩、(F)カルボン酸、(G)メチルエステル系化合物を含有する、硬化後の熱伝導率が0.5W/mK以上であり流動性を有する室温にて硬化可能な組成物を、発熱体と放熱体との間に塗布した後、発熱体と放熱体との間にて硬化させてなる硬化性樹成物。   The present invention relates to a curable composition used for heat dissipation of various devices such as electronic devices such as personal computers, mobile phones, and PDAs, and lighting and display devices such as LEDs and EL. More specifically, (A) a reactive silicon-containing oxyalkylene organic polymer having at least one hydroxyl group or hydrolyzable group on one silicon atom, and (B) at least one silicon atom. (Meth) acrylic ester organic polymer having at least one hydroxyl group or hydrolyzable group, (C) plasticizer, (D) thermally conductive filler, (E) carboxylic acid metal salt, (F A composition containing a carboxylic acid and (G) a methyl ester compound, having a heat conductivity after curing of 0.5 W / mK or more and having fluidity at room temperature, a heating element and a radiator A curable resin obtained by curing between a heating element and a heat radiator after application between the two.

近年、パソコン、携帯電話、PDAなどの電子機器や、LED、EL等の照明及び表示機器などの性能向上は著しく、それは演算素子や発光素子の著しい性能向上によっている。この様に演算素子や発光素子の性能向上に伴い発熱量も著しく増加し、電子機器、照明、表示機器における放熱をどの様に行うかが重要な課題になっている。熱対策として、演算素子や発光素子の発生する熱を出来るだけ迅速に広い面積に拡散させて放熱する方法は冷却効率を上げることを目的としたもので、積極的に冷却をするものではないが、携帯電話やパソコンなどの小型電子機器や照明における冷却方法としては最も現実的なものである。   In recent years, the performance of electronic devices such as personal computers, mobile phones, and PDAs, and lighting and display devices such as LEDs and EL has been remarkably improved, which is due to the significant performance improvements of arithmetic elements and light emitting elements. As described above, the amount of heat generation is remarkably increased with the improvement of the performance of the arithmetic element and the light emitting element, and how to dissipate heat in electronic devices, lighting, and display devices is an important issue. As a countermeasure against heat, the method of radiating heat by spreading heat generated by arithmetic elements and light-emitting elements over a wide area as quickly as possible is intended to increase cooling efficiency, but does not actively cool. It is the most realistic cooling method for small electronic devices such as mobile phones and personal computers and lighting.

この様な放熱、伝熱の目的に使用される熱伝導性材料としては、例えばシリコーンゴム等のベースゴムに熱伝導性フィラーを高充填し硬化させた、軟質放熱シートが知られており、各種熱伝導性フィラーとシリコーンゴムとの組合せによる技術が開示されている(特許文献1〜3参照)。   As a heat conductive material used for the purpose of heat dissipation and heat transfer, for example, a soft heat dissipation sheet in which a heat conductive filler is highly filled and cured in a base rubber such as silicone rubber is known. A technique based on a combination of a thermally conductive filler and silicone rubber is disclosed (see Patent Documents 1 to 3).

この様な熱伝導を目的とした放熱シートには、材料自体の熱伝導だけでなく、発熱体や放熱体との熱抵抗を低くする必要があることから、発熱体や放熱体との密着性が重要とされている。この発熱体や放熱体との密着性には、発熱体や放熱体表面への密着性、並びに発熱体や放熱体の形状や変形に対する追従性が重要となる。ところが放熱シートの熱伝導率を高くするために熱伝導性フィラーを高充填すると、シートの硬度が硬くなってしまうことから、発熱体や放熱体表面との密着性及び形状追随性が低下してしまうという問題があった。   The heat-dissipating sheet for the purpose of such heat conduction requires not only the heat conduction of the material itself, but also the heat resistance with the heat-generating body and the heat-dissipating element, so the adhesion with the heat-generating body and the heat dissipating element Is considered important. For the adhesion to the heating element and the radiator, the adhesion to the heating element and the surface of the radiator and the followability to the shape and deformation of the heating element and the radiator are important. However, if the heat conductive filler is highly filled to increase the thermal conductivity of the heat radiating sheet, the hardness of the sheet becomes hard, and the adhesiveness to the heating element and the surface of the heat radiating body and the shape followability are reduced. There was a problem that.

これらの問題を解決するため、例えば特許文献4には、硬化前のシリコーンゴムに熱伝導性フィラーを高充填した液状物を塗布した後、室温で硬化させることが可能な、室温硬化型熱伝導性シリコーンゴム組成物が開示されており、液状物であるため熱体や放熱体との密着性が非常に良好となり好適である。しかしながら未硬化のシリコーンゴム組成物であることから、使用時に低分子シロキサン成分や環状シロキサン成分の揮発が多くなるという課題がある。シリコーン樹脂にはしばしば低分子成分である環状シロキサンの揮発により、電気部品の接点不良を誘発したり、ハードディスクなどの精密機器の読み取り不良を誘発したりすると言う課題が指摘されている。   In order to solve these problems, for example, Patent Document 4 discloses a room temperature curing type heat conduction that can be cured at room temperature after applying a liquid material in which a silicone rubber before curing is highly filled with a heat conductive filler. An adhesive silicone rubber composition has been disclosed, and since it is a liquid material, the adhesiveness to a heat body and a heat radiating body is very good, which is preferable. However, since it is an uncured silicone rubber composition, there is a problem that volatilization of low molecular siloxane components and cyclic siloxane components increases during use. Problems have been pointed out that silicone resins often cause poor contact of electrical components and poor reading of precision devices such as hard disks due to volatilization of cyclic siloxane, which is a low molecular component.

一方例えば特許文献5には、ポリαオレフィンオリゴマーに熱伝導性フィラーを高充填させた熱伝導性グリースが開示されている。このような組成物を用いれば、液状物であるため熱体や放熱体との密着性が非常に良好となり、なおかつ使用時に低分子シロキサン成分が揮発する可能性も少ない。しかしながらこのような組成物は室温で硬化することが無いため、発熱体が高温となった際に、低粘度となった液状グリースが流出してしまい、周囲の電子機器を汚染してしまうことがあるという課題を有している。   On the other hand, for example, Patent Document 5 discloses a heat conductive grease in which a poly α-olefin oligomer is highly filled with a heat conductive filler. If such a composition is used, since it is a liquid substance, the adhesiveness with a heat body and a heat radiator becomes very good, and there is little possibility that a low molecular weight siloxane component volatilizes at the time of use. However, since such a composition does not cure at room temperature, when the heating element reaches a high temperature, the liquid grease having a low viscosity flows out and may contaminate surrounding electronic devices. There is a problem of being.

特許文献6には、ポリアルキレングリコールやポリイソブチレン等の加水分解性シリル基を有する加水分解性シリル基含有オリゴマーをベースに、熱伝導性充填材を配合したものは、優れた強度と密着性を併せ持つ樹脂組成物であることが開示されている。しかしながら加水分解性シリル基含有ポリアルキレングリコール系オリゴマーは耐熱性が十分でない場合があり、また、加水分解性シリル基含有ポリイソブチレン系オリゴマーは、比較的粘度が高くハンドリングが困難なほか、硬化速度が遅いため、1液型組成物として用いるには困難な場合が多い。   Patent Document 6 includes a hydrolyzable silyl group-containing oligomer having a hydrolyzable silyl group, such as polyalkylene glycol and polyisobutylene, which is blended with a heat conductive filler and has excellent strength and adhesion. It is disclosed that it is a resin composition possessed together. However, hydrolyzable silyl group-containing polyalkylene glycol-based oligomers may not have sufficient heat resistance, and hydrolyzable silyl group-containing polyisobutylene-based oligomers are relatively viscous and difficult to handle, and have a curing rate. Since it is slow, it is often difficult to use it as a one-component composition.

また特許文献7〜8には、分子量分布が1.8以下のリビングラジカル重合法にて製造されたビニル系重合体に、熱伝導性フィラーを充填した放熱シート用組成物が示されているが、液状物のまま室温硬化型熱伝導性組成物として利用する方法に関しては記されていない。   Patent Documents 7 to 8 show a composition for a heat radiation sheet in which a vinyl polymer produced by a living radical polymerization method having a molecular weight distribution of 1.8 or less is filled with a heat conductive filler. In addition, there is no description regarding a method of using the liquid material as a room temperature curable thermal conductive composition.

特公平6−55891号公報Japanese Patent Publication No. 6-55891 特公平6−38460号公報Japanese Examined Patent Publication No. 6-38460 特公平7−91468号公報Japanese Patent Publication No. 7-91468 特開2004−352947号公報JP 2004-352947 A 特開2008−19319号公報JP 2008-19319 A 特開2001−302936号公報JP 2001-302936 A 特開2006−274094号公報JP 2006-274094 A 特開2006−278476号公報JP 2006-278476 A

本発明は、優れた硬化性、貯蔵安定性、耐熱性、耐久性を有するとともに、従来技術で問題視されている環状シロキサン等による接点障害の可能性が低く、低粘度であるため塗布などの操作が容易であり、さらに室温にて速硬化させることが可能な、室温硬化型熱伝導性組成物、並びにその組成物を硬化させてなる熱伝導材を目的とする。   The present invention has excellent curability, storage stability, heat resistance, and durability, and has a low possibility of contact failure due to cyclic siloxane, which has been regarded as a problem in the prior art. An object of the present invention is a room temperature curable heat conductive composition that is easy to operate and can be rapidly cured at room temperature, and a heat conductive material obtained by curing the composition.

本発明者は、以下の構成を有するものである。
(A)1個のケイ素原子上に3個の水酸基または加水分解性基を少なくとも1個有する反応性ケイ素含有オキシアルキレン有機系重合体、(B)1個のケイ素原子上に少なくとも2個の水酸基または加水分解性基を少なくとも1個有する(メタ)アクリル酸エステル系有機重合体、(C)可塑剤、(D)熱伝導性充填剤、(E)カルボン酸金属塩、(F)カルボン酸、(G)メチルエステル系化合物を含有する、硬化後の熱伝導率が0.5W/mK以上であり流動性を有する室温にて硬化可能な組成物を、発熱体と放熱体との間に塗布した後、発熱体と放熱体との間にて硬化させてなる硬化性樹成物。
The inventor has the following configuration.
(A) a reactive silicon-containing oxyalkylene organic polymer having at least one hydroxyl group or hydrolyzable group on one silicon atom, (B) at least two hydroxyl groups on one silicon atom Or (meth) acrylic ester organic polymer having at least one hydrolyzable group, (C) plasticizer, (D) thermally conductive filler, (E) carboxylic acid metal salt, (F) carboxylic acid, (G) A composition containing a methyl ester compound and having a thermal conductivity after curing of 0.5 W / mK or more and having fluidity, which can be cured at room temperature, is applied between the heating element and the heat dissipation element. Then, a curable resin is cured between the heating element and the heat dissipation element.

本発明の、室温にて速硬化可能な熱伝導性組成物を硬化させてなる硬化性組成物は、優れた貯蔵安定性、耐久性などを有するとともに、従来技術で問題視されている環状シロキサン等による接点障害が改善されるという特徴を有する。
The curable composition obtained by curing the thermally conductive composition that can be rapidly cured at room temperature according to the present invention has excellent storage stability, durability, and the like, and is a cyclic siloxane that is regarded as a problem in the prior art. It has the characteristic that the contact failure by etc. is improved.

以下に本発明の硬化性組成物について詳述する。
(A)ビニル系重合体について
<<ポリエーテル系重合体>>
本発明においては、流動性を有する室温にて速硬化可能な組成物を得るために、1個のケイ素原子上に3個の水酸基または加水分解性基を少なくとも1個有する反応性ケイ素含有オキシアルキレン有機系重合体(A)を使用する。ビニル系重合体(A)の使用量は、硬化性のバランスの観点から、全組成物中1重量%〜99重量%とすることが好ましく、1重量%〜60重量%とすることがより好ましく、5重量%〜50重量%とすることが特に好ましい。
The curable composition of this invention is explained in full detail below.
(A) About vinyl polymer << Polyether polymer >>
In the present invention, a reactive silicon-containing oxyalkylene having at least three hydroxyl groups or hydrolyzable groups on one silicon atom in order to obtain a fluidly curable composition that can be rapidly cured at room temperature. An organic polymer (A) is used. The amount of the vinyl polymer (A) used is preferably 1% by weight to 99% by weight, more preferably 1% by weight to 60% by weight, based on the balance of curability. It is especially preferable to set it as 5 to 50 weight%.

なお本発明においては、ポリエーテル系重合体を用いることも可能である。
<<架橋性官能基を有するポリエーテル系重合体>>
主鎖
ポリエーテル系重合体の主鎖は特に限定されず、例えば、ポリエチレンオキシド、ポリプロピレンオキシド、ポリブチレンオキシド、ポリフェニレンオキシドなどが挙げられる。このうち、本質的にポリオキシアルキレンであることが好ましく、本質的にポリプロピレンオキシドであることがより好ましく、これは、プロピレンオキシド以外に、エチレンオキシド、ブチレンオキシド、フェニレンオキシドなどを含んでもよい。また、ポリエーテル系重合体は、主鎖中にウレタン結合を含んでいてもよく、含んでいなくてもよい。ここで「主鎖が本質的にポリプロピレンオキシドである」とは、プロピレンオキシド単位が、主鎖を構成する繰り返し単位のうち50%以上、好ましくは70%以上、より好ましくは90%以上を占めることをいう。より低粘度であれば取扱い性が良好になるので、ポリプロピレンオキシド系重合体の分子量分布(Mw/Mn)が1.5以下のものがより好ましい。
In the present invention, a polyether polymer can also be used.
<< Polyether polymer having a crosslinkable functional group >>
The main chain of the main chain polyether polymer is not particularly limited, and examples thereof include polyethylene oxide, polypropylene oxide, polybutylene oxide, and polyphenylene oxide. Of these, it is preferably essentially polyoxyalkylene, and more preferably essentially polypropylene oxide, which may contain ethylene oxide, butylene oxide, phenylene oxide and the like in addition to propylene oxide. Moreover, the polyether polymer may or may not contain a urethane bond in the main chain. Here, “the main chain is essentially polypropylene oxide” means that propylene oxide units occupy 50% or more, preferably 70% or more, more preferably 90% or more of the repeating units constituting the main chain. Say. The lower the viscosity, the better the handleability, so that the molecular weight distribution (Mw / Mn) of the polypropylene oxide polymer is more preferably 1.5 or less.

架橋性官能基
ポリエーテル系重合体中の架橋性官能基としては特に限定されず、好ましいものとして、架橋性シリル基、アルケニル基、水酸基、アミノ基、重合性の炭素−炭素二重結合を有する基、エポキシ基が挙げられる。特に、架橋性シリル基が好ましい。
The crosslinkable functional group in the crosslinkable functional group polyether polymer is not particularly limited, and preferably has a crosslinkable silyl group, an alkenyl group, a hydroxyl group, an amino group, and a polymerizable carbon-carbon double bond. Group and epoxy group. In particular, a crosslinkable silyl group is preferable.

ポリエーテル系重合体が有する架橋性官能基の個数は少なくとも1個有するのが好ましいが、1個以下でも構わない。組成物の硬化性の観点から、1個より多く有することが好ましく、より好ましくは平均して1.1〜4.0個、さらに好ましくは平均して1.5〜2.5個である。また、架橋性官能基は、ポリエーテル系重合体の末端にあることが、硬化物のゴム弾性の観点から好ましい。より好ましくは重合体の両末端に官能基があることである。   The polyether polymer preferably has at least one crosslinkable functional group, but may be 1 or less. From the viewpoint of curability of the composition, it is preferably more than 1, more preferably 1.1 to 4.0 on average, and even more preferably 1.5 to 2.5 on average. Moreover, it is preferable from a viewpoint of rubber elasticity of hardened | cured material that a crosslinkable functional group exists in the terminal of a polyether-type polymer. More preferably, there are functional groups at both ends of the polymer.

分子量
この架橋性官能基を少なくとも一個有するポリエーテル系重合体としては、数平均分子量7500以上のものが好ましいが7500以下でも構わない。特に数平均分子量7500〜25000の有機重合体を使用することがより好ましい。ポリエーテル系重合体の数平均分子量が7500より低い場合は硬化物が硬く、かつ伸びが低いものとなり、数平均分子量が25000を超えると硬化物の柔軟性および伸びは問題ないが、該重合体自体の接着性が著しく低くなってしまい、実用性が低くなる。但し、分子量が低くても、架橋性官能基の個数が少ないと柔軟性および伸びが向上することがあるし、分子量が高くても、架橋性官能基の個数が多いと接着性が向上することがある。数平均分子量は特に8000〜20000が粘度の点から好ましいが、8000以下でも構わないし、20000以上でも構わない。
Molecular weight The polyether polymer having at least one crosslinkable functional group preferably has a number average molecular weight of 7500 or more, but may be 7500 or less. In particular, it is more preferable to use an organic polymer having a number average molecular weight of 7500 to 25000. When the number average molecular weight of the polyether polymer is lower than 7500, the cured product is hard and the elongation is low, and when the number average molecular weight exceeds 25,000, there is no problem in the flexibility and elongation of the cured product. The adhesiveness of itself will become remarkably low, and practicality will become low. However, even if the molecular weight is low, flexibility and elongation may be improved if the number of crosslinkable functional groups is small, and adhesion may be improved if the number of crosslinkable functional groups is large even if the molecular weight is high. There is. The number average molecular weight is particularly preferably 8000 to 20000 from the viewpoint of viscosity, but it may be 8000 or less or 20,000 or more.

ポリエーテル系重合体の使用量
ポリエーテル系重合体を添加する場合の使用量は、任意の量で構わないが、架橋性シリル基を少なくとも1個有するビニル系重合体(I)に対し、重量比で100/1〜1/100の範囲が好ましく、100/5〜5/100の範囲にあることがより好ましく、100/10〜10/100の範囲にあることが更に好ましい。各用途、目的に応じて添加量を設定できる。ただし、添加量が多すぎると本発明の効果の1つである優れた耐熱性や耐候性が低下することがある。
Use amount of the polyether polymer The use amount when the polyether polymer is added may be any amount, but the weight is relative to the vinyl polymer (I) having at least one crosslinkable silyl group. The ratio is preferably in the range of 100/1 to 1/100, more preferably in the range of 100/5 to 5/100, and still more preferably in the range of 100/10 to 10/100. The addition amount can be set according to each application and purpose. However, if the addition amount is too large, the excellent heat resistance and weather resistance, which are one of the effects of the present invention, may be lowered.

上記のポリエーテル系重合体中に一般的なラジカル重合法で製造された(メタ)アクリル系重合体、または高温連続塊状重合体(例えば東亜合成(株)製SGOオリゴマーまたはそれらのシリル化物をあらかじめ混合させたものをビニル系重合体との混合に用いてもよい。   A (meth) acrylic polymer produced by a general radical polymerization method or a high-temperature continuous bulk polymer (for example, an SGO oligomer produced by Toa Gosei Co., Ltd. or a silylated product thereof in advance in the above-mentioned polyether polymer. What was mixed may be used for mixing with the vinyl polymer.

<架橋性シリル基を有するポリエーテル系重合体>
以下に架橋性シリル基を有するポリエーテル系重合体について説明する。
<Polyether polymer having a crosslinkable silyl group>
The polyether polymer having a crosslinkable silyl group will be described below.

主鎖
架橋性シリル基を有するポリエーテル系重合体の主鎖構造としては、上記したものと同じである。主鎖は直鎖状であっても分枝状であってもよく、あるいは、これらの混合物であってもよい。その中でも特に好ましいのはポリオキシプロピレンジオール、ポリオキシプロピレントリオールやそれらの混合物に起因する主鎖である。また、他の単量体単位等が含まれていてもよいが、上記式に表わされる単量体単位が、重合体中に50重量%以上、好ましくは80重量%以上存在することが好ましい。
The main chain structure of the polyether polymer having a main chain crosslinkable silyl group is the same as described above. The main chain may be linear or branched, or a mixture thereof. Of these, a main chain derived from polyoxypropylene diol, polyoxypropylene triol or a mixture thereof is particularly preferable. Further, other monomer units and the like may be contained, but the monomer unit represented by the above formula is preferably present in the polymer in an amount of 50% by weight or more, preferably 80% by weight or more.

なお、主鎖中にウレタン結合、ないしはウレア結合を含んでいてもよく、含んでいなくてもよい。   The main chain may or may not contain a urethane bond or urea bond.

ポリエーテル系重合体の分子構造は、使用用途や目的とする特性により相違し、特開昭63−112642記載のもの等が使用できる。このようなポリオキシアルキレンは通常の重合方法(苛性アルカリを用いるアニオン重合法)や、セシウム金属触媒、特開昭61−197631号、特開昭61−215622号、特開昭61−215623号および特開昭61−218632号等に例示されるポルフィリン/アルミ錯体触媒、特公昭46−27250号及び特公昭59−15336号等に例示される複合金属シアン化錯体触媒、特開平10−273512に例示されるポリフォスファゼン塩からなる触媒を用いた方法等により得ることができる。   The molecular structure of the polyether-based polymer varies depending on the intended use and intended properties, and those described in JP-A-63-112642 can be used. Such polyoxyalkylenes can be obtained by conventional polymerization methods (anionic polymerization methods using caustic), cesium metal catalysts, JP-A 61-197631, JP-A 61-215622, JP-A 61-215623, and Porphyrin / aluminum complex catalysts exemplified in JP-A-61-218632 and the like, double metal cyanide complex catalysts exemplified in JP-B-46-27250 and JP-B-59-15336, etc., exemplified in JP-A-10-273512 It can be obtained by a method using a catalyst comprising a polyphosphazene salt.

ポルフィリン/アルミ錯体触媒、複合金属シアン化錯体触媒やポリフォスファゼン塩からなる触媒を用いた方法では分子量分布(Mw/Mn)が1.6以下、さらには1.5以下などの小さい値のオキシアルキレン重合体を得ることができ、分子量分布が小さい場合、硬化物の低モジュラスと高伸びを維持して組成物粘度を小さくできるという利点がある。   In a method using a porphyrin / aluminum complex catalyst, a double metal cyanide complex catalyst or a catalyst comprising a polyphosphazene salt, the molecular weight distribution (Mw / Mn) is 1.6 or less, and further a small value of oxy such as 1.5 or less. When an alkylene polymer can be obtained and the molecular weight distribution is small, there is an advantage that the viscosity of the composition can be reduced while maintaining the low modulus and high elongation of the cured product.

架橋性シリル基
架橋性シリル基としては、ビニル系重合体と同様に、一般式(1)で表される基を用いることができ、一般式(7)で表される基が好ましい。一般式(1)や一般式(7)で表される基についてした説明は架橋性シリル基を有するポリエーテル系重合体についても同じように適用される。ポリエーテル系重合体中の架橋性シリル基は、架橋性シリル基を有するビニル系重合体中の架橋性シリル基と同じ構造のものでもよいし、異なる構造のものでもよい。
As the crosslinkable silyl group, the group represented by the general formula (1) can be used as in the vinyl polymer, and the group represented by the general formula (7) is preferable. The explanation about the group represented by the general formula (1) or the general formula (7) is similarly applied to the polyether polymer having a crosslinkable silyl group. The crosslinkable silyl group in the polyether polymer may have the same structure as the crosslinkable silyl group in the vinyl polymer having a crosslinkable silyl group, or may have a different structure.

架橋性シリル基とポリエーテル部分の間の結合部は、耐加水分解性を有することから、シリル基のケイ素原子とポリエーテル部分のエーテル酸素原子の間に少なくとも3個の炭素原子が存在するように、トリメチレン、テトラメチレンのようなアルキレン基であることが好ましい。   The bond between the crosslinkable silyl group and the polyether moiety is resistant to hydrolysis, so that there are at least 3 carbon atoms between the silicon atom of the silyl group and the ether oxygen atom of the polyether moiety. In addition, an alkylene group such as trimethylene and tetramethylene is preferable.

架橋性シリル基の数と位置
架橋性シリル基の数は組成物の硬化性等の観点から少なくとも1.2個より多く有することが好ましく、1.2個以上4.0以下であることがより好ましく、更に好ましくは1.5〜2.5個以下である。また、ポリエーテル系重合体の架橋性シリル基は、硬化物のゴム弾性の観点から分子鎖の末端にあることが好ましく、より好ましくは重合体の両末端に官能基があることである。
The number of crosslinkable silyl groups and the number of position crosslinkable silyl groups are preferably more than 1.2 from the viewpoint of the curability of the composition, and more preferably 1.2 or more and 4.0 or less. Preferably, it is 1.5-2.5 or less more preferably. Moreover, it is preferable that the crosslinkable silyl group of a polyether-type polymer exists in the terminal of a molecular chain from a viewpoint of the rubber elasticity of hardened | cured material, More preferably, it has a functional group in the both ends of a polymer.

また、平均して1.2個未満の架橋性シリル基を有するポリエーテル重合体を使用することもできる。この場合、高い破断時伸び性、低ブリード性、表面低汚染性、優れた塗料密着性を有する硬化物を得ることができる。また、この重合体の分子量をより小さく設定することにより、組成物の粘度を低下させることができる。架橋性シリル基の個数の下限は少なくとも0.1個以上であることが好ましく、0.3個以上であることがより好ましく、0.5個以上であることが更に好ましい。架橋性シリル基は分子鎖の末端にあることが好ましい。また、このポリエーテル系重合体の架橋性シリル基は、主鎖中の一つの末端にのみ有し、他の末端には有しないものが好ましいが、平均して1.2個以下であれば特に限定されるものではない。平均して1.2個未満の架橋性シリル基を有するポリエーテル重合体を使用して低粘度化を図る場合、好ましい分子量は10,000未満、さらには5,000未満である。   A polyether polymer having an average of less than 1.2 crosslinkable silyl groups can also be used. In this case, a cured product having high elongation at break, low bleeding, low surface contamination, and excellent paint adhesion can be obtained. Moreover, the viscosity of a composition can be reduced by setting the molecular weight of this polymer smaller. The lower limit of the number of crosslinkable silyl groups is preferably at least 0.1, more preferably 0.3 or more, and even more preferably 0.5 or more. The crosslinkable silyl group is preferably at the end of the molecular chain. Further, the crosslinkable silyl group of this polyether polymer is preferably only at one end in the main chain and not at the other end, but if it is 1.2 or less on average It is not particularly limited. In the case of reducing the viscosity by using a polyether polymer having an average of less than 1.2 crosslinkable silyl groups, the preferred molecular weight is less than 10,000, and further less than 5,000.

架橋性シリル基の導入法
架橋性シリル基の導入は公知の方法で行なえばよい。すなわち、例えば、以下の方法が挙げられる。例えば複合金属シアン化錯体触媒を用いて得られるオキシアルキレン重合体の場合は特開平3−72527に、ポリフォスファゼン塩と活性水素を触媒として得られるオキシアルキレン重合体の場合は特開平11−60723に記載されている。
Introduction Method of Crosslinkable Silyl Group The introduction of the crosslinkable silyl group may be performed by a known method. That is, for example, the following method can be mentioned. For example, in the case of an oxyalkylene polymer obtained using a double metal cyanide complex catalyst, JP-A-3-72527, and in the case of an oxyalkylene polymer obtained using a polyphosphazene salt and active hydrogen as a catalyst, JP-A-11-60723 is disclosed. It is described in.

(1)末端に水酸基等の官能基を有するオキシアルキレン重合体と、この官能基に対して反応性を示す活性基及び不飽和基を有する有機化合物を反応させるか、もしくは不飽和基含有エポキシ化合物との共重合により、不飽和基含有オキシアルキレン重合体を得る。次いで、得られた反応生成物に架橋性シリル基を有するヒドロシランを作用させてヒドロシリル化する。   (1) An oxyalkylene polymer having a functional group such as a hydroxyl group at the terminal is reacted with an organic compound having an active group and an unsaturated group which are reactive with the functional group, or an unsaturated group-containing epoxy compound To obtain an unsaturated group-containing oxyalkylene polymer. Next, hydrosilylation is performed by allowing hydrosilane having a crosslinkable silyl group to act on the obtained reaction product.

(2)(1)法と同様にして得られた不飽和基含有オキシアルキレン重合体にメルカプト基及び架橋性シリル基を有する化合物を反応させる。   (2) An unsaturated group-containing oxyalkylene polymer obtained in the same manner as in the method (1) is reacted with a compound having a mercapto group and a crosslinkable silyl group.

(3)末端に水酸基、エポキシ基やイソシアネート基等の官能基(以下、Y官能基という)を有するオキシアルキレン重合体に、このY官能基に対して反応性を示す官能基(以下、Y′官能基という)及び架橋性シリル基を有する化合物を反応させる。   (3) A functional group (hereinafter referred to as Y ′) having reactivity with this Y functional group to an oxyalkylene polymer having a functional group such as a hydroxyl group, an epoxy group or an isocyanate group (hereinafter referred to as Y functional group) at the terminal. And a compound having a crosslinkable silyl group).

このY′官能基を有するケイ素化合物としては、γ−(2−アミノエチル)アミノプロピルトリメトキシシラン、γ−(2−アミノエチル)アミノプロピルメチルジメトキシシラン、γ−アミノプロピルトリエトキシシラン、3−アミノ,2−メチルプロピルトリメトキシシラン、N−エチル−3−アミノ,2−メチルプロピルトリメトキシシラン、4−アミノ,3−メチルプロピルトリメトキシシラン、4−アミノ,3−メチルプロピルメチルジメトキシシラン、N―フェニル−3−アミノプロピルトリメトキシシラン、さらには各種アミノ基含有シランとマレイン酸エステルやアクリレート化合物との部分マイケル付加反応物などのようなアミノ基含有シラン類;γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルメチルジメトキシシランなどのようなメルカプト基含有シラン類;γ−グリシドキシプロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシランなどのようなエポキシシラン類;ビニルトリエトキシシラン、γ−メタクリロイルオキシプロピルトリメトキシシラン、γ−アクリロイルオキシプロピルメチルジメトキシシランなどのようなビニル型不飽和基含有シラン類;γ−クロロプロピルトリメトキシシランなどのような塩素原子含有シラン類;γ−イソシアネートプロピルトリエトキシシラン、γ−イソシアネートプロピルメチルジメトキシシラン、γ−イソシアネートプロピルトリメトキシシランなどのようなイソシアネート含有シラン類;メチルジメトキシシラン、トリメトキシシラン、メチルジエトキシシラン、トリエトキシシランなどのようなハイドロシラン類などが具体的に例示されうるが、これらに限定されるものではない。   Examples of the silicon compound having a Y ′ functional group include γ- (2-aminoethyl) aminopropyltrimethoxysilane, γ- (2-aminoethyl) aminopropylmethyldimethoxysilane, γ-aminopropyltriethoxysilane, 3- Amino, 2-methylpropyltrimethoxysilane, N-ethyl-3-amino, 2-methylpropyltrimethoxysilane, 4-amino, 3-methylpropyltrimethoxysilane, 4-amino, 3-methylpropylmethyldimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, and amino group-containing silanes such as partial Michael addition reaction products of various amino group-containing silanes with maleic esters and acrylate compounds; γ-mercaptopropyltrimethoxysilane Γ-mercaptopropylmethyl Mercapto group-containing silanes such as dimethoxysilane; epoxy-silanes such as γ-glycidoxypropyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane; vinyltriethoxysilane, γ -Vinyl-type unsaturated group-containing silanes such as methacryloyloxypropyltrimethoxysilane and γ-acryloyloxypropylmethyldimethoxysilane; Chlorine atom-containing silanes such as γ-chloropropyltrimethoxysilane; γ-isocyanatopropyl Isocyanate-containing silanes such as triethoxysilane, γ-isocyanatopropylmethyldimethoxysilane, γ-isocyanatopropyltrimethoxysilane; methyldimethoxysilane, trimethoxysilane, methyldiethoxy Specific examples include hydrosilanes such as silane and triethoxysilane, but are not limited thereto.

また、架橋性シリル基の数が平均して1.2個以下の重合体を製造する場合、架橋性シリル基を導入する際に、分子内にただ一個の官能基を有するポリエーテル系重合体を用い、その官能基と当量ないしはより少ない量の、架橋性シリル基を有する化合物を反応させることにより、架橋性シリル基を平均して1.2個以下有するポリエーテル系重合体を得る方法と、平均して分子内に一個以上の官能基を有するポリエーテル系重合体を用い、その官能基よりも更に少ない架橋性シリル基を有する化合物を反応させることにより、結果的に架橋性シリル基を平均して1.2個以下有するポリエーテル系重合体を得る方法がある。   In addition, when producing a polymer having an average number of crosslinkable silyl groups of 1.2 or less, a polyether polymer having only one functional group in the molecule when introducing the crosslinkable silyl group. And a method for obtaining a polyether polymer having an average of 1.2 or less crosslinkable silyl groups by reacting the functional group with a compound having a crosslinkable silyl group in an equivalent amount or a smaller amount. By using a polyether polymer having an average of one or more functional groups in the molecule and reacting a compound having a crosslinkable silyl group that is less than the functional group, There is a method for obtaining a polyether polymer having an average of 1.2 or less.

架橋性シリル基を有するポリエーテル系重合体の使用量
架橋性シリル基を有するポリエーテル系重合体を使用する場合の使用量は、任意の量で構わないが、架橋性シリル基を少なくとも1個有するビニル系重合体(I)に対し、重量比で100/1〜1/100の範囲が好ましく、100/5〜5/100の範囲にあることがより好ましく、100/10〜10/100の範囲にあることが更に好ましい。各用途、目的に応じて添加量を設定できる。ただし、添加量が多すぎると本発明の効果の1つである優れた耐熱性や耐候性が低下することがある。
Use amount of the polyether polymer having a crosslinkable silyl group The use amount of the polyether polymer having a crosslinkable silyl group may be any amount, but at least one crosslinkable silyl group is present. The weight ratio of the vinyl polymer (I) is preferably 100/1 to 1/100, more preferably 100/5 to 5/100, and more preferably 100/10 to 10/100. More preferably, it is in the range. The addition amount can be set according to each application and purpose. However, if the addition amount is too large, the excellent heat resistance and weather resistance, which are one of the effects of the present invention, may be lowered.

平均して1.2個以下の架橋性シリル基を有するポリエーテル系重合体を使用する場合その使用量としては、ビニル系重合体100重量部に対し1重量部以上200重量部以下が好ましく、3重量部以上100重量部以下がより好ましく、5重量部以上80重量部以下が更に好ましい。1重量部未満では添加効果が得られにくく、200重量部を超えると硬化物の物性が不安定になる傾向がある。   When using a polyether polymer having an average of 1.2 or less crosslinkable silyl groups, the amount used is preferably 1 part by weight or more and 200 parts by weight or less with respect to 100 parts by weight of the vinyl polymer, The amount is more preferably 3 parts by weight or more and 100 parts by weight or less, and further preferably 5 parts by weight or more and 80 parts by weight or less. If it is less than 1 part by weight, the effect of addition is difficult to obtain, and if it exceeds 200 parts by weight, the physical properties of the cured product tend to become unstable.

混合使用する態様として、1)一般式(1)で表される架橋性シリル基を有するビニル系重合体に、架橋性シリル基を有するポリエーテル系重合体とさらに平均して1.2個以下の架橋性シリル基を有するポリエーテル系重合体を添加すること、2)架橋性シリル基を有するポリエーテル系重合体とさらに片末端に架橋性シリル基を有するビニル系重合体を添加すること、3)架橋性シリル基を有するポリエーテル系重合体とさらに架橋性官能基を有し分子量分布が1.8以上のビニル系重合体を添加する場合、平均して1.2個以下の架橋性シリル基を有するポリエーテル系重合体とさらに片末端に架橋性シリル基を有するビニル系重合体を添加すること、4)平均して1.2個以下の架橋性シリル基を有するポリエーテル系重合体と架橋性官能基を有し分子量分布が1.8以上のビニル系重合体を添加すること等があげられるがこれらに限定されない。   As an aspect to be used in combination, 1) vinyl polymer having a crosslinkable silyl group represented by the general formula (1), and an average of 1.2 or less with a polyether polymer having a crosslinkable silyl group Adding a polyether polymer having a crosslinkable silyl group of 2) adding a polyether polymer having a crosslinkable silyl group and a vinyl polymer having a crosslinkable silyl group at one end; 3) When a polyether polymer having a crosslinkable silyl group and a vinyl polymer having a crosslinkable functional group and a molecular weight distribution of 1.8 or more are added, the crosslinkability is 1.2 or less on average. Adding a polyether polymer having a silyl group and a vinyl polymer having a crosslinkable silyl group at one end; and 4) a polyether polymer having an average of 1.2 or less crosslinkable silyl groups. Coalescence and cross-linking It like molecular weight have a functional group distribution is added 1.8 or more of the vinyl polymer and the like without limitation.

<<各種の架橋性官能基を有する重合体任意成分>>
本発明の硬化性組成物においては、任意成分として各種の架橋性官能基を有する重合体を添加しても構わない。架橋性官能基を有する重合体としては、(i)架橋性官能基を有するポリイソブチレン系重合体、特に架橋性シリル基を有するポリイソブチレン系重合体、(ii)ポリシロキサンを例示することができる。これらの重合体は1種または2種以上を用いて添加することが出来る。
<< Arbitrary Polymer Components Having Various Crosslinkable Functional Groups >>
In the curable composition of the present invention, polymers having various crosslinkable functional groups may be added as optional components. Examples of the polymer having a crosslinkable functional group include (i) a polyisobutylene polymer having a crosslinkable functional group, particularly a polyisobutylene polymer having a crosslinkable silyl group, and (ii) polysiloxane. . These polymers can be added using 1 type (s) or 2 or more types.

これらの重合体任意成分を、本発明の架橋性シリル基を有するビニル系重合体に添加する際に、珪素原子1つあたり2つの加水分解性基が結合してなる加水分解性珪素基を有するビニル系重合体と、架橋性官能基1つあたり3つの加水分解性基が結合してなる重合体任意成分を組合せても良いし、逆に、珪素原子1つあたり3つの加水分解性基が結合してなる加水分解性珪素基を有するビニル系重合体と、架橋性官能基1つあたり2つの加水分解性基が結合してなる重合体任意成分を組合せても良い。また、何れの重合体も3つの加水分解性基が結合してなる架橋性官能基を有する組合せでも構わないし、2つの加水分解性基が結合してなる架橋性官能基を有する組合せでも構わない。更には、1つから3つのものが混在していても構わない。   When these polymer optional components are added to the vinyl polymer having a crosslinkable silyl group of the present invention, the polymer has a hydrolyzable silicon group formed by bonding two hydrolyzable groups per silicon atom. A vinyl polymer and a polymer arbitrary component formed by bonding three hydrolyzable groups per crosslinkable functional group may be combined. Conversely, three hydrolyzable groups per silicon atom are combined. You may combine the vinyl polymer which has a hydrolysable silicon group formed by combining, and the polymer arbitrary component formed by combining two hydrolyzable groups per crosslinkable functional group. Also, any polymer may be a combination having a crosslinkable functional group formed by bonding three hydrolyzable groups, or a combination having a crosslinkable functional group formed by bonding two hydrolyzable groups. . Furthermore, one to three things may be mixed.

(B)(メタ)アクリル酸エステル系有機重合体について説明する。   (B) The (meth) acrylic acid ester organic polymer will be described.

<主鎖>
本発明者らは、これまでに様々な架橋性官能基を重合体末端に有するビニル系重合体、その製造法、硬化性組成物、及び用途に関して数々の発明を行ってきた(特開平11−080249、特開平11−080250、特開平11−005815、特開平11−116617、特開平11−116606、特開平11−080571、特開平11−080570、特開平11−130931、特開平11−100433、特開平11−116763、特開平9−272714号、特開平9−272715号等を参照)。本発明のビニル系重合体(I)としては特に限定されないが、上に例示した発明で開示される重合体をすべて好適に用いることができる。
<Main chain>
The present inventors have so far made numerous inventions relating to vinyl polymers having various crosslinkable functional groups at the ends of the polymer, production methods thereof, curable compositions, and uses (Japanese Patent Application Laid-Open No. 11-1990). 080249, JP-A-11-080250, JP-A-11-005815, JP-A-11-116617, JP-A-11-116606, JP-A-11-080571, JP-A-11-080570, JP-A-11-130931, JP-A-11-100033, JP-A-11-116763, JP-A-9-272714, JP-A-9-272715, etc.). Although it does not specifically limit as vinyl-type polymer (I) of this invention, All the polymers disclosed by the invention illustrated above can be used suitably.

本発明のビニル系重合体の主鎖を構成するビニル系モノマーとしては特に限定されず、各種のものを用いることができる。例示するならば、
(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸−n−プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸−n−ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸−tert−ブチル、(メタ)アクリル酸−n−ペンチル、(メタ)アクリル酸−n−ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸−n−ヘプチル、(メタ)アクリル酸−n−オクチル、(メタ)アクリル酸−2−エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸トリル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸−2−メトキシエチル、(メタ)アクリル酸−3−メトキシブチル、(メタ)アクリル酸−2−ヒドロキシエチル、(メタ)アクリル酸−2−ヒドロキシプロピル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸2−アミノエチル、γ−(メタクリロイルオキシプロピル)トリメトキシシラン、(メタ)アクリル酸のエチレンオキサイド付加物、(メタ)アクリル酸トリフルオロメチルメチル、(メタ)アクリル酸2−トリフルオロメチルエチル、(メタ)アクリル酸パーフルオロエチルメチル、(メタ)アクリル酸2−パーフルオロエチルエチル、(メタ)アクリル酸パーフルオロエチルパーフルオロブチルメチル、(メタ)アクリル酸2−パーフルオロエチル−2−パーフルオロブチルエチル、(メタ)アクリル酸パーフルオロエチル、(メタ)アクリル酸パーフルオロメチル、(メタ)アクリル酸ジパーフルオロメチルメチル、(メタ)アクリル酸2,2−ジパーフルオロメチルエチル、(メタ)アクリル酸パーフルオロメチルパーフルオロエチルメチル、(メタ)アクリル酸2−パーフルオロメチル−2−パーフルオロエチルエチル、(メタ)アクリル酸2−パーフルオロヘキシルメチル、(メタ)アクリル酸2−パーフルオロヘキシルエチル、(メタ)アクリル酸2−パーフルオロデシルメチル、(メタ)アクリル酸2−パーフルオロデシルエチル、(メタ)アクリル酸2−パーフルオロヘキサデシルメチル、(メタ)アクリル酸2−パーフルオロヘキサデシルエチル等の(メタ)アクリル系モノマー;スチレン、ビニルトルエン、α−メチルスチレン、クロルスチレン、スチレンスルホン酸及びその塩等の芳香族ビニル系モノマー;パーフルオロエチレン、パーフルオロプロピレン、フッ化ビニリデン等のフッ素含有ビニル系モノマー;ビニルトリメトキシシラン、ビニルトリエトキシシラン等のケイ素含有ビニル系モノマー;無水マレイン酸、マレイン酸、マレイン酸のモノアルキルエステル及びジアルキルエステル;フマル酸、フマル酸のモノアルキルエステル及びジアルキルエステル;マレイミド、メチルマレイミド、エチルマレイミド、プロピルマレイミド、ブチルマレイミド、ヘキシルマレイミド、オクチルマレイミド、ドデシルマレイミド、ステアリルマレイミド、フェニルマレイミド、シクロヘキシルマレイミド等のマレイミド系モノマー;アクリロニトリル、メタクリロニトリル等のアクリロニトリル系モノマー;アクリルアミド、メタクリルアミド等のアミド基含有ビニル系モノマー;酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニル、安息香酸ビニル、桂皮酸ビニル等のビニルエステル類;エチレン、プロピレン等のアルケン類;ブタジエン、イソプレン等の共役ジエン類;塩化ビニル、塩化ビニリデン、塩化アリル、アリルアルコール等が挙げられる。これらは、単独で用いても良いし、複数を共重合させても構わない。
It does not specifically limit as a vinyl-type monomer which comprises the principal chain of the vinyl-type polymer of this invention, Various things can be used. To illustrate,
(Meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, (meth) acrylic acid-n-propyl, (meth) acrylic acid isopropyl, (meth) acrylic acid-n-butyl, (meth) Isobutyl acrylate, (meth) acrylic acid-tert-butyl, (meth) acrylic acid-n-pentyl, (meth) acrylic acid-n-hexyl, (meth) acrylic acid cyclohexyl, (meth) acrylic acid-n-heptyl , (Meth) acrylic acid-n-octyl, (meth) acrylic acid-2-ethylhexyl, (meth) acrylic acid nonyl, (meth) acrylic acid isononyl, (meth) acrylic acid decyl, (meth) acrylic acid dodecyl, ( (Meth) acrylic acid phenyl, (meth) acrylic acid tolyl, (meth) acrylic acid benzyl, (meth) acrylic acid-2-methyl Xylethyl, (meth) acrylate-3-methoxybutyl, (meth) acrylate-2-hydroxyethyl, (meth) acrylate-2-hydroxypropyl, stearyl (meth) acrylate, glycidyl (meth) acrylate, ( (Meth) acrylic acid 2-aminoethyl, γ- (methacryloyloxypropyl) trimethoxysilane, (meth) acrylic acid ethylene oxide adduct, (meth) acrylic acid trifluoromethyl methyl, (meth) acrylic acid 2-trifluoro Methyl ethyl, perfluoroethyl methyl (meth) acrylate, 2-perfluoroethyl ethyl (meth) acrylate, perfluoroethyl perfluorobutyl methyl (meth) acrylate, 2-perfluoroethyl-2 (meth) acrylate -Perfluorobutylethyl, (meth) aqua Perfluoroethyl laurate, perfluoromethyl (meth) acrylate, diperfluoromethyl methyl (meth) acrylate, 2,2-diperfluoromethyl ethyl (meth) acrylate, perfluoromethyl per (meth) acrylate Fluoroethylmethyl, 2-perfluoromethyl-2-perfluoroethylethyl (meth) acrylate, 2-perfluorohexylmethyl (meth) acrylate, 2-perfluorohexylethyl (meth) acrylate, (meth) acrylic (Meth) such as 2-perfluorodecylmethyl acid, 2-perfluorodecylethyl (meth) acrylate, 2-perfluorohexadecylmethyl (meth) acrylate, 2-perfluorohexadecylethyl (meth) acrylate Acrylic monomers; styrene, vinyl toluene, α-methyl Aromatic vinyl monomers such as styrene, chlorostyrene, styrene sulfonic acid, and salts thereof; fluorine-containing vinyl monomers such as perfluoroethylene, perfluoropropylene, and vinylidene fluoride; silicon such as vinyltrimethoxysilane and vinyltriethoxysilane Containing vinyl monomers; maleic anhydride, maleic acid, monoalkyl and dialkyl esters of maleic acid; fumaric acid, monoalkyl and dialkyl esters of fumaric acid; maleimide, methylmaleimide, ethylmaleimide, propylmaleimide, butylmaleimide, hexyl Maleimide monomers such as maleimide, octylmaleimide, dodecylmaleimide, stearylmaleimide, phenylmaleimide, cyclohexylmaleimide; acrylonitrile, meta Acrylonitrile monomers such as acrylonitrile; Amide group-containing vinyl monomers such as acrylamide and methacrylamide; Vinyl esters such as vinyl acetate, vinyl propionate, vinyl pivalate, vinyl benzoate, vinyl cinnamate; Ethylene, propylene, etc. Alkenes; conjugated dienes such as butadiene and isoprene; vinyl chloride, vinylidene chloride, allyl chloride, allyl alcohol and the like. These may be used alone or a plurality of these may be copolymerized.

ビニル系重合体の主鎖が、(メタ)アクリル系モノマー、アクリロニトリル系モノマー、芳香族ビニル系モノマー、フッ素含有ビニル系モノマー及びケイ素含有ビニル系モノマーからなる群より選ばれる少なくとも1つのモノマーを主として重合して製造されるものであることが好ましい。ここで「主として」とは、ビニル系重合体を構成するモノマー単位のうち30モル%以上、好ましくは50モル%以上が、上記モノマーであることを意味する。   The main chain of the vinyl polymer is mainly polymerized with at least one monomer selected from the group consisting of (meth) acrylic monomers, acrylonitrile monomers, aromatic vinyl monomers, fluorine-containing vinyl monomers, and silicon-containing vinyl monomers. It is preferable that it is manufactured. Here, “mainly” means that 30 mol% or more, preferably 50 mol% or more of the monomer units constituting the vinyl polymer are the above monomers.

なかでも、生成物の物性等から、スチレン系モノマー及び(メタ)アクリル酸系モノマーが好ましい。より好ましくは、アクリル酸エステルモノマー及びメタクリル酸エステルモノマーであり、特に好ましくはアクリル酸エステルモノマーである。本用途においては配合物の低粘度、硬化物の耐熱性等の物性が要求される点から、アクリル酸ブチルモノマーが更に好ましい。一方、耐油性が要求される用途においては、アクリル酸エチルを主とした共重合体が更に好ましい。このアクリル酸エチルを主とした重合体は耐油性に優れるが低温特性(耐寒性)にやや劣る傾向があるため、その低温特性を向上させるために、アクリル酸エチルの一部をアクリル酸ブチルに置き換えることも可能である。ただし、アクリル酸ブチルの比率を増やすに伴いその良好な耐油性が損なわれていくので、耐油性を要求される用途によってはその比率を80モル%以下にするのが好ましく、60モル%以下にするのがより好ましく、40モル%以下にするのが更に好ましく、30モル%以下にするのがもっと好ましい。また、耐油性を損なわずに低温特性等を改善するために側鎖のアルキル基に酸素が導入されたアクリル酸2−メトキシエチルやアクリル酸2−エトキシエチル等を用いるのも好ましい。ただし、側鎖にエーテル結合を持つアルコキシ基の導入により耐熱性が劣る傾向にあるので、耐熱性が要求されるときには、その比率は60モル%以下にするのが好ましく、40%以下にするのが更に好ましい。各種用途や要求される目的に応じて、必要とされる耐油性や耐熱性、低温特性等の物性を考慮し、その比率を変化させ、適した重合体を得ることが可能である。例えば、限定はされないが耐油性や耐熱性、低温特性等の物性バランスに優れている例としては、アクリル酸エチル/アクリル酸ブチル/アクリル酸2−メトキシエチル(モル比で40〜50/20〜30/20〜30)の共重合体が挙げられる。   Of these, a styrene monomer and a (meth) acrylic acid monomer are preferable from the physical properties of the product. More preferred are acrylic ester monomers and methacrylic ester monomers, and particularly preferred are acrylic ester monomers. In this application, a butyl acrylate monomer is more preferable because physical properties such as a low viscosity of the blend and a heat resistance of the cured product are required. On the other hand, in applications where oil resistance is required, a copolymer mainly composed of ethyl acrylate is more preferable. This polymer mainly composed of ethyl acrylate is excellent in oil resistance but tends to be slightly inferior in low temperature characteristics (cold resistance). Therefore, in order to improve the low temperature characteristics, a part of ethyl acrylate is converted into butyl acrylate. It is also possible to replace it. However, as the ratio of butyl acrylate is increased, the good oil resistance is impaired, so that the ratio is preferably 80 mol% or less depending on the application for which oil resistance is required, and 60 mol% or less. More preferably, it is 40 mol% or less, more preferably 30 mol% or less. It is also preferable to use 2-methoxyethyl acrylate, 2-ethoxyethyl acrylate, or the like in which oxygen is introduced into the side chain alkyl group in order to improve low-temperature characteristics and the like without impairing oil resistance. However, since heat resistance tends to be inferior due to the introduction of an alkoxy group having an ether bond in the side chain, when heat resistance is required, the ratio is preferably 60 mol% or less, and 40% or less. Is more preferable. In accordance with various uses and required purposes, it is possible to obtain suitable polymers by changing the ratio in consideration of required physical properties such as oil resistance, heat resistance and low temperature characteristics. For example, although not limited, examples of excellent physical property balance such as oil resistance, heat resistance, and low-temperature characteristics include ethyl acrylate / butyl acrylate / 2-methoxyethyl acrylate (molar ratio of 40-50 / 20- 30 / 20-30).

なお、本発明のビニル系重合体にエポキシ樹脂を添加する場合において、その硬化性組成物を硬化させた時の硬化物が透明であるものを得るためには、該ビニル系重合体としてはエポキシ樹脂と相溶するものが好ましく、アクリル酸ブチルエステルホモポリマーよりも極性が高い重合体または共重合体が好適であり、該ビニル系重合体の主鎖が一般式(2)で表される繰り返し単位構造を有する重合体または共重合体であることがより好ましい。
−[CH2−CR(COOR’)]− (2)
(式中、Rは水素、又はメチル基、R’は、同一若しくは異なって、アルコキシアルキル基、または炭素数1〜3のアルキル基である。)
アクリル酸ブチルエステルホモポリマーよりも極性が高い重合体または共重合体には、特に限定はないが、アクリル酸ブチルと、アクリル酸ブチルよりも極性が高いモノマーとの共重合体などが挙げられる。ここで、アクリル酸ブチルよりも極性が高いモノマーとしては、例えば、アクリル酸エチル、アクリル酸2−メトキシエチルなどが挙げられる。例えば、アクリル酸エチル/アクリル酸ブチル/アクリル酸2−メトキシエチル(モル比で40〜50/20〜30/20〜30)の共重合体が各種エポキシ樹脂と相溶し易く、透明な硬化物を得易いため、好適である。
In addition, in the case of adding an epoxy resin to the vinyl polymer of the present invention, in order to obtain a transparent cured product when the curable composition is cured, the vinyl polymer is an epoxy. Resins that are compatible with the resin are preferred, and polymers or copolymers having a higher polarity than the butyl acrylate homopolymer are preferred, and the main chain of the vinyl polymer is represented by the general formula (2). A polymer or copolymer having a unit structure is more preferable.
- [CH 2 -CR (COOR ' )] - (2)
(In the formula, R is hydrogen or a methyl group, and R ′ is the same or different and is an alkoxyalkyl group or an alkyl group having 1 to 3 carbon atoms.)
The polymer or copolymer having a higher polarity than the butyl acrylate homopolymer is not particularly limited, and examples thereof include a copolymer of butyl acrylate and a monomer having a higher polarity than butyl acrylate. Here, examples of the monomer having higher polarity than butyl acrylate include ethyl acrylate and 2-methoxyethyl acrylate. For example, a copolymer of ethyl acrylate / butyl acrylate / acrylic acid 2-methoxyethyl (molar ratio 40-50 / 20-30 / 20-30) is easily compatible with various epoxy resins, and is a transparent cured product. It is preferable because it is easy to obtain.

他のポリマー、例えば、変成シリコーン樹脂(架橋性シリル基を有するオキシアルキレン重合体)との相溶性を向上させるためにステアリル基やラウリル基等の長鎖のアルキル基を持ったモノマー等を共重合させても良い。特に限定はされないが、例えば、アクリル酸ステアリルやアクリル酸ラウリルを5〜30モル%共重合することで変成シリコーン樹脂との相溶性が非常に良好になる。それぞれのポリマーの分子量によって相溶性が変わるため、この共重合させるモノマーの比率はそれに応じて選択することが好ましい。また、その際には、ブロック共重合させても構わない。少量で効果を発現する場合がある。   Copolymerizes monomers with long-chain alkyl groups such as stearyl groups and lauryl groups to improve compatibility with other polymers such as modified silicone resins (oxyalkylene polymers having crosslinkable silyl groups) You may let them. Although there is no particular limitation, for example, 5-30 mol% of stearyl acrylate or lauryl acrylate is copolymerized so that the compatibility with the modified silicone resin becomes very good. Since the compatibility varies depending on the molecular weight of each polymer, it is preferable to select the proportion of the monomer to be copolymerized accordingly. In this case, block copolymerization may be performed. The effect may be manifested in a small amount.

官能性シリル基を持ったビニル系重合体を含む硬化性組成物は、貯蔵によりその硬化性が遅くなることが、つまり貯蔵安定性が悪くなることがある。例えば、アクリル酸メチルを共重合することにより、そのような減少を抑制することが可能になる場合がある。また硬化物の強度を向上させたい場合に用いても構わない。この場合にも、共重合させるモノマーの比率は分子量に応じて選択しても、並びに/又はブロック共重合させても構わない。   The curable composition containing a vinyl polymer having a functional silyl group may have a slow curability upon storage, that is, a poor storage stability. For example, it may be possible to suppress such a decrease by copolymerizing methyl acrylate. Moreover, you may use when you want to improve the intensity | strength of hardened | cured material. Also in this case, the ratio of monomers to be copolymerized may be selected according to the molecular weight and / or may be block copolymerized.

本発明においては、これらの好ましいモノマーを他のモノマーと共重合、更にはブロック共重合させても構わなく、その際は、これらの好ましいモノマーが重量比で40%以上含まれていることが好ましい。なお上記表現形式で例えば(メタ)アクリル酸とは、アクリル酸および/あるいはメタクリル酸を表す。   In the present invention, these preferred monomers may be copolymerized with other monomers, and further block copolymerized, and in that case, these preferred monomers are preferably contained in a weight ratio of 40% or more. . In the above expression format, for example, (meth) acrylic acid represents acrylic acid and / or methacrylic acid.

本発明のビニル系重合体の分子量分布、すなわち、ゲルパーミエーションクロマトグラフィーで測定した重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は、特に限定されないが、分子量分布が1.8未満、特に1.3未満が、作業性の点から好ましい。本発明でのGPC測定においては、通常、移動相としてクロロホルムを用い、測定はポリスチレンゲルカラムにておこない、数平均分子量等はポリスチレン換算で求めることができる。   The molecular weight distribution of the vinyl polymer of the present invention, that is, the ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) measured by gel permeation chromatography is not particularly limited. A distribution of less than 1.8, particularly less than 1.3 is preferred from the viewpoint of workability. In the GPC measurement in the present invention, chloroform is usually used as the mobile phase, the measurement is performed with a polystyrene gel column, and the number average molecular weight and the like can be determined in terms of polystyrene.

本発明におけるビニル系重合体の数平均分子量は特に制限はない。なお、ゲルパーミエーションクロマトグラフィーで測定した場合、500〜1,000,000、特に5,000〜50,000が作業性、物性上の点から好ましい。また、当然ながら、分子量が小さい程、他の樹脂(各種重合体)と相溶し易く、かつ得られた硬化物は高モジュラス、低伸びの傾向を示し、逆に分子量が大きければその逆の傾向を示す。   The number average molecular weight of the vinyl polymer in the present invention is not particularly limited. In addition, when measured by gel permeation chromatography, 500 to 1,000,000, particularly 5,000 to 50,000 are preferable from the viewpoint of workability and physical properties. Of course, the smaller the molecular weight, the easier it is to be compatible with other resins (various polymers), and the resulting cured product tends to have a high modulus and low elongation. Conversely, if the molecular weight is large, the opposite is true. Show the trend.

<主鎖の合成法>
本発明における、ビニル系重合体の合成法は、限定はされず、フリーラジカル重合でも構わないが、制御ラジカル重合が好ましく、リビングラジカル重合がより好ましく、原子移動ラジカル重合が特に好ましい。以下にこれらについて説明する。
<Method of synthesizing the main chain>
The method for synthesizing the vinyl polymer in the present invention is not limited and may be free radical polymerization. However, controlled radical polymerization is preferable, living radical polymerization is more preferable, and atom transfer radical polymerization is particularly preferable. These will be described below.

制御ラジカル重合
ラジカル重合法は、重合開始剤としてアゾ系化合物、過酸化物などを用いて、特定の官能基を有するモノマーとビニル系モノマーとを単に共重合させる「一般的なラジカル重合法」と、末端などの制御された位置に特定の官能基を導入することが可能な「制御ラジカル重合法」に分類できる。
Controlled radical polymerization The radical polymerization method is a “general radical polymerization method” in which a monomer having a specific functional group and a vinyl monomer are simply copolymerized using an azo compound or a peroxide as a polymerization initiator. Can be classified into “controlled radical polymerization methods” in which a specific functional group can be introduced at a controlled position such as a terminal.

「一般的なラジカル重合法」は簡便な方法であるが、この方法では特定の官能基を有するモノマーは確率的にしか重合体中に導入されないので、官能化率の高い重合体を得ようとした場合には、このモノマーをかなり大量に使う必要があり、逆に少量使用ではこの特定の官能基が導入されない重合体の割合が大きくなるという問題点がある。またフリーラジカル重合であるため、分子量分布が広く粘度の高い重合体しか得られないという問題点もある。   The “general radical polymerization method” is a simple method. However, in this method, a monomer having a specific functional group is introduced into the polymer only in a probabilistic manner, so an attempt is made to obtain a polymer having a high functionalization rate. In such a case, it is necessary to use this monomer in a considerably large amount. On the contrary, if the monomer is used in a small amount, there is a problem that the proportion of the polymer in which this specific functional group is not introduced becomes large. Moreover, since it is free radical polymerization, there is also a problem that only a polymer having a wide molecular weight distribution and a high viscosity can be obtained.

「制御ラジカル重合法」は、更に、特定の官能基を有する連鎖移動剤を用いて重合をおこなうことにより末端に官能基を有するビニル系重合体が得られる「連鎖移動剤法」と、重合生長末端が停止反応などを起こさずに生長することによりほぼ設計どおりの分子量の重合体が得られる「リビングラジカル重合法」とに分類することができる。   The “controlled radical polymerization method” further includes a “chain transfer agent method” in which a vinyl polymer having a functional group at a terminal is obtained by polymerization using a chain transfer agent having a specific functional group, It can be classified as “living radical polymerization method” in which a polymer having a molecular weight almost as designed can be obtained by growing the terminal without causing a termination reaction or the like.

「連鎖移動剤法」は、官能化率の高い重合体を得ることが可能であるが、開始剤に対してかなり大量の特定の官能基を有する連鎖移動剤が必要であり、処理も含めて経済面で問題がある。また上記の「一般的なラジカル重合法」と同様、フリーラジカル重合であるため分子量分布が広く、粘度の高い重合体しか得られないという問題点もある。   In the “chain transfer agent method”, a polymer having a high functionalization rate can be obtained, but a chain transfer agent having a considerably large amount of a specific functional group with respect to the initiator is required. There is an economic problem. Further, like the above-mentioned “general radical polymerization method”, there is also a problem that only a polymer having a wide molecular weight distribution and a high viscosity can be obtained because of free radical polymerization.

これらの重合法とは異なり、「リビングラジカル重合法」は、重合速度が高く、ラジカル同士のカップリングなどによる停止反応が起こりやすいため制御の難しいとされるラジカル重合でありながら、停止反応が起こりにくく、分子量分布の狭い(Mw/Mnが1.1〜1.5程度)重合体が得られるとともに、モノマーと開始剤の仕込み比によって分子量は自由にコントロールすることができる。   Unlike these polymerization methods, the “living radical polymerization method” is a radical polymerization that is difficult to control because the polymerization rate is high and a termination reaction due to coupling between radicals is likely to occur. It is difficult to obtain a polymer having a narrow molecular weight distribution (Mw / Mn is about 1.1 to 1.5), and the molecular weight can be freely controlled by the charging ratio of the monomer and the initiator.

従って「リビングラジカル重合法」は、分子量分布が狭く、粘度が低い重合体を得ることができる上に、特定の官能基を有するモノマーを重合体のほぼ任意の位置に導入することができるため、上記特定の官能基を有するビニル系重合体の製造方法としてはより好ましいものである。   Accordingly, the “living radical polymerization method” can obtain a polymer having a narrow molecular weight distribution and a low viscosity, and a monomer having a specific functional group can be introduced at almost any position of the polymer. The method for producing the vinyl polymer having the specific functional group is more preferable.

なお、リビング重合とは狭義においては、末端が常に活性を持ち続けて分子鎖が生長していく重合のことをいうが、一般には、末端が不活性化されたものと活性化されたものが平衡状態にありながら生長していく擬リビング重合も含まれる。本発明における定義も後者である。   In the narrow sense, living polymerization refers to polymerization in which the terminal always has activity and the molecular chain grows, but in general, the terminal is inactivated and the terminal is activated. It also includes pseudo-living polymerization that grows in an equilibrium state. The definition in the present invention is also the latter.

「リビングラジカル重合法」は近年様々なグループで積極的に研究がなされている。その例としては、たとえばジャーナル・オブ・アメリカン・ケミカルソサエティー(J.Am.Chem.Soc.)、1994年、116巻、7943頁に示されるようなコバルトポルフィリン錯体を用いるもの、マクロモレキュールズ(Macromolecules)、1994年、27巻、7228頁に示されるようなニトロキシド化合物などのラジカルキャッピング剤を用いるもの、有機ハロゲン化物等を開始剤とし遷移金属錯体を触媒とする「原子移動ラジカル重合」(Atom Transfer Radical Polymerization:ATRP)などがあげられる。   The “living radical polymerization method” has been actively researched by various groups in recent years. Examples thereof include those using a cobalt porphyrin complex as shown in, for example, Journal of American Chemical Society (J. Am. Chem. Soc.), 1994, 116, 7943, Macromolecules. (Macromolecules), 1994, Vol. 27, p. 7228, using a radical capping agent such as a nitroxide compound, “atom transfer radical polymerization” using an organic halide as an initiator and a transition metal complex as a catalyst ( Atom Transfer Radical Polymerization (ATRP).

「リビングラジカル重合法」の中でも、有機ハロゲン化物あるいはハロゲン化スルホニル化合物等を開始剤、遷移金属錯体を触媒としてビニル系モノマーを重合する「原子移動ラジカル重合法」は、上記の「リビングラジカル重合法」の特徴に加えて、官能基変換反応に比較的有利なハロゲン等を末端に有し、開始剤や触媒の設計の自由度が大きいことから、特定の官能基を有するビニル系重合体の製造方法としてはさらに好ましい。この原子移動ラジカル重合法としては例えばMatyjaszewskiら、ジャーナル・オブ・アメリカン・ケミカルソサエティー(J.Am.Chem.Soc.)1995年、117巻、5614頁、マクロモレキュールズ(Macromolecules)1995年、28巻、7901頁,サイエンス(Science)1996年、272巻、866頁、WO96/30421号公報,WO97/18247号公報、WO98/01480号公報,WO98/40415号公報、あるいはSawamotoら、マクロモレキュールズ(Macromolecules)1995年、28巻、1721頁、特開平9−208616号公報、特開平8−41117号公報などが挙げられる。   Among the “living radical polymerization methods”, the “atom transfer radical polymerization method” for polymerizing vinyl monomers using an organic halide or a sulfonyl halide compound as an initiator and a transition metal complex as a catalyst is the above “living radical polymerization method”. In addition to the features of ”, it has a halogen, which is relatively advantageous for functional group conversion reaction, at the end, and has a high degree of freedom in designing initiators and catalysts, so the production of vinyl polymers having specific functional groups More preferable as a method. As this atom transfer radical polymerization method, for example, Matyjazewski et al., Journal of American Chemical Society (J. Am. Chem. Soc.) 1995, 117, 5614, Macromolecules 1995, 28, 7901, Science 1996, 272, 866, WO96 / 30421, WO97 / 18247, WO98 / 01480, WO98 / 40415, or Sawamoto et al., Macromolecules. Macromolecules 1995, 28, 1721, JP-A-9-208616, JP-A-8-41117, and the like.

本発明において、これらのリビングラジカル重合のうちどの方法を使用するかは特に制約はないが、原子移動ラジカル重合法が好ましい。   In the present invention, there is no particular restriction as to which of these living radical polymerization methods is used, but an atom transfer radical polymerization method is preferred.

以下にリビングラジカル重合について詳細に説明していくが、その前に、後に説明するビニル系重合体の製造に用いることができる制御ラジカル重合のうちの一つ、連鎖移動剤を用いた重合について説明する。連鎖移動剤(テロマー)を用いたラジカル重合としては、特に限定されないが、本発明に適した末端構造を有したビニル系重合体を得る方法としては、次の2つの方法が例示される。   The living radical polymerization will be described in detail below, but before that, one of the controlled radical polymerizations that can be used for the production of vinyl polymers described later, the polymerization using a chain transfer agent will be described. To do. Although it does not specifically limit as radical polymerization using a chain transfer agent (telomer), The following two methods are illustrated as a method of obtaining the vinyl polymer which has the terminal structure suitable for this invention.

特開平4−132706号公報に示されているようなハロゲン化炭化水素を連鎖移動剤として用いてハロゲン末端の重合体を得る方法と、特開昭61−271306号公報、特許2594402号公報、特開昭54−47782号公報に示されているような水酸基含有メルカプタンあるいは水酸基含有ポリスルフィド等を連鎖移動剤として用いて水酸基末端の重合体を得る方法である。   JP-A-4-132706 discloses a method for obtaining a halogen-terminated polymer by using a halogenated hydrocarbon as a chain transfer agent, JP-A-61-271306, JP-A-2594402, This is a method for obtaining a hydroxyl-terminated polymer by using a hydroxyl group-containing mercaptan or a hydroxyl group-containing polysulfide as a chain transfer agent as disclosed in JP-A-54-47782.

以下に、リビングラジカル重合について説明する。   Below, living radical polymerization is demonstrated.

そのうち、まず、ニトロキシド化合物などのラジカルキャッピング剤を用いる方法について説明する。この重合では一般に安定なニトロキシフリーラジカル(=N−O・)をラジカルキャッピング剤として用いる。このような化合物類としては、限定はされないが、2,2,6,6−置換−1−ピペリジニルオキシラジカルや2,2,5,5−置換−1−ピロリジニルオキシラジカル等、環状ヒドロキシアミンからのニトロキシフリーラジカルが好ましい。置換基としてはメチル基やエチル基等の炭素数4以下のアルキル基が適当である。具体的なニトロキシフリーラジカル化合物としては、限定はされないが、2,2,6,6−テトラメチル−1−ピペリジニルオキシラジカル(TEMPO)、2,2,6,6−テトラエチル−1−ピペリジニルオキシラジカル、2,2,6,6−テトラメチル−4−オキソ−1−ピペリジニルオキシラジカル、2,2,5,5−テトラメチル−1−ピロリジニルオキシラジカル、1,1,3,3−テトラメチル−2−イソインドリニルオキシラジカル、N,N−ジ−t−ブチルアミンオキシラジカル等が挙げられる。ニトロキシフリーラジカルの代わりに、ガルビノキシル(galvinoxyl)フリーラジカル等の安定なフリーラジカルを用いても構わない。   First, a method using a radical capping agent such as a nitroxide compound will be described. In this polymerization, a stable nitroxy free radical (= N—O.) Is generally used as a radical capping agent. Examples of such compounds include, but are not limited to, 2,2,6,6-substituted-1-piperidinyloxy radical, 2,2,5,5-substituted-1-pyrrolidinyloxy radical, and the like. Nitroxy free radicals from cyclic hydroxyamines are preferred. As the substituent, an alkyl group having 4 or less carbon atoms such as a methyl group or an ethyl group is suitable. Specific nitroxy free radical compounds include, but are not limited to, 2,2,6,6-tetramethyl-1-piperidinyloxy radical (TEMPO), 2,2,6,6-tetraethyl-1- Piperidinyloxy radical, 2,2,6,6-tetramethyl-4-oxo-1-piperidinyloxy radical, 2,2,5,5-tetramethyl-1-pyrrolidinyloxy radical, 1, Examples include 1,3,3-tetramethyl-2-isoindolinyloxy radical, N, N-di-t-butylamineoxy radical, and the like. Instead of the nitroxy free radical, a stable free radical such as a galvinoxyl free radical may be used.

上記ラジカルキャッピング剤はラジカル発生剤と併用される。ラジカルキャッピング剤とラジカル発生剤との反応生成物が重合開始剤となって付加重合性モノマーの重合が進行すると考えられる。両者の併用割合は特に限定されるものではないが、ラジカルキャッピング剤1モルに対し、ラジカル発生剤0.1〜10モルが適当である。   The radical capping agent is used in combination with a radical generator. It is considered that the reaction product of the radical capping agent and the radical generator serves as a polymerization initiator and the polymerization of the addition polymerizable monomer proceeds. The combination ratio of both is not particularly limited, but 0.1 to 10 mol of the radical generator is suitable for 1 mol of the radical capping agent.

ラジカル発生剤としては、種々の化合物を使用することができるが、重合温度条件下で、ラジカルを発生しうるパーオキシドが好ましい。このパーオキシドとしては、限定はされないが、ベンゾイルパーオキシド、ラウロイルパーオキシド等のジアシルパーオキシド類、ジクミルパーオキシド、ジ−t−ブチルパーオキシド等のジアルキルパーオキシド類、ジイソプロピルパーオキシジカーボネート、ビス(4−t−ブチルシクロヘキシル)パーオキシジカーボネート等のパーオキシカーボネート類、t−ブチルパーオキシオクトエート、t−ブチルパーオキシベンゾエート等のアルキルパーエステル類等がある。特にベンゾイルパーオキシドが好ましい。さらに、パーオキシドの代わりにアゾビスイソブチロニトリルのようなラジカル発生性アゾ化合物等のラジカル発生剤も使用しうる。   Although various compounds can be used as the radical generator, a peroxide capable of generating a radical under polymerization temperature conditions is preferred. Examples of the peroxide include, but are not limited to, diacyl peroxides such as benzoyl peroxide and lauroyl peroxide, dialkyl peroxides such as dicumyl peroxide and di-t-butyl peroxide, diisopropyl peroxydicarbonate, bis There are peroxycarbonates such as (4-t-butylcyclohexyl) peroxydicarbonate, alkyl peresters such as t-butylperoxyoctate and t-butylperoxybenzoate. Benzoyl peroxide is particularly preferable. Furthermore, radical generators such as radical-generating azo compounds such as azobisisobutyronitrile may be used instead of peroxide.

Macromolecules 1995,28,P.2993で報告されているように、ラジカルキャッピング剤とラジカル発生剤を併用する代わりに、アルコキシアミン化合物を開始剤として用いても構わない。   Macromolecules 1995, 28, P.M. As reported in 2993, instead of using a radical capping agent and a radical generator in combination, an alkoxyamine compound may be used as an initiator.

アルコキシアミン化合物を開始剤として用いる場合、それが上図で示されているような水酸基等の官能基を有するものを用いると、末端に官能基を有する重合体が得られる。これを本発明の方法に利用すると、末端に官能基を有する重合体が得られる。   When an alkoxyamine compound is used as an initiator, if it has a functional group such as a hydroxyl group as shown in the above figure, a polymer having a functional group at the terminal can be obtained. When this is used in the method of the present invention, a polymer having a functional group at the terminal can be obtained.

上記のニトロキシド化合物などのラジカルキャッピング剤を用いる重合で用いられるモノマー、溶媒、重合温度等の重合条件は、限定されないが、次に説明する原子移動ラジカル重合について用いるものと同様で構わない。   Polymerization conditions such as monomers, solvents, polymerization temperature and the like used in polymerization using a radical capping agent such as the above nitroxide compound are not limited, but may be the same as those used for atom transfer radical polymerization described below.

原子移動ラジカル重合
次に、本発明のリビングラジカル重合としてより好ましい原子移動ラジカル重合法について説明する。
Atom Transfer Radical Polymerization Next, a more preferred atom transfer radical polymerization method as the living radical polymerization of the present invention will be described.

この原子移動ラジカル重合では、有機ハロゲン化物、特に反応性の高い炭素−ハロゲン結合を有する有機ハロゲン化物(例えば、α位にハロゲンを有するカルボニル化合物や、ベンジル位にハロゲンを有する化合物)、あるいはハロゲン化スルホニル化合物等が開始剤として用いられる。
具体的に例示するならば、
65−CH2X、C65−C(H)(X)CH3、C65−C(X)(CH32
(ただし、上の化学式中、C65はフェニル基、Xは塩素、臭素、またはヨウ素)
3−C(H)(X)−CO24、R3−C(CH3)(X)−CO24、R3−C(H)(X)−C(O)R4、R3−C(CH3)(X)−C(O)R4
(式中、R3、R4は水素原子または炭素数1〜20のアルキル基、アリール基、またはアラルキル基、Xは塩素、臭素、またはヨウ素)
3−C64−SO2
(式中、R3は水素原子または炭素数1〜20のアルキル基、アリール基、またはアラルキル基、Xは塩素、臭素、またはヨウ素)等が挙げられる。
In this atom transfer radical polymerization, an organic halide, particularly an organic halide having a highly reactive carbon-halogen bond (for example, a carbonyl compound having a halogen at the α-position or a compound having a halogen at the benzyl-position), or a halogenated compound. A sulfonyl compound or the like is used as an initiator.
For example,
C 6 H 5 -CH 2 X, C 6 H 5 -C (H) (X) CH 3, C 6 H 5 -C (X) (CH 3) 2
(However, in the above chemical formula, C 6 H 5 is a phenyl group, X is chlorine, bromine, or iodine)
R 3 -C (H) (X ) -CO 2 R 4, R 3 -C (CH 3) (X) -CO 2 R 4, R 3 -C (H) (X) -C (O) R 4 R 3 —C (CH 3 ) (X) —C (O) R 4 ,
(Wherein R 3 and R 4 are a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, an aryl group, or an aralkyl group, and X is chlorine, bromine, or iodine)
R 3 —C 6 H 4 —SO 2 X
(Wherein R 3 is a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, an aryl group, or an aralkyl group, and X is chlorine, bromine, or iodine).

原子移動ラジカル重合の開始剤として、重合を開始する官能基以外の官能基を有する有機ハロゲン化物又はハロゲン化スルホニル化合物を用いることもできる。このような場合、一方の主鎖末端に官能基を、他方の主鎖末端に原子移動ラジカル重合の生長末端構造を有するビニル系重合体が製造される。このような官能基としては、アルケニル基、架橋性シリル基、ヒドロキシル基、エポキシ基、アミノ基、アミド基等が挙げられる。   As an initiator of atom transfer radical polymerization, an organic halide or a sulfonyl halide compound having a functional group other than the functional group for initiating polymerization can also be used. In such a case, a vinyl polymer having a functional group at one end of the main chain and a growth terminal structure of atom transfer radical polymerization at the other main chain end is produced. Examples of such functional groups include alkenyl groups, crosslinkable silyl groups, hydroxyl groups, epoxy groups, amino groups, amide groups, and the like.

アルケニル基を有する有機ハロゲン化物としては限定されず、例えば、一般式(3)に示す構造を有するものが例示される。
67C(X)−R8−R9−C(R5)=CH2 (3)
(式中、R5は水素、またはメチル基、R6、R7は水素、または、炭素数1〜20の1価のアルキル基、アリール基、またはアラルキル基、または他端において相互に連結したもの、R8は、−C(O)O−(エステル基)、−C(O)−(ケト基)、またはo−,m−,p−フェニレン基、R9は直接結合、または炭素数1〜20の2価の有機基で1個以上のエーテル結合を含んでいても良い、Xは塩素、臭素、またはヨウ素)
置換基R6、R7の具体例としては、水素、メチル基、エチル基、n−プロピル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基等が挙げられる。R6とR7は他端において連結して環状骨格を形成していてもよい。
It does not limit as an organic halide which has an alkenyl group, For example, what has a structure shown in General formula (3) is illustrated.
R 6 R 7 C (X) —R 8 —R 9 —C (R 5 ) ═CH 2 (3)
(Wherein R 5 is hydrogen or a methyl group, R 6 and R 7 are hydrogen, or a monovalent alkyl group having 1 to 20 carbon atoms, an aryl group, or an aralkyl group, or interconnected at the other end. things, R 8 is, -C (O) O- (ester group), - C (O) - ( keto group), or o-, m-, p-phenylene, R 9 is a direct bond or carbon atoms 1 to 20 divalent organic groups which may contain one or more ether bonds, X is chlorine, bromine or iodine)
Specific examples of the substituents R 6 and R 7 include hydrogen, methyl group, ethyl group, n-propyl group, isopropyl group, butyl group, pentyl group, hexyl group and the like. R 6 and R 7 may be linked at the other end to form a cyclic skeleton.

一般式(3)で示される、アルケニル基を有する有機ハロゲン化物の具体例としては、
XCH2C(O)O(CH2nCH=CH2、H3CC(H)(X)C(O)O(CH2nCH=CH2、(H3C)2C(X)C(O)O(CH2nCH=CH2、CH3CH2C(H)(X)C(O)O(CH2nCH=CH2、(上記の各式において、Xは塩素、臭素、またはヨウ素、nは0〜20の整数)
XCH2C(O)O(CH2nO(CH2mCH=CH2、H3CC(H)(X)C(O)O(CH2nO(CH2mCH=CH2、(H3C)2C(X)C(O)O(CH2nO(CH2mCH=CH2、CH3CH2C(H)(X)C(O)O(CH2nO(CH2mCH=CH2、(上記の各式において、Xは塩素、臭素、またはヨウ素、nは1〜20の整数、mは0〜20の整数)o,m,p−XCH2−C64−(CH2n−CH=CH2、o,m,p−CH3C(H)(X)−C64−(CH2n−CH=CH2、o,m,p−CH3CH2C(H)(X)−C64−(CH2n−CH=CH2
(上記の各式において、Xは塩素、臭素、またはヨウ素、nは0〜20の整数)
o,m,p−XCH2−C64−(CH2n−O−(CH2m−CH=CH2、o,m,p−CH3C(H)(X)−C64−(CH2n−O−(CH2m−CH=CH2、o,m,p−CH3CH2C(H)(X)−C64−(CH2n−O−(CH2mCH=CH2
(上記の各式において、Xは塩素、臭素、またはヨウ素、nは1〜20の整数、mは0〜20の整数)
o,m,p−XCH2−C64−O−(CH2n−CH=CH2、o,m,p−CH3C(H)(X)−C64−O−(CH2n−CH=CH2、o,m,p−CH3CH2C(H)(X)−C64−O−(CH2n−CH=CH2
(上記の各式において、Xは塩素、臭素、またはヨウ素、nは0〜20の整数)
o,m,p−XCH2−C64−O−(CH2n−O−(CH2m−CH=CH2、o,m,p−CH3C(H)(X)−C64−O−(CH2n−O−(CH2m−CH=CH2、o,m,p−CH3CH2C(H)(X)−C64−O−(CH2n−O−(CH2m−CH=CH2
(上記の各式において、Xは塩素、臭素、またはヨウ素、nは1〜20の整数、mは0〜20の整数)
アルケニル基を有する有機ハロゲン化物としてはさらに一般式(4)で示される化合物が挙げられる。
2C=C(R5)−R9−C(R6)(X)−R10−R7 (4)
(式中、R5、R6、R7、R9、Xは上記に同じ、R10は、直接結合、−C(O)O−(エステル基)、−C(O)−(ケト基)、または、o−,m−,p−フェニレン基を表す)
9は直接結合、または炭素数1〜20の2価の有機基(1個以上のエーテル結合を含んでいても良い)であるが、直接結合である場合は、ハロゲンの結合している炭素にビニル基が結合しており、ハロゲン化アリル化物である。この場合は、隣接ビニル基によって炭素−ハロゲン結合が活性化されているので、R10としてC(O)O基やフェニレン基等を有する必要は必ずしもなく、直接結合であってもよい。R9が直接結合でない場合は、炭素−ハロゲン結合を活性化するために、R10としてはC(O)O基、C(O)基、フェニレン基が好ましい。
Specific examples of the organic halide having an alkenyl group represented by the general formula (3) include
XCH 2 C (O) O ( CH 2) n CH = CH 2, H 3 CC (H) (X) C (O) O (CH 2) n CH = CH 2, (H 3 C) 2 C (X ) C (O) O (CH 2 ) n CH═CH 2 , CH 3 CH 2 C (H) (X) C (O) O (CH 2 ) n CH═CH 2 , (in the above formulas, X Is chlorine, bromine, or iodine, n is an integer of 0-20)
XCH 2 C (O) O ( CH 2) n O (CH 2) m CH = CH 2, H 3 CC (H) (X) C (O) O (CH 2) n O (CH 2) m CH = CH 2, (H 3 C) 2 C (X) C (O) O (CH 2) n O (CH 2) m CH = CH 2, CH 3 CH 2 C (H) (X) C (O) O (CH 2 ) n O (CH 2 ) m CH═CH 2 (in the above formulas, X is chlorine, bromine, or iodine, n is an integer of 1-20, m is an integer of 0-20) o, m, p-XCH 2 -C 6 H 4 - (CH 2) n -CH = CH 2, o, m, p-CH 3 C (H) (X) -C 6 H 4 - (CH 2) n - CH = CH 2, o, m , p-CH 3 CH 2 C (H) (X) -C 6 H 4 - (CH 2) n -CH = CH 2,
(In the above formulas, X is chlorine, bromine or iodine, and n is an integer of 0 to 20)
o, m, p-XCH 2 -C 6 H 4 - (CH 2) n -O- (CH 2) m -CH = CH 2, o, m, p-CH 3 C (H) (X) -C 6 H 4 - (CH 2) n -O- (CH 2) m -CH = CH 2, o, m, p-CH 3 CH 2 C (H) (X) -C 6 H 4 - (CH 2) n -O- (CH 2) m CH = CH 2,
(In each of the above formulas, X is chlorine, bromine, or iodine, n is an integer of 1 to 20, and m is an integer of 0 to 20)
o, m, p-XCH 2 -C 6 H 4 -O- (CH 2) n -CH = CH 2, o, m, p-CH 3 C (H) (X) -C 6 H 4 -O- (CH 2) n -CH = CH 2, o, m, p-CH 3 CH 2 C (H) (X) -C 6 H 4 -O- (CH 2) n -CH = CH 2,
(In the above formulas, X is chlorine, bromine or iodine, and n is an integer of 0 to 20)
o, m, p-XCH 2 -C 6 H 4 -O- (CH 2) n -O- (CH 2) m -CH = CH 2, o, m, p-CH 3 C (H) (X) —C 6 H 4 —O— (CH 2 ) n —O— (CH 2 ) m —CH═CH 2 , o, m, p—CH 3 CH 2 C (H) (X) —C 6 H 4 — O— (CH 2 ) n —O— (CH 2 ) m —CH═CH 2 ,
(In each of the above formulas, X is chlorine, bromine, or iodine, n is an integer of 1 to 20, and m is an integer of 0 to 20)
Examples of the organic halide having an alkenyl group further include a compound represented by the general formula (4).
H 2 C = C (R 5 ) -R 9 -C (R 6) (X) -R 10 -R 7 (4)
Wherein R 5 , R 6 , R 7 , R 9 and X are the same as above, R 10 is a direct bond, —C (O) O— (ester group), —C (O) — (keto group Or an o-, m-, p-phenylene group)
R 9 is a direct bond or a divalent organic group having 1 to 20 carbon atoms (which may contain one or more ether bonds), and in the case of a direct bond, carbon to which a halogen is bonded Is a halogenated allylic compound. In this case, since the carbon-halogen bond is activated by the adjacent vinyl group, it is not always necessary to have a C (O) O group or a phenylene group as R 10 , and a direct bond may be used. In the case where R 9 is not a direct bond, R 10 is preferably a C (O) O group, a C (O) group or a phenylene group in order to activate the carbon-halogen bond.

一般式(4)の化合物を具体的に例示するならば、
CH2=CHCH2X、CH2=C(CH3)CH2X、CH2=CHC(H)(X)CH3、CH2=C(CH3)C(H)(X)CH3、CH2=CHC(X)(CH32、CH2=CHC(H)(X)C25、CH2=CHC(H)(X)CH(CH32、CH2=CHC(H)(X)C65、CH2=CHC(H)(X)CH265、CH2=CHCH2C(H)(X)−CO2R、CH2=CH(CH22C(H)(X)−CO2R、CH2=CH(CH23C(H)(X)−CO2R、CH2=CH(CH28C(H)(X)−CO2R、CH2=CHCH2C(H)(X)−C65、CH2=CH(CH22C(H)(X)−C65、CH2=CH(CH23C(H)(X)−C65
(上記の各式において、Xは塩素、臭素、またはヨウ素、Rは炭素数1〜20のアルキル基、アリール基、アラルキル基)等を挙げることができる。
If the compound of general formula (4) is specifically illustrated,
CH 2 = CHCH 2 X, CH 2 = C (CH 3) CH 2 X, CH 2 = CHC (H) (X) CH 3, CH 2 = C (CH 3) C (H) (X) CH 3, CH 2 = CHC (X) (CH 3 ) 2 , CH 2 = CHC (H) (X) C 2 H 5 , CH 2 = CHC (H) (X) CH (CH 3 ) 2 , CH 2 = CHC ( H) (X) C 6 H 5, CH 2 = CHC (H) (X) CH 2 C 6 H 5, CH 2 = CHCH 2 C (H) (X) -CO 2 R, CH 2 = CH (CH 2) 2 C (H) ( X) -CO 2 R, CH 2 = CH (CH 2) 3 C (H) (X) -CO 2 R, CH 2 = CH (CH 2) 8 C (H) ( X) -CO 2 R, CH 2 = CHCH 2 C (H) (X) -C 6 H 5, CH 2 = CH (CH 2) 2 C (H) (X) -C 6 H 5, CH 2 = CH (CH 2) 3 C ( H) (X) -C 6 H 5,
(In the above formulas, X is chlorine, bromine, or iodine, R is an alkyl group having 1 to 20 carbon atoms, an aryl group, or an aralkyl group).

アルケニル基を有するハロゲン化スルホニル化合物の具体例を挙げるならば、
o−,m−,p−CH2=CH−(CH2n−C64−SO2X、o−,m−,p−CH2=CH−(CH2n−O−C64−SO2X、
(上記の各式において、Xは塩素、臭素、またはヨウ素、nは0〜20の整数)等である。
If the specific example of the sulfonyl halide compound which has an alkenyl group is given,
o-, m-, p-CH 2 = CH- (CH 2) n -C 6 H 4 -SO 2 X, o-, m-, p-CH 2 = CH- (CH 2) n -O-C 6 H 4 —SO 2 X,
(In the above formulas, X is chlorine, bromine, or iodine, and n is an integer of 0 to 20).

上記架橋性シリル基を有する有機ハロゲン化物としては特に限定されず、例えば一般式(5)に示す構造を有するものが例示される。
67C(X)−R8−R9−C(H)(R5)CH2−[Si(R112-b(Y)bO]m−Si(R123-a(Y)a (5)
(式中、R5、R6、R7、R8、R9、Xは上記に同じ、R11、R12は、いずれも炭素数1〜20のアルキル基、アリール基、アラルキル基、または(R’)3SiO−(R’は炭素数1〜20の1価の炭化水素基であって、3個のR’は同一であってもよく、異なっていてもよい)で示されるトリオルガノシロキシ基を示し、R11またはR12が2個以上存在するとき、それらは同一であってもよく、異なっていてもよい。Yは水酸基または加水分解性基を示し、Yが2個以上存在するときそれらは同一であってもよく、異なっていてもよい。aは0,1,2,または3を、また、bは0,1,または2を示す。mは0〜19の整数である。ただし、a+mb≧1であることを満足するものとする)
一般式(5)の化合物を具体的に例示するならば、
XCH2C(O)O(CH2nSi(OCH33、CH3C(H)(X)C(O)O(CH2nSi(OCH33、(CH32C(X)C(O)O(CH2nSi(OCH33、XCH2C(O)O(CH2nSi(CH3)(OCH32、CH3C(H)(X)C(O)O(CH2nSi(CH3)(OCH32、(CH32C(X)C(O)O(CH2nSi(CH3)(OCH32
(上記の各式において、Xは塩素、臭素、ヨウ素、nは0〜20の整数、)
XCH2C(O)O(CH2nO(CH2mSi(OCH33、H3CC(H)(X)C(O)O(CH2nO(CH2mSi(OCH33、(H3C)2C(X)C(O)O(CH2nO(CH2mSi(OCH33、CH3CH2C(H)(X)C(O)O(CH2nO(CH2mSi(OCH33、XCH2C(O)O(CH2nO(CH2mSi(CH3)(OCH32、H3CC(H)(X)C(O)O(CH2nO(CH2m−Si(CH3)(OCH32、(H3C)2C(X)C(O)O(CH2nO(CH2m−Si(CH3)(OCH32、CH3CH2C(H)(X)C(O)O(CH2nO(CH2m−Si(CH3)(OCH32
(上記の各式において、Xは塩素、臭素、ヨウ素、nは1〜20の整数、mは0〜20の整数)
o,m,p−XCH2−C64−(CH22Si(OCH33、o,m,p−CH3C(H)(X)−C64−(CH22Si(OCH33、o,m,p−CH3CH2C(H)(X)−C64−(CH22Si(OCH33、o,m,p−XCH2−C64−(CH23Si(OCH33、o,m,p−CH3C(H)(X)−C64−(CH23Si(OCH33、o,m,p−CH3CH2C(H)(X)−C64−(CH23Si(OCH33、o,m,p−XCH2−C64−(CH22−O−(CH23Si(OCH33、o,m,p−CH3C(H)(X)−C64−(CH22−O−(CH23Si(OCH33、o,m,p−CH3CH2C(H)(X)−C64−(CH22−O−(CH23Si(OCH33、o,m,p−XCH2−C64−O−(CH23Si(OCH33、o,m,p−CH3C(H)(X)−C64−O−(CH23Si(OCH33、o,m,p−CH3CH2C(H)(X)−C64−O−(CH23−Si(OCH33、o,m,p−XCH2−C64−O−(CH22−O−(CH23−Si(OCH33、o,m,p−CH3C(H)(X)−C64−O−(CH22−O−(CH23Si(OCH33、o,m,p−CH3CH2C(H)(X)−C64−O−(CH22−O−(CH23Si(OCH33
(上記の各式において、Xは塩素、臭素、またはヨウ素)等が挙げられる。
It does not specifically limit as said organic halide which has a crosslinkable silyl group, For example, what has a structure shown to General formula (5) is illustrated.
R 6 R 7 C (X) -R 8 -R 9 -C (H) (R 5) CH 2 - [Si (R 11) 2-b (Y) b O] m -Si (R 12) 3- a (Y) a (5)
(Wherein R 5 , R 6 , R 7 , R 8 , R 9 and X are the same as above, and R 11 and R 12 are all alkyl groups, aryl groups, aralkyl groups, or those having 1 to 20 carbon atoms, or (R ′) 3 SiO— (R ′ is a monovalent hydrocarbon group having 1 to 20 carbon atoms, and three R ′ may be the same or different). Represents an organosiloxy group, and when two or more R 11 or R 12 are present, they may be the same or different, Y represents a hydroxyl group or a hydrolyzable group, and Y represents two or more When present, they may be the same or different, a represents 0, 1, 2, or 3, and b represents 0, 1, or 2. m is an integer from 0 to 19. (Provided that a + mb ≧ 1)
If the compound of the general formula (5) is specifically exemplified,
XCH 2 C (O) O ( CH 2) n Si (OCH 3) 3, CH 3 C (H) (X) C (O) O (CH 2) n Si (OCH 3) 3, (CH 3) 2 C (X) C (O) O (CH 2) n Si (OCH 3) 3, XCH 2 C (O) O (CH 2) n Si (CH 3) (OCH 3) 2, CH 3 C (H) (X) C (O) O (CH 2) n Si (CH 3) (OCH 3) 2, (CH 3) 2 C (X) C (O) O (CH 2) n Si (CH 3) (OCH 3 ) 2 ,
(In the above formulas, X is chlorine, bromine, iodine, n is an integer of 0-20)
XCH 2 C (O) O ( CH 2) n O (CH 2) m Si (OCH 3) 3, H 3 CC (H) (X) C (O) O (CH 2) n O (CH 2) m Si (OCH 3 ) 3 , (H 3 C) 2 C (X) C (O) O (CH 2 ) n O (CH 2 ) m Si (OCH 3 ) 3 , CH 3 CH 2 C (H) (X ) C (O) O (CH 2) n O (CH 2) m Si (OCH 3) 3, XCH 2 C (O) O (CH 2) n O (CH 2) m Si (CH 3) (OCH 3 ) 2 , H 3 CC (H) (X) C (O) O (CH 2 ) n O (CH 2 ) m —Si (CH 3 ) (OCH 3 ) 2 , (H 3 C) 2 C (X) C (O) O (CH 2 ) n O (CH 2) m -Si (CH 3) (OCH 3) 2, CH 3 CH 2 C (H) (X) C (O) O (CH 2) n O (CH 2) m -Si (CH 3) (OCH 3) 2,
(In the above formulas, X is chlorine, bromine, iodine, n is an integer of 1 to 20, and m is an integer of 0 to 20)
o, m, p-XCH 2 -C 6 H 4 - (CH 2) 2 Si (OCH 3) 3, o, m, p-CH 3 C (H) (X) -C 6 H 4 - (CH 2 ) 2 Si (OCH 3) 3 , o, m, p-CH 3 CH 2 C (H) (X) -C 6 H 4 - (CH 2) 2 Si (OCH 3) 3, o, m, p- XCH 2 -C 6 H 4 - ( CH 2) 3 Si (OCH 3) 3, o, m, p-CH 3 C (H) (X) -C 6 H 4 - (CH 2) 3 Si (OCH 3 ) 3, o, m, p -CH 3 CH 2 C (H) (X) -C 6 H 4 - (CH 2) 3 Si (OCH 3) 3, o, m, p-XCH 2 -C 6 H 4 - (CH 2) 2 -O- (CH 2) 3 Si (OCH 3) 3, o, m, p-CH 3 C (H) (X) -C 6 H 4 - (CH 2) 2 -O - (CH 2) 3 Si ( OCH 3) 3, o, m, p-CH 3 CH 2 C (H) (X) -C 6 H 4 - (CH 2) 2 -O- (CH 2) 3 Si (OCH 3) 3, o, m, p-XCH 2 -C 6 H 4 -O- (CH 2) 3 Si (OCH 3) 3, o, m, p-CH 3 C (H) (X) -C 6 H 4 -O- (CH 2) 3 Si (OCH 3) 3, o, m, p-CH 3 CH 2 C (H) ( X) -C 6 H 4 -O- ( CH 2) 3 -Si (OCH 3) 3, o, m, p-XCH 2 -C 6 H 4 -O- (CH 2) 2 -O- (CH 2 ) 3 -Si (OCH 3) 3 , o, m, p-CH 3 C (H) (X) -C 6 H 4 -O- (CH 2) 2 -O- (CH 2) 3 Si (OCH 3 ) 3, o, m, p -CH 3 CH 2 C (H) (X) -C 6 H 4 -O- (CH 2) 2 -O- (CH 2) 3 Si (OCH 3) 3,
(In the above formulas, X is chlorine, bromine, or iodine).

上記架橋性シリル基を有する有機ハロゲン化物としてはさらに、一般式(6)で示される構造を有するものが例示される。
(R123-a(Y)aSi−[OSi(R112-b(Y)bm−CH2−C(H)(R5)−R9−C(R6)(X)−R10−R7 (6)
(式中、R5、R6、R7、R9、R10、R11、R12、a、b、m、X、Yは上記に同じ)
このような化合物を具体的に例示するならば、
(CH3O)3SiCH2CH2C(H)(X)C65、(CH3O)2(CH3)SiCH2CH2C(H)(X)C65、(CH3O)3Si(CH22C(H)(X)−CO2R、(CH3O)2(CH3)Si(CH22C(H)(X)−CO2R、(CH3O)3Si(CH23C(H)(X)−CO2R、(CH3O)2(CH3)Si(CH23C(H)(X)−CO2R、(CH3O)3Si(CH24C(H)(X)−CO2R、(CH3O)2(CH3)Si(CH24C(H)(X)−CO2R、(CH3O)3Si(CH29C(H)(X)−CO2R、(CH3O)2(CH3)Si(CH29C(H)(X)−CO2R、(CH3O)3Si(CH23C(H)(X)−C65、(CH3O)2(CH3)Si(CH23C(H)(X)−C65、(CH3O)3Si(CH24C(H)(X)−C65、(CH3O)2(CH3)Si(CH24C(H)(X)−C65
(上記の各式において、Xは塩素、臭素、またはヨウ素、Rは炭素数1〜20のアルキル基、アリール基、アラルキル基)等が挙げられる。
Examples of the organic halide having a crosslinkable silyl group further include those having a structure represented by the general formula (6).
(R 12) 3-a ( Y) a Si- [OSi (R 11) 2-b (Y) b] m -CH 2 -C (H) (R 5) -R 9 -C (R 6) ( X) -R 10 -R 7 (6)
(Wherein R 5 , R 6 , R 7 , R 9 , R 10 , R 11 , R 12 , a, b, m, X, Y are the same as above)
If such a compound is specifically illustrated,
(CH 3 O) 3 SiCH 2 CH 2 C (H) (X) C 6 H 5, (CH 3 O) 2 (CH 3) SiCH 2 CH 2 C (H) (X) C 6 H 5, (CH 3 O) 3 Si (CH 2 ) 2 C (H) (X) -CO 2 R, (CH 3 O) 2 (CH 3) Si (CH 2) 2 C (H) (X) -CO 2 R, (CH 3 O) 3 Si ( CH 2) 3 C (H) (X) -CO 2 R, (CH 3 O) 2 (CH 3) Si (CH 2) 3 C (H) (X) -CO 2 R, (CH 3 O) 3 Si (CH 2) 4 C (H) (X) -CO 2 R, (CH 3 O) 2 (CH 3) Si (CH 2) 4 C (H) (X) - CO 2 R, (CH 3 O ) 3 Si (CH 2) 9 C (H) (X) -CO 2 R, (CH 3 O) 2 (CH 3) Si (CH 2) 9 C (H) (X ) -CO 2 R, (CH 3 O) 3 Si (CH 2) 3 C (H) (X) -C 6 H 5, (C 3 O) 2 (CH 3) Si (CH 2) 3 C (H) (X) -C 6 H 5, (CH 3 O) 3 Si (CH 2) 4 C (H) (X) -C 6 H 5, (CH 3 O) 2 (CH 3) Si (CH 2) 4 C (H) (X) -C 6 H 5,
(In each of the above formulas, X is chlorine, bromine, or iodine, R is an alkyl group having 1 to 20 carbon atoms, an aryl group, or an aralkyl group).

上記ヒドロキシル基を持つ有機ハロゲン化物、またはハロゲン化スルホニル化合物としては特に限定されず、下記のようなものが例示される。
HO−(CH2n−OC(O)C(H)(R)(X)
(式中、Xは塩素、臭素、またはヨウ素、Rは水素原子または炭素数1〜20のアルキル基、アリール基、アラルキル基、nは1〜20の整数)
上記アミノ基を持つ有機ハロゲン化物、またはハロゲン化スルホニル化合物としては特に限定されず、下記のようなものが例示される。
2N−(CH2n−OC(O)C(H)(R)(X)
(式中、Xは塩素、臭素、またはヨウ素、Rは水素原子または炭素数1〜20のアルキル基、アリール基、アラルキル基、nは1〜20の整数)
上記エポキシ基を持つ有機ハロゲン化物、またはハロゲン化スルホニル化合物としては特に限定されない。
(式中、Xは塩素、臭素、またはヨウ素、Rは水素原子または炭素数1〜20のアルキル基、アリール基、アラルキル基、nは1〜20の整数)
生長末端構造を1分子内に2つ以上有する重合体を得るためには、2つ以上の開始点を持つ有機ハロゲン化物、またはハロゲン化スルホニル化合物を開始剤として用いるのが好ましい。
The organic halide having a hydroxyl group or the sulfonyl halide compound is not particularly limited, and examples thereof include the following.
HO- (CH 2) n -OC ( O) C (H) (R) (X)
(In the formula, X is chlorine, bromine, or iodine, R is a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, an aryl group, an aralkyl group, and n is an integer of 1 to 20)
The organic halide having an amino group or the sulfonyl halide compound is not particularly limited, and examples thereof include the following.
H 2 N- (CH 2) n -OC (O) C (H) (R) (X)
(In the formula, X is chlorine, bromine, or iodine, R is a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, an aryl group, an aralkyl group, and n is an integer of 1 to 20)
The organic halide having the epoxy group or the sulfonyl halide compound is not particularly limited.
(In the formula, X is chlorine, bromine, or iodine, R is a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, an aryl group, an aralkyl group, and n is an integer of 1 to 20)
In order to obtain a polymer having two or more growth terminal structures in one molecule, it is preferable to use an organic halide having two or more starting points or a sulfonyl halide compound as an initiator.

この重合において用いられるビニル系モノマーとしては特に制約はなく、既に例示したものをすべて好適に用いることができる。   There is no restriction | limiting in particular as a vinyl-type monomer used in this superposition | polymerization, All already illustrated can be used suitably.

重合触媒として用いられる遷移金属錯体としては特に限定されないが、好ましくは周期律表第7族、8族、9族、10族、または11族元素を中心金属とする金属錯体である。更に好ましいものとして、0価の銅、1価の銅、2価のルテニウム、2価の鉄又は2価のニッケルの錯体が挙げられる。なかでも、銅の錯体が好ましい。1価の銅化合物を具体的に例示するならば、塩化第一銅、臭化第一銅、ヨウ化第一銅、シアン化第一銅、酸化第一銅、過塩素酸第一銅等である。銅化合物を用いる場合、触媒活性を高めるために2,2′−ビピリジル及びその誘導体、1,10−フェナントロリン及びその誘導体、テトラメチルエチレンジアミン、ペンタメチルジエチレントリアミン、ヘキサメチルトリス(2−アミノエチル)アミン等のポリアミン等の配位子が添加される。好ましい配位子は、含窒素化合物であり、より好ましい配位子は、キレート型含窒素化合物であり、さらに好ましい配位子は、N,N,N’,N”,N”−ペンタメチルジエチレントリアミンである。また、2価の塩化ルテニウムのトリストリフェニルホスフィン錯体(RuCl2(PPh33)も触媒として好適である。ルテニウム化合物を触媒として用いる場合は、活性化剤としてアルミニウムアルコキシド類が添加される。更に、2価の鉄のビストリフェニルホスフィン錯体(FeCl2(PPh32)、2価のニッケルのビストリフェニルホスフィン錯体(NiCl2(PPh32)、及び、2価のニッケルのビストリブチルホスフィン錯体(NiBr2(PBu32)も、触媒として好適である。 Although it does not specifically limit as a transition metal complex used as a polymerization catalyst, Preferably it is a metal complex which uses a periodic table group 7, 8, 9, 10, or 11 element as a central metal. More preferable examples include a complex of zero-valent copper, monovalent copper, divalent ruthenium, divalent iron, or divalent nickel. Of these, a copper complex is preferable. Specific examples of monovalent copper compounds include cuprous chloride, cuprous bromide, cuprous iodide, cuprous cyanide, cuprous oxide, cuprous perchlorate, etc. is there. When a copper compound is used, 2,2′-bipyridyl and its derivatives, 1,10-phenanthroline and its derivatives, tetramethylethylenediamine, pentamethyldiethylenetriamine, hexamethyltris (2-aminoethyl) amine, etc. in order to increase the catalytic activity A ligand such as a polyamine is added. A preferred ligand is a nitrogen-containing compound, a more preferred ligand is a chelate-type nitrogen-containing compound, and a more preferred ligand is N, N, N ′, N ″, N ″ -pentamethyldiethylenetriamine. It is. A tristriphenylphosphine complex of divalent ruthenium chloride (RuCl 2 (PPh 3 ) 3 ) is also suitable as a catalyst. When a ruthenium compound is used as a catalyst, an aluminum alkoxide is added as an activator. Further, a divalent iron bistriphenylphosphine complex (FeCl 2 (PPh 3 ) 2 ), a divalent nickel bistriphenylphosphine complex (NiCl 2 (PPh 3 ) 2 ), and a divalent nickel bistributylphosphine A complex (NiBr 2 (PBu 3 ) 2 ) is also suitable as a catalyst.

重合は無溶剤または各種の溶剤中で行なうことができる。溶剤の種類としては、ベンゼン、トルエン等の炭化水素系溶媒、ジエチルエーテル、テトラヒドロフラン等のエーテル系溶媒、塩化メチレン、クロロホルム等のハロゲン化炭化水素系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒、メタノール、エタノール、プロパノール、イソプロパノール、n−ブチルアルコール、tert−ブチルアルコール等のアルコール系溶媒、アセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル系溶媒、酢酸エチル、酢酸ブチル等のエステル系溶媒、エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒等が挙げられ、単独または2種以上を混合して用いることができる。   The polymerization can be carried out without solvent or in various solvents. Solvent types include hydrocarbon solvents such as benzene and toluene, ether solvents such as diethyl ether and tetrahydrofuran, halogenated hydrocarbon solvents such as methylene chloride and chloroform, and ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone. Solvents, alcohol solvents such as methanol, ethanol, propanol, isopropanol, n-butyl alcohol, tert-butyl alcohol, nitrile solvents such as acetonitrile, propionitrile, benzonitrile, ester solvents such as ethyl acetate, butyl acetate, Examples thereof include carbonate solvents such as ethylene carbonate and propylene carbonate, and these can be used alone or in admixture of two or more.

また、限定はされないが、重合は0℃〜200℃の範囲で行なうことができ、好ましくは50〜150℃である。   Moreover, although not limited, superposition | polymerization can be performed in the range of 0 to 200 degreeC, Preferably it is 50 to 150 degreeC.

本発明の原子移動ラジカル重合には、いわゆるリバース原子移動ラジカル重合も含まれる。リバース原子移動ラジカル重合とは、通常の原子移動ラジカル重合触媒がラジカルを発生させた時の高酸化状態、例えば、Cu(I)を触媒として用いた時のCu(II)に対し、過酸化物等の一般的なラジカル開始剤を作用させ、その結果として原子移動ラジカル重合と同様の平衡状態を生み出す方法である(Macromolecules 1999,32,2872参照)。   The atom transfer radical polymerization of the present invention includes so-called reverse atom transfer radical polymerization. Reverse atom transfer radical polymerization is a high oxidation state when a normal atom transfer radical polymerization catalyst generates radicals, for example, a peroxide relative to Cu (II) when Cu (I) is used as a catalyst. And the like, and as a result, an equilibrium state similar to that of atom transfer radical polymerization is produced (see Macromolecules 1999, 32, 2872).

<官能基>
架橋性シリル基の数
ビニル系重合体の架橋性シリル基の数は、特に限定されないが、組成物の硬化性、及び硬化物の物性の観点から、分子中に平均して1個以上有することが好ましく、より好ましくは1.1個以上4.0以下、さらに好ましくは1.2個以上3.5個以下である。
<Functional group>
Number of crosslinkable silyl groups The number of crosslinkable silyl groups in the vinyl polymer is not particularly limited, but from the viewpoint of the curability of the composition and the physical properties of the cured product, it should have an average of 1 or more in the molecule. More preferably, it is 1.1 or more and 4.0 or less, More preferably, it is 1.2 or more and 3.5 or less.

架橋性シリル基の位置
本発明の硬化性組成物を硬化させてなる硬化物にゴム的な性質が特に要求される場合には、ゴム弾性に大きな影響を与える架橋点間分子量が大きくとれるため、架橋性官能基の少なくとも1個は分子鎖の末端にあることが好ましい。より好ましくは、全ての架橋性官能基を分子鎖末端に有するものである。
Position of the crosslinkable silyl group When a rubber-like property is particularly required for a cured product obtained by curing the curable composition of the present invention, the molecular weight between crosslinking points that greatly affects rubber elasticity can be taken. At least one of the crosslinkable functional groups is preferably at the end of the molecular chain. More preferably, it has all crosslinkable functional groups at the molecular chain ends.

上記架橋性シリル基を分子鎖末端に少なくとも1個有するビニル系重合体、中でも(メタ)アクリル系重合体を製造する方法は、特公平3−14068号公報、特公平4−55444号公報、特開平6−211922号公報等に開示されている。しかしながらこれらの方法は上記「連鎖移動剤法」を用いたフリーラジカル重合法であるので、得られる重合体は、架橋性シリル基を比較的高い割合で分子鎖末端に有する一方で、Mw/Mnで表される分子量分布の値が一般に2以上と大きく、粘度が高くなるという問題を有している。従って、分子量分布が狭く、粘度の低いビニル系重合体であって、高い割合で分子鎖末端に架橋性シリル基を有するビニル系重合体を得る場合には、上記「リビングラジカル重合法」を用いることが好ましいが、分子量分布の狭い重合体に特定するものではない。   A method for producing a vinyl polymer having at least one crosslinkable silyl group at the molecular chain end, in particular, a (meth) acrylic polymer is disclosed in Japanese Patent Publication No. 3-14068, Japanese Patent Publication No. 4-55444, This is disclosed in, for example, Kaihei 6-221922. However, since these methods are free radical polymerization methods using the above-mentioned “chain transfer agent method”, the resulting polymer has a relatively high proportion of crosslinkable silyl groups at the molecular chain ends, while Mw / Mn The value of the molecular weight distribution represented by is generally as large as 2 or more, and the viscosity is increased. Therefore, in order to obtain a vinyl polymer having a narrow molecular weight distribution and a low viscosity and having a crosslinkable silyl group at the molecular chain terminal at a high ratio, the above “living radical polymerization method” is used. However, it is not limited to a polymer having a narrow molecular weight distribution.

以下にこれらの官能基について説明する。   These functional groups will be described below.

架橋性シリル基
本発明の架橋性シリル基としては、一般式(1);
−[Si(R12-b(Y)bO]m−Si(R23-a(Y)a (1)
{式中、R1、R2は、いずれも炭素数1〜20のアルキル基、炭素数6〜20のアリール基、炭素数7〜20のアラルキル基、または(R’)3SiO−(R’は炭素数1〜20の1価の炭化水素基であって、3個のR’は同一であってもよく、異なっていてもよい)で示されるトリオルガノシロキシ基を示し、R1またはR2が2個以上存在するとき、それらは同一であってもよく、異なっていてもよい。Yは水酸基または加水分解性基を示し、Yが2個以上存在するときそれらは同一であってもよく、異なっていてもよい。aは0,1,2,または3を、また、bは0,1,または2を示す。mは0〜19の整数である。ただし、a+mb≧1であることを満足するものとする。}
で表される基があげられる。
The crosslinking silyl group of the crosslinkable silyl group present invention, the general formula (1);
- [Si (R 1) 2 -b (Y) b O] m -Si (R 2) 3-a (Y) a (1)
{Wherein R 1 and R 2 are all alkyl groups having 1 to 20 carbon atoms, aryl groups having 6 to 20 carbon atoms, aralkyl groups having 7 to 20 carbon atoms, or (R ′) 3 SiO— (R 'Is a monovalent hydrocarbon group having 1 to 20 carbon atoms, and three R's may be the same or different), and represents a triorganosiloxy group represented by R 1 or When two or more R 2 are present, they may be the same or different. Y represents a hydroxyl group or a hydrolyzable group, and when two or more Y exist, they may be the same or different. a represents 0, 1, 2, or 3, and b represents 0, 1, or 2. m is an integer of 0-19. However, it shall be satisfied that a + mb ≧ 1. }
The group represented by these is mention | raise | lifted.

加水分解性基としては、たとえば、水素原子、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、アミノオキシ基、メルカプト基、アルケニルオキシ基などの一般に使用されている基があげられる。これらのうちでは、アルコキシ基、アミド基、アミノオキシ基が好ましいが、加水分解性がマイルドで取扱い易いという点から、アルコキシ基がとくに好ましい。アルコキシ基の中では炭素数の少ないものの方が反応性が高く、メトキシ基>エトキシ基>プロポキシ基…の順に反応性が低くなり、目的や用途に応じて選択できる。   Examples of the hydrolyzable group include commonly used groups such as a hydrogen atom, an alkoxy group, an acyloxy group, a ketoximate group, an amino group, an amide group, an aminooxy group, a mercapto group, and an alkenyloxy group. Among these, an alkoxy group, an amide group, and an aminooxy group are preferable, but an alkoxy group is particularly preferable in terms of mild hydrolyzability and easy handling. Among the alkoxy groups, those having fewer carbon atoms have higher reactivity, and the reactivity decreases in the order of methoxy group> ethoxy group> propoxy group, and can be selected according to the purpose and application.

加水分解性基や水酸基は、1個のケイ素原子に1〜3個の範囲で結合することができ、(a+Σb)は1〜5個の範囲が好ましい。加水分解性基や水酸基が架橋性シリル基中に2個以上結合する場合には、それらは同じであってもよいし、異なってもよい。架橋性シリル基を形成するケイ素原子は1個以上であるが、シロキサン結合などにより連結されたケイ素原子の場合には、20個以下であることが好ましい。とくに、一般式(7)
−Si(R23-a(Y)a (7)
(式中、R2、Yは前記と同じ、aは1〜3の整数)で表される架橋性シリル基が、入手が容易であるので好ましい。
Hydrolyzable groups and hydroxyl groups can be bonded to one silicon atom in the range of 1 to 3, and (a + Σb) is preferably in the range of 1 to 5. When two or more hydrolyzable groups or hydroxyl groups are bonded to the crosslinkable silyl group, they may be the same or different. The number of silicon atoms forming the crosslinkable silyl group is one or more, but in the case of silicon atoms linked by a siloxane bond or the like, it is preferably 20 or less. In particular, the general formula (7)
-Si (R 2 ) 3-a (Y) a (7)
A crosslinkable silyl group represented by the formula (wherein R 2 and Y are the same as described above, and a is an integer of 1 to 3) is preferable because it is easily available.

なお、特に限定はされないが、硬化性を考慮するとaは2以上が好ましい。   Although not particularly limited, a is preferably 2 or more in consideration of curability.

このような架橋性シリル基を有するビニル系重合体は珪素原子1つあたり2つの加水分解性基が結合してなる加水分解性珪素基を有する重合体が用いられることが多いが、接着剤の用途等や低温で使用する場合等、特に非常に速い硬化速度を必要とする場合、その硬化速度は充分ではなく、また硬化後の柔軟性を出したい場合には、架橋密度を低下させる必要があり、そのため架橋密度が充分でないためにべたつき(表面タック)があることもあった。その際には、aが3のもの(例えばトリメトキシ官能基)であるのが好ましい。   As such a vinyl polymer having a crosslinkable silyl group, a polymer having a hydrolyzable silicon group formed by bonding two hydrolyzable groups per silicon atom is often used. When a very fast curing rate is required, such as when used at low temperatures, etc., the curing rate is not sufficient, and if it is desired to provide flexibility after curing, it is necessary to reduce the crosslinking density. For this reason, the crosslink density is not sufficient, and stickiness (surface tack) may occur. In that case, it is preferable that a is 3 (for example, trimethoxy functional group).

また、aが3のもの(例えばトリメトキシ官能基)は2のもの(例えばジメトキシ官能基)よりも硬化が速いが、貯蔵安定性や力学物性(伸び等)に関しては2のものの方が優れている場合がある。硬化性と物性バランスをとるために、2のもの(例えばジメトキシ官能基)と3のもの(例えばトリメトキシ官能基)を併用してもよい。   Further, those having a of 3 (for example, trimethoxy functional group) cure faster than those having 2 (for example, dimethoxy functional group), but those having 2 are superior in terms of storage stability and mechanical properties (elongation, etc.). There is a case. In order to balance the curability and physical properties, two (for example, dimethoxy functional group) and three (for example, trimethoxy functional group) may be used in combination.

例えば、Yが同一の場合、aが多いほどYの反応性が高くなるため、Yとaを種々選択することにより硬化性や硬化物の機械物性等を制御することが可能であり、目的や用途に応じて選択できる。また、aが1のものは鎖延長剤として架橋性シリル基を有する重合体、具体的にはポリシロキサン系、ポリオキシプロピレン系、ポリイソブチレン系からなる少なくとも1種の重合体と混合して使用できる。硬化前に低粘度、硬化後に高い破断時伸び性、低ブリード性、表面低汚染性、優れた塗料密着性を有する組成物とすることが可能である。   For example, when Y is the same, the greater the a, the higher the reactivity of Y. Therefore, by variously selecting Y and a, it is possible to control the curability and the mechanical properties of the cured product. It can be selected according to the application. A compound having a of 1 is used as a chain extender mixed with a polymer having a crosslinkable silyl group, specifically, at least one polymer comprising a polysiloxane, polyoxypropylene or polyisobutylene. it can. It is possible to obtain a composition having low viscosity before curing, high elongation at break after curing, low bleeding, low surface contamination, and excellent paint adhesion.

架橋性シリル基の導入法
以下に、本発明のビニル系重合体への架橋性シリル基の導入法について説明するが、これに限定されるものではない。
The following method of introducing the crosslinkable silyl group, will be described method of introducing the crosslinkable silyl group into the vinyl polymer of the present invention, but is not limited thereto.

まず、末端官能基変換により架橋性シリル基、アルケニル基、水酸基を導入する方法について記述する。これらの官能基はお互いに前駆体となりうるので、架橋性シリル基から溯る順序で記述していく。   First, a method for introducing a crosslinkable silyl group, alkenyl group, and hydroxyl group by terminal functional group conversion will be described. Since these functional groups can be precursors to each other, they are described in the order from the crosslinkable silyl group.

架橋性シリル基を少なくとも1個有するビニル系重合体の合成方法としては、
(A)アルケニル基を少なくとも1個有するビニル系重合体に架橋性シリル基を有するヒドロシラン化合物を、ヒドロシリル化触媒存在下に付加させる方法
(B)水酸基を少なくとも1個有するビニル系重合体に一分子中に架橋性シリル基とイソシアネート基を有する化合物のような、水酸基と反応し得る基を有する化合物を反応させる方法
(C)ラジカル重合によりビニル系重合体を合成する際に、1分子中に重合性のアルケニル基と架橋性シリル基を併せ持つ化合物を反応させる方法
(D)ラジカル重合によりビニル系重合体を合成する際に、架橋性シリル基を有する連鎖移動剤を用いる方法
(E)反応性の高い炭素−ハロゲン結合を少なくとも1個有するビニル系重合体に1分子中に架橋性シリル基と安定なカルバニオンを有する化合物を反応させる方法;などが挙げられる。
As a method for synthesizing a vinyl polymer having at least one crosslinkable silyl group,
(A) Method of adding a hydrosilane compound having a crosslinkable silyl group to a vinyl polymer having at least one alkenyl group in the presence of a hydrosilylation catalyst (B) One molecule per vinyl polymer having at least one hydroxyl group A method of reacting a compound having a group capable of reacting with a hydroxyl group, such as a compound having a crosslinkable silyl group and an isocyanate group therein. (C) When synthesizing a vinyl polymer by radical polymerization, polymerization is performed in one molecule. (D) Method of using a chain transfer agent having a crosslinkable silyl group when synthesizing a vinyl polymer by radical polymerization (E) A vinyl polymer having at least one high carbon-halogen bond having a crosslinkable silyl group and a stable carbanion in one molecule And a method of reacting the compound.

(A)の方法で用いるアルケニル基を少なくとも1個有するビニル系重合体は種々の方法で得られる。以下に合成方法を例示するが、これらに限定されるわけではない。   The vinyl polymer having at least one alkenyl group used in the method (A) can be obtained by various methods. Although the synthesis method is illustrated below, it is not necessarily limited to these.

(A−a)ラジカル重合によりビニル系重合体を合成する際に、例えば下記の一般式(9)に挙げられるような一分子中に重合性のアルケニル基と重合性の低いアルケニル基を併せ持つ化合物を第2のモノマーとして反応させる方法。
2C=C(R14)−R15−R16−C(R17)=CH2 (9)
(式中、R14は水素またはメチル基を示し、R15は−C(O)O−、またはo−,m−,p−フェニレン基を示し、R16は直接結合、または炭素数1〜20の2価の有機基を示し、1個以上のエーテル結合を含んでいてもよい。R17は水素、または炭素数1〜20のアルキル基、炭素数6〜20のアリール基または炭素数7〜20のアラルキル基を示す)
なお、一分子中に重合性のアルケニル基と重合性の低いアルケニル基を併せ持つ化合物を反応させる時期に制限はないが、特にリビングラジカル重合で、ゴム的な性質を期待する場合には重合反応の終期あるいは所定のモノマーの反応終了後に、第2のモノマーとして反応させるのが好ましい。
(Aa) When synthesizing a vinyl polymer by radical polymerization, for example, a compound having both a polymerizable alkenyl group and a low polymerizable alkenyl group in one molecule as shown in the following general formula (9) To react as a second monomer.
H 2 C = C (R 14 ) -R 15 -R 16 -C (R 17) = CH 2 (9)
(Wherein R 14 represents hydrogen or a methyl group, R 15 represents —C (O) O—, or o-, m-, p-phenylene group, R 16 represents a direct bond, or a carbon number of 1 to 20 represents a divalent organic group having 20 and may contain one or more ether bonds, R 17 is hydrogen, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or 7 carbon atoms. Represents -20 aralkyl groups)
There is no limitation on the timing of reacting a compound having both a polymerizable alkenyl group and a low polymerizable alkenyl group in one molecule. It is preferable to react as the second monomer at the end or after completion of the reaction of the predetermined monomer.

(A−b)リビングラジカル重合によりビニル系重合体を合成する際に、重合反応の終期あるいは所定のモノマーの反応終了後に、例えば1,5−ヘキサジエン、1,7−オクタジエン、1,9−デカジエンなどのような重合性の低いアルケニル基を少なくとも2個有する化合物を反応させる方法。   (Ab) When synthesizing a vinyl polymer by living radical polymerization, for example, 1,5-hexadiene, 1,7-octadiene, 1,9-decadiene at the end of the polymerization reaction or after completion of the reaction of a predetermined monomer. A method of reacting a compound having at least two alkenyl groups having low polymerizability, such as

(A−c)反応性の高い炭素−ハロゲン結合を少なくとも1個有するビニル系重合体に、例えばアリルトリブチル錫、アリルトリオクチル錫などの有機錫のようなアルケニル基を有する各種の有機金属化合物を反応させてハロゲンを置換する方法。   (Ac) Various organometallic compounds having an alkenyl group such as organotin such as allyltributyltin and allyltrioctyltin on a vinyl polymer having at least one highly reactive carbon-halogen bond A method of replacing halogen by reaction.

(A−d)反応性の高い炭素−ハロゲン結合を少なくとも1個有するビニル系重合体に、一般式(10)に挙げられるようなアルケニル基を有する安定化カルバニオンを反応させてハロゲンを置換する方法。
+-(R18)(R19)−R20−C(R17)=CH2 (10)
(式中、R17は上記に同じ、R18、R19はともにカルバニオンC-を安定化する電子吸引基であるか、または一方が前記電子吸引基で他方が水素または炭素数1〜10のアルキル基、またはフェニル基を示す。R20は直接結合、または炭素数1〜10の2価の有機基を示し、1個以上のエーテル結合を含んでいてもよい。M+はアルカリ金属イオン、または4級アンモニウムイオンを示す)
18、R19の電子吸引基としては、−CO2R、−C(O)Rおよび−CNの構造を有するものが特に好ましい。
(Ad) A method of substituting halogen by reacting a vinyl polymer having at least one highly reactive carbon-halogen bond with a stabilized carbanion having an alkenyl group as shown in the general formula (10). .
M + C - (R 18) (R 19) -R 20 -C (R 17) = CH 2 (10)
(Wherein, R 17 is as defined above, R 18, R 19 together carbanion C - a is an electron withdrawing group stabilizing or one of the other is hydrogen or a 1 to 10 carbon atoms in the electron-withdrawing group Represents an alkyl group or a phenyl group, R 20 represents a direct bond or a divalent organic group having 1 to 10 carbon atoms, and may contain one or more ether bonds, M + represents an alkali metal ion, Or a quaternary ammonium ion)
As the electron withdrawing group for R 18 and R 19 , those having a structure of —CO 2 R, —C (O) R and —CN are particularly preferable.

(A−e)反応性の高い炭素−ハロゲン結合を少なくとも1個有するビニル系重合体に、例えば亜鉛のような金属単体あるいは有機金属化合物を作用させてエノレートアニオンを調製し、しかる後にハロゲンやアセチル基のような脱離基を有するアルケニル基含有化合物、アルケニル基を有するカルボニル化合物、アルケニル基を有するイソシアネート化合物、アルケニル基を有する酸ハロゲン化物等の、アルケニル基を有する求電子化合物と反応させる方法。   (Ae) An enolate anion is prepared by reacting a vinyl polymer having at least one highly reactive carbon-halogen bond with, for example, a single metal such as zinc or an organometallic compound. A method of reacting with an electrophilic compound having an alkenyl group, such as an alkenyl group-containing compound having a leaving group such as an acetyl group, a carbonyl compound having an alkenyl group, an isocyanate compound having an alkenyl group, an acid halide having an alkenyl group .

(A−f)反応性の高い炭素−ハロゲン結合を少なくとも1個有するビニル系重合体に、例えば一般式(11)あるいは(12)に示されるようなアルケニル基を有するオキシアニオンあるいはカルボキシレートアニオンを反応させてハロゲンを置換する方法。
2C=C(R17)−R21−O-+ (11)
(式中、R17、M+は上記に同じ。R21は炭素数1〜20の2価の有機基で1個以上のエーテル結合を含んでいてもよい)
2C=C(R17)−R22−C(O)O-+ (12)
(式中、R17、M+は上記に同じ。R22は直接結合、または炭素数1〜20の2価の有機基で1個以上のエーテル結合を含んでいてもよい)などが挙げられる。
(Af) For example, an oxyanion or carboxylate anion having an alkenyl group represented by the general formula (11) or (12) is added to a vinyl polymer having at least one carbon-halogen bond having high reactivity. A method of replacing halogen by reaction.
H 2 C = C (R 17 ) -R 21 -O - M + (11)
(Wherein R 17 and M + are the same as above. R 21 is a divalent organic group having 1 to 20 carbon atoms and may contain one or more ether bonds)
H 2 C═C (R 17 ) −R 22 —C (O) O M + (12)
(Wherein, R 17 and M + are the same as above. R 22 is a direct bond or a divalent organic group having 1 to 20 carbon atoms and may contain one or more ether bonds). .

上述の反応性の高い炭素−ハロゲン結合を少なくとも1個有するビニル系重合体の合成法は、前述のような有機ハロゲン化物等を開始剤とし、遷移金属錯体を触媒とする原子移動ラジカル重合法が挙げられるがこれらに限定されるわけではない。   The method for synthesizing a vinyl polymer having at least one highly reactive carbon-halogen bond is an atom transfer radical polymerization method using an organic halide as described above as an initiator and a transition metal complex as a catalyst. For example, but not limited to.

またアルケニル基を少なくとも1個有するビニル系重合体は、水酸基を少なくとも1個有するビニル系重合体から得ることも可能であり、以下に例示する方法が利用できるがこれらに限定されるわけではない。水酸基を少なくとも1個有するビニル系重合体の水酸基に、
(A−g)ナトリウムメトキシドのような塩基を作用させ、塩化アリルのようなアルケニル基含有ハロゲン化物と反応させる方法。
Further, the vinyl polymer having at least one alkenyl group can be obtained from a vinyl polymer having at least one hydroxyl group, and the methods exemplified below can be used, but are not limited thereto. In the hydroxyl group of a vinyl polymer having at least one hydroxyl group,
(Ag) A method of reacting a base such as sodium methoxide with an alkenyl group-containing halide such as allyl chloride.

(A−h)アリルイソシアネート等のアルケニル基含有イソシアネート化合物を反応させる方法。   (Ah) A method of reacting an alkenyl group-containing isocyanate compound such as allyl isocyanate.

(A−i)(メタ)アクリル酸クロリドのようなアルケニル基含有酸ハロゲン化物をピリジン等の塩基存在下に反応させる方法。   (Ai) A method in which an alkenyl group-containing acid halide such as (meth) acrylic acid chloride is reacted in the presence of a base such as pyridine.

(A−j)アクリル酸等のアルケニル基含有カルボン酸を酸触媒の存在下に反応させる方法;等が挙げられる。   (Aj) A method in which an alkenyl group-containing carboxylic acid such as acrylic acid is reacted in the presence of an acid catalyst;

本発明では(A−a)(A−b)のようなアルケニル基を導入する方法にハロゲンが直接関与しない場合には、リビングラジカル重合法を用いてビニル系重合体を合成することが好ましい。制御がより容易である点から(A−b)の方法がさらに好ましい。   In the present invention, when a halogen is not directly involved in a method for introducing an alkenyl group such as (Aa) and (Ab), it is preferable to synthesize a vinyl polymer using a living radical polymerization method. The method (Ab) is more preferable from the viewpoint of easier control.

反応性の高い炭素−ハロゲン結合を少なくとも1個有するビニル系重合体のハロゲンを変換することによりアルケニル基を導入する場合は、反応性の高い炭素−ハロゲン結合を少なくとも1個有する有機ハロゲン化物、またはハロゲン化スルホニル化合物を開始剤、遷移金属錯体を触媒としてビニル系モノマーをラジカル重合すること(原子移動ラジカル重合法)により得る、末端に反応性の高い炭素−ハロゲン結合を少なくとも1個有するビニル系重合体を用いるのが好ましい。制御がより容易である点から(A−f)の方法がさらに好ましい。   When an alkenyl group is introduced by converting the halogen of a vinyl polymer having at least one highly reactive carbon-halogen bond, an organic halide having at least one highly reactive carbon-halogen bond, or A vinyl heavy polymer having at least one highly reactive carbon-halogen bond at the terminal, obtained by radical polymerization of a vinyl monomer using a sulfonyl halide compound as an initiator and a transition metal complex as a catalyst (atom transfer radical polymerization method). It is preferable to use coalescence. In view of easier control, the method (Af) is more preferable.

また、架橋性シリル基を有するヒドロシラン化合物としては特に制限はないが、代表的なものを示すと、一般式(13)で示される化合物が例示される。
H−[Si(R12-b(Y)bO]m−Si(R23-a(Y)a (13)
{式中、R1、R2は、いずれも炭素数1〜20のアルキル基、炭素数6〜20のアリール基、炭素数7〜20のアラルキル基、または(R’)3SiO−(R’は炭素数1〜20の1価の炭化水素基であって、3個のR’は同一であってもよく、異なっていてもよい)で示されるトリオルガノシロキシ基を示し、R1またはR2が2個以上存在するとき、それらは同一であってもよく、異なっていてもよい。Yは水酸基または加水分解性基を示し、Yが2個以上存在するときそれらは同一であってもよく、異なっていてもよい。aは0,1,2,または3を、また、bは0,1,または2を示す。mは0〜19の整数である。ただし、a+mb≧1であることを満足するものとする。}
これらヒドロシラン化合物の中でも、特に一般式(14)
H−Si(R23-a(Y)a (14)(式中、R2、Y、aは前記に同じ)
で示される架橋性基を有する化合物が入手容易な点から好ましい。
Moreover, there is no restriction | limiting in particular as a hydrosilane compound which has a crosslinkable silyl group, When a typical thing is shown, the compound shown by General formula (13) will be illustrated.
H- [Si (R 1) 2 -b (Y) b O] m -Si (R 2) 3-a (Y) a (13)
{Wherein R 1 and R 2 are all alkyl groups having 1 to 20 carbon atoms, aryl groups having 6 to 20 carbon atoms, aralkyl groups having 7 to 20 carbon atoms, or (R ′) 3 SiO— (R 'Is a monovalent hydrocarbon group having 1 to 20 carbon atoms, and three R's may be the same or different), and represents a triorganosiloxy group represented by R 1 or When two or more R 2 are present, they may be the same or different. Y represents a hydroxyl group or a hydrolyzable group, and when two or more Y exist, they may be the same or different. a represents 0, 1, 2, or 3, and b represents 0, 1, or 2. m is an integer of 0-19. However, it shall be satisfied that a + mb ≧ 1. }
Among these hydrosilane compounds, in particular, the general formula (14)
H-Si (R 2 ) 3-a (Y) a (14) (wherein R 2 , Y and a are the same as above)
The compound which has a crosslinkable group shown by is preferable from a point with easy acquisition.

上記の架橋性シリル基を有するヒドロシラン化合物をアルケニル基に付加させる際には、遷移金属触媒が通常用いられる。遷移金属触媒としては、例えば、白金単体、アルミナ、シリカ、カーボンブラック等の担体に白金固体を分散させたもの、塩化白金酸、塩化白金酸とアルコール、アルデヒド、ケトン等との錯体、白金−オレフィン錯体、白金(0)−ジビニルテトラメチルジシロキサン錯体が挙げられる。白金化合物以外の触媒の例としては、RhCl(PPh33,RhCl3,RuCl3,IrCl3,FeCl3,AlCl3,PdCl2・H2O,NiCl2,TiCl4等が挙げられる。 When the hydrosilane compound having a crosslinkable silyl group is added to an alkenyl group, a transition metal catalyst is usually used. Examples of the transition metal catalyst include platinum simple substance, alumina, silica, carbon black and the like in which a platinum solid is dispersed, chloroplatinic acid, a complex of chloroplatinic acid and alcohol, aldehyde, ketone, etc., platinum-olefin. Complex, platinum (0) -divinyltetramethyldisiloxane complex is mentioned. Examples of the catalyst other than platinum compounds, RhCl (PPh 3) 3, RhCl 3, RuCl 3, IrCl 3, FeCl 3, AlCl 3, PdCl 2 · H 2 O, NiCl 2, TiCl 4 , and the like.

(B)および(A−g)〜(A−j)の方法で用いる水酸基を少なくとも1個有するビニル系重合体の製造方法は以下のような方法が例示されるが、これらの方法に限定されるものではない。   Examples of the method for producing a vinyl polymer having at least one hydroxyl group used in the methods (B) and (Ag) to (Aj) include the following methods, but are limited to these methods. It is not something.

(B−a)ラジカル重合によりビニル系重合体を合成する際に、例えば下記の一般式(15)に挙げられるような一分子中に重合性のアルケニル基と水酸基を併せ持つ化合物を第2のモノマーとして反応させる方法。
2C=C(R14)−R15−R16−OH (15)
(式中、R14、R15、R16は上記に同じ)
なお、一分子中に重合性のアルケニル基と水酸基を併せ持つ化合物を反応させる時期に制限はないが、特にリビングラジカル重合で、ゴム的な性質を期待する場合には重合反応の終期あるいは所定のモノマーの反応終了後に、第2のモノマーとして反応させるのが好ましい。
(Ba) When synthesizing a vinyl polymer by radical polymerization, for example, a compound having both a polymerizable alkenyl group and a hydroxyl group in one molecule as shown in the following general formula (15) is used as the second monomer. To react as.
H 2 C = C (R 14 ) -R 15 -R 16 -OH (15)
(Wherein R 14 , R 15 and R 16 are the same as above)
There is no limitation on the timing of reacting the compound having both a polymerizable alkenyl group and a hydroxyl group in one molecule. However, particularly in the case of living radical polymerization, when the rubber-like properties are expected, the end of the polymerization reaction or a predetermined monomer. After completion of the reaction, it is preferable to react as the second monomer.

(B−b)リビングラジカル重合によりビニル系重合体を合成する際に、重合反応の終期あるいは所定のモノマーの反応終了後に、例えば10−ウンデセノール、5−ヘキセノール、アリルアルコールのようなアルケニルアルコールを反応させる方法。   (Bb) When a vinyl polymer is synthesized by living radical polymerization, an alkenyl alcohol such as 10-undecenol, 5-hexenol or allyl alcohol is reacted at the end of the polymerization reaction or after completion of the reaction of a predetermined monomer. How to make.

(B−c)例えば特開平5−262808に示される水酸基含有ポリスルフィドのような水酸基含有連鎖移動剤を多量に用いてビニル系モノマーをラジカル重合させる方法。   (Bc) A method in which a vinyl monomer is radically polymerized using a large amount of a hydroxyl group-containing chain transfer agent such as a hydroxyl group-containing polysulfide described in JP-A-5-262808.

(B−d)例えば特開平6−239912、特開平8−283310に示されるような過酸化水素あるいは水酸基含有開始剤を用いてビニル系モノマーをラジカル重合させる方法。   (Bd) A method of radical polymerization of a vinyl monomer using hydrogen peroxide or a hydroxyl group-containing initiator as disclosed in, for example, JP-A-6-239912 and JP-A-8-283310.

(B−e)例えば特開平6−116312に示されるようなアルコール類を過剰に用いてビニル系モノマーをラジカル重合させる方法。   (Be) A method of radical polymerization of a vinyl monomer by using an excessive amount of alcohol as disclosed in, for example, JP-A-6-116312.

(B−f)例えば特開平4−132706などに示されるような方法で、反応性の高い炭素−ハロゲン結合を少なくとも1個に有するビニル系重合体のハロゲンを加水分解あるいは水酸基含有化合物と反応させることにより、末端に水酸基を導入する方法。   (Bf) Hydrolysis of a vinyl polymer having at least one highly reactive carbon-halogen bond or reaction with a hydroxyl group-containing compound by a method such as disclosed in JP-A-4-132706. To introduce a hydroxyl group into the terminal.

(B−g)反応性の高い炭素−ハロゲン結合を少なくとも1個有するビニル系重合体に、一般式(16)に挙げられるような水酸基を有する安定化カルバニオンを反応させてハロゲンを置換する方法。
+-(R18)(R19)−R20−OH (16)
(式中、R18、R19、R20、は上記に同じ)
18、R19の電子吸引基としては、−CO2R、−C(O)Rおよび−CNの構造を有するものが特に好ましい。
(Bg) A method in which a vinyl polymer having at least one highly reactive carbon-halogen bond is reacted with a stabilized carbanion having a hydroxyl group as listed in the general formula (16) to substitute the halogen.
M + C (R 18 ) (R 19 ) —R 20 —OH (16)
(Wherein R 18 , R 19 and R 20 are the same as above)
As the electron withdrawing group for R 18 and R 19 , those having a structure of —CO 2 R, —C (O) R and —CN are particularly preferable.

(B−h)反応性の高い炭素−ハロゲン結合を少なくとも1個有するビニル系重合体に、例えば亜鉛のような金属単体あるいは有機金属化合物を作用させてエノレートアニオンを調製し、しかる後にアルデヒド類、又はケトン類を反応させる方法。   (Bh) An enolate anion is prepared by allowing a metal polymer such as zinc or an organometallic compound to act on a vinyl polymer having at least one highly reactive carbon-halogen bond, and then aldehydes. Or a method of reacting ketones.

(B−i)反応性の高い炭素−ハロゲン結合を少なくとも1個有するビニル系重合体に、例えば一般式(17)あるいは(18)に示されるような水酸基を有するオキシアニオンあるいはカルボキシレートアニオンを反応させてハロゲンを置換する方法。
HO−R21−O-+ (17)
(式中、R21およびM+は前記に同じ)
HO−R22−C(O)O-+ (18)
(式中、R22およびM+は前記に同じ)
(B−j)リビングラジカル重合によりビニル系重合体を合成する際に、重合反応の終期あるいは所定のモノマーの反応終了後に、第2のモノマーとして、一分子中に重合性の低いアルケニル基および水酸基を有する化合物を反応させる方法。
(Bi) A vinyl polymer having at least one highly reactive carbon-halogen bond is reacted with, for example, an oxyanion or carboxylate anion having a hydroxyl group as shown in the general formula (17) or (18). To replace the halogen.
HO—R 21 —O M + (17)
(Wherein R 21 and M + are the same as above)
HO—R 22 —C (O) O M + (18)
(Wherein R 22 and M + are the same as above)
(Bj) When synthesizing a vinyl polymer by living radical polymerization, as the second monomer after the completion of the polymerization reaction or after the completion of the reaction of the predetermined monomer, an alkenyl group and a hydroxyl group having low polymerization in one molecule A method of reacting a compound having

このような化合物としては特に限定されないが、一般式(19)に示される化合物等が挙げられる。
2C=C(R14)−R21−OH (19)
(式中、R14およびR21は上述したものと同様である。)
上記一般式(19)に示される化合物としては特に限定されないが、入手が容易であるということから、10−ウンデセノール、5−ヘキセノール、アリルアルコールのようなアルケニルアルコールが好ましい。
Although it does not specifically limit as such a compound, The compound etc. which are shown by General formula (19) are mentioned.
H 2 C = C (R 14 ) -R 21 -OH (19)
(Wherein R 14 and R 21 are the same as described above.)
Although it does not specifically limit as a compound shown by the said General formula (19), From an easy acquisition, alkenyl alcohol like 10-undecenol, 5-hexenol, allyl alcohol is preferable.

本発明では(B−a)〜(B−e)及び(B−j)のような水酸基を導入する方法にハロゲンが直接関与しない場合には、リビングラジカル重合法を用いてビニル系重合体を合成することが好ましい。制御がより容易である点から(B−b)の方法がさらに好ましい。   In the present invention, when halogen is not directly involved in the method of introducing a hydroxyl group such as (Ba) to (Be) and (Bj), a vinyl polymer is obtained by using a living radical polymerization method. It is preferable to synthesize. The method (Bb) is more preferable in terms of easier control.

反応性の高い炭素−ハロゲン結合を少なくとも1個有するビニル系重合体のハロゲンを変換することにより水酸基を導入する場合は、有機ハロゲン化物、またはハロゲン化スルホニル化合物を開始剤、遷移金属錯体を触媒としてビニル系モノマーをラジカル重合すること(原子移動ラジカル重合法)により得る、末端に反応性の高い炭素−ハロゲン結合を少なくとも1個有するビニル系重合体を用いるのが好ましい。制御がより容易である点から(B−i)の方法がさらに好ましい。   When introducing a hydroxyl group by converting halogen in a vinyl polymer having at least one highly reactive carbon-halogen bond, an organic halide or a sulfonyl halide compound is used as an initiator, and a transition metal complex is used as a catalyst. It is preferable to use a vinyl polymer having at least one highly reactive carbon-halogen bond at the terminal obtained by radical polymerization of a vinyl monomer (atom transfer radical polymerization method). The method (Bi) is more preferable from the viewpoint of easier control.

また、一分子中に架橋性シリル基とイソシアネート基のような水酸基と反応し得る基を有する化合物としては、例えばγ−イソシアナートプロピルトリメトキシシラン、γ−イソシアナートプロピルメチルジメトキシシラン、γ−イソシアナートプロピルトリエトキシシラン等が挙げられ、必要により一般に知られているウレタン化反応の触媒を使用できる。   Examples of the compound having a crosslinkable silyl group and a group capable of reacting with a hydroxyl group such as an isocyanate group in one molecule include γ-isocyanatopropyltrimethoxysilane, γ-isocyanatopropylmethyldimethoxysilane, and γ-isocyanate. Examples thereof include natopropyltriethoxysilane, and a generally known catalyst for urethanization reaction can be used if necessary.

(C)の方法で用いる一分子中に重合性のアルケニル基と架橋性シリル基を併せ持つ化合物としては、例えばトリメトキシシリルプロピル(メタ)アクリレート、メチルジメトキシシリルプロピル(メタ)アクリレートなどのような、下記一般式(20)で示すものが挙げられる。
2C=C(R14)−R15−R23−[Si(R12-b(Y)bO]m−Si(R23-a(Y)a (20)
(式中、R1、R2、R14、R15、Y、a、b、mは上記に同じ。R23は、直接結合、または炭素数1〜20の2価の有機基で1個以上のエーテル結合を含んでいてもよい。)
一分子中に重合性のアルケニル基と架橋性シリル基を併せ持つ化合物を反応させる時期に特に制限はないが、特にリビングラジカル重合で、ゴム的な性質を期待する場合には重合反応の終期あるいは所定のモノマーの反応終了後に、第2のモノマーとして反応させるのが好ましい。
As a compound having both a polymerizable alkenyl group and a crosslinkable silyl group in one molecule used in the method (C), for example, trimethoxysilylpropyl (meth) acrylate, methyldimethoxysilylpropyl (meth) acrylate, etc., What is shown by the following general formula (20) is mentioned.
H 2 C = C (R 14 ) -R 15 -R 23 - [Si (R 1) 2-b (Y) b O] m -Si (R 2) 3-a (Y) a (20)
(In the formula, R 1 , R 2 , R 14 , R 15 , Y, a, b and m are the same as above. R 23 is a direct bond or one divalent organic group having 1 to 20 carbon atoms. The above ether bond may be included.)
There is no particular limitation on the timing of reacting the compound having both a polymerizable alkenyl group and a crosslinkable silyl group in one molecule. However, particularly in the case of living radical polymerization, when a rubber-like property is expected, the end of the polymerization reaction or a predetermined value is determined. It is preferable to make it react as a 2nd monomer after completion | finish of reaction of this monomer.

(D)の連鎖移動剤法で用いられる、架橋性シリル基を有する連鎖移動剤としては例えば特公平3−14068、特公平4−55444に示される、架橋性シリル基を有するメルカプタン、架橋性シリル基を有するヒドロシランなどが挙げられる。   Examples of the chain transfer agent having a crosslinkable silyl group used in the chain transfer agent method of (D) include mercaptans having a crosslinkable silyl group and crosslinkable silyl as shown in, for example, Japanese Patent Publication Nos. 3-14068 and 4-55444. And hydrosilane having a group.

(E)の方法で用いられる、上述の反応性の高い炭素−ハロゲン結合を少なくとも1個有するビニル系重合体の合成法は、前述のような有機ハロゲン化物等を開始剤とし、遷移金属錯体を触媒とする原子移動ラジカル重合法が挙げられるがこれらに限定されるわけではない。一分子中に架橋性シリル基と安定化カルバニオンを併せ持つ化合物としては一般式(21)で示すものが挙げられる。
+-(R18)(R19)−R24−C(H)(R25)−CH2−[Si(R12-b(Y)bO]m−Si(R23-a(Y)a (21)
(式中、R1、R2、R18、R19、Y、a、b、m、は前記に同じ。R24は直接結合、または炭素数1〜10の2価の有機基で1個以上のエーテル結合を含んでいてもよい、R25は水素、または炭素数1〜10のアルキル基、炭素数6〜10のアリール基または炭素数7〜10のアラルキル基を示す。)
18、R19の電子吸引基としては、−CO2R、−C(O)Rおよび−CNの構造を有するものが特に好ましい。
The method for synthesizing a vinyl polymer having at least one highly reactive carbon-halogen bond, which is used in the method (E), uses an organic halide as described above as an initiator, and a transition metal complex. Examples thereof include, but are not limited to, an atom transfer radical polymerization method using a catalyst. Examples of the compound having both a crosslinkable silyl group and a stabilized carbanion in one molecule include those represented by the general formula (21).
M + C - (R 18) (R 19) -R 24 -C (H) (R 25) -CH 2 - [Si (R 1) 2-b (Y) b O] m -Si (R 2) 3-a (Y) a (21)
(In the formula, R 1 , R 2 , R 18 , R 19 , Y, a, b, m are the same as above. R 24 is a direct bond or one divalent organic group having 1 to 10 carbon atoms. R 25 which may contain the above ether bond represents hydrogen, an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms or an aralkyl group having 7 to 10 carbon atoms.
As the electron withdrawing group for R 18 and R 19 , those having a structure of —CO 2 R, —C (O) R and —CN are particularly preferable.

<複数のビニル系重合体の使用>
上記したビニル系重合体は一種のみ使用することもでき、2種以上のビニル系重合体を組合せて使用することもできる。一種のみ使用する場合は、分子量5,000〜50,000で架橋性シリル基の数が1.2〜3.5個のビニル重合体を使用することが好ましい。2種以上のビニル系重合体を組合せる場合は第一の重合体は分子量5,000〜50,000で架橋性シリル基の数が1.2〜3.5個のビニル重合体であって、第2の重合体は架橋性シリル基の数が少ない重合体とすると、高い破断時伸び性、低ブリード性、表面低汚染性、優れた塗料密着性を有する硬化物を得ることができる。また、第2の重合体の分子量をより小さく設定することにより、組成物の粘度を低下させることができる。低分子量成分となる重合体の好ましい分子量は10,000未満、さらには5,000未満であり、好ましい架橋性シリル基の数は1.2未満、さらには1以下である。また、さらに粘度を低下させることができるので分子量分布は1.8未満が好ましい。架橋性官能基を有し分子量分布が1.8以上のビニル系重合体と片末端に架橋性シリル基を有するビニル系重合体を添加すると低粘度化効果が顕著である。
<Use of multiple vinyl polymers>
Only one kind of the above-mentioned vinyl polymers can be used, or two or more kinds of vinyl polymers can be used in combination. When only one kind is used, it is preferable to use a vinyl polymer having a molecular weight of 5,000 to 50,000 and a number of crosslinkable silyl groups of 1.2 to 3.5. When two or more vinyl polymers are combined, the first polymer is a vinyl polymer having a molecular weight of 5,000 to 50,000 and a number of crosslinkable silyl groups of 1.2 to 3.5. When the second polymer is a polymer having a small number of crosslinkable silyl groups, a cured product having high elongation at break, low bleeding, low surface contamination, and excellent paint adhesion can be obtained. Moreover, the viscosity of a composition can be reduced by setting the molecular weight of a 2nd polymer smaller. The preferred molecular weight of the polymer to be the low molecular weight component is less than 10,000, more preferably less than 5,000, and the preferred number of crosslinkable silyl groups is less than 1.2, further 1 or less. Further, since the viscosity can be further reduced, the molecular weight distribution is preferably less than 1.8. When a vinyl polymer having a crosslinkable functional group and a molecular weight distribution of 1.8 or more and a vinyl polymer having a crosslinkable silyl group at one end are added, the effect of reducing the viscosity is remarkable.

このような低分子量で架橋性シリル基の数が少ない重合体として次のような製法で得られる片末端に架橋性シリル基を有するビニル系重合体を使用することが確実に架橋性シリル基を導入できるので好ましい。   As a polymer having such a low molecular weight and a small number of crosslinkable silyl groups, it is definitely possible to use a vinyl polymer having a crosslinkable silyl group at one end obtained by the following production method. It is preferable because it can be introduced.

片末端に架橋性シリル基を有するビニル系重合体は、重合体末端に架橋性シリル基を1分子あたりほぼ1個有するものである。前記のリビングラジカル重合法、特に、原子移動ラジカル重合法を用いることが、高い割合で分子鎖末端に架橋性シリル基を有し、分子量分布が1.8未満で分子量分布が狭く、粘度の低いビニル系重合体が得られるので好ましい。   A vinyl polymer having a crosslinkable silyl group at one end has approximately one crosslinkable silyl group per molecule at the end of the polymer. Use of the above-mentioned living radical polymerization method, particularly the atom transfer radical polymerization method, has a high proportion of crosslinkable silyl groups at the molecular chain ends, a molecular weight distribution of less than 1.8, a narrow molecular weight distribution, and a low viscosity. Since a vinyl polymer is obtained, it is preferable.

片末端に架橋性シリル基を導入する方法については、例えば、下記に示す方法を使用することができる。なお、末端官能基変換により架橋性シリル基、アルケニル基、水酸基を導入する方法において、これらの官能基はお互いに前駆体となりうるので、架橋性シリル基を導入する方法から溯る順序で記述する。
(1)アルケニル基を分子鎖末端に1分子当たり1個有する重合体に、架橋性シリル基を有するヒドロシラン化合物を、ヒドロシリル化触媒存在下に付加させる方法、
(2)水酸基を分子鎖末端に1分子当たり1個有する重合体に、一分子中に架橋性シリル基とイソシアネート基のような水酸基と反応し得る基を併せ持つ化合物を反応させる方法、
(3)反応性の高い炭素−ハロゲン結合を分子鎖末端に1分子当たり1個有する重合体に、一分子中に架橋性シリル基と安定なカルバニオンを有する化合物を反応させる方法、
などがあげられる。
About the method of introduce | transducing a crosslinkable silyl group into one terminal, the method shown below can be used, for example. In the method of introducing a crosslinkable silyl group, an alkenyl group, and a hydroxyl group by terminal functional group conversion, these functional groups can be precursors to each other, and therefore, they are described in the order starting from the method of introducing the crosslinkable silyl group.
(1) A method of adding a hydrosilane compound having a crosslinkable silyl group to a polymer having one alkenyl group per molecule at the molecular chain end in the presence of a hydrosilylation catalyst,
(2) A method of reacting a polymer having one hydroxyl group per molecular chain end with a compound having both a crosslinkable silyl group and a group capable of reacting with a hydroxyl group such as an isocyanate group in one molecule,
(3) A method of reacting a polymer having one highly reactive carbon-halogen bond per molecule at the end of a molecular chain with a compound having a crosslinkable silyl group and a stable carbanion in one molecule,
Etc.

(1)の方法で用いるアルケニル基を分子鎖末端に1分子当たり1個有する重合体は種々の方法で得られる。以下に製造方法を例示するが、これらに限定されるわけではない。   Polymers having one alkenyl group per molecule chain end in the method (1) can be obtained by various methods. Although a manufacturing method is illustrated below, it is not necessarily limited to these.

(1−1)反応性の高い炭素−ハロゲン結合を分子鎖末端に1分子当たり1個有する重合体に、例えばアリルトリブチル錫、アリルトリオクチル錫などの有機錫のようなアルケニル基を有する各種の有機金属化合物を反応させてハロゲンを置換する方法。   (1-1) Various polymers having an alkenyl group such as organotin such as allyltributyltin and allyltrioctyltin in a polymer having one highly reactive carbon-halogen bond per molecular chain end A method of replacing halogen by reacting an organometallic compound.

(1−2)反応性の高い炭素−ハロゲン結合を分子鎖末端に1分子当たり1個有する重合体に、一般式(10)にあげられるようなアルケニル基を有する安定化カルバニオンを反応させてハロゲンを置換する方法。
+-(R18)(R19)−R20−C(R17)=CH2 (10)
(式中、R18、R19はともにカルバニオンC-を安定化する電子吸引基であるか、または一方が前記電子吸引基で他方が水素または炭素数1〜10のアルキル基、またはフェニル基を示す。R20は直接結合、または炭素数1〜10の2価の有機基を示し、1個以上のエーテル結合を含んでいてもよい。R17は水素、または炭素数1〜20のアルキル基、炭素数6〜20のアリール基または炭素数7〜20のアラルキル基を示す。M+はアルカリ金属イオン、または4級アンモニウムイオンを示す)
18、R19の電子吸引基としては、−CO2R、−C(O)Rおよび−CNの構造を有するものが特に好ましい。
(1-2) A polymer having one highly reactive carbon-halogen bond per molecule per molecule is reacted with a stabilized carbanion having an alkenyl group as shown in the general formula (10) to form a halogen. How to replace
M + C - (R 18) (R 19) -R 20 -C (R 17) = CH 2 (10)
(Wherein, R 18, R 19 together carbanion C - or an electron withdrawing group stabilizing, or one of the other is hydrogen or an alkyl group having 1 to 10 carbon atoms in the electron-withdrawing group or a phenyl group, R 20 represents a direct bond or a divalent organic group having 1 to 10 carbon atoms and may contain one or more ether bonds R 17 represents hydrogen or an alkyl group having 1 to 20 carbon atoms Represents an aryl group having 6 to 20 carbon atoms or an aralkyl group having 7 to 20 carbon atoms, and M + represents an alkali metal ion or a quaternary ammonium ion.
As the electron withdrawing group for R 18 and R 19 , those having a structure of —CO 2 R, —C (O) R and —CN are particularly preferable.

(1−3)反応性の高い炭素−ハロゲン結合を分子鎖末端に1分子当たり1個有する重合体に、例えば亜鉛のような金属単体あるいは有機金属化合物を作用させてエノレートアニオンを調製し、しかる後にハロゲンやアセチル基のような脱離基を有するアルケニル基含有化合物、アルケニル基を有するカルボニル化合物、アルケニル基を有するイソシアネート化合物、アルケニル基を有する酸ハロゲン化物等の、アルケニル基を有する求電子化合物と反応させる方法。   (1-3) An enolate anion is prepared by reacting a polymer having one highly reactive carbon-halogen bond per molecule chain molecule with a single metal such as zinc or an organometallic compound, for example, Thereafter, an electrophilic compound having an alkenyl group, such as an alkenyl group-containing compound having a leaving group such as a halogen or an acetyl group, a carbonyl compound having an alkenyl group, an isocyanate compound having an alkenyl group, an acid halide having an alkenyl group, etc. How to react with.

(1−4)反応性の高い炭素−ハロゲン結合を分子鎖末端に1分子当たり1個有する重合体に、例えば一般式(11)あるいは(12)に示されるようなアルケニル基を有するオキシアニオンあるいはカルボキシレートアニオンを反応させてハロゲンを置換する方法。
2C=C(R17)−R21−O-+ (11)
(式中、R17、M+は前記に同じ。R21は炭素数1〜20の2価の有機基で1個以上のエ−テル結合を含んでいてもよい)
2C=C(R17)−R22−C(O)O-+ (12)
(式中、R17、M+は前記に同じ。R22は直接結合、または炭素数1〜20の2価の有機基で1個以上のエーテル結合を含んでいてもよい)
などがあげられる。
(1-4) A polymer having one highly reactive carbon-halogen bond per molecule at the end of the molecule chain, for example, an oxyanion having an alkenyl group as shown in the general formula (11) or (12) A method of substituting halogen by reacting a carboxylate anion.
H 2 C = C (R 17 ) -R 21 -O - M + (11)
(In the formula, R 17 and M + are the same as above. R 21 is a divalent organic group having 1 to 20 carbon atoms, and may contain one or more ether bonds.)
H 2 C═C (R 17 ) −R 22 —C (O) O M + (12)
(In the formula, R 17 and M + are the same as described above. R 22 is a direct bond or a divalent organic group having 1 to 20 carbon atoms and may contain one or more ether bonds.)
Etc.

上述の反応性の高い炭素−ハロゲン結合を分子鎖末端に1分子当たり1個有する重合体の合成法は、前述のような有機ハロゲン化物等を開始剤とし、遷移金属錯体を触媒とする原子移動ラジカル重合法が挙げられるがこれらに限定されるわけではない。   The above-described method for synthesizing a polymer having one highly reactive carbon-halogen bond per molecule at the end of a molecule chain is an atom transfer using an organic halide as described above as an initiator and a transition metal complex as a catalyst. Examples include, but are not limited to, radical polymerization methods.

またアルケニル基を分子鎖末端に1分子当たり1個有する重合体は、水酸基を分子鎖末端に少なくとも1個有する重合体から得ることも可能であり、以下に例示する方法が利用できるがこれらに限定されるわけではない。   Further, a polymer having one alkenyl group per molecule at the molecular chain end can be obtained from a polymer having at least one hydroxyl group at the molecular chain end, and the methods exemplified below can be used, but are not limited thereto. It is not done.

水酸基を分子鎖末端に少なくとも1個有する重合体の水酸基に、
(1−5)ナトリウムメトキシドのような塩基を作用させ、塩化アリルのようなアルケニル基含有ハロゲン化物と反応させる方法、
(1−6)アリルイソシアネート等のアルケニル基含有イソシアネート化合物を反応させる方法、
(1−7)(メタ)アクリル酸クロリドのようなアルケニル基含有酸ハロゲン化物をピリジン等の塩基存在下に反応させる方法、
(1−8)アクリル酸等のアルケニル基含有カルボン酸を酸触媒の存在下に反応させる方法、
などがあげられる。
In the polymer hydroxyl group having at least one hydroxyl group at the molecular chain end,
(1-5) a method of reacting a base such as sodium methoxide with an alkenyl group-containing halide such as allyl chloride;
(1-6) a method of reacting an alkenyl group-containing isocyanate compound such as allyl isocyanate,
(1-7) a method of reacting an alkenyl group-containing acid halide such as (meth) acrylic acid chloride in the presence of a base such as pyridine,
(1-8) a method of reacting an alkenyl group-containing carboxylic acid such as acrylic acid in the presence of an acid catalyst,
Etc.

反応性の高い炭素−ハロゲン結合を分子鎖末端に1分子当たり1個有する重合体のハロゲンを変換することによりアルケニル基を導入する場合は、反応性の高い炭素−ハロゲン結合を1分子当たり1個有する有機ハロゲン化物、またはハロゲン化スルホニル化合物を開始剤、遷移金属錯体を触媒としてビニル系単量体をラジカル重合(原子移動ラジカル重合)することにより得られる末端に反応性の高い炭素−ハロゲン結合を分子鎖末端に1分子当たり1個有する重合体を用いることが好ましい。   When an alkenyl group is introduced by converting a halogen of a polymer having one highly reactive carbon-halogen bond per molecule at the end of the molecule chain, one highly reactive carbon-halogen bond per molecule A highly reactive carbon-halogen bond is formed at the terminal obtained by radical polymerization (atom transfer radical polymerization) of a vinyl monomer using an organic halide or sulfonyl halide compound as an initiator and a transition metal complex as a catalyst. It is preferable to use a polymer having one molecule per molecule chain end.

また、架橋性シリル基を有するヒドロシラン化合物としては特に制限はないが、代表的なものを示すと、一般式(13)で示される化合物が例示される。
H−[Si(R1 2-b)(Yb)O]m−Si(R2 3-a)Ya (13)
(式中、R1、R2、Y、a,b,mは前記に同じ。R1またはR2が2個以上存在するとき、それらは同一であってもよく、異なっていてもよい。ただし、a+mb≧1であることを満足するものとする。)
これらヒドロシラン化合物の中でも、特に一般式(14)
H−Si(R2 3-a)Ya (14)
(式中、R2、Y、aは前記に同じ)
で示される架橋性シリル基を有する化合物が入手容易な点から好ましい。
Moreover, there is no restriction | limiting in particular as a hydrosilane compound which has a crosslinkable silyl group, When a typical thing is shown, the compound shown by General formula (13) will be illustrated.
H- [Si (R 1 2- b) (Y b) O] m -Si (R 2 3-a) Y a (13)
(In the formula, R 1 , R 2 , Y, a, b and m are the same as described above. When two or more R 1 or R 2 are present, they may be the same or different. However, it shall be satisfied that a + mb ≧ 1.)
Among these hydrosilane compounds, in particular, the general formula (14)
H-Si (R 2 3-a ) Y a (14)
(Wherein R 2 , Y and a are the same as above)
The compound which has a crosslinkable silyl group shown by is preferable from a point with easy acquisition.

上記の架橋性シリル基を有するヒドロシラン化合物をアルケニル基に付加させる際には、遷移金属触媒が通常用いられる。遷移金属触媒としては、例えば、白金単体、アルミナ、シリカ、カーボンブラック等の担体に白金固体を分散させたもの、塩化白金酸、塩化白金酸とアルコール、アルデヒド、ケトン等との錯体、白金−オレフィン錯体、白金(0)−ジビニルテトラメチルジシロキサン錯体が挙げられる。白金化合物以外の触媒の例としては、RhCl(PPh33,RhCl3,RuCl3,IrCl3,FeCl3,AlCl3,PdCl2・H2O,NiCl2,TiCl4等があげられる。 When the hydrosilane compound having a crosslinkable silyl group is added to an alkenyl group, a transition metal catalyst is usually used. Examples of the transition metal catalyst include platinum simple substance, alumina, silica, carbon black and the like in which a platinum solid is dispersed, chloroplatinic acid, a complex of chloroplatinic acid and alcohol, aldehyde, ketone, etc., platinum-olefin. Complex, platinum (0) -divinyltetramethyldisiloxane complex is mentioned. Examples of the catalyst other than platinum compounds, RhCl (PPh 3) 3, RhCl 3, RuCl 3, IrCl 3, FeCl 3, AlCl 3, PdCl 2 · H 2 O, NiCl 2, TiCl 4 and the like.

片末端に架橋性シリル基を有するビニル系重合体、好ましくは分子量分布が1.8未満の重合体、の使用量としては、ビニル系重合体100重量部に対し、モジュラス、伸びの点から5〜400重量部であることが好ましい。   The amount of vinyl polymer having a crosslinkable silyl group at one end, preferably a polymer having a molecular weight distribution of less than 1.8, is 5 in terms of modulus and elongation with respect to 100 parts by weight of the vinyl polymer. It is preferable that it is -400 weight part.

2種以上のビニル系重合体を組合せて使用する第2の態様として、分子量分布が1.8以上のビニル重合体と分子量分布が1.8未満のビニル重合体を組合せて使用することもできる。分子量分布が1.8以上のビニル重合体は架橋性ケイ素基を有していてもいなくてもよいが架橋性ケイ素基を有するほうが耐候性や接着強度、破断時強度がより向上するので好ましい。また、組成物の硬化物の引裂き強度の改善が期待できる。第1の重合体として使用する、分子量分布が1.8以上のビニル系重合体や第2の重合体として使用する、分子量分布が1.8未満のビニル系重合体の主鎖としては、すでに述べたビニル系モノマーに起因する重合体を使用することができ、両重合体ともアクリル酸エステル系重合体が好ましい。   As a second embodiment in which two or more kinds of vinyl polymers are used in combination, a vinyl polymer having a molecular weight distribution of 1.8 or more and a vinyl polymer having a molecular weight distribution of less than 1.8 can be used in combination. . A vinyl polymer having a molecular weight distribution of 1.8 or more may or may not have a crosslinkable silicon group, but having a crosslinkable silicon group is preferred because weather resistance, adhesive strength, and strength at break are further improved. Moreover, the improvement of the tear strength of the hardened | cured material of a composition can be anticipated. As the main chain of the vinyl polymer having a molecular weight distribution of less than 1.8, used as the first polymer, the vinyl polymer having a molecular weight distribution of 1.8 or more, or the second polymer, Polymers derived from the vinyl monomers mentioned can be used, and both polymers are preferably acrylate polymers.

分子量分布が1.8以上のビニル系重合体は、通常のビニル重合の方法、例えば、ラジカル反応による溶液重合法により得ることができる。重合は、通常、前記の単量体およびラジカル開始剤や連鎖移動剤等を加えて50〜150℃で反応させることにより行われる。この場合一般的に分子量分布は1.8以上のものが得られる。   A vinyl polymer having a molecular weight distribution of 1.8 or more can be obtained by a usual vinyl polymerization method, for example, a solution polymerization method by radical reaction. The polymerization is usually carried out by adding the above-mentioned monomer, a radical initiator, a chain transfer agent and the like and reacting at 50 to 150 ° C. In this case, generally a molecular weight distribution of 1.8 or more is obtained.

前記ラジカル開始剤の例としては、2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(2−メチルブチロニトリル)、4,4’−アゾビス(4−シアノバレリック)アシッド、1,1’−アゾビス(1−シクロヘキサンカルボニトリル)、アゾビスイソ酪酸アミジン塩酸塩、2,2’−アゾビス(2,4−ジメチルバレロニトリル)などのアゾ系開始剤、過酸化ベンゾイル、過酸化ジ−tert−ブチルなどの有機過酸化物系開始剤があげられるが、重合に使用する溶媒の影響を受けない、爆発等の危険性が低いなどの点から、アゾ系開始剤の使用が好ましい。   Examples of the radical initiator include 2,2′-azobisisobutyronitrile, 2,2′-azobis (2-methylbutyronitrile), 4,4′-azobis (4-cyanovaleric) acid. 1,1′-azobis (1-cyclohexanecarbonitrile), azobisisobutyric acid amidine hydrochloride, 2,2′-azobis (2,4-dimethylvaleronitrile) and other azo initiators, benzoyl peroxide, diperoxide Organic peroxide-based initiators such as -tert-butyl are exemplified, but use of azo-based initiators is preferable in that they are not affected by the solvent used for polymerization and have a low risk of explosion and the like.

連鎖移動剤の例としては、n−ドデシルメルカプタン、tert−ドデシルメルカプタン、ラウリルメルカプタン、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン、γ−メルカプトプロピルトリエトキシシラン、γ−メルカプトプロピルメチルジエトキシシラン等のメルカプタン類や含ハロゲン化合物等があげられる。   Examples of chain transfer agents include n-dodecyl mercaptan, tert-dodecyl mercaptan, lauryl mercaptan, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropylmethyldimethoxysilane, γ-mercaptopropyltriethoxysilane, γ-mercaptopropylmethyl Examples include mercaptans such as diethoxysilane and halogen-containing compounds.

重合は溶剤中で行なってもよい。溶剤の例としては、エーテル類、炭化水素類、エステル類などの非反応性の溶剤が好ましい。   The polymerization may be performed in a solvent. Examples of the solvent are preferably nonreactive solvents such as ethers, hydrocarbons, and esters.

架橋性シリル基を導入する方法としては、例えば、重合性不飽和結合と架橋性シリル基とを併せ持つ化合物を(メタ)アクリル酸エステル単量体単位と共重合させる方法があげられる。重合性不飽和結合と架橋性シリル基とを併せ持つ化合物としては、一般式(26):
CH2=C(R28)COOR30−[Si(R1 2-b)(Yb)O]mSi(R2 3-a)Ya (26)
(式中、R28は前記に同じ。R30は炭素数1〜6の2価のアルキレン基を示す。R1,R2,Y,a,b,mは前記と同じ。)
または一般式(27):
CH2=C(R28)−[Si(R1 2-b)(Yb)O]mSi(R2 3-a)Ya (27)
(式中、R28,R1,R2,Y,a,b,mは前記と同じ。)
で表される単量体、例えば、γ−メタクリロキシプロピルトリメトキシシラン、γ−メタクリロキシプロピルメチルジメトキシシラン、γ−メタクリロキシプロピルトリエトキシシラン等のγ−メタクリロキシプロピルポリアルコキシシラン、γ−アクリロキシプロピルトリメトキシシラン、γ−アクリロキシプロピルメチルジメトキシシラン、γ−アクリロキシプロピルトリエトキシシラン等のγ−アクリロキシプロピルポリアルコキシシラン、ビニルトリメトキシシラン、ビニルメチルジメトキシシラン、ビニルトリエトキシシラン等のビニルアルキルポリアルコキシシランなどがあげられる。また、メルカプト基と架橋性シリル基とを併せ持つ化合物を連鎖移動剤に用いると重合体末端に架橋性シリル基を導入することができる。そのような連鎖移動剤としては、例えば、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン、γ−メルカプトプロピルトリエトキシシラン、γ−メルカプトプロピルメチルジエトキシシラン等のメルカプタン類があげられる。
Examples of the method for introducing a crosslinkable silyl group include a method of copolymerizing a compound having both a polymerizable unsaturated bond and a crosslinkable silyl group with a (meth) acrylate monomer unit. As a compound having both a polymerizable unsaturated bond and a crosslinkable silyl group, the general formula (26):
CH 2 = C (R 28) COOR 30 - [Si (R 1 2-b) (Y b) O] m Si (R 2 3-a) Y a (26)
(In the formula, R 28 is the same as above. R 30 represents a divalent alkylene group having 1 to 6 carbon atoms. R 1 , R 2 , Y, a, b and m are the same as above.)
Or general formula (27):
CH 2 = C (R 28) - [Si (R 1 2-b) (Y b) O] m Si (R 2 3-a) Y a (27)
(In the formula, R 28 , R 1 , R 2 , Y, a, b and m are the same as above.)
Monomers such as γ-methacryloxypropyl trimethoxysilane, γ-methacryloxypropylmethyldimethoxysilane, γ-methacryloxypropyl polyalkoxysilane such as γ-methacryloxypropyltriethoxysilane, and γ-acrylic. Γ-acryloxypropyl polyalkoxysilane such as loxypropyltrimethoxysilane, γ-acryloxypropylmethyldimethoxysilane, γ-acryloxypropyltriethoxysilane, vinyltrimethoxysilane, vinylmethyldimethoxysilane, vinyltriethoxysilane, etc. Examples thereof include vinyl alkyl polyalkoxysilane. Further, when a compound having both a mercapto group and a crosslinkable silyl group is used as a chain transfer agent, the crosslinkable silyl group can be introduced into the polymer terminal. Examples of such chain transfer agents include mercaptans such as γ-mercaptopropyltrimethoxysilane, γ-mercaptopropylmethyldimethoxysilane, γ-mercaptopropyltriethoxysilane, and γ-mercaptopropylmethyldiethoxysilane. .

架橋性官能基を有し分子量分布が1.8以上のビニル系重合体は、GPC測定によるポリスチレン換算での数平均分子量が500〜100,000のものが取扱いの容易さの点から好ましい。さらに1,500〜30,000のものが硬化物の耐候性、作業性が良好であることからより好ましい。   A vinyl polymer having a crosslinkable functional group and having a molecular weight distribution of 1.8 or more preferably has a number average molecular weight in terms of polystyrene by GPC measurement of 500 to 100,000 from the viewpoint of ease of handling. Furthermore, the thing of 1,500-30,000 is more preferable from the weather resistance of a hardened | cured material, and workability | operativity being favorable.

(C)可塑剤成分について
本発明の硬化性組成物には、各種可塑剤を必要に応じて用いても良い。可塑剤を後述する充填材と併用して使用すると硬化物の伸びを大きくできたり、多量の充填材を混合できたりするためより有利となるが、必ずしも添加しなければならないものではない。可塑剤としては特に限定されないが、物性の調整、性状の調節等の目的により、例えば、ジブチルフタレート、ジヘプチルフタレート、ジ(2−エチルヘキシル)フタレート、ジイソデシルフタレート、ブチルベンジルフタレート等のフタル酸エステル類;ジオクチルアジペート、ジオクチルセバケート、ジブチルセバケート、コハク酸イソデシル等の非芳香族二塩基酸エステル類;オレイン酸ブチル、アセチルリシリノール酸メチル等の脂肪族エステル類;ジエチレングリコールジベンゾエート、トリエチレングリコールジベンゾエート、ペンタエリスリトールエステル等のポリアルキレングリコールのエステル類;トリクレジルホスフェート、トリブチルホスフェート等のリン酸エステル類;トリメリット酸エステル類;ポリスチレンやポリ−α−メチルスチレン等のポリスチレン類;ポリブタジエン、ポリブテン、ポリイソブチレン、ブタジエン−アクリロニトリル、ポリクロロプレン;塩素化パラフィン類;アルキルジフェニル、部分水添ターフェニル、等の炭化水素系油;プロセスオイル類;ポリエチレングリコール、ポリプロピレングリコール、エチレンオキサイド−プロピレンオキサイド共重合体、ポリテトラメチレングリコール等のポリエーテルポリオール、これらポリエーテルポリオールの水酸基の片末端または両末端もしくは全末端をアルキルエステル基またはアルキルエーテル基などに変換したアルキル誘導体等のポリエーテル類;エポキシ化大豆油、エポキシステアリン酸ベンジル、E−PS等のエポキシ基含有可塑剤類;セバシン酸、アジピン酸、アゼライン酸、フタル酸等の2塩基酸とエチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール等の2価アルコールから得られるポリエステル系可塑剤類;ピロメリット酸エステル類、アクリル系可塑剤を始めとするビニル系モノマーを種々の方法で重合して得られるビニル系重合体類等が挙げられる。
(C) Plasticizer component Various plasticizers may be used in the curable composition of the present invention as required. When a plasticizer is used in combination with a filler to be described later, it becomes more advantageous because the elongation of the cured product can be increased or a large amount of filler can be mixed, but it is not necessarily added. Although it does not specifically limit as a plasticizer, For purposes, such as adjustment of physical properties and adjustment of properties, for example, phthalic acid esters such as dibutyl phthalate, diheptyl phthalate, di (2-ethylhexyl) phthalate, diisodecyl phthalate, butyl benzyl phthalate Non-aromatic dibasic esters such as dioctyl adipate, dioctyl sebacate, dibutyl sebacate and isodecyl succinate; aliphatic esters such as butyl oleate and methyl acetyl ricinoleate; diethylene glycol dibenzoate, triethylene glycol di Polyalkylene glycol esters such as benzoate and pentaerythritol ester; Phosphate esters such as tricresyl phosphate and tributyl phosphate; Trimellitic acid esters; Polystyrenes such as re-α-methylstyrene; polybutadiene, polybutene, polyisobutylene, butadiene-acrylonitrile, polychloroprene; chlorinated paraffins; hydrocarbon oils such as alkyldiphenyl and partially hydrogenated terphenyl; process oils; Polyether glycol such as polyethylene glycol, polypropylene glycol, ethylene oxide-propylene oxide copolymer, polytetramethylene glycol, etc., one end or both ends or all ends of the hydroxyl groups of these polyether polyols to alkyl ester groups or alkyl ether groups Polyethers such as converted alkyl derivatives; Epoxy group-containing plasticizers such as epoxidized soybean oil, benzyl epoxy stearate, E-PS; sebacic acid, adipic acid, azela Polyester plasticizers obtained from dibasic acids such as inic acid and phthalic acid and dihydric alcohols such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol and dipropylene glycol; pyromellitic acid esters, acrylic plasticizer And vinyl polymers obtained by polymerizing vinyl monomers including the above by various methods.

なかでも数平均分子量500〜15,000の重合体である高分子可塑剤は、添加することにより、該硬化性組成物の粘度やスランプ性および該組成物を硬化して得られる硬化物の引張り強度、伸びなどの機械特性が調整できるとともに、重合体成分を分子中に含まない可塑剤である低分子可塑剤を使用した場合に比較して、初期の物性を長期にわたり維持し、該硬化物にアルキッド塗料を塗布した場合の乾燥性(塗装性ともいう)を改良できる。なお、限定はされないがこの高分子可塑剤は、官能基を有しても有しなくても構わない。   In particular, a polymer plasticizer which is a polymer having a number average molecular weight of 500 to 15,000 is added, whereby the viscosity and slump property of the curable composition and the tensile strength of the cured product obtained by curing the composition are obtained. Mechanical properties such as strength and elongation can be adjusted, and the initial physical properties are maintained over a long period of time compared to the case of using a low molecular plasticizer that is a plasticizer that does not contain a polymer component in the molecule. It is possible to improve the drying property (also referred to as paintability) when an alkyd paint is applied. Although not limited, the polymer plasticizer may or may not have a functional group.

上記で高分子可塑剤の数平均分子量は、500〜15,000と記載したが、好ましくは800〜10,000であり、より好ましくは1,000〜8,000である。分子量が低すぎると熱により可塑剤が経時的に流出し、初期の物性を長期にわたり維持できず、また、分子量が高すぎると粘度が高くなり、作業性が悪くなる。   Although the number average molecular weight of the polymer plasticizer was described as 500 to 15,000 above, it is preferably 800 to 10,000, and more preferably 1,000 to 8,000. If the molecular weight is too low, the plasticizer flows out over time due to heat, and the initial physical properties cannot be maintained over a long period of time, and if the molecular weight is too high, the viscosity increases and workability deteriorates.

これらの高分子可塑剤の中ではポリエーテル系可塑剤と(メタ)アクリル系重合体可塑剤が高伸び特性あるいは高耐候性の点から好ましい。アクリル系重合体の合成法は、従来からの溶液重合で得られるものや、無溶剤型アクリルポリマー等を挙げることができる。後者のアクリル系可塑剤は溶剤や連鎖移動剤を使用せず高温連続重合法(USP4414370、特開昭59−6207、特公平5−58005、特開平1−313522、USP5010166)にて作製されるため本発明の目的にはより好ましい。その例としては特に限定されないが例えば東亞合成品のARUFON UPシリーズ(UP−1000、UP−1110、UP−2000、UP−2130)(SGOと呼ばれる)等が挙げられる(防水ジャーナル2002年6月号参照)。勿論、他の合成法としてリビングラジカル重合法をも挙げることができる。この方法によれば、その重合体の分子量分布が狭く、低粘度化が可能なことから好ましく、更には原子移動ラジカル重合法がより好ましいが、これに限定されるものではない。   Among these polymer plasticizers, polyether plasticizers and (meth) acrylic polymer plasticizers are preferable from the viewpoint of high elongation characteristics or high weather resistance. Examples of the synthesis method of the acrylic polymer include those obtained by conventional solution polymerization and solvent-free acrylic polymers. The latter acrylic plasticizer is prepared by a high temperature continuous polymerization method (USP 4414370, JP 59-6207, JP-B-5-58005, JP 1-313522, USP 5010166) without using a solvent or a chain transfer agent. More preferred for the purposes of the present invention. Examples thereof include, but are not particularly limited to, for example, ARUFON UP series (UP-1000, UP-1110, UP-2000, UP-2130) (referred to as SGO) of Toagosei Co., Ltd. (waterproof journal, June 2002 issue) reference). Of course, the living radical polymerization method can also be mentioned as another synthesis method. According to this method, the molecular weight distribution of the polymer is narrow and the viscosity can be lowered, and the atom transfer radical polymerization method is more preferable, but it is not limited thereto.

高分子可塑剤の分子量分布は特に限定されないが、粘度の点から狭いことが好ましく、1.8未満が好ましい。1.7以下がより好ましく、1.6以下がなお好ましく、1.5以下がさらに好ましく、1.4以下が特に好ましく、1.3以下が最も好ましい。   The molecular weight distribution of the polymer plasticizer is not particularly limited, but is preferably narrow from the viewpoint of viscosity, and preferably less than 1.8. 1.7 or less is more preferable, 1.6 or less is still more preferable, 1.5 or less is more preferable, 1.4 or less is especially preferable, and 1.3 or less is the most preferable.

なお、粘度の点から言えば、主鎖に分岐構造を有する方が同一分子量では粘度が低くなるので好ましい。上述の高温連続重合法はこの例として挙げられる。   From the viewpoint of viscosity, it is preferable to have a branched structure in the main chain because the viscosity becomes lower at the same molecular weight. The high temperature continuous polymerization method mentioned above is mentioned as this example.

上記高分子可塑剤を含む可塑剤は、単独で使用してもよく、2種以上を併用してもよいが、必ずしも必要とするものではない。また必要によっては高分子可塑剤を用い、物性に悪影響を与えない範囲で低分子可塑剤を更に併用しても良い。また、例えば、本発明のビニル系重合体と架橋性官能基を有する重合体任意成分の一つであるポリエーテル系重合体とを混合した組成物の場合には、混合物の相溶性の点から、ポリエステル系類、ピロメリット酸エステル系、フタル酸エステル類、アクリル系重合体が特に好ましい。   The plasticizer containing the above-mentioned polymer plasticizer may be used alone or in combination of two or more, but is not necessarily required. Further, if necessary, a high molecular plasticizer may be used, and a low molecular plasticizer may be further used in a range that does not adversely affect the physical properties. In addition, for example, in the case of a composition in which the vinyl polymer of the present invention and a polyether polymer which is one of optional polymers having a crosslinkable functional group are mixed, from the point of compatibility of the mixture Polyesters, pyromellitic acid esters, phthalic acid esters, and acrylic polymers are particularly preferable.

なおこれら可塑剤は、重合体製造時に配合することも可能である。   These plasticizers can also be blended at the time of polymer production.

可塑剤を用いる場合の使用量は、限定されないが、架橋性シリル基を有する重合体100重量部に対して5〜200重量部が好ましく、10〜120重量部がより好ましく、20〜100重量部がさらに好ましい。5重量部未満では可塑剤としての効果が発現しにくく、200重量部を越えると硬化物の機械強度が不足する傾向がある。   The amount of the plasticizer used is not limited, but is preferably 5 to 200 parts by weight, more preferably 10 to 120 parts by weight, more preferably 20 to 100 parts by weight with respect to 100 parts by weight of the polymer having a crosslinkable silyl group. Is more preferable. If it is less than 5 parts by weight, the effect as a plasticizer is hardly exhibited, and if it exceeds 200 parts by weight, the mechanical strength of the cured product tends to be insufficient.

(D)熱伝導性充填材成分について
本発明の熱伝導性充填材は、市販されている一般的な良熱伝導性充填材を用いることが出来る。なかでも、熱伝導率、入手性、絶縁性・電磁波シールド性・電磁波吸収性など特定の電気特性を付与可能である、等の観点から、グラファイト、ダイヤモンド、等の炭素化合物;酸化アルミニウム、酸化マグネシウム、酸化ベリリウム、酸化チタン、酸化ジルコニウム、酸化亜鉛等の金属酸化物;窒化ホウ素、窒化アルミニウム、窒化ケイ素等の金属窒化物;炭化ホウ素、炭化アルミニウム、炭化ケイ素等の金属炭化物;水酸化アルミニウム、水酸化マグネシウム等の金属水酸化物;炭酸マグネシウム、炭酸カルシウム等の金属炭酸塩;結晶性シリカ:アクリロニトリル系ポリマー焼成物、フラン樹脂焼成物、クレゾール樹脂焼成物、ポリ塩化ビニル焼成物、砂糖の焼成物、木炭の焼成物等の有機性ポリマー焼成物;Znフェライトとの複合フェライト;Fe−Al−Si系三元合金;金属粉末、等が好ましく挙げられる。
(D) About a heat conductive filler component The heat conductive filler of this invention can use the general good heat conductive filler marketed. Among them, carbon compounds such as graphite, diamond, etc .; aluminum oxide, magnesium oxide from the viewpoint of being able to impart specific electrical characteristics such as thermal conductivity, availability, insulation, electromagnetic shielding, and electromagnetic absorption , Metal oxides such as beryllium oxide, titanium oxide, zirconium oxide, and zinc oxide; metal nitrides such as boron nitride, aluminum nitride, and silicon nitride; metal carbides such as boron carbide, aluminum carbide, and silicon carbide; aluminum hydroxide, water Metal hydroxides such as magnesium oxide; metal carbonates such as magnesium carbonate and calcium carbonate; crystalline silica: calcined acrylonitrile polymer, calcined furan resin, calcined cresol resin, calcined polyvinyl chloride, calcined sugar Baked organic polymer such as fired charcoal; composite with Zn ferrite Ferrite; Fe-Al-Si ternary alloy; metal powders, and the like preferably.

さらに、入手性や熱伝導性の観点から、グラファイト、酸化アルミニウム、酸化マグネシウム、窒化ホウ素、窒化アルミニウム、炭化ケイ素、水酸化アルミニウム、炭酸マグネシウム、結晶化シリカがより好ましく、グラファイト、α―アルミナ、六方晶窒化ホウ素、窒化アルミニウム、水酸化アルミニウム、Mn−Zn系ソフトフェライト、Ni−Zn系ソフトフェライト、Fe−Al−Si系三元合金( センダスト)、カルボニル鉄、鉄ニッケル合金( パーマロイ)がより好ましく、球状化グラファイト、丸み状あるいは球状のα―アルミナ、球状化六方晶窒化ホウ素、窒化アルミニウム、水酸化アルミニウム、Mn−Zn系ソフトフェライト、Ni−Zn系ソフトフェライト、球状Fe−Al−Si系三元合金( センダスト)、カルボニル鉄、が特に好ましい。
本発明でカルボニル鉄を用いる場合には、還元カルボニル鉄粉であることが望ましい。還元カルボニル鉄粉とは、標準グレードではなく、還元グレードに分類されるカルボニル鉄粉であり、標準グレードに比べ、カーボンと窒素の含有量が低いことが特徴である。
Further, from the viewpoint of availability and thermal conductivity, graphite, aluminum oxide, magnesium oxide, boron nitride, aluminum nitride, silicon carbide, aluminum hydroxide, magnesium carbonate, and crystallized silica are more preferable, graphite, α-alumina, hexagonal More preferred are crystalline boron nitride, aluminum nitride, aluminum hydroxide, Mn—Zn soft ferrite, Ni—Zn soft ferrite, Fe—Al—Si ternary alloy (Sendust), carbonyl iron, iron nickel alloy (Permalloy) Spheroidized graphite, round or spherical α-alumina, spheroidized hexagonal boron nitride, aluminum nitride, aluminum hydroxide, Mn—Zn soft ferrite, Ni—Zn soft ferrite, spherical Fe—Al—Si three Original alloy (Sendust), Carbo Nyl iron is particularly preferred.
When carbonyl iron is used in the present invention, reduced carbonyl iron powder is desirable. The reduced carbonyl iron powder is not a standard grade but a carbonyl iron powder classified into a reduced grade, and is characterized by a low carbon and nitrogen content compared to the standard grade.

また、これらの熱伝導性充填材は、ビニル系重合体(I)に対する分散性が向上する点から、シランカップリング剤(ビニルシラン、エポキシシラン、(メタ)アクリルシラン、イソシアナートシラン、クロロシラン、アミノシラン等)やチタネートカップリング剤(アルコキシチタネート、アミノチタネート等)、又は、脂肪酸(カプロン酸、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘニン酸等の飽和脂肪酸、ソルビン酸、エライジン酸、オレイン酸、リノール酸、リノレン酸、エルカ酸等の不飽和脂肪酸等)や樹脂酸(アビエチン酸、ピマル酸、レボピマール酸、ネオアピチン酸、パラストリン酸、デヒドロアビエチン酸、イソピマール酸、サンダラコピマール酸、コルム酸、セコデヒドロアビエチン酸、ジヒドロアビエチン酸等)等により、表面が処理されたものであることが好ましい。   In addition, these thermally conductive fillers are silane coupling agents (vinyl silane, epoxy silane, (meth) acryl silane, isocyanate silane, chloro silane, amino silane from the viewpoint of improving dispersibility with respect to the vinyl polymer (I). Etc.), titanate coupling agents (alkoxy titanate, amino titanate, etc.), or fatty acids (caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid and other saturated fatty acids, sorbic acid , Elaidic acid, oleic acid, linoleic acid, linolenic acid, erucic acid and other unsaturated fatty acids) and resin acids (abietic acid, pimaric acid, levopimaric acid, neoapitic acid, parastrinic acid, dehydroabietic acid, isopimaric acid, sandaracopi Maric acid, cormic acid, secodehydride Abietic acid, the dihydroabietic acid, etc.) or the like, it is preferable that the surface has been treated.

これらのうち、一部の熱伝導率を挙げると、例えば、シリカは1.5W/mK、アルミナは20W/mK、酸化マグネシュウムは40W/mK、窒化ホウ素は60W/mK、窒化アルミは70W/mK、銅は398W/mK、アルミは237W/mK、等の良好な熱伝導率を示す。   Among these, some of the thermal conductivities are, for example, 1.5 W / mK for silica, 20 W / mK for alumina, 40 W / mK for magnesium oxide, 60 W / mK for boron nitride, and 70 W / mK for aluminum nitride. , Copper has a good thermal conductivity of 398 W / mK, aluminum has a thermal conductivity of 237 W / mK, and the like.

このような熱伝導性充填材の使用量としては、本発明の組成物から得られる熱伝導性材料の熱伝導率を高くすることができる点から、熱伝導性充填材の容積率(%)が全組成物中の25容量%以上となることが好ましい。25容量%よりも少ない場合は、熱伝導性が十分でなくなる傾向がある。さらに高い熱伝導率を望む場合は、熱伝導性充填材の使用量を、全組成物中の40容量%以上とすることがより好ましい。   The amount of the heat conductive filler used is such that the heat conductivity of the heat conductive material obtained from the composition of the present invention can be increased, so that the volume ratio (%) of the heat conductive filler is high. Is preferably 25% by volume or more of the total composition. If it is less than 25% by volume, the thermal conductivity tends to be insufficient. When a higher thermal conductivity is desired, the amount of the thermally conductive filler used is more preferably 40% by volume or more in the total composition.

ここで熱伝導性充填材の容積率(%)とは、樹脂分及び熱伝導性充填材のそれぞれの重量分率と比重から算出されるものであり、次式により求められる。なお、次式においては、熱伝導性充填材を単に「充填材」と記載した。
充填材容積率(容量%)=(充填材重量比率/充填材比重)÷[(樹脂分重量比率/樹脂分比重)+(充填材重量比率/充填材比重)]×100
ここで、樹脂分とは、熱伝導性充填材を除いた全成分を指し、具体的にはビニル系重合体(A)及び(B)、(C)可塑剤、(E)カルボン酸金属塩、(F)カルボン酸、(G)メチルエステル系化合物その他粘着付与樹脂等各種添加剤を指す。
Here, the volume fraction (%) of the thermally conductive filler is calculated from the weight fraction and specific gravity of the resin component and the thermally conductive filler, and is obtained by the following equation. In the following formula, the thermally conductive filler is simply referred to as “filler”.
Filler volume ratio (volume%) = (filler weight ratio / filler specific gravity) ÷ [(resin weight ratio / resin weight specific gravity) + (filler weight ratio / filler specific gravity)] × 100
Here, the resin component refers to all components excluding the heat conductive filler, and specifically, vinyl polymers (A) and (B), (C) plasticizer, (E) carboxylic acid metal salt. , (F) carboxylic acid, (G) various additives such as methyl ester compounds and other tackifying resins.

また、ビニル系重合体(A)及び(B)に対する熱伝導性充填材の充填率を高める1手法として、粒子径の異なる熱伝導性充填材を2種類以上併用することが好適である。この場合、粒子径の大きい熱伝導性充填材を10μmを超えるものとし、粒子径の小さい熱伝導性充填材を10μm以下とすることが好ましい。   Further, as one method for increasing the filling rate of the heat conductive filler with respect to the vinyl polymers (A) and (B), it is preferable to use two or more kinds of heat conductive fillers having different particle diameters in combination. In this case, it is preferable that the heat conductive filler having a large particle diameter exceeds 10 μm, and the heat conductive filler having a small particle diameter is 10 μm or less.

また、これら熱伝導性充填材は、同一種類の熱伝導性充填材だけでなく、種類の異なる2種以上を併用することもできる。また本発明の効果を妨げない程度に、熱伝導性充填材以外の各種充填材を必要に応じて用いても良い。熱伝導性充填材以外の各種充填材としては、特に限定されないが、木粉、パルプ、木綿チップ、アスベスト、ガラス繊維、炭素繊維、マイカ、クルミ殻粉、もみ殻粉、ケイソウ土、白土、シリカ(ヒュームドシリカ、沈降性シリカ、溶融シリカ、ドロマイト、無水ケイ酸、含水ケイ酸、非晶質球形シリカ等)、カーボンブラックのような補強性充填材;ケイソウ土、焼成クレー、クレー、タルク、酸化チタン、ベントナイト、有機ベントナイト、酸化第二鉄、アルミニウム微粉末、フリント粉末、活性亜鉛華、亜鉛末、炭酸カルシウム、ケミベスト、炭酸亜鉛およびシラスバルーン、ガラスミクロバルーン、フェノール樹脂や塩化ビニリデン樹脂の有機ミクロバルーン、PVC粉末、PMMA粉末など樹脂粉末などの充填材;石綿、ガラス繊維およびガラスフィラメント、炭素繊維、ケブラー繊維、ポリエチレンファイバー等の繊維状充填材等が挙げられる。これら充填材のうちでは沈降性シリカ、ヒュームドシリカ、溶融シリカ、ドロマイト、カーボンブラック、酸化チタン、タルクなどが好ましい。なおこれら充填材の中には、わずかに熱伝導性充填材としての機能を有しているものもあり、また炭素繊維、各種金属粉、各種金属酸化物、各種有機繊維のように、組成、合成方法、結晶化度、結晶構造によっては優れた熱伝導性充填材として使用可能となるものもある。   Moreover, these heat conductive fillers can use not only the same kind of heat conductive filler but also two or more kinds of different kinds in combination. Moreover, you may use various fillers other than a heat conductive filler as needed to such an extent that the effect of this invention is not prevented. Various fillers other than the heat conductive filler are not particularly limited, but wood powder, pulp, cotton chips, asbestos, glass fiber, carbon fiber, mica, walnut shell powder, rice husk powder, diatomaceous earth, white clay, silica (Fumed silica, precipitated silica, fused silica, dolomite, silicic anhydride, hydrous silicic acid, amorphous spherical silica, etc.), reinforcing filler such as carbon black; diatomaceous earth, calcined clay, clay, talc, Titanium oxide, bentonite, organic bentonite, ferric oxide, aluminum fine powder, flint powder, activated zinc white, zinc powder, calcium carbonate, chemibest, zinc carbonate and shirasu balloon, glass microballoon, phenol resin and vinylidene chloride resin organic Fillers such as microballoons, PVC powder, PMMA powder and other resin powders; asbestos, glass fiber And glass filaments, carbon fibers, Kevlar fibers, fibrous fillers such as polyethylene fiber and the like. Of these fillers, precipitated silica, fumed silica, fused silica, dolomite, carbon black, titanium oxide, talc and the like are preferable. Some of these fillers have a slightly function as a heat conductive filler, and the composition, such as carbon fiber, various metal powders, various metal oxides, various organic fibers, Some synthesis methods, crystallinity, and crystal structures can be used as excellent heat conductive fillers.

(E)カルボン酸金属塩成分について
架橋性シリル基を有する重合体は、カルボン酸金属塩触媒の存在下、あるいは非存在下にシロキサン結合を形成することにより架橋、硬化する。硬化物の性状としては、重合体の分子量と主鎖骨格に応じて、ゴム状のものから樹脂状のものまで幅広く作成することができる。
(E) Carboxylic acid metal salt component A polymer having a crosslinkable silyl group is crosslinked and cured by forming a siloxane bond in the presence or absence of a carboxylic acid metal salt catalyst. The properties of the cured product can be broadly created from rubbery to resinous depending on the molecular weight and main chain skeleton of the polymer.

このような縮合触媒としては、例えば、カルボニル基に隣接する炭素原子が4級炭素であるカルボン酸金属塩はこれらの効果とともに硬化性および貯蔵安定性など改善効果も高く好ましい。   As such a condensation catalyst, for example, a carboxylic acid metal salt in which the carbon atom adjacent to the carbonyl group is a quaternary carbon is preferable because of these effects as well as improving effects such as curability and storage stability.

カルボン酸金属塩としては、カルボン酸錫、カルボン酸鉛、カルボン酸ビスマス、カルボン酸カリウム、カルボン酸カルシウム、カルボン酸バリウム、カルボン酸チタン、カルボン酸ジルコニウム、カルボン酸ハフニウム、カルボン酸バナジウム、カルボン酸マンガン、カルボン酸鉄、カルボン酸コバルト、カルボン酸ニッケル、カルボン酸セリウムが触媒活性が高いことから好ましく、更にはカルボン酸錫、カルボン酸鉛、カルボン酸ビスマス、カルボン酸チタン、カルボン酸鉄、カルボン酸ジルコニウムがより好ましく、特にカルボン酸錫が好ましく、接着性の観点から2価のカルボン酸錫が最も好ましい。
また、カルボン酸金属塩の酸基を有するカルボン酸としては、後記のカルボン酸(F)で例示したものが挙げられる。
Examples of carboxylic acid metal salts include tin carboxylate, lead carboxylate, bismuth carboxylate, potassium carboxylate, calcium carboxylate, barium carboxylate, titanium carboxylate, zirconium carboxylate, hafnium carboxylate, vanadium carboxylate, manganese carboxylate , Iron carboxylate, cobalt carboxylate, nickel carboxylate, cerium carboxylate are preferable because of their high catalytic activity, and further, tin carboxylate, lead carboxylate, bismuth carboxylate, titanium carboxylate, iron carboxylate, zirconium carboxylate Is more preferable, especially tin carboxylate, and divalent tin carboxylate is most preferable from the viewpoint of adhesiveness.
Examples of the carboxylic acid having an acid group of a carboxylic acid metal salt include those exemplified for the carboxylic acid (F) described later.

前記に記載の相溶性、作業性、揮発性に関する効果は、その酸基を有するカルボン酸金属塩にも同様に言える。よってカルボン酸金属塩としてはネオデカン酸、バーサチック酸、2,2−ジメチルオクタン酸、2−エチル−2,5−ジメチルヘキサン酸の金属塩が最も好ましい。   The effects relating to the compatibility, workability, and volatility described above can be similarly applied to carboxylic acid metal salts having an acid group. Therefore, as the carboxylic acid metal salt, the metal salt of neodecanoic acid, versatic acid, 2,2-dimethyloctanoic acid, 2-ethyl-2,5-dimethylhexanoic acid is most preferable.

カルボン酸金属塩を具体的に例示すると、ピバル酸錫、ネオデカン酸錫、バーサチック酸錫、2,2−ジメチルオクタン酸錫、2−エチル−2,5−ジメチルヘキサン酸錫、バーサチック酸鉛、ネオデカン酸ビスマス、バーサチック酸ビスマス、バーサチック酸カリウム、バーサチック酸カルシウム、バーサチック酸バリウム、バーサチック酸チタン、バーサチック酸ジルコニウム、バーサチック酸ハフニウム、バーサチック酸バナジウム、バーサチック酸マンガン、バーサチック酸鉄、バーサチック酸コバルト、バーサチック酸ニッケル、バーサチック酸セリウムが挙げられる。これらの中でも、ネオデカン酸錫、バーサチック酸錫、2,2−ジメチルオクタン酸錫、2−エチル−2,5−ジメチルヘキサン酸錫、バーサチック酸鉛、バーサチック酸ビスマス、バーサチック酸チタン、バーサチック酸鉄、バーサチック酸ジルコニウムは、触媒活性が高いことから好ましく、特に接着性の観点からネオデカン酸錫、バーサチック酸錫、2,2−ジメチルオクタン酸錫、2−エチル−2,5−ジメチルヘキサン酸錫がより好ましい。   Specific examples of carboxylic acid metal salts include tin pivalate, tin neodecanoate, tin versatate, tin 2,2-dimethyloctanoate, tin 2-ethyl-2,5-dimethylhexanoate, lead versatate, neodecane Bismuth oxide, bismuth versatate, potassium versatate, calcium versatate, barium versatate, titanium versatate, zirconium versatate, hafnium versatate, vanadium versatate, manganese versatate, iron versatate, cobalt versatate, nickel versatate And cerium versatate. Among these, tin neodecanoate, tin versatate, tin 2,2-dimethyloctanoate, tin 2-ethyl-2,5-dimethylhexanoate, lead versatate, bismuth versatate, titanium versatate, iron versatate, Zircon versatate is preferable because of its high catalytic activity, and in particular, from the viewpoint of adhesion, neodecanoic acid tin, versaic acid tin, tin 2,2-dimethyloctanoate, and 2-ethyl-2,5-dimethylhexanoate are more preferred. preferable.

カルボン酸金属塩は単独で使用してもよいし、2種以上を併用してもよい。また(F)カルボン酸との併用系も使用してもよい。これらのカルボン酸金属塩の配合量は、架橋性シリル基を有する重合体100重量部に対して0.1〜30重量部程度が好ましく、カルボン酸金属塩の配合量が0.1重量部未満であると極端に硬化速度が遅くなる場合があり、また硬化反応が充分に進行し難くなる場合がある。一方、カルボン酸金属塩の配合量が30重量部を越えると、ポットライフが短くなり過ぎる場合があり、作業性の点から好ましくない。   Carboxylic acid metal salts may be used alone or in combination of two or more. A combination system with (F) carboxylic acid may also be used. The blending amount of these carboxylic acid metal salts is preferably about 0.1 to 30 parts by weight with respect to 100 parts by weight of the polymer having a crosslinkable silyl group, and the blending amount of the carboxylic acid metal salt is less than 0.1 parts by weight. If it is, the curing rate may be extremely slow, and the curing reaction may not proceed sufficiently. On the other hand, when the compounding amount of the carboxylic acid metal salt exceeds 30 parts by weight, the pot life may become too short, which is not preferable from the viewpoint of workability.

(F)カルボン酸成分について
カルボン酸(F)は、カルボン酸だけに限定されず、カルボン酸無水物、エステル、アミド、ニトリル、塩化アシルなどの加水分解によってカルボン酸を生じるカルボン酸誘導体も含まれる。カルボン酸(bF)としては、触媒活性の高さから特にカルボン酸が好ましい。
(F) Carboxylic acid component The carboxylic acid (F) is not limited to carboxylic acid, but also includes carboxylic acid derivatives that generate carboxylic acid by hydrolysis of carboxylic acid anhydrides, esters, amides, nitriles, acyl chlorides, and the like. . The carboxylic acid (bF) is particularly preferably a carboxylic acid because of its high catalytic activity.

カルボン酸(F)は、単独で触媒として機能する以外に、カルボン酸金属塩と併用することで、硬化活性を向上させる効果がある。また、カルボン酸金属塩を硬化触媒として使用した場合、貯蔵後に硬化性が低下してしまう場合があるが、カルボン酸(F)を添加することにより、貯蔵後の硬化性の低下を抑えられる。
(式中、R13は置換または非置換の有機基、R14は置換または非置換の2価の有機基であり、それぞれカルボキシル基を含んでいてもよい。)および一般式(13)
(式中、R15は置換または非置換の3価の有機基であり、カルボキシル基を含んでいてもよい。)で表される構造を含有する環状カルボン酸が挙げられる。具体的に例示すると、ピバル酸、2,2−ジメチル酪酸、2−エチル−2−メチル酪酸、2,2−ジエチル酪酸、2,2−ジメチル吉草酸、2−エチル−2−メチル吉草酸、2,2−ジエチル吉草酸、2,2−ジメチルヘキサン酸、2,2−ジエチルヘキサン酸、2,2−ジメチルオクタン酸、2−エチル−2,5−ジメチルヘキサン酸、ネオデカン酸、バーサチック酸、2,2−ジメチル−3−ヒドロキシプロピオン酸などの鎖状モノカルボン酸、ジメチルマロン酸、エチルメチルマロン酸、ジエチルマロン酸、2,2−ジメチルこはく酸、2,2−ジエチルこはく酸、2,2−ジメチルグルタル酸などの鎖状ジカルボン酸、3−メチルイソクエン酸、4,4−ジメチルアコニット酸などの鎖状トリカルボン酸、1−メチルシクロペンタンカルボン酸、1,2,2−トリメチル−1,3−シクロペンタンジカルボン酸、1−メチルシクロヘキサンカルボン酸、2−メチルビシクロ[2.2.1]−5−ヘプテン−2−カルボン酸、2−メチル−7−オキサビシクロ[2.2.1]−5−ヘプテン−2−カルボン酸、1−アダマンタンカルボン酸、ビシクロ[2.2.1]ヘプタン−1−カルボン酸、ビシクロ[2.2.2]オクタン−1−カルボン酸などの環状カルボン酸などが挙げられる。このような構造を含有する化合物は天然物に多く存在するが、もちろんこれらも使用できる。
Carboxylic acid (F) has the effect of improving curing activity when used in combination with a carboxylic acid metal salt, in addition to functioning alone as a catalyst. Moreover, when a carboxylic acid metal salt is used as a curing catalyst, curability may decrease after storage, but by adding carboxylic acid (F), a decrease in curability after storage can be suppressed.
(Wherein R13 is a substituted or unsubstituted organic group, R14 is a substituted or unsubstituted divalent organic group, each of which may contain a carboxyl group) and general formula (13)
(Wherein, R15 is a substituted or unsubstituted trivalent organic group, which may contain a carboxyl group), and a cyclic carboxylic acid containing a structure represented by Specific examples include pivalic acid, 2,2-dimethylbutyric acid, 2-ethyl-2-methylbutyric acid, 2,2-diethylbutyric acid, 2,2-dimethylvaleric acid, 2-ethyl-2-methylvaleric acid, 2,2-diethylvaleric acid, 2,2-dimethylhexanoic acid, 2,2-diethylhexanoic acid, 2,2-dimethyloctanoic acid, 2-ethyl-2,5-dimethylhexanoic acid, neodecanoic acid, versatic acid, Chain monocarboxylic acids such as 2,2-dimethyl-3-hydroxypropionic acid, dimethylmalonic acid, ethylmethylmalonic acid, diethylmalonic acid, 2,2-dimethylsuccinic acid, 2,2-diethylsuccinic acid, 2, Chain dicarboxylic acids such as 2-dimethylglutaric acid, chain tricarboxylic acids such as 3-methylisocitric acid and 4,4-dimethylaconitic acid, 1-methylcyclopentane Rubonic acid, 1,2,2-trimethyl-1,3-cyclopentanedicarboxylic acid, 1-methylcyclohexanecarboxylic acid, 2-methylbicyclo [2.2.1] -5-heptene-2-carboxylic acid, 2- Methyl-7-oxabicyclo [2.2.1] -5-heptene-2-carboxylic acid, 1-adamantanecarboxylic acid, bicyclo [2.2.1] heptane-1-carboxylic acid, bicyclo [2.2. 2] Cyclic carboxylic acids such as octane-1-carboxylic acid. Many compounds containing such structures exist in natural products, but of course they can also be used.

カルボン酸としては、(A)成分及び(B)成分との相溶性が良好である点から、モノカルボン酸がより好ましく、更には鎖状モノカルボン酸がより好ましい。更に入手が容易であることからピバル酸、ネオデカン酸、バーサチック酸、2,2−ジメチルオクタン酸、2−エチル−2,5−ジメチルヘキサン酸などが特に好ましい。   As the carboxylic acid, a monocarboxylic acid is more preferable, and a chain monocarboxylic acid is more preferable from the viewpoint of good compatibility with the component (A) and the component (B). In addition, pivalic acid, neodecanoic acid, versatic acid, 2,2-dimethyloctanoic acid, 2-ethyl-2,5-dimethylhexanoic acid and the like are particularly preferable because they are easily available.

また、カルボン酸(b1)の融点が高い(結晶性が高い)と、取り扱い難い(作業性の悪い)ものとなる。従って、カルボン酸の融点は、65℃以下であることが好ましく、−50〜50℃であることがより好ましく、−40〜35℃であることが特に好ましい。
さらに、カルボン酸の炭素原子数は5から20であることが好ましく、6から18であることがより好ましく、8から12であることが特に好ましい。炭素原子数がこの範囲より多くなると固状になりやすく(A)成分及び(B)成分との相溶が困難となり活性が得られなくなる傾向がある。一方、炭素原子数が少ないと揮発性が高くなり、臭気が増す傾向がある。これらの点からカルボニル基に隣接する炭素原子が4級炭素であるカルボン酸としてはネオデカン酸、バーサチック酸、2,2−ジメチルオクタン酸、2−エチル−2,5−ジメチルヘキサン酸が最も好ましい。
カルボン酸は単独で使用してもよいし、2種以上を併用してもよい。
カルボン酸は単独で使用してもよいし、2種以上を併用してもよい。また(E)成分のカルボン酸金属塩との併用系でも使用してもよい。これらのカルボン酸の配合量は、架橋性シリル基を有する重合体100重量部に対して0.1〜30重量部程度が好ましく、カルボン酸金属塩の配合量が0.1重量部未満であると極端に硬化速度が遅くなる場合があり、また硬化反応が充分に進行し難くなる場合がある。一方、カルボン酸金属塩の配合量が30重量部を越えると、ポットライフが短くなり過ぎる場合があり、作業性の点から好ましくない。
Further, when the melting point of the carboxylic acid (b1) is high (high crystallinity), it becomes difficult to handle (poor workability). Therefore, the melting point of the carboxylic acid is preferably 65 ° C. or less, more preferably −50 to 50 ° C., and particularly preferably −40 to 35 ° C.
Furthermore, the carboxylic acid preferably has 5 to 20 carbon atoms, more preferably 6 to 18 carbon atoms, and particularly preferably 8 to 12 carbon atoms. When the number of carbon atoms exceeds this range, it tends to become solid and it becomes difficult to achieve compatibility with the component (A) and the component (B), and the activity tends not to be obtained. On the other hand, when the number of carbon atoms is small, the volatility increases and the odor tends to increase. From these points, neodecanoic acid, versatic acid, 2,2-dimethyloctanoic acid, and 2-ethyl-2,5-dimethylhexanoic acid are most preferred as the carboxylic acid having a quaternary carbon atom adjacent to the carbonyl group.
Carboxylic acid may be used independently and may use 2 or more types together.
Carboxylic acid may be used independently and may use 2 or more types together. Moreover, you may use also in the combined use system with the carboxylic acid metal salt of (E) component. The blending amount of these carboxylic acids is preferably about 0.1 to 30 parts by weight with respect to 100 parts by weight of the polymer having a crosslinkable silyl group, and the blending amount of the carboxylic acid metal salt is less than 0.1 parts by weight. The curing speed may be extremely slow, and the curing reaction may not proceed sufficiently. On the other hand, when the compounding amount of the carboxylic acid metal salt exceeds 30 parts by weight, the pot life may become too short, which is not preferable from the viewpoint of workability.

(G)貯蔵安定性改良剤成分について
特に1液型硬化組成物において貯蔵中に、可塑剤や架橋性シリル基を有する重合体の側鎖のエステルから発生したC2以上のアルコールが末端官能基とエステル交換する事により硬化遅延する事がある。硬化性組成物の貯蔵安定性確保の為にメチルエステル系化合物を添加する事でより安定した貯蔵安定性を確保出来る。具体的な(G)成分としてはセバシン酸ジメチル、オレイン酸ジメチル、アジピン酸ジメチル、ステアリン酸ジメチル、ラウリン酸ジメチル、カルボン酸ジメチルなどがあげられるが、特にアジピン酸ジメチル(DMA)が好ましい。添加量としては架橋性シリル基を有する重合体100重量部に対して0.1〜30重量部程度が好ましく、カルボン酸金属塩の配合量が0.1重量部未満であると貯蔵安定性維持が難しく、また30重量部以上添加する事で作業性バランスが悪くなり垂れや糸引き性が悪くなる。
(G) stored in the storage in stability improving agent, especially one-component curable composition for component, polymer C 2 or higher alcohols are terminal functional groups generated from the ester of the side chain of having a plasticizer or a crosslinking silyl group It may be delayed by transesterification. More stable storage stability can be ensured by adding a methyl ester compound for ensuring the storage stability of the curable composition. Specific examples of the component (G) include dimethyl sebacate, dimethyl oleate, dimethyl adipate, dimethyl stearate, dimethyl laurate, and dimethyl carboxylate, and dimethyl adipate (DMA) is particularly preferable. The addition amount is preferably about 0.1 to 30 parts by weight with respect to 100 parts by weight of the polymer having a crosslinkable silyl group, and the storage stability is maintained when the amount of the carboxylic acid metal salt is less than 0.1 parts by weight. In addition, the addition of 30 parts by weight or more results in poor workability balance, and drooping and stringiness.

<<硬化性組成物>>
本発明の硬化性組成物においては、目的とする物性に応じて、各種の配合剤を添加しても構わない。
本発明の硬化性組成物においては、縮合触媒の活性をより高めるために、アミノ基を有するシランカップリング剤を助触媒として使用することも可能である。このアミノ基含有シランカップリング剤は、加水分解性基が結合したケイ素原子を含む基(以下加水分解性シリル基という)及びアミノ基を有する化合物であり、この加水分解性基として既に例示した基を挙げることができるが、メトキシ基、エトキシ基等が加水分解速度の点から好ましい。加水分解性基の個数は、2個以上、特に3個以上が好ましい。
<< Curable composition >>
In the curable composition of the present invention, various compounding agents may be added according to the intended physical properties.
In the curable composition of the present invention, a silane coupling agent having an amino group can be used as a cocatalyst in order to further increase the activity of the condensation catalyst. This amino group-containing silane coupling agent is a compound having a group containing a silicon atom to which a hydrolyzable group is bonded (hereinafter referred to as hydrolyzable silyl group) and an amino group, and the groups already exemplified as this hydrolyzable group A methoxy group, an ethoxy group, and the like are preferable from the viewpoint of hydrolysis rate. The number of hydrolyzable groups is preferably 2 or more, particularly 3 or more.

これらのアミン化合物の配合量は、架橋性シリル基を有する重合体100重量部に対して0.01〜50重量部程度が好ましく、更に0.1〜20重量部がより好ましい。アミン化合物の配合量が0.01重量部未満であると硬化速度が遅くなる場合があり、また硬化反応が充分に進行し難くなる場合がある。一方、アミン化合物の配合量が30重量部を越えると、ポットライフが短くなり過ぎる場合があり、作業性の点から好ましくない。   The compounding amount of these amine compounds is preferably about 0.01 to 50 parts by weight, more preferably 0.1 to 20 parts by weight with respect to 100 parts by weight of the polymer having a crosslinkable silyl group. If the compounding amount of the amine compound is less than 0.01 parts by weight, the curing rate may be slow, and the curing reaction may not proceed sufficiently. On the other hand, when the compounding amount of the amine compound exceeds 30 parts by weight, the pot life may become too short, which is not preferable from the viewpoint of workability.

これらのアミン化合物は、1種類のみで使用しても良いし、2種類以上混合使用しても良い。   These amine compounds may be used alone or in combination of two or more.

更に、アミノ基やシラノール基をもたないケイ素化合物を助触媒として添加しても構わない。これらのケイ素化合物としては、限定はされないが、フェニルトリメトキシシラン、フェニルメチルジメトキシシラン、フェニルジメチルメトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、トリフェニルメトキシシラン等が好ましい。特に、ジフェニルジメトキシシランやジフェニルジエトキシシランは、低コストであり、入手が容易であるために最も好ましい。   Furthermore, a silicon compound having no amino group or silanol group may be added as a promoter. These silicon compounds are not limited, but phenyltrimethoxysilane, phenylmethyldimethoxysilane, phenyldimethylmethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, triphenylmethoxysilane and the like are preferable. In particular, diphenyldimethoxysilane and diphenyldiethoxysilane are most preferable because of low cost and easy availability.

このケイ素化合物の配合量は、架橋性シリル基を有する重合体100部に対して0.01〜20部程度が好ましく、0.1〜10部が更に好ましい。ケイ素化合物の配合量がこの範囲を下回ると硬化反応を加速する効果が小さくなる場合がある。一方、ケイ素化合物の配合量がこの範囲を上回ると、硬化物の硬度や引張強度が低下することがある。   The amount of the silicon compound is preferably about 0.01 to 20 parts, more preferably 0.1 to 10 parts, based on 100 parts of the polymer having a crosslinkable silyl group. When the compounding amount of the silicon compound is below this range, the effect of accelerating the curing reaction may be reduced. On the other hand, when the compounding amount of the silicon compound exceeds this range, the hardness and tensile strength of the cured product may decrease.

<<粘着付与樹脂>>
本発明の粘着付与樹脂は特に限定はなく、通常使用されるものを使用できる。具体例としては、例えばフェノール樹脂、変性フェノール樹脂(例えばカシューオイル変性フェノール樹脂、トール油変性フェノール樹脂など)、テルペンフェノール樹脂、キシレン−フェノール樹脂、シクロペンタジエン−フェノール樹脂、キシレン樹脂、石油樹脂、フェノール変性石油樹脂、ロジンエステル樹脂、低分子量ポリスチレン系樹脂、テルペン樹脂などが挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。粘着付与樹脂の使用量は、架橋性シリル基を有する重合体100重量部に対して10〜140重量部、さらには15〜80重量部が好ましい。
<< Tackifying resin >>
The tackifying resin of the present invention is not particularly limited, and those usually used can be used. Specific examples include phenolic resins, modified phenolic resins (eg cashew oil-modified phenolic resin, tall oil-modified phenolic resin, etc.), terpene phenolic resin, xylene-phenolic resin, cyclopentadiene-phenolic resin, xylene resin, petroleum resin, phenol Examples thereof include modified petroleum resins, rosin ester resins, low molecular weight polystyrene resins, and terpene resins. These may be used alone or in combination of two or more. The amount of tackifying resin used is preferably 10 to 140 parts by weight, more preferably 15 to 80 parts by weight, based on 100 parts by weight of the polymer having a crosslinkable silyl group.

<脱水剤>
硬化性組成物は、作製する際の水分等によって、その貯蔵している間に増粘、ゲル化が進み、使用する際の作業性に難が生じたり、また、その増粘、ゲル化が進んだ硬化性組成物を使用することにより、硬化後の硬化物の物性が低下して、本来の目的である密着性等を損なったりする問題が生じることがある。つまり硬化性組成物の貯蔵安定性が問題となることがある。
<Dehydrating agent>
The curable composition increases in viscosity and gelation during storage due to moisture at the time of production, etc., causing difficulty in workability during use, and also increases in viscosity and gelation. By using an advanced curable composition, the physical properties of the cured product after curing may be deteriorated, resulting in a problem that the original intended adhesion or the like is impaired. That is, the storage stability of the curable composition may be a problem.

この硬化性組成物の貯蔵安定性を改良するには、硬化性組成物に、共沸脱水により含水分量を減らす方法がある。例えば、水に対して極小共沸点を有する揮発性有機化合物を0.1〜10重量部程度添加し、均一に混合した後、50〜90℃程度に加熱し真空ポンプで吸引しながら水−有機化合物の共沸組成物を系外に取出す方法が挙げられる。水に対して極小共沸点を有する揮発性有機化合物としては塩化メチレン、クロロホルム、四塩化炭素、トリクロロエチレン等のハロゲン化物;エタノール、アリルアルコール、1−プロパノール、ブタノール等のアルコール類;酢酸エチル、プロピオン酸メチル等のエステル類;メチルエチルケトン、3−メチル−2−ブタノン等のケトン類;エチルエーテル、イソプロピルエーテル等のエーテル類;ベンゼン、トルエン、キシレン、ヘキサン等の炭化水素類等が例示できる。しかしながら、この方法は脱揮操作が入るため、揮発性の他の配合剤に対する工夫が必要となったり、共沸させる揮発性有機化合物の処理、回収等が必要になったりする。そのため、以下の脱水剤を添加する方が好ましいことがある。   In order to improve the storage stability of this curable composition, there is a method of reducing the moisture content of the curable composition by azeotropic dehydration. For example, about 0.1 to 10 parts by weight of a volatile organic compound having a minimum azeotropic point with respect to water is added and mixed uniformly, and then heated to about 50 to 90 ° C. and sucked with a vacuum pump. The method of taking out the azeotropic composition of a compound out of the system is mentioned. Volatile organic compounds having a minimum azeotropic point with respect to water include halides such as methylene chloride, chloroform, carbon tetrachloride, and trichloroethylene; alcohols such as ethanol, allyl alcohol, 1-propanol, and butanol; ethyl acetate, propionic acid Examples thereof include esters such as methyl; ketones such as methyl ethyl ketone and 3-methyl-2-butanone; ethers such as ethyl ether and isopropyl ether; hydrocarbons such as benzene, toluene, xylene and hexane. However, since this method involves a devolatilization operation, it is necessary to devise other volatile compounding agents, or it is necessary to treat, recover, etc., the volatile organic compound to be azeotroped. Therefore, it may be preferable to add the following dehydrating agents.

上述の様に、本発明の組成物には、貯蔵安定性を改良する目的で組成物中の水分を除去するための脱水剤を添加することができる。脱水剤としては、例えば、5酸化リンや炭酸水素ナトリウム、硫酸ナトリウム(無水ボウ硝)、モレキュラーシーブス等の無機固体等が挙げられる。これらの固体脱水剤でも構わないが、添加後の液性が酸性や塩基性に傾いて逆に縮合し易く貯蔵安定性が悪くなったり、固体を後で取り除くなどの作業性が悪くなったりすることもあるため、後述の、液状の加水分解性のエステル化合物が好ましい。加水分解性のエステル化合物としては、オルトぎ酸トリメチル、オルトぎ酸トリエチル、オルトぎ酸トリプロピル、オルトぎ酸トリブチル等のオルトぎ酸トリアルキルや、オルト酢酸トリメチル、オルト酢酸トリエチル、オルト酢酸トリプロピル、オルト酢酸トリブチル等のオルト酢酸トリアルキル等、およびそれらの化合物から成る群から選ばれるものが挙げられる。   As described above, a dehydrating agent for removing moisture in the composition can be added to the composition of the present invention for the purpose of improving storage stability. Examples of the dehydrating agent include inorganic solids such as phosphorus pentoxide, sodium hydrogen carbonate, sodium sulfate (anhydrous bow glass), and molecular sieves. These solid dehydrating agents may be used, but the liquidity after addition tends to be acidic or basic, condensing easily, resulting in poor storage stability and workability such as removing the solid later. In some cases, the liquid hydrolyzable ester compound described below is preferable. Examples of hydrolyzable ester compounds include trialkyl orthoformate such as trimethyl orthoformate, triethyl orthoformate, tripropyl orthoformate, tributyl orthoformate, trimethyl orthoacetate, triethyl orthoacetate, tripropyl orthoacetate. And trialkyl orthoacetate such as tributyl orthoacetate, and those selected from the group consisting of these compounds.

それ以外の加水分解性のエステル化合物としては、更に、式R4-nSiYn(式中、Yは加水分解可能な基、Rは有機基で官能基を含んでいても含まなくともよい。nは1〜4の整数であり、好ましくは3または4である)で示される加水分解性有機シリコン化合物が挙げられ、その具体例としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリエトキシシラン、フェニルトリエトキシシラン、メチルトリアセトキシシラン、オルトケイ酸テトラメチル(テトラメトキシシランないしはメチルシリケート)、オルトケイ酸テトラエチル(テトラエトキシシランないしはエチルシリケート)、オルトケイ酸テトラプロピル、オルトケイ酸テトラブチル等のシラン化合物またはこれらの部分加水分解縮合物、γ−アミノプロピルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルトリメトキシシラン、γ−アクリロキシプロピルトリメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルメチルジメトキシシラン等のシランカップリング剤、またはこれらの部分加水分解縮合物等が挙げられる。これらの中から1種または2種以上併用して配合することができる。 Other hydrolyzable ester compounds may further include the formula R 4-n SiY n (wherein Y is a hydrolyzable group, R is an organic group and may or may not contain a functional group). n is an integer of 1 to 4, preferably 3 or 4, and specific examples thereof include vinyltrimethoxysilane, vinyltriethoxysilane, and methyltrimethoxy. Silane, methyltriethoxysilane, ethyltriethoxysilane, phenyltriethoxysilane, methyltriacetoxysilane, tetramethyl orthosilicate (tetramethoxysilane or methyl silicate), tetraethyl orthosilicate (tetraethoxysilane or ethyl silicate), tetra orthosilicate Silanes such as propyl and tetrabutyl orthosilicate Compound or partial hydrolysis condensate thereof, γ-aminopropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, N- (β-aminoethyl) -γ-aminopropyltrimethoxysilane, γ-acryloxy Propyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, N- (β-aminoethyl) -γ-aminopropylmethyldimethoxysilane, etc. Examples thereof include silane coupling agents or partial hydrolysis condensates thereof. One or more of these can be used in combination.

上記の脱水剤は、貯蔵中にビニル系重合体が加水分解し、シラノール縮合反応により三次元的網状組織を形成することを防ぐのみならず、ケチミンが水によって分解し、エポキシ樹脂と反応し硬化することを防ぐため、貯蔵安定性改良剤としてはより好ましい。   The dehydrating agent not only prevents hydrolysis of the vinyl polymer during storage and forms a three-dimensional network structure by silanol condensation reaction, but also decomposes the ketimine with water and reacts with the epoxy resin to cure. Therefore, it is more preferable as a storage stability improver.

貯蔵安定性改良剤の使用量としては、架橋性シリル基を有する重合体100重量部に対し、0.1〜30重量部が好ましく、0.3〜20重量部がより好ましく、0.5〜10重量部がさらに好ましい。   As a usage-amount of a storage stability improving agent, 0.1-30 weight part is preferable with respect to 100 weight part of polymers which have a crosslinkable silyl group, 0.3-20 weight part is more preferable, 0.5- 10 parts by weight is more preferable.

なお、これらの貯蔵安定性改良剤を添加する際には硬化性組成物を無水の状態にしてから行なうのが好ましいが、水分を含んだままの状態で添加しても構わない。   In addition, when adding these storage stability improving agents, it is preferable to carry out after making a curable composition anhydrous, but you may add in the state containing a water | moisture content.

<接着性付与剤>
本発明の硬化性組成物には、シランカップリング剤や、シランカップリング剤以外の接着性付与剤を添加することができる。接着付与剤を添加すると、熱伝導材に発熱体と放熱体とを接着するための接着剤としての機能も同時に付与することが可能である。また、場合によっては接着性向上の為に用いるプライマーの使用の必要性がなくなり、作業の簡略化が期待される。シランカップリング剤の具体例としてはアミノ基や、メルカプト基、エポキシ基、カルボキシル基、ビニル基、イソシアネート基、イソシアヌレート、ハロゲン等の官能基をもったシランカップリング剤が例示でき、その具体例としては、γ−イソシアネートプロピルトリメトキシシラン、γ−イソシアネートプロピルトリエトキシシラン、γ−イソシアネートプロピルメチルジエトキシシラン、γ−イソシアネートプロピルメチルジメトキシシラン等のイソシアネート基含有シラン類;γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリイソプロポキシシラン、γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルメチルジエトキシシラン、γ−(2−アミノエチル)アミノプロピルトリメトキシシラン、γ−(2−アミノエチル)アミノプロピルメチルジメトキシシラン、γ−(2−アミノエチル)アミノプロピルトリエトキシシラン、γ−(2−アミノエチル)アミノプロピルメチルジエトキシシラン、γ−(2−アミノエチル)アミノプロピルトリイソプロポキシシラン、γ−ウレイドプロピルトリメトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、N−ベンジル−γ−アミノプロピルトリメトキシシラン、N−ビニルベンジル−γ−アミノプロピルトリエトキシシラン等のアミノ基含有シラン類;γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルトリエトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン、γ−メルカプトプロピルメチルジエトキシシラン等のメルカプト基含有シラン類;γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン等のエポキシ基含有シラン類;β−カルボキシエチルトリエトキシシラン、β−カルボキシエチルフェニルビス(2−メトキシエトキシ)シラン、N−β−(カルボキシメチル)アミノエチル−γ−アミノプロピルトリメトキシシラン等のカルボキシシラン類;ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン、γ−アクロイルオキシプロピルメチルトリエトキシシラン等のビニル型不飽和基含有シラン類;γ−クロロプロピルトリメトキシシラン等のハロゲン含有シラン類;トリス(トリメトキシシリル)イソシアヌレート等のイソシアヌレートシラン類、ビス(3−トリエトキシシリルプロピル)テトラスルファン等のポリスルファン類等を挙げることができる。また、上記のアミノ基含有シラン類とエポキシ基含有シラン類との反応物、アミノ基含有シラン類とアクロイルオキシ基含有シラン類との反応物、アミノ基含有シラン類とイソシアネート基含有シラン類との反応物も使用できる。また、これらを変性した誘導体である、アミノ変性シリルポリマー、シリル化アミノポリマー、不飽和アミノシラン錯体、フェニルアミノ長鎖アルキルシラン、アミノシリル化シリコーン、ブロックイソシアネートシラン、シリル化ポリエステル等もシランカップリング剤として用いることができる。また、上記のアミノ基含有シラン類と例えばメチルイソブチルケトン等のケトン化合物との反応によって得られるケチミン化合物等もシランカップリング剤として用いることができる。
<Adhesive agent>
A silane coupling agent or an adhesion-imparting agent other than the silane coupling agent can be added to the curable composition of the present invention. When an adhesion imparting agent is added, it is possible to simultaneously impart a function as an adhesive for adhering the heat generating element and the heat radiating element to the heat conducting material. Further, in some cases, it is not necessary to use a primer used for improving adhesiveness, and simplification of work is expected. Specific examples of silane coupling agents include silane coupling agents having functional groups such as amino groups, mercapto groups, epoxy groups, carboxyl groups, vinyl groups, isocyanate groups, isocyanurates, halogens, and the like. As γ-isocyanatepropyltrimethoxysilane, γ-isocyanatepropyltriethoxysilane, γ-isocyanatopropylmethyldiethoxysilane, γ-isocyanatopropylmethyldimethoxysilane, and other isocyanate group-containing silanes; γ-aminopropyltrimethoxysilane Γ-aminopropyltriethoxysilane, γ-aminopropyltriisopropoxysilane, γ-aminopropylmethyldimethoxysilane, γ-aminopropylmethyldiethoxysilane, γ- (2-aminoethyl) amino Propyltrimethoxysilane, γ- (2-aminoethyl) aminopropylmethyldimethoxysilane, γ- (2-aminoethyl) aminopropyltriethoxysilane, γ- (2-aminoethyl) aminopropylmethyldiethoxysilane, γ -(2-aminoethyl) aminopropyltriisopropoxysilane, γ-ureidopropyltrimethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, N-benzyl-γ-aminopropyltrimethoxysilane, N-vinylbenzyl -Amino group-containing silanes such as γ-aminopropyltriethoxysilane; γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane, γ-mercaptopropylmethyldimethoxysilane, γ-mercaptopropylmethyldiethoxysilane, etc. Γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxy Epoxy group-containing silanes such as silane and β- (3,4-epoxycyclohexyl) ethyltriethoxysilane; β-carboxyethyltriethoxysilane, β-carboxyethylphenylbis (2-methoxyethoxy) silane, N-β- Carboxysilanes such as (carboxymethyl) aminoethyl-γ-aminopropyltrimethoxysilane; vinyltrimethoxysilane, vinyltriethoxysilane, γ-methacryloyloxypropylmethyldimethoxysilane, γ-acryloyloxypropylmethyltrieth Vinyl-type unsaturated group-containing silanes such as xysilane; halogen-containing silanes such as γ-chloropropyltrimethoxysilane; isocyanurate silanes such as tris (trimethoxysilyl) isocyanurate, bis (3-triethoxysilylpropyl) Examples thereof include polysulfanes such as tetrasulfane. In addition, a reaction product of the amino group-containing silane and the epoxy group-containing silane, a reaction product of an amino group-containing silane and an acroyloxy group-containing silane, an amino group-containing silane and an isocyanate group-containing silane These reactants can also be used. In addition, amino-modified silyl polymers, silylated amino polymers, unsaturated aminosilane complexes, phenylamino long-chain alkylsilanes, aminosilylated silicones, blocked isocyanate silanes, silylated polyesters, etc., which are derivatives of these, are also used as silane coupling agents. Can be used. Moreover, the ketimine compound etc. which are obtained by reaction of said amino group containing silanes and ketone compounds, such as methyl isobutyl ketone, can also be used as a silane coupling agent.

シランカップリング剤は、通常、架橋性シリル基を有する重合体100部に対し、0.1〜20部の範囲で使用することが好ましい。特に、0.5〜10部の範囲で使用するのがより好ましい。本発明の硬化性組成物に添加されるシランカップリング剤の効果は、各種被着体、すなわち、ガラス、アルミニウム、ステンレス、亜鉛、銅、モルタルなどの無機基材や、塩ビ、アクリル、ポリエステル、ポリエチレン、ポリプロピレン、ポリカーボネートなどの有機基材に用いた場合、ノンプライマー条件またはプライマー処理条件下で、著しい接着性改善効果を示すことである。ノンプライマー条件下で使用した場合には、各種被着体に対する接着性を改善する効果が特に顕著である。また、使用量が架橋性シリル基を有する重合体100部に対し1部程度であれば、硬化物の透明性にほとんど影響しない。   In general, the silane coupling agent is preferably used in the range of 0.1 to 20 parts with respect to 100 parts of the polymer having a crosslinkable silyl group. In particular, it is more preferable to use in the range of 0.5 to 10 parts. The effects of the silane coupling agent added to the curable composition of the present invention are various adherends, that is, inorganic substrates such as glass, aluminum, stainless steel, zinc, copper, mortar, vinyl chloride, acrylic, polyester, When used on an organic substrate such as polyethylene, polypropylene, and polycarbonate, it exhibits a remarkable adhesive improvement effect under non-primer conditions or primer treatment conditions. When used under non-primer conditions, the effect of improving adhesion to various adherends is particularly remarkable. Moreover, if the usage-amount is about 1 part with respect to 100 parts of polymers which have a crosslinkable silyl group, it will hardly affect transparency of hardened | cured material.

シランカップリング剤以外の具体例としては、特に限定されないが、例えば、エポキシ樹脂、フェノール樹脂、ポリスチレン−ポリブタジエン−ポリスチレン、ポリスチレン−ポリイソプレン−ポリスチレン、ポリスチレン−ポリイソプレン/ブタジエン共重合体−ポリスチレン、ポリスチレン−ポリエチレン/プロピレン共重合体−ポリスチレン、ポリスチレン−ポリエチレン/ブチレン共重合体−ポリスチレン、ポリスチレン−ポリイソブテン−ポリスチレン等の直鎖状または分岐状のブロック共重合体、アルキルスルフォン酸エステル、硫黄、アルキルチタネート類、芳香族ポリイソシアネート等が挙げられる。エポキシ樹脂は上記のアミノ基含有シラン類と反応させて使用することができる。   Specific examples other than the silane coupling agent are not particularly limited. For example, epoxy resin, phenol resin, polystyrene-polybutadiene-polystyrene, polystyrene-polyisoprene-polystyrene, polystyrene-polyisoprene / butadiene copolymer-polystyrene, polystyrene. -Polyethylene / propylene copolymer-Polystyrene, polystyrene-polyethylene / butylene copolymer-Linear or branched block copolymers such as polystyrene, polystyrene-polyisobutene-polystyrene, alkyl sulfonates, sulfur, alkyl titanates And aromatic polyisocyanate. The epoxy resin can be used by reacting with the above amino group-containing silanes.

上記接着性付与剤は1種類のみで使用しても良いし、2種類以上混合使用しても良い。これら接着性付与剤は添加することにより被着体に対する接着性を改善することができる。特に限定はされないが、接着性、特に金属被着面に対する接着性を向上させるために、上記接着性付与剤の中でもシランカップリング剤を0.1〜20重量部、併用することが好ましい。   The adhesiveness-imparting agent may be used alone or in combination of two or more. By adding these adhesion-imparting agents, the adhesion to the adherend can be improved. Although not particularly limited, it is preferable to use 0.1 to 20 parts by weight of a silane coupling agent among the above-mentioned adhesion-imparting agents in order to improve adhesion, particularly adhesion to a metal-coated surface.

接着性付与剤の種類や添加量は、例えば、本発明の架橋性シリル基を有する重合体の架橋性シリル基、一般式(1)中のYの種類とaの数によって選択することが可能であり、目的や用途に応じて本発明の硬化性や機械物性等を制御することが可能である。特に硬化性や伸びに影響するためその選択には注意が必要である。   The type and amount of the adhesion-imparting agent can be selected depending on, for example, the crosslinkable silyl group of the polymer having a crosslinkable silyl group of the present invention, the type of Y in the general formula (1), and the number of a. Thus, it is possible to control the curability and mechanical properties of the present invention according to the purpose and application. In particular, care must be taken in selecting it because it affects curability and elongation.

<物性調整剤>
本発明の硬化性組成物には、必要に応じて生成する硬化物の引張特性を調整する物性調整剤を添加しても良い。
<Physical property modifier>
You may add the physical property modifier which adjusts the tensile characteristic of the hardened | cured material produced | generated as needed to the curable composition of this invention.

更に、物性の大きな低下を起こすことなく軽量化、低コスト化を図ることを目的として、微小中空粒子をこれら補強性充填材に併用しても良い。但し微小中空粒子を大量に添加すると、熱伝導性の低下を招く場合がある。微少中空粒子(以下バルーンという)は、特に限定はされないが、「機能性フィラーの最新技術」(CMC)に記載されているように、直径が1mm以下、好ましくは500μm以下、更に好ましくは200μm以下の無機質あるいは有機質の材料で構成された中空体が挙げられる。特に、真比重が1.0g/cm3以下である微少中空体を用いることが好ましく、更には0.5g/cm3以下である微少中空体を用いることが好ましい。 Furthermore, minute hollow particles may be used in combination with these reinforcing fillers for the purpose of reducing the weight and cost without causing a significant decrease in physical properties. However, the addition of a large amount of fine hollow particles may cause a decrease in thermal conductivity. The fine hollow particles (hereinafter referred to as balloons) are not particularly limited, but as described in “The latest technology of functional filler” (CMC), the diameter is 1 mm or less, preferably 500 μm or less, more preferably 200 μm or less. The hollow body comprised with the inorganic or organic material of these. In particular, it is preferable to use a micro hollow body having a true specific gravity of 1.0 g / cm 3 or less, and it is more preferable to use a micro hollow body having a specific gravity of 0.5 g / cm 3 or less.

その他物性調整剤としては特に限定されないが、例えば、メチルトリメトキシシラン、ジメチルジメトキシシラン、トリメチルメトキシシラン、n−プロピルトリメトキシシラン等のアルキルアルコキシシラン類;ジメチルジイソプロペノキシシラン、メチルトリイソプロペノキシシラン、γ−グリシドキシプロピルメチルジイソプロペノキシシラン等のアルキルイソプロペノキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルジメチルメトキシシラン、γ−アミノプロピルトリメトキシシラン、N−(β−アミノエチル)アミノプロピルメチルジメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン等の官能基を有するアルコキシシラン類;シリコーンワニス類;ポリシロキサン類等が挙げられる。前記物性調整剤を用いることにより、本発明の組成物を硬化させた時の硬度を上げたり、硬度を下げ、伸びを出したりし得る。上記物性調整剤は単独で用いてもよく、2種以上併用してもよい。   Other physical property modifiers are not particularly limited, but examples include alkylalkoxysilanes such as methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, and n-propyltrimethoxysilane; dimethyldiisopropenoxysilane, methyltriisopropeno Alkyl isopropenoxy silane such as xysilane, γ-glycidoxypropylmethyldiisopropenoxysilane, γ-glycidoxypropylmethyldimethoxysilane, γ-glycidoxypropyltrimethoxysilane, vinyltrimethoxysilane, vinyldimethyl Methoxysilane, γ-aminopropyltrimethoxysilane, N- (β-aminoethyl) aminopropylmethyldimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropylmethyldi Alkoxysilanes having a functional group such as Tokishishiran; silicone varnishes; polysiloxanes and the like. By using the physical property modifier, the hardness when the composition of the present invention is cured can be increased, the hardness can be decreased, and the elongation can be increased. The said physical property modifier may be used independently and may be used together 2 or more types.

<シラノール含有化合物>
本発明の硬化性組成物には、硬化物の物性を変える等の必要に応じてシラノール含有化合物を添加しても良い。シラノール含有化合物とは、分子内に1個のシラノール基を有する化合物、及び/又は、水分と反応することにより分子内に1個のシラノール基を有する化合物を生成し得る化合物のことをいう。これらは一方のみを用いてもよいし、両化合物を同時に用いてもよい。
<Silanol-containing compound>
You may add a silanol containing compound to the curable composition of this invention as needed, such as changing the physical property of hardened | cured material. The silanol-containing compound refers to a compound having one silanol group in the molecule and / or a compound capable of producing a compound having one silanol group in the molecule by reacting with moisture. Only one of these may be used, or both compounds may be used simultaneously.

シラノール含有化合物の一つである分子内に1個のシラノール基を有する化合物は、特に限定されず、下記に示した化合物、
(CH33SiOH、(CH3CH23SiOH、(CH3CH2CH23SiOH、(n−Bu)3SiOH、(sec−Bu)3SiOH、(t−Bu)3SiOH、(t−Bu)Si(CH32OH、(C5113SiOH、(C6133SiOH、(C653SiOH、(C652Si(CH3)OH、(C65)Si(CH32OH、(C652Si(C25)OH、C65Si(C252OH、C65CH2Si(C252OH、C107Si(CH32OH
(ただし、上記式中C65はフェニル基を、C107はナフチル基を示す。)
等のような(R”)3SiOH(ただし式中R”は同一または異種の置換もしくは非置換のアルキル基またはアリール基)で表わすことができる化合物、シラノール基を含有する環状ポリシロキサン化合物、シラノール基を含有する鎖状ポリシロキサン化合物、主鎖が珪素、炭素からなるポリマー末端にシラノール基が結合した化合物、ポリシラン主鎖末端にシラノール基が結合した化合物等のような主鎖が珪素、炭素、酸素からなるポリマー末端にシラノール基が結合した化合物等が例示できる。中でも、入手が容易であり、効果の点から分子量の小さい(CH33SiOH等が好ましい。
The compound having one silanol group in the molecule which is one of the silanol-containing compounds is not particularly limited, and the compounds shown below,
(CH 3 ) 3 SiOH, (CH 3 CH 2 ) 3 SiOH, (CH 3 CH 2 CH 2 ) 3 SiOH, (n-Bu) 3 SiOH, (sec-Bu) 3 SiOH, (t-Bu) 3 SiOH , (T-Bu) Si (CH 3 ) 2 OH, (C 5 H 11 ) 3 SiOH, (C 6 H 13 ) 3 SiOH, (C 6 H 5 ) 3 SiOH, (C 6 H 5 ) 2 Si ( CH 3) OH, (C 6 H 5) Si (CH 3) 2 OH, (C 6 H 5) 2 Si (C 2 H 5) OH, C 6 H 5 Si (C 2 H 5) 2 OH, C 6 H 5 CH 2 Si (C 2 H 5 ) 2 OH, C 10 H 7 Si (CH 3 ) 2 OH
(In the above formula, C 6 H 5 represents a phenyl group, and C 10 H 7 represents a naphthyl group.)
(R ″) 3 SiOH (wherein R ″ is the same or different substituted or unsubstituted alkyl group or aryl group), cyclic polysiloxane compounds containing silanol groups, silanols, etc. A chain polysiloxane compound containing a group, a main chain of silicon, a compound having a silanol group bonded to a polymer end composed of carbon, a compound having a main chain of silicon, carbon, a compound having a silanol group bonded to a polysilane main chain end, Examples thereof include a compound in which a silanol group is bonded to a polymer terminal composed of oxygen. Of these, (CH 3 ) 3 SiOH, which is easy to obtain and has a low molecular weight, is preferable from the viewpoint of effects.

上記、分子内に1個のシラノール基を有する化合物は、架橋性シリル基を有する重合体の架橋性シリル基あるいは架橋により生成したシロキサン結合と反応することにより、架橋点の数を減少させ、硬化物に柔軟性を与えるとともに表面低タックや耐埃付着性に優れた組成物を与える。   The compound having one silanol group in the molecule reacts with a crosslinkable silyl group of a polymer having a crosslinkable silyl group or a siloxane bond formed by crosslinking, thereby reducing the number of crosslinking points and curing. It gives a composition with flexibility and low surface tack and excellent dust resistance.

また本発明の成分の1つである、水分と反応することにより分子内に1個のシラノール基を有する化合物を生成し得る化合物は、特に限定されないが、N,O−ビス(トリメチルシリル)アセトアミド、N−(トリメチルシリル)アセトアミド、ビス(トリメチルシリル)トリフルオロアセトアミド、N−メチル−N−トリメチルシリルトリフルオロアセトアミド、ビストリメチルシリル尿素、N−(t−ブチルジメチルシリル)N−メチルトリフルオロアセトアミド、(N,N−ジメチルアミノ)トリメチルシラン、(N,N−ジエチルアミノ)トリメチルシラン、ヘキサメチルジシラザン、1,1,3,3−テトラメチルジシラザン、N−(トリメチルシリル)イミダゾール、トリメチルシリルトリフルオロメタンスルフォネート、トリメチルシリルフェノキシド、n−オクタノールのトリメチルシリル化物、2―エチルヘキサノールのトリメチルシリル化物、グリセリンのトリス(トリメチルシリル)化物、トリメチロールプロパンのトリス(トリメチルシリル)化物、ペンタエリスリトールのトリス(トリメチルシリル)化物、ペンタエリスリトールのテトラ(トリメチルシリル)化物、(CH33SiNHSi(CH33、(CH33SiNSi(CH32、アリロキシトリメチルシラン、N,O−ビス(トリメチルシリル)アセトアミド、N−(トリメチルシリル)アセトアミド、ビス(トリメチルシリル)トリフルオロアセトアミド、N−メチル−N−トリメチルシリルトリフルオロアセトアミド、ビストリメチルシリル尿素、N−(t−ブチルジメチルシリル)N−メチルトリフルオロアセトアミド、(N,N−ジメチルアミノ)トリメチルシラン、(N,N−ジエチルアミノ)トリメチルシラン、ヘキサメチルジシラザン、1,1,3,3−テトラメチルジシラザン、N−(トリメチルシリル)イミダゾール、トリメチルシリルトリフルオロメタンスルフォネート、トリメチルシリルフェノキシド、n−オクタノールのトリメチルシリル化物、2―エチルヘキサノールのトリメチルシリル化物、グリセリンのトリス(トリメチルシリル)化物、トリメチロールプロパンのトリス(トリメチルシリル)化物、ペンタエリスリトールのトリス(トリメチルシリル)化物、ペンタエリスリトールのテトラ(トリメチルシリル)化物、(CH33SiNHSi(CH33、(CH33SiNSi(CH32、等が好適に使用できるが加水分解生成物の含有シラノール基の量からは(CH33SiNHSi(CH33が特に好ましい。 In addition, a compound that can generate a compound having one silanol group in the molecule by reacting with moisture, which is one of the components of the present invention, is not particularly limited, but N, O-bis (trimethylsilyl) acetamide, N- (trimethylsilyl) acetamide, bis (trimethylsilyl) trifluoroacetamide, N-methyl-N-trimethylsilyltrifluoroacetamide, bistrimethylsilylurea, N- (t-butyldimethylsilyl) N-methyltrifluoroacetamide, (N, N -Dimethylamino) trimethylsilane, (N, N-diethylamino) trimethylsilane, hexamethyldisilazane, 1,1,3,3-tetramethyldisilazane, N- (trimethylsilyl) imidazole, trimethylsilyltrifluoromethanesulfonate, tri Tylsilylphenoxide, trimethylsilylated product of n-octanol, trimethylsilylated product of 2-ethylhexanol, tris (trimethylsilyl) ated product of glycerin, tris (trimethylsilyl) ated product of trimethylolpropane, tris (trimethylsilyl) ated product of pentaerythritol, tetra of pentaerythritol (trimethylsilyl) ated, (CH 3) 3 SiNHSi ( CH 3) 3, (CH 3) 3 SiNSi (CH 3) 2, allyloxy trimethylsilane, N, O-bis (trimethylsilyl) acetamide, N- (trimethylsilyl) acetamide Bis (trimethylsilyl) trifluoroacetamide, N-methyl-N-trimethylsilyltrifluoroacetamide, bistrimethylsilylurea, N- (t-butyldimethylsilane N) N-methyltrifluoroacetamide, (N, N-dimethylamino) trimethylsilane, (N, N-diethylamino) trimethylsilane, hexamethyldisilazane, 1,1,3,3-tetramethyldisilazane, N- (Trimethylsilyl) imidazole, trimethylsilyl trifluoromethanesulfonate, trimethylsilylphenoxide, trimethylsilylated product of n-octanol, trimethylsilylated product of 2-ethylhexanol, tris (trimethylsilyl) ated product of glycerol, tris (trimethylsilyl) ated product of trimethylolpropane, pentaerythritol Tris (trimethylsilyl), pentaerythritol tetra (trimethylsilyl), (CH 3 ) 3 SiNHSi (CH 3 ) 3 , (CH 3 ) 3 SiNSi ( CH 3 ) 2 , etc. can be preferably used, but (CH 3 ) 3 SiNHSi (CH 3 ) 3 is particularly preferred from the amount of silanol groups contained in the hydrolysis product.

さらには本発明の成分の1つである、水分と反応することにより分子内に1個のシラノール基を有する化合物を生成し得る化合物は、特に限定されないが、上記化合物以外に下記一般式(46)で表される化合物が好ましい。
((R583SiO)n59 (46)
(式中、R58は上述したものと同様である。nは正数を、R59は活性水素含有化合物から一部あるいは全ての活性水素を除いた基を示す。)
58は、メチル基、エチル基、ビニル基、t−ブチル基、フェニル基が好ましく、さらにメチル基が好ましい。
(R583Si基は、3個のR58が全てメチル基であるトリメチルシリル基が特に好ましい。また、nは1〜5が好ましい。
Furthermore, the compound that can generate a compound having one silanol group in the molecule by reacting with moisture, which is one of the components of the present invention, is not particularly limited. ) Is preferred.
((R 58 ) 3 SiO) n R 59 (46)
(In the formula, R 58 is the same as described above. N represents a positive number, and R 59 represents a group obtained by removing some or all of the active hydrogen from the active hydrogen-containing compound.)
R 58 is preferably a methyl group, an ethyl group, a vinyl group, a t-butyl group, or a phenyl group, and more preferably a methyl group.
The (R 58 ) 3 Si group is particularly preferably a trimethylsilyl group in which all three R 58 are methyl groups. N is preferably 1 to 5.

上記R59の由来となる活性水素含有化合物としては特に限定されないが、例えば、メタノール、エタノール、n−ブタノール、i−ブタノール、t−ブタノール、n−オクタノール、2−エチルヘキサノール、ベンジルアルコール、エチレングリコール、ジエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、プロパンジオール、テトラメチレングリコール、ポリテトラメチレングリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール等のアルコール類;フェノール、クレゾール、ビスフェノールA、ヒドロキノン等のフェノール類;ギ酸、酢酸、プロピオン酸、ラウリン酸、パルミチン酸、ステアリン酸、ベヘン酸、アクリル酸、メタクリル酸、オレイン酸、リノール酸、リノレン酸、ソルビン酸、シュウ酸、マロン酸、コハク酸、アジピン酸、マレイン酸、安息香酸、フタル酸、テレフタル酸、トリメリット酸等のカルボン酸類;アンモニア;メチルアミン、ジメチルアミン、エチルアミン、ジエチルアミン、n−ブチルアミン、イミダゾール等のアミン類;アセトアミド、ベンズアミド等の酸アミド類、尿素、N,N’−ジフェニル尿素等の尿素類;アセトン、アセチルアセトン、2,4−ヘプタジオン等のケトン類等が挙げられる。 The active hydrogen-containing compound from which R 59 is derived is not particularly limited. For example, methanol, ethanol, n-butanol, i-butanol, t-butanol, n-octanol, 2-ethylhexanol, benzyl alcohol, ethylene glycol , Alcohols such as diethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, propanediol, tetramethylene glycol, polytetramethylene glycol, glycerin, trimethylolpropane, pentaerythritol; phenol, cresol, bisphenol A, hydroquinone, etc. Phenols: formic acid, acetic acid, propionic acid, lauric acid, palmitic acid, stearic acid, behenic acid, acrylic acid, methacrylic acid Carboxylic acids such as oleic acid, linoleic acid, linolenic acid, sorbic acid, oxalic acid, malonic acid, succinic acid, adipic acid, maleic acid, benzoic acid, phthalic acid, terephthalic acid, trimellitic acid; ammonia; methylamine, dimethyl Amines such as amine, ethylamine, diethylamine, n-butylamine and imidazole; acid amides such as acetamide and benzamide; ureas such as urea and N, N′-diphenylurea; acetone, acetylacetone and 2,4-heptadione Examples include ketones.

上記一般式(46)で表される水分と反応することにより分子内に1個のシラノール基を有する化合物を生成し得る化合物は、例えば上述の活性水素含有化合物等に、トリメチルシリルクロリドやジメチル(t−ブチル)クロリド等のようなシリル化剤とも呼ばれる(R583Si基とともにハロゲン基等の活性水素と反応し得る基を有する化合物を反応させることにより得ることができるが、これらに限定されるものではない(ただし、R58は上述したものと同様である。)。 A compound capable of generating a compound having one silanol group in the molecule by reacting with the water represented by the general formula (46) is, for example, trimethylsilyl chloride or dimethyl (t It can be obtained by reacting a compound having a group capable of reacting with an active hydrogen such as a halogen group together with (R 58 ) 3 Si group, which is also called a silylating agent such as -butyl) chloride, but is not limited thereto. (However, R 58 is the same as described above.)

上記一般式(46)で表される化合物を具体的に例示すると、
アリロキシトリメチルシラン、 N,O−ビス(トリメチルシリル)アセトアミド、N−(トリメチルシリル)アセトアミド、ビス(トリメチルシリル)トリフルオロアセトアミド、N−メチル−N−トリメチルシリルトリフルオロアセトアミド、ビストリメチルシリル尿素、N−(t−ブチルジメチルシリル)N−メチルトリフルオロアセトアミド、(N,N−ジメチルアミノ)トリメチルシラン、(N,N−ジエチルアミノ)トリメチルシラン、ヘキサメチルジシラザン、1,1,3,3−テトラメチルジシラザン、N−(トリメチルシリル)イミダゾール、トリメチルシリルトリフルオロメタンスルフォネート、トリメチルシリルフェノキシド、n−オクタノールのトリメチルシリル化物、2―エチルヘキサノールのトリメチルシリル化物、グリセリンのトリス(トリメチルシリル)化物、トリメチロールプロパンのトリス(トリメチルシリル)化物、ペンタエリスリトールのトリス(トリメチルシリル)化物、ペンタエリスリトールのテトラ(トリメチルシリル)化物、ポリプロピレングリコールのトリメチルシリル化物、ポリプロピレントリオールのトリメチルシリル化物等ポリエーテルポリオールのトリメチルシリル化物、ポリプロピレンテトラオールのトリメチルシリル化物、アクリルポリオールのトリメチルシリル化物等が挙げられるが、これらに限定されない。これらは単独で用いてもよく、2種以上を併用してもよい。
Specific examples of the compound represented by the general formula (46) include
Allyloxytrimethylsilane, N, O-bis (trimethylsilyl) acetamide, N- (trimethylsilyl) acetamide, bis (trimethylsilyl) trifluoroacetamide, N-methyl-N-trimethylsilyltrifluoroacetamide, bistrimethylsilylurea, N- (t- Butyldimethylsilyl) N-methyltrifluoroacetamide, (N, N-dimethylamino) trimethylsilane, (N, N-diethylamino) trimethylsilane, hexamethyldisilazane, 1,1,3,3-tetramethyldisilazane, N- (trimethylsilyl) imidazole, trimethylsilyl trifluoromethanesulfonate, trimethylsilyl phenoxide, trimethylsilylated product of n-octanol, trimethylsilylated 2-ethylhexanol , Tris (trimethylsilyl) product of glycerin, tris (trimethylsilyl) product of trimethylolpropane, tris (trimethylsilyl) product of pentaerythritol, tetra (trimethylsilyl) product of pentaerythritol, trimethylsilylated product of polypropylene glycol, trimethylsilylated product of polypropylene triol, etc. Examples thereof include, but are not limited to, a trimethylsilyl product of polyether polyol, a trimethylsilyl product of polypropylene tetraol, and a trimethylsilyl product of acrylic polyol. These may be used alone or in combination of two or more.

また、一般式(((R603SiO)(R61O)stZで表すことができるような化合物、CH3O(CH2CH(CH3)O)5Si(CH33
CH2=CHCH2(CH2CH(CH3)O)5Si(CH33
(CH33SiO(CH2CH(CH3)O)5Si(CH33
(CH33SiO(CH2CH(CH3)O)7Si(CH33
(式中、R60は同一または異種の置換もしくは非置換の1価の炭化水素基または水素原子、R61は炭素数1〜8の2価の炭化水素基、s、tは正の整数で、sは1〜6、s×tは5以上、Zは1〜6価の有機基)
等も好適に使用できる。これらは単独で用いてもよく、2種以上を併用してもよい。
In addition, a compound represented by the general formula (((R 60 ) 3 SiO) (R 61 O) s ) t Z, CH 3 O (CH 2 CH (CH 3 ) O) 5 Si (CH 3 ) 3 ,
CH 2 = CHCH 2 (CH 2 CH (CH 3) O) 5 Si (CH 3) 3,
(CH 3 ) 3 SiO (CH 2 CH (CH 3 ) O) 5 Si (CH 3 ) 3 ,
(CH 3 ) 3 SiO (CH 2 CH (CH 3 ) O) 7 Si (CH 3 ) 3
(Wherein R 60 is the same or different substituted or unsubstituted monovalent hydrocarbon group or hydrogen atom, R 61 is a divalent hydrocarbon group having 1 to 8 carbon atoms, and s and t are positive integers. , S is 1 to 6, s × t is 5 or more, Z is a 1 to 6-valent organic group)
Etc. can also be used suitably. These may be used alone or in combination of two or more.

水分と反応することにより分子内に1個のシラノール基を有する化合物を生成し得る化合物の中では、貯蔵安定性、耐候性等に悪影響を及ぼさない点で、加水分解後に生成する活性水素化合物はフェノール類、酸アミド類及びアルコール類が好ましく、活性水素化合物が水酸基であるフェノール類およびアルコール類が更に好ましい。   Among the compounds that can produce a compound having one silanol group in the molecule by reacting with moisture, the active hydrogen compound produced after hydrolysis is not adversely affecting storage stability, weather resistance, etc. Phenols, acid amides and alcohols are preferred, and phenols and alcohols whose active hydrogen compounds are hydroxyl groups are more preferred.

上記の化合物の中では、N,O−ビス(トリメチルシリル)アセトアミド、N−(トリメチルシリル)アセトアミド、トリメチルシリルフェノキシド、n−オクタノールのトリメチルシリル化物、2―エチルヘキサノールのトリメチルシリル化物、グリセリンのトリス(トリメチルシリル)化物、トリメチロールプロパンのトリス(トリメチルシリル)化物、ペンタエリスリトールのトリス(トリメチルシリル)化物、ペンタエリスリトールのテトラ(トリメチルシリル)化物等が好ましい。   Among the above compounds, N, O-bis (trimethylsilyl) acetamide, N- (trimethylsilyl) acetamide, trimethylsilylphenoxide, trimethylsilylated product of n-octanol, trimethylsilylated product of 2-ethylhexanol, tris (trimethylsilyl) ated product of glycerin, A tris (trimethylsilyl) product of trimethylolpropane, a tris (trimethylsilyl) product of pentaerythritol, a tetra (trimethylsilyl) product of pentaerythritol and the like are preferable.

この水分と反応することにより分子内に1個のシラノール基を有する化合物を生成し得る化合物は、貯蔵時、硬化時あるいは硬化後に水分と反応することにより、分子内に1個のシラノール基を有する化合物を生成する。この様にして生成した分子内に1個のシラノール基を有する化合物は、上述のようにビニル系重合体の架橋性シリル基あるいは架橋により生成したシロキサン結合と反応することにより、架橋点の数を減少させ、硬化物に柔軟性を与えているものと推定される。   A compound that can generate a compound having one silanol group in the molecule by reacting with moisture has one silanol group in the molecule by reacting with moisture during storage, curing or after curing. A compound is produced. The compound having one silanol group in the molecule thus produced reacts with the crosslinkable silyl group of the vinyl polymer or the siloxane bond formed by crosslinking as described above, thereby reducing the number of crosslinking points. It is presumed that it is reduced and the cured product is given flexibility.

このシラノール含有化合物の構造は、本発明のビニル系重合体のYの種類とaの数によって選択することが可能であり、目的や用途に応じて本発明の硬化性や機械物性等を制御することが可能である。   The structure of the silanol-containing compound can be selected depending on the type of Y and the number of a in the vinyl polymer of the present invention, and controls the curability and mechanical properties of the present invention according to the purpose and application. It is possible.

シラノール含有化合物は、後述の空気酸化硬化性物質と併用してもよく、併用することにより、硬化物のモジュラスを低いままに保ち、表面へ塗装したアルキッド塗料の硬化性および埃付着性を改善するので好ましい。   The silanol-containing compound may be used in combination with an air oxidation curable material described later, and by using it together, the modulus of the cured product is kept low, and the curability and dust adhesion of the alkyd paint coated on the surface are improved. Therefore, it is preferable.

シラノール含有化合物の添加量は、硬化物の期待物性に応じて適宜調整可能である。シラノール含有化合物は、架橋性シリル基を有する重合体100重量部に対して0.1〜50重量部、好ましくは0.3〜20重量部、さらに好ましくは0.5〜10重量部添加できる。0.1重量部未満では添加効果が現れず、50重量部を越えると架橋が不十分になり、硬化物の強度やゲル分率が低下しすぎる。   The addition amount of the silanol-containing compound can be appropriately adjusted according to the expected physical properties of the cured product. The silanol-containing compound can be added in an amount of 0.1 to 50 parts by weight, preferably 0.3 to 20 parts by weight, and more preferably 0.5 to 10 parts by weight with respect to 100 parts by weight of the polymer having a crosslinkable silyl group. If the amount is less than 0.1 parts by weight, the effect of addition does not appear. If the amount exceeds 50 parts by weight, the crosslinking becomes insufficient, and the strength and gel fraction of the cured product are too low.

また、シラノール含有化合物を添加する時期は特に限定されず、重合体の製造時に添加してもよく、硬化性組成物の作製時に添加してもよい。
<チクソ性付与剤(垂れ防止剤)>
本発明の硬化性組成物には、必要に応じて垂れを防止し、作業性を良くするためにチクソ性付与剤(垂れ防止剤)を添加しても良い。
Moreover, the time which adds a silanol containing compound is not specifically limited, You may add at the time of manufacture of a polymer, and you may add at the time of preparation of a curable composition.
<Thixotropic agent (anti-sagging agent)>
A thixotropic agent (anti-sagging agent) may be added to the curable composition of the present invention as necessary to prevent sagging and improve workability.

チクソ性付与剤(垂れ防止剤)は揺変性付与剤ともいう。チクソ性付与とはカートリッジからビード状に押出したり、ヘラ等により塗布したり、スプレー等により吹付けたりするときのように強い力を加えられる時には流動性を示し、塗布ないしは施工後に硬化するまでの間、流下しない性質を付与するものである。   A thixotropic agent (anti-sagging agent) is also called a thixotropic agent. Thixotropy imparts fluidity when a strong force is applied, such as when extruding from a cartridge into a bead, applying with a spatula, or spraying with a spray, etc., until it hardens after application or construction. It imparts the property of not flowing down.

また、チクソ性付与剤(垂れ防止剤)としては特に限定されないが、例えば、ディスパロン(楠本化成製)に代表されるアマイドワックスや水添ヒマシ油、水添ヒマシ油誘導体類、脂肪酸の誘導体、ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸バリウム等の金属石鹸類、1,3,5−トリス(トリアルコキシシリルアルキル)イソシアヌレート等の有機系化合物や、脂肪酸や樹脂酸で表面処理した炭酸カルシウムや微粉末シリカ、カーボンブラック等の無機系化合物が挙げられる。   The thixotropy imparting agent (anti-sagging agent) is not particularly limited, and examples thereof include amide waxes, hydrogenated castor oil, hydrogenated castor oil derivatives, fatty acid derivatives, stears represented by Disparon (manufactured by Enomoto Kasei). Metal soap such as calcium phosphate, aluminum stearate, barium stearate, organic compounds such as 1,3,5-tris (trialkoxysilylalkyl) isocyanurate, calcium carbonate and fine powder surface-treated with fatty acids and resin acids Examples thereof include inorganic compounds such as silica and carbon black.

微粉末シリカとは、二酸化ケイ素を主成分とする天然又は人工の無機充填剤を意味する。具体的には、カオリン、クレー、活性白土、ケイ砂、ケイ石、ケイ藻土、無水ケイ酸アルミニウム、含水ケイ酸マグネシウム、タルク、パーライト、ホワイトカーボン、マイカ微粉末、ベントナイト、有機ベントナイト等を例示できる。   Fine powder silica means a natural or artificial inorganic filler mainly composed of silicon dioxide. Specific examples include kaolin, clay, activated clay, silica sand, silica stone, diatomaceous earth, anhydrous aluminum silicate, hydrous magnesium silicate, talc, perlite, white carbon, mica fine powder, bentonite, and organic bentonite. it can.

なかでも、ケイ素を含む揮発性化合物を気相で反応させることによって作られる超微粒子状無水シリカや有機ベントナイトが好ましい。少なくとも50m2/g、更には50〜400m2/gの比表面積を有していることが好ましい。また、親水性シリカ、疎水性シリカの何れをも使用することができる。表面処理はあってもなくても構わないが、ケイ素原子に結合した有機置換基としてメチル基のみを有するシラザン、クロロシラン、アルコキシシランもしくはポリシロキサンによりその表面が疎水処理されている疎水性シリカが好ましい。 Among these, ultrafine anhydrous silica or organic bentonite produced by reacting a volatile compound containing silicon in the gas phase is preferable. At least 50 m 2 / g, and more preferably it has a specific surface area of 50 to 400 m 2 / g. Either hydrophilic silica or hydrophobic silica can be used. Hydrophobic silica whose surface is hydrophobically treated with silazane, chlorosilane, alkoxysilane, or polysiloxane having only a methyl group as an organic substituent bonded to a silicon atom is preferable. .

上記の表面処理剤を具体的に例示すると、ヘキサメチルジシラザン等のようなシラザン類;トリメチルクロロシラン、ジメチルジクロロシラン、メチルトリクロロシラン等のようなハロゲン化シラン類;トリメチルアルコキシシラン、ジメチルジアルコキシシラン、メチルトリアルコキシシラン等のようなアルコキシシラン類(ここで、アルコキシ基としてはメトキシ基、エトキシ基、プロポキシ基、ブトキシ基等が挙げられる);環状あるいは直鎖状のポリジメチルシロキサン等のようなシロキサン類等が挙げられ、これらは単独又は2種以上を組合せて使用してもよい。これらの中でもシロキサン類(ジメチルシリコーンオイル)によって表面処理を施された疎水性微粉末シリカが揺変性付与効果の面から好ましい。   Specific examples of the surface treatment agent include silazanes such as hexamethyldisilazane; halogenated silanes such as trimethylchlorosilane, dimethyldichlorosilane, and methyltrichlorosilane; trimethylalkoxysilane and dimethyldialkoxysilane. Alkoxysilanes such as methyltrialkoxysilane (wherein alkoxy groups include methoxy, ethoxy, propoxy, butoxy, etc.); cyclic or linear polydimethylsiloxane, etc. Examples thereof include siloxanes, and these may be used alone or in combination of two or more. Among these, hydrophobic fine powder silica subjected to a surface treatment with siloxanes (dimethylsilicone oil) is preferable from the viewpoint of thixotropic effect.

また、微粉末シリカにジエチレングリコール,トリエチレングリコール,ポリエチレングリコール等のポリエーテル化合物,ポリエーテル化合物と官能性シランの反応生成物等やエチレンオキシド鎖を有する非イオン系界面活性剤を併用するとチクソ性が増す。この非イオン系界面活性剤は1種又は2種以上使用してもよい。   Moreover, thixotropy is increased when a polyether compound such as diethylene glycol, triethylene glycol, or polyethylene glycol, a reaction product of a polyether compound and a functional silane, or a nonionic surfactant having an ethylene oxide chain is used in combination with fine powder silica. . These nonionic surfactants may be used alone or in combination of two or more.

この微粉末シリカの具体例としては、例えば、日本アエロジル製の商品名Aerosil R974、R972、R972V、R972CF、R805、R812、R812S、RY200、RX200、RY200S、#130、#200、#300、R202等や、日本シリカ製の商品名Nipsil SSシリーズ、徳山曹達製の商品名Rheorosil MT−10、MT−30、QS−102、QS−103、Cabot製の商品名Cabosil TS−720、MS−5,MS−7、豊順洋行製のエスベンやオルガナイト等の市販品が挙げられる。   Specific examples of the fine powder silica include, for example, trade names Aerosil R974, R972, R972V, R972CF, R805, R812, R812S, RY200, RX200, RY200S, # 130, # 200, # 300, R202, etc., manufactured by Nippon Aerosil. And trade name Nippon Sil SS series made by Nippon Silica, trade names Rheorosil MT-10, MT-30, QS-102, QS-103, made by Soda Tokuyama, trade names made by Cabot, Cabosil TS-720, MS-5, MS -7, commercial products such as Sven and Organite manufactured by Toyoshiro Yoko.

また、有機ベントナイトとは、主にモンモリロナイト鉱石を細かく粉砕した粉末状の物質で、これを各種有機物質で表面処理したものをいう。有機化合物としては脂肪族第1級アミン、脂肪族第4級アミン(これらはいずれも炭素数20以下が好ましい)などが用いられる。この有機ベントナイトの具体例としては、例えば、白石工業製の商品名オルベンD、NewDオルベン、土屋カオリン製の商品名ハードシル、Bergess Pigment製のクレー#30、Southern Clay社#33、米国National Lead製の「ベントン(Bentone)34」(ジメチルオクタデシルアンモニウムベントナイト)等が挙げられる。   The organic bentonite is a powdery substance obtained by finely pulverizing montmorillonite ore, which is surface-treated with various organic substances. As the organic compound, an aliphatic primary amine, an aliphatic quaternary amine (all of which preferably have 20 or less carbon atoms) are used. Specific examples of the organic bentonite include, for example, trade names Orven D, New D Orven, manufactured by Shiraishi Kogyo, trade name Hard Sil, manufactured by Kaolin Tsuchiya, clay # 30 manufactured by Bergess Pigment, Southern Cray # 33, manufactured by National Lead, USA. “Bentone 34” (dimethyloctadecyl ammonium bentonite) and the like.

チクソ性指標とは、回転粘度計による粘度測定において、回転速度の低速(例えば、0.5〜12rpm)と高速(例えば、2.5〜60rpm)とにおける見掛け粘度の比を意味する(ただし、高速回転の速度と低速回転の速度の比が少なくとも5、更には5〜10の範囲内が好ましい。   The thixotropic index means a ratio of apparent viscosity at a low rotation speed (for example, 0.5 to 12 rpm) and a high speed (for example, 2.5 to 60 rpm) in viscosity measurement using a rotational viscometer (however, The ratio of the high speed rotation speed to the low speed rotation speed is preferably at least 5 and more preferably in the range of 5-10.

これらチクソ性付与剤(垂れ防止剤)は単独で用いてもよく、2種以上併用してもよい。   These thixotropic agents (anti-sagging agents) may be used alone or in combination of two or more.

<光硬化性物質>
本発明の硬化性組成物には、必要に応じて光硬化性物質を添加しても良い。光硬化性物質とは、光の作用によって短時間に、分子構造が化学変化をおこし、硬化などの物性的変化を生ずるものである。この光硬化性物質を添加することにより、硬化性組成物を硬化させた際の硬化物表面の粘着性(残留タックともいう)を低減できる。この光硬化性物質は、光をあてることにより硬化し得る物質であるが、代表的な光硬化性物質は、例えば室内の日の当たる位置(窓付近)に1日間、室温で静置することにより硬化させることができる物質である。この種の化合物には、有機単量体、オリゴマー、樹脂あるいはそれらを含む組成物など多くのものが知られており、その種類は特に限定されないが、例えば、不飽和アクリル系化合物、ポリケイ皮酸ビニル類あるいはアジド化樹脂、エポキシ化合物、ビニルエーテル化合物等が挙げられる。
<Photo-curing substance>
You may add a photocurable substance to the curable composition of this invention as needed. A photo-curing substance is a substance that undergoes a chemical change in the molecular structure in a short period of time due to the action of light, resulting in a change in physical properties such as curing. By adding this photocurable substance, the adhesiveness (also referred to as residual tack) of the cured product surface when the curable composition is cured can be reduced. This photo-curable substance is a substance that can be cured by exposure to light, but a typical photo-curable substance is allowed to stand at room temperature for one day, for example, in an indoor location where the sun is exposed (near the window). It is a substance that can be cured by. Many compounds such as organic monomers, oligomers, resins or compositions containing them are known as this type of compound, and the type is not particularly limited. For example, unsaturated acrylic compounds, polycinnamic acid Examples thereof include vinyls or azide resins, epoxy compounds, vinyl ether compounds and the like.

不飽和アクリル系化合物としては、具体的には、エチレングリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール、ネオペンチルアルコール等の低分子量アルコール類の(メタ)アクリル酸エステル類(オリゴエステルアクリレート);ビスフェノールA、イソシアヌル酸等の酸あるいは上記低分子量アルコール等をエチレンオキシドやプロピレンオキシドで変性したアルコール類の(メタ)アクリル酸エステル類;主鎖がポリエーテルで末端に水酸基を有するポリエーテルポリオール、主鎖がポリエーテルであるポリオール中でビニル系モノマーをラジカル重合することにより得られるポリマーポリオール、主鎖がポリエステルで末端に水酸基を有するポリエステルポリオール、主鎖がビニル系あるいは(メタ)アクリル系重合体であり、主鎖中に水酸基を有するポリオール等の(メタ)アクリル酸エステル類;主鎖がビニル系あるいは(メタ)アクリル系重合体であり、主鎖中に多官能アクリレートを共重合して得られる(メタ)アクリル酸エステル類;ビスフェノールA型やノボラック型等のエポキシ樹脂と(メタ)アクリル酸を反応させることにより得られるエポキシアクリレート系オリゴマー類;ポリオール、ポリイソシアネートおよび水酸基含有(メタ)アクリレート等を反応させることにより得られる分子鎖中にウレタン結合および(メタ)アクリル基を有するウレタンアクリレート系オリゴマー等が挙げられる。   Specific examples of unsaturated acrylic compounds include (meth) acrylic acid esters (oligoester acrylates) of low molecular weight alcohols such as ethylene glycol, glycerin, trimethylolpropane, pentaerythritol, and neopentyl alcohol; bisphenol A (Meth) acrylic acid esters of alcohols obtained by modifying acids such as isocyanuric acid or the above-mentioned low molecular weight alcohols with ethylene oxide or propylene oxide; polyether polyols whose main chain is a polyether and having a hydroxyl group at the terminal; Polymer polyols obtained by radical polymerization of vinyl monomers in polyols that are ethers, polyester polyols with a main chain of polyester and a hydroxyl group at the terminal, and main chains of vinyl or (meth) acrylic (Meth) acrylic acid esters such as polyols with hydroxyl groups in the main chain; the main chain is a vinyl or (meth) acrylic polymer and a polyfunctional acrylate is copolymerized in the main chain (Meth) acrylic esters obtained by reacting epoxy resins such as bisphenol A type and novolac type with (meth) acrylic acid; polyol, polyisocyanate and hydroxyl group-containing (meta ) Urethane acrylate oligomers having a urethane bond and a (meth) acryl group in the molecular chain obtained by reacting acrylate or the like.

ポリケイ皮酸ビニル類とは、シンナモイル基を感光基とする感光性樹脂であり、ポリビニルアルコールをケイ皮酸でエステル化したものの他、多くのポリケイ皮酸ビニル系誘導体が挙げられる。   Polyvinyl cinnamate is a photosensitive resin having a cinnamoyl group as a photosensitive group, and includes many polyvinyl cinnamate derivatives other than those obtained by esterifying polyvinyl alcohol with cinnamic acid.

アジド化樹脂は、アジド基を感光基とする感光性樹脂として知られており、通常はアジド化合物を感光剤として加えたゴム感光液のほか「感光性樹脂」(昭和47年3月17日出版、印刷学会出版部発行、93頁〜、106頁から、117頁〜)に詳細な例示があり、これらを単独又は混合し、必要に応じて増感剤を加えて使用することができる。   Azide resin is known as a photosensitive resin having an azide group as a photosensitive group. In general, in addition to a rubber photosensitive solution in which an azide compound is added as a photosensitive agent, “photosensitive resin” (published March 17, 1972). , Published by the Printing Society Press, page 93 to page 106 to page 117), these are detailed examples, and these can be used alone or in combination, and a sensitizer can be added if necessary.

エポキシ化合物、ビニルエーテル化合物としては、エポキシ基末端またはビニルエーテル基末端ポリイソブチレン等が挙げられる。   Examples of the epoxy compound and vinyl ether compound include epoxy group-terminated or vinyl ether group-terminated polyisobutylene.

上記の光硬化性物質の中では、取扱い易いという理由で不飽和アクリル系化合物が好ましい。   Among the above-mentioned photocurable materials, unsaturated acrylic compounds are preferable because they are easy to handle.

光硬化性物質は、架橋性シリル基を有する重合体100重量部に対して0.01〜20重量部添加するのが好ましい。0.01重量部未満では効果が小さく、また20重量部を越えると物性への悪影響が出ることがある。なお、ケトン類、ニトロ化合物などの増感剤やアミン類等の促進剤を添加すると、効果が高められる場合がある。   The photocurable material is preferably added in an amount of 0.01 to 20 parts by weight with respect to 100 parts by weight of the polymer having a crosslinkable silyl group. If the amount is less than 0.01 parts by weight, the effect is small. If the amount exceeds 20 parts by weight, the physical properties may be adversely affected. Note that the addition of a sensitizer such as ketones or nitro compounds or an accelerator such as amines may enhance the effect.

<空気酸化硬化性物質>
本発明の硬化性組成物には、必要に応じて空気酸化硬化性物質を添加しても良い。空気酸化硬化性物質とは、空気中の酸素により架橋硬化できる不飽和基を有する化合物である。この空気酸化硬化性物質を添加することにより、硬化性組成物を硬化させた際の硬化物表面の粘着性(残留タックともいう)を低減できる。本発明における空気酸化硬化性物質は、空気と接触させることにより硬化し得る物質であり、より具体的には、空気中の酸素と反応して硬化する性質を有するものである。代表的な空気酸化硬化性物質は、例えば空気中で室内に1日間静置することにより硬化させることができる。
<Air oxidation curable substance>
If necessary, an air oxidation curable material may be added to the curable composition of the present invention. The air oxidation curable substance is a compound having an unsaturated group that can be crosslinked and cured by oxygen in the air. By adding this air oxidation curable substance, the tackiness (also referred to as residual tack) of the cured product surface when the curable composition is cured can be reduced. The air oxidation curable substance in the present invention is a substance that can be cured by contact with air, and more specifically, has a property of curing by reacting with oxygen in the air. A typical air oxidation curable substance can be cured by, for example, standing in air indoors for 1 day.

空気酸化硬化性物質としては、例えば、桐油、アマニ油等の乾性油;これら乾性油を変性して得られる各種アルキッド樹脂;乾性油により変性されたアクリル系重合体、エポキシ系樹脂、シリコーン樹脂、ウレタン樹脂;1,2−ポリブタジエン、1,4−ポリブタジエンを、C5〜C8ジエンの重合体や共重合体、更には該重合体や共重合体の各種変性物(マレイン化変性物、ボイル油変性物など)などが具体例として挙げられる。これらのうちでは桐油、ジエン系重合体のうちの液状物(液状ジエン系重合体)やその変性物が特に好ましい。   Examples of air oxidative curable substances include drying oils such as tung oil and linseed oil; various alkyd resins obtained by modifying these drying oils; acrylic polymers modified with drying oil, epoxy resins, silicone resins, Urethane resin: 1,2-polybutadiene, 1,4-polybutadiene, C5 to C8 diene polymers and copolymers, and various modified products of the polymers and copolymers (maleinized modified products, boil oil modified products) A specific example is a thing etc.). Of these, paulownia oil, diene polymer liquid (liquid diene polymer) and modified products thereof are particularly preferred.

上記液状ジエン系重合体の具体例としては、ブタジエン、クロロプレン、イソプレン、1,3−ペンタジエン等のジエン系化合物を重合又は共重合させて得られる液状重合体や、これらジエン系化合物と共重合性を有するアクリロニトリル、スチレンなどの単量体とをジエン系化合物が主体となるように共重合させて得られるNBR,SBR等の重合体や更にはそれらの各種変性物(マレイン化変性物、ボイル油変性物など)などが挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。これら液状ジエン系化合物のうちでは液状ポリブタジエンが好ましい。   Specific examples of the liquid diene polymer include a liquid polymer obtained by polymerizing or copolymerizing diene compounds such as butadiene, chloroprene, isoprene, and 1,3-pentadiene, and copolymerizable with these diene compounds. Polymers such as NBR and SBR obtained by copolymerizing monomers such as acrylonitrile and styrene having a main component with a diene compound, and various modified products thereof (maleinized modified products, boiled oils) Modified products, etc.). These may be used alone or in combination of two or more. Of these liquid diene compounds, liquid polybutadiene is preferred.

空気酸化硬化性物質は、単独で用いてもよく、2種以上を併用してもよい。また空気酸化硬化性物質と同時に酸化硬化反応を促進する触媒や金属ドライヤーを併用すると効果を高められる場合がある。これらの触媒や金属ドライヤーとしては、ナフテン酸コバルト、ナフテン酸鉛、ナフテン酸ジルコニウム、オクチル酸コバルト、オクチル酸ジルコニウム等の金属塩やアミン化合物等が例示される。   The air oxidation curable substance may be used alone or in combination of two or more. In addition, the effect may be enhanced if a catalyst that promotes the oxidative curing reaction or a metal dryer is used together with the air oxidative curable substance. Examples of these catalysts and metal dryers include metal salts such as cobalt naphthenate, lead naphthenate, zirconium naphthenate, cobalt octylate, and zirconium octylate, amine compounds, and the like.

空気酸化硬化性物質は、前述の光硬化性物質と併用してもよく、さらに前述のシラノール含有化合物を併用することができる。これら2成分の併用または3成分の併用によりその効果を更に発揮し、特に長期に渡って曝露される場合や、塵埃や微粉土砂の多い汚染性の過酷な地域においても顕著な汚染防止効果を発揮することがあるので特に好ましい。   The air oxidation curable substance may be used in combination with the above-described photocurable substance, and further, the above-mentioned silanol-containing compound may be used in combination. Combined use of these two components or combination of the three components further demonstrates its effect, especially when exposed to a long period of time, and in a severely contaminated area with a lot of dust and fine earth and sand. This is particularly preferable.

空気酸化硬化性物質は、架橋性シリル基を有する重合体100重量部に対して0.01〜20重量部添加するのが好ましい。0.01重量部未満では効果が小さく、また20重量部を越えると物性への悪影響が出ることがある。   The air oxidation curable substance is preferably added in an amount of 0.01 to 20 parts by weight based on 100 parts by weight of the polymer having a crosslinkable silyl group. If the amount is less than 0.01 parts by weight, the effect is small. If the amount exceeds 20 parts by weight, the physical properties may be adversely affected.

<酸化防止剤>
本発明の硬化性組成物には、必要に応じて酸化防止剤を添加しても良い。酸化防止剤は各種のものが知られており、例えば大成社発行の「酸化防止剤ハンドブック」、シーエムシー化学発行の「高分子材料の劣化と安定化」(235〜242)等に記載された種々のものが挙げられるが、これらに限定されるわけではない。 例えば、MARK PEP−36、MARK AO−23等のチオエーテル系(以上いずれも旭電化工業製)、Irgafos38、Irgafos168、IrgafosP−EPQ(以上いずれもチバ・スペシャルティ・ケミカルズ製)等のようなリン系酸化防止剤等が挙げられる。なかでも、以下に示したようなヒンダードフェノール系化合物が好ましい。
<Antioxidant>
You may add antioxidant to the curable composition of this invention as needed. Various types of antioxidants are known, and are described in, for example, “Antioxidant Handbook” published by Taiseisha, “Degradation and Stabilization of Polymer Materials” (235-242) published by CM Chemical Co., Ltd. Although various things are mentioned, it is not necessarily limited to these. For example, phosphoethers such as thioethers such as MARK PEP-36 and MARK AO-23 (all manufactured by Asahi Denka Kogyo), Irgafos 38, Irgafos 168, Irgafos P-EPQ (all manufactured by Ciba Specialty Chemicals) An inhibitor etc. are mentioned. Of these, hindered phenol compounds as shown below are preferred.

ヒンダードフェノール系化合物としては、具体的には以下のものが例示できる。2,6−ジ−tert−ブチル−4−メチルフェノール、2,6−ジ−tert−ブチル−4−エチルフェノール、モノ(又はジ又はトリ)(αメチルベンジル)フェノール、2,2’−メチレンビス(4エチル−6−tert−ブチルフェノール)、2,2’−メチレンビス(4メチル−6−tert−ブチルフェノール)、4,4’−ブチリデンビス(3−メチル−6−tert−ブチルフェノール)、4,4’−チオビス(3−メチル−6−tert−ブチルフェノール)、2,5−ジ−tert−ブチルハイドロキノン、2,5−ジ−tert−アミルハイドロキノン、トリエチレングリコール−ビス−[3−(3−t−ブチル−5−メチル−4ヒドロキシフェニル)プロピオネート]、1,6−ヘキサンジオール−ビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、2,4−ビス−(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−t−ブチルアニリノ)−1,3,5−トリアジン、ペンタエリスリチル−テトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、2,2−チオ−ジエチレンビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、N,N’−ヘキサメチレンビス(3,5−ジ−t−ブチル−4−ヒドロキシ−ヒドロシンナマミド)、3,5−ジ−t−ブチル−4−ヒドロキシ−ベンジルフォスフォネート−ジエチルエステル、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、ビス(3,5−ジ−t−ブチル−4−ヒドロキシベンジルホスホン酸エチル)カルシウム、トリス−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)イソシアヌレート、2,4−2,4−ビス[(オクチルチオ)メチル]o−クレゾール、N,N’−ビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニル]ヒドラジン、トリス(2,4−ジ−t−ブチルフェニル)フォスファイト、2−(5−メチル−2−ヒドロキシフェニル)ベンゾトリアゾール、2−[2−ヒドロキシ−3,5−ビス(α,α−ジメチルベンジル)フェニル]−2H−ベンゾトリアゾール、2−(3,5−ジ−t−ブチル−2−ヒドロキシフェニル)ベンゾトリアゾール、2−(3−t−ブチル−5−メチル−2−ヒドロキシフェニル)−5−クロロベンゾトリアゾール、2−(3,5−ジ−t−ブチル−2−ヒドロキシフェニル)−5−クロロベンゾトリアゾール、2−(3,5−ジ−t−アミル−2−ヒドロキシフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−5’−t−オクチルフェニル)−ベンゾトリアゾール、メチル−3−[3−t−ブチル−5−(2H−ベンゾトリアゾール−2−イル)−4−ヒドロキシフェニル]プロピオネート−ポリエチレングリコール(分子量約300)との縮合物、ヒドロキシフェニルベンゾトリアゾール誘導体、2−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−2−n−ブチルマロン酸ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)、2,4−ジ−t−ブチルフェニル−3,5−ジ−t−ブチル−4−ヒドロキシベンゾエート等が挙げられる。   Specific examples of the hindered phenol compound include the following. 2,6-di-tert-butyl-4-methylphenol, 2,6-di-tert-butyl-4-ethylphenol, mono (or di or tri) (α methylbenzyl) phenol, 2,2′-methylenebis (4 ethyl-6-tert-butylphenol), 2,2'-methylenebis (4methyl-6-tert-butylphenol), 4,4'-butylidenebis (3-methyl-6-tert-butylphenol), 4,4 ' -Thiobis (3-methyl-6-tert-butylphenol), 2,5-di-tert-butylhydroquinone, 2,5-di-tert-amylhydroquinone, triethylene glycol-bis- [3- (3-t- Butyl-5-methyl-4hydroxyphenyl) propionate], 1,6-hexanediol-bis [3- (3 5-di-t-butyl-4-hydroxyphenyl) propionate], 2,4-bis- (n-octylthio) -6- (4-hydroxy-3,5-di-t-butylanilino) -1,3 5-triazine, pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], 2,2-thio-diethylenebis [3- (3,5-di-t -Butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, N, N'-hexamethylenebis (3,5-di-t- Butyl-4-hydroxy-hydrocinnamamide), 3,5-di-t-butyl-4-hydroxy-benzylphosphonate-diethyl ester, 1,3,5-trimethyl -2,4,6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene, bis (3,5-di-t-butyl-4-hydroxybenzylphosphonate ethyl) calcium, tris- (3,5-di-t-butyl-4-hydroxybenzyl) isocyanurate, 2,4-2,4-bis [(octylthio) methyl] o-cresol, N, N′-bis [3- (3 5-di-t-butyl-4-hydroxyphenyl) propionyl] hydrazine, tris (2,4-di-t-butylphenyl) phosphite, 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- [2-Hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2H-benzotriazole, 2- (3,5-di-t-butyl-2-hydroxyphenyl) Benzotriazole, 2- (3-tert-butyl-5-methyl-2-hydroxyphenyl) -5-chlorobenzotriazole, 2- (3,5-di-tert-butyl-2-hydroxyphenyl) -5-chloro Benzotriazole, 2- (3,5-di-t-amyl-2-hydroxyphenyl) benzotriazole, 2- (2′-hydroxy-5′-t-octylphenyl) -benzotriazole, methyl-3- [3 -T-butyl-5- (2H-benzotriazol-2-yl) -4-hydroxyphenyl] propionate-condensate with polyethylene glycol (molecular weight about 300), hydroxyphenylbenzotriazole derivative, 2- (3,5- Di-t-butyl-4-hydroxybenzyl) -2-n-butylmalonate bis (1,2,2,6,6-pentamethyl) -4-piperidyl), 2,4-di -t- butyl-3,5-di -t- butyl-4-hydroxybenzoate, and the like.

商品名で言えば、ノクラック200、ノクラックM−17、ノクラックSP、ノクラックSP−N、ノクラックNS−5、ノクラックNS−6、ノクラックNS−30、ノクラック300、ノクラックNS−7、ノクラックDAH(以上いずれも大内新興化学工業製)、MARK AO−30、MARK AO−40、MARK AO−50、MARK AO−60、MARK AO−616、MARK AO−635、MARK AO−658、MARK AO−80、MARK AO−15、MARK AO−18、MARK 328、MARK AO−37(以上いずれも旭電化工業製)、IRGANOX−245、IRGANOX−259、IRGANOX−565、IRGANOX−1010、IRGANOX−1024、IRGANOX−1035、IRGANOX−1076、IRGANOX−1081、IRGANOX−1098、IRGANOX−1222、IRGANOX−1330、IRGANOX−1425WL(以上いずれもチバ・スペシャルティ・ケミカルズ製)、SumilizerGM、SumilizerGA−80(以上いずれも住友化学製)等が例示できるがこれらに限定されるものではない。   In terms of product names, Nocrack 200, Nocrack M-17, Nocrack SP, Nocrack SP-N, Nocrack NS-5, Nocrack NS-6, Nocrack NS-30, Nocrack 300, Nocrack NS-7, Nocrack DAH (all above Also manufactured by Ouchi Shinsei Chemical Industry), MARK AO-30, MARK AO-40, MARK AO-50, MARK AO-60, MARK AO-616, MARK AO-635, MARK AO-658, MARK AO-80, MARK AO-15, MARK AO-18, MARK 328, MARK AO-37 (all manufactured by Asahi Denka Kogyo), IRGANOX-245, IRGANOX-259, IRGANOX-565, IRGANOX-1010, IRGANOX-1024, IRGANOX 1035, IRGANOX-1076, IRGANOX-1081, IRGANOX-1098, IRGANOX-1222, IRGANOX-1330, IRGANOX-1425WL (all of these are manufactured by Ciba Specialty Chemicals), Sumizer GM, and Sumilizer GA-80 (all of which are manufactured by Sumitomo Chemical) However, the present invention is not limited to these examples.

酸化防止剤は後述する光安定剤と併用してもよく、併用することによりその効果を更に発揮し、特に耐熱性が向上することがあるため特に好ましい。予め酸化防止剤と光安定剤を混合してあるチヌビンC353、チヌビンB75(以上いずれもチバ・スペシャルティ・ケミカルズ製)などを使用しても良い。   Antioxidants may be used in combination with the light stabilizers described later, and are particularly preferred because they can further exert their effects and improve heat resistance in particular. Tinuvin C353, Tinuvin B75 (both manufactured by Ciba Specialty Chemicals) and the like in which an antioxidant and a light stabilizer are mixed in advance may be used.

酸化防止剤の使用量は、架橋性シリル基を有する重合体100重量部に対して0.1〜10重量部の範囲であることが好ましい。0.1重量部未満では耐候性を改善の効果が少なく、5重量部超では効果に大差がなく経済的に不利である。   It is preferable that the usage-amount of antioxidant is the range of 0.1-10 weight part with respect to 100 weight part of polymers which have a crosslinkable silyl group. If it is less than 0.1 parts by weight, the effect of improving the weather resistance is small, and if it exceeds 5 parts by weight, there is no great difference in the effect, which is economically disadvantageous.

<耐光安定剤>
本発明の硬化性組成物には、必要に応じて耐光安定剤を添加しても良い。耐光安定剤は各種のものが知られており、例えば大成社発行の「酸化防止剤ハンドブック」、シーエムシー化学発行の「高分子材料の劣化と安定化」(235〜242)等に記載された種々のものが挙げられる。これらに限定されるわけではないが、耐光安定剤の中では、紫外線吸収剤やヒンダードアミン系光安定剤化合物が好ましい。具体的には、チヌビンP、チヌビン234、チヌビン320、チヌビン326、チヌビン327、チヌビン329、チヌビン213(以上いずれもチバ・スペシャルティ・ケミカルズ製)等のようなベンゾトリアゾール系化合物やチヌビン1577等のようなトリアジン系、CHIMASSORB81等のようなベンゾフェノン系、チヌビン120(チバ・スペシャルティ・ケミカルズ製)等のようなベンゾエート系化合物等が例示できる。
<Light resistance stabilizer>
You may add a light-resistant stabilizer to the curable composition of this invention as needed. Various types of light-resistant stabilizers are known and described in, for example, “Antioxidant Handbook” published by Taiseisha, “Degradation and Stabilization of Polymer Materials” (235-242), issued by CMC Chemical, and the like. There are various types. Although it is not necessarily limited to these, in a light-resistant stabilizer, a ultraviolet absorber and a hindered amine light stabilizer compound are preferable. Specifically, benzotriazole compounds such as Tinuvin P, Tinuvin 234, Tinuvin 320, Tinuvin 326, Tinuvin 327, Tinuvin 329, Tinuvin 213 (all of which are manufactured by Ciba Specialty Chemicals), Tinuvin 1577, etc. Examples thereof include triazine-based compounds, benzophenone-based compounds such as CHIMASSORB 81, and benzoate-based compounds such as Tinuvin 120 (manufactured by Ciba Specialty Chemicals).

また、ヒンダードアミン系化合物も好ましく、そのような化合物を以下に記載する。
コハク酸ジメチル−1−(2−ヒドロキシエチル)−4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン重縮合物、ポリ[{6−(1,1,3,3−テトラメチルブチル)アミノ−1,3,5−トリアジン−2,4−ジイル}{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}]、N,N’−ビス(3アミノプロピル)エチレンジアミン−2,4−ビス[N−ブチル−N−(1,2,2,6,6−ペンタメチル−4−ピペリジル)アミノ]−6−クロロ−1,3,5−トリアジン縮合物、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、コハク酸−ビス(2,2,6,6−テトラメチル−4−ピペリディニル)エステル等が挙げられる。
Hindered amine compounds are also preferred, and such compounds are described below.
Dimethyl-1- (2-hydroxyethyl) -4-hydroxy-2,2,6,6-tetramethylpiperidine polycondensate of succinate, poly [{6- (1,1,3,3-tetramethylbutyl) Amino-1,3,5-triazine-2,4-diyl} {(2,2,6,6-tetramethyl-4-piperidyl) imino}], N, N′-bis (3aminopropyl) ethylenediamine- 2,4-bis [N-butyl-N- (1,2,2,6,6-pentamethyl-4-piperidyl) amino] -6-chloro-1,3,5-triazine condensate, bis (2, 2,6,6-tetramethyl-4-piperidyl) sebacate, succinic acid-bis (2,2,6,6-tetramethyl-4-piperidinyl) ester and the like.

商品名で言えば、チヌビン622LD、チヌビン144、CHIMASSORB944LD、CHIMASSORB119FL、Irgafos168、(以上いずれもチバ・スペシャルティ・ケミカルズ製)、MARK LA−52、MARK LA−57、MARK LA−62、MARK LA−67、MARK LA−63、MARK LA−68、MARK LA−82、MARK LA−87、(以上いずれも旭電化工業製)、サノールLS−770、サノールLS−765、サノールLS−292、サノールLS−2626、サノールLS−1114、サノールLS−744、サノールLS−440(以上いずれも三共製)などが例示できるがこれらに限定されるものではない。   In terms of product names, Tinuvin 622LD, Tinuvin 144, CHIMASSORB 944LD, CHIMASSORB 119FL, Irgafos 168 (all of which are manufactured by Ciba Specialty Chemicals), MARK LA-52, MARK LA-57, MARK LA-62, MARK LA-67, MARK LA-63, MARK LA-68, MARK LA-82, MARK LA-87 (all manufactured by Asahi Denka Kogyo), Sanol LS-770, Sanol LS-765, Sanol LS-292, Sanol LS-2626, Examples include, but are not limited to, sanol LS-1114, sanol LS-744, and sanol LS-440 (all of which are manufactured by Sankyo).

耐光安定剤は前述した酸化防止剤と併用してもよく、併用することによりその効果を更に発揮し、特に耐候性が向上することがあるため特に好ましい。組合せは特に限定されないが、前述のヒンダードフェノール系酸化防止剤と例えばベンゾトリアゾール系の紫外線吸収剤との組合せや前述のヒンダードフェノール系酸化防止剤とヒンダードアミン系光安定剤化合物との組合せが好ましい。あるいは、前述のヒンダードフェノール系酸化防止剤と例えばベンゾトリアゾール系の紫外線吸収剤とヒンダードアミン系光安定剤化合物との組合せが好ましい。予め光安定剤と酸化防止剤を混合してあるチヌビンC353、チヌビンB75(以上いずれもチバ・スペシャルティ・ケミカルズ製)などを使用しても良い。   The light-resistant stabilizer may be used in combination with the above-mentioned antioxidant, and is particularly preferable because the effect is further exhibited by using it together, and the weather resistance may be improved. The combination is not particularly limited, but a combination of the above-mentioned hindered phenol-based antioxidant and, for example, a benzotriazole-based ultraviolet absorber or a combination of the above-mentioned hindered phenol-based antioxidant and a hindered amine-based light stabilizer compound is preferable. . Or the combination of the above-mentioned hindered phenolic antioxidant, for example, a benzotriazole type ultraviolet absorber and a hindered amine light stabilizer compound is preferable. Tinuvin C353, Tinuvin B75 (both manufactured by Ciba Specialty Chemicals) and the like in which a light stabilizer and an antioxidant are mixed in advance may be used.

ヒンダードアミン系光安定剤は前述した光硬化性物質と併用してもよく、併用することによりその効果を更に発揮し、特に耐候性が向上することがあるため特に好ましい。組合せは特に限定されないが、この場合、3級アミン含有のヒンダードアミン系光安定剤が貯蔵中の粘度上昇が少なく貯蔵安定性が良好のため好ましい。   The hindered amine light stabilizer may be used in combination with the above-mentioned photo-curing substance, and it is particularly preferable because the hindered amine light stabilizer further exerts its effect and particularly the weather resistance may be improved. The combination is not particularly limited, but in this case, a hindered amine light stabilizer containing a tertiary amine is preferable because the increase in viscosity during storage is small and the storage stability is good.

光安定剤の使用量は、架橋性シリル基を有する重合体100重量部に対して0.1〜10重量部の範囲であることが好ましい。0.1重量部未満では耐候性を改善の効果が少なく、5重量部超では効果に大差がなく経済的に不利である。   It is preferable that the usage-amount of a light stabilizer is the range of 0.1-10 weight part with respect to 100 weight part of polymers which have a crosslinkable silyl group. If it is less than 0.1 parts by weight, the effect of improving the weather resistance is small, and if it exceeds 5 parts by weight, there is no great difference in the effect, which is economically disadvantageous.

<エポキシ樹脂>
本発明の硬化性組成物には、必要に応じてエポキシ樹脂を添加しても良い。エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ノボラック型エポキシ樹脂、ビスフェノールAプロピレンオキシド付加物のグリシジルエーテル型エポキシ樹脂、水素添加ビスフェノールA型(水添ビスフェノールA型)エポキシ樹脂、フッ素化エポキシ樹脂、ポリブタジエンあるいはNBRを含有するゴム変性エポキシ樹脂、テトラブロモビスフェノールAのグリシジルエーテルなどの難燃型エポキシ樹脂、p−オキシ安息香酸グリシジルエーテルエステル型エポキシ樹脂、m−アミノフェノール型エポキシ樹脂、ジアミノジフェニルメタン系エポキシ樹脂、ウレタン結合を有するウレタン変性エポキシ樹脂、各種脂環式エポキシ樹脂、N,N−ジグリシジルアニリン、N,N−ジグリシジル−o−トルイジン、トリグリシジルイソシアヌレート、ポリアルキレングリコールジグリシジルエーテル、グリセリンのような多価アルコールのグリシジルエーテル、ヒダントイン型エポキシ樹脂、石油樹脂などのような不飽和重合体のエポキシ化物などが例示されるが、これらに限定されるものではなく、一般に使用されているエポキシ樹脂が使用され得る。これらエポキシ樹脂は単独で用いても良く2種以上併用しても良い。
<Epoxy resin>
You may add an epoxy resin to the curable composition of this invention as needed. Epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, bisphenol S type epoxy resin, glycidyl ester type epoxy resin, glycidyl amine type epoxy resin, novolac type epoxy resin, bisphenol A propylene oxide Adduct glycidyl ether type epoxy resin, hydrogenated bisphenol A type (hydrogenated bisphenol A type) epoxy resin, fluorinated epoxy resin, rubber modified epoxy resin containing polybutadiene or NBR, glycidyl ether of tetrabromobisphenol A, etc. Flame retardant epoxy resin, p-oxybenzoic acid glycidyl ether ester type epoxy resin, m-aminophenol type epoxy resin, diaminodiphenylmethane series Xylene resin, urethane-modified epoxy resin having urethane bond, various alicyclic epoxy resins, N, N-diglycidylaniline, N, N-diglycidyl-o-toluidine, triglycidyl isocyanurate, polyalkylene glycol diglycidyl ether, glycerin Examples thereof include glycidyl ethers of polyhydric alcohols, epoxidized products of unsaturated polymers such as hydantoin type epoxy resins, petroleum resins, etc., but are not limited thereto, and are generally used epoxies Resins can be used. These epoxy resins may be used alone or in combination of two or more.

これらのエポキシ樹脂の中でもエポキシ基を一分子中に少なくとも2個有するものが、硬化に際し、反応性が高く硬化物が3次元的網目を作りやすいなどの点から好ましい。   Among these epoxy resins, those having at least two epoxy groups in one molecule are preferable from the viewpoint of high reactivity and easy formation of a three-dimensional network upon curing.

また、本発明のビニル系重合体とエポキシ樹脂との混合物を硬化させた時の硬化物として透明なものを得るためには、該エポキシ樹脂はビニル系重合体と相溶することが好ましく、例えば、水添ビスフェノールA型エポキシ樹脂は各種ビニル系重合体と相溶し易く、透明な硬化物を得易い。   In order to obtain a transparent cured product when the mixture of the vinyl polymer of the present invention and the epoxy resin is cured, the epoxy resin is preferably compatible with the vinyl polymer. Hydrogenated bisphenol A type epoxy resins are easily compatible with various vinyl polymers, and easily obtain a transparent cured product.

ビニル系重合体とエポキシ樹脂の相溶性が良好な組合せの硬化性組成物は、それを硬化させた時に変調構造を取り易く、その結果、透明な硬化物を得易い。更には機械物性も格段に向上することがある。   A curable composition having a combination of good compatibility between the vinyl polymer and the epoxy resin tends to take a modulation structure when cured, and as a result, a transparent cured product is easily obtained. Furthermore, the mechanical properties may be remarkably improved.

例えば、主鎖が、アクリル酸ブチルエステルホモポリマーよりも極性が高いビニル系重合体またはビニル系共重合体と、芳香環を有するエポキシ樹脂との組合せや、ビニル系重合体またはビニル系共重合体と、芳香環を有しないエポキシ樹脂との組合せ等の好ましい組合せが挙げられる。   For example, a combination of a vinyl polymer or vinyl copolymer whose main chain is more polar than butyl acrylate homopolymer and an epoxy resin having an aromatic ring, or a vinyl polymer or vinyl copolymer And a preferable combination such as a combination with an epoxy resin having no aromatic ring.

芳香環を有しないエポキシ樹脂の例としては、特に限定はされないが、脂環式エポキシ樹脂が好ましく、グリシジル基が脂環に直接ついていないエポキシ樹脂がより好ましい。   Although it does not specifically limit as an example of the epoxy resin which does not have an aromatic ring, An alicyclic epoxy resin is preferable and the epoxy resin in which a glycidyl group is not directly attached to an alicyclic ring is more preferable.

主鎖が、アクリル酸ブチルエステルホモポリマーよりも極性が高いビニル系重合体またはビニル系共重合体としては、これに限定されるものではないが、好ましい例として一般式(2)で表される、重合体または共重合体が挙げられる。
−[CH2−CR(COOR’)]m− (2)
(式中、Rは水素、又はメチル基、R’は、同一若しくは異なって、アルコキシアルキル基、または炭素数1〜3のアルキル基である。)
具体的にはアクリル酸エチル/アクリル酸ブチル/アクリル酸2−メトキシエチル(モル比で40〜50/20〜30/30〜20)の共重合体とビスフェノールA型エポキシ樹脂やビスフェノールF型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂等の組合せや、アクリル酸ブチルエステルホモポリマーと水添ビスフェノールA型エポキシ樹脂やヘキサヒドロフタル酸ジグリシジルエステルの組合せ等の好ましい組合せが挙げられるがこれに限定されるものではない。
The vinyl polymer or vinyl copolymer whose main chain is higher in polarity than the butyl acrylate homopolymer is not limited to this, but is represented by the general formula (2) as a preferred example. , Polymers or copolymers.
- [CH 2 -CR (COOR ' )] m - (2)
(In the formula, R is hydrogen or a methyl group, and R ′ is the same or different and is an alkoxyalkyl group or an alkyl group having 1 to 3 carbon atoms.)
Specifically, a copolymer of ethyl acrylate / butyl acrylate / acrylic acid 2-methoxyethyl (molar ratio 40-50 / 20-30 / 30-20) and bisphenol A type epoxy resin or bisphenol F type epoxy resin Preferred combinations include, but are not limited to, combinations of hydrogenated bisphenol A type epoxy resins and the like, and combinations of butyl acrylate acrylate homopolymer and hydrogenated bisphenol A type epoxy resins and hexahydrophthalic acid diglycidyl ester. It is not a thing.

エポキシ樹脂の添加量
エポキシ樹脂を添加する場合の添加量としては、架橋性シリル基を有する重合体とエポキシ樹脂の混合比にして、重量比で100/1〜1/100の範囲が好ましいが、100/5〜5/100の範囲にあることがより好ましく、100/10〜10/100の範囲にあることが更に好ましいが、その混合比は限定されるものではなく、各用途、目的に応じて設定できる。この硬化性組成物はその特性から、線膨張係数の異なる材料の接着や、ヒートサイクルにより繰り返し変位を受けるような部材の接着に用いる弾性接着剤として用いたり、透明な硬化物になる場合はその特性を活かして、下地が見える用途でのコーティング剤等に用いたりすることが出来る。例えば、この弾性接着剤用途ではエポキシ樹脂の混合比は多過ぎると硬化物が硬くなって剥離強度が低下してしまい、少な過ぎると逆に接着強度や耐水性が低下してしまうので、架橋性シリル基を有する重合体100重量部に対し、通常10〜150重量部程度の範囲、好ましくは20〜100重量部の範囲で使用されるのが良い。
Addition amount of epoxy resin As an addition amount when adding an epoxy resin, the mixing ratio of the polymer having a crosslinkable silyl group and the epoxy resin is preferably in the range of 100/1 to 1/100 by weight. More preferably in the range of 100/5 to 5/100, still more preferably in the range of 100/10 to 10/100, but the mixing ratio is not limited and depends on each application and purpose. Can be set. Due to its characteristics, this curable composition can be used as an elastic adhesive for bonding materials with different linear expansion coefficients or for members that are repeatedly displaced by a heat cycle. Taking advantage of its properties, it can be used as a coating agent in applications where the substrate can be seen. For example, in this elastic adhesive application, if the mixing ratio of the epoxy resin is too large, the cured product becomes hard and the peel strength decreases, and if it is too small, the adhesive strength and water resistance decrease conversely, It is usually used in the range of about 10 to 150 parts by weight, preferably in the range of 20 to 100 parts by weight with respect to 100 parts by weight of the polymer having a silyl group.

エポキシ樹脂の硬化触媒・硬化剤
更に必要に応じてエポキシ樹脂用硬化剤を含むことができる。エポキシ樹脂用硬化剤としては、従来公知のものを広く使用することができる。例えば、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ジエチルアミノプロピルアミン、ヘキサメチレンジアミン、メチルペンタメチレンジアミン、トリメチルヘキサメチレンジアミン、グアニジン、テトラメチルグアニジン、オレイルアミン、等の脂肪族アミン類;メンセンジアミン、イソホロンジアミン、ノルボルナンジアミン、ピペリジン、N,N’−ジメチルピペラジン、N−アミノエチルピペラジン、BASF社製ラミロンC−260、CIBA社製Araldit HY−964、ロームアンドハース社製メンセンジアミン、1,2−ジアミノシクロヘキサン、ジアミノジシクロヘキシルメタン、ビス(4−アミノ−3−メチルシクロヘキシル)メタン、ビス(4−アミノシクロヘキシル)メタン、ポリシクロヘキシルポリアミン、1,8−ジアザビシクロ[5,4,0]ウンデセン−7(DBU)等の脂環族アミン類;m−キシリレンジアミン、m−フェニレンジアミン、4、4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルスルホン等の芳香族アミン類;(CH32N(CH2nN(CH32(式中nは1〜10の整数)で示される直鎖状ジアミン、(CH32−N(CH2n−CH3(式中nは0〜10の整数)で示される直鎖第3級アミン、N{(CH2nCH33(式中nは1〜10の整数)で示されるアルキル第3級モノアミン;ベンジルジメチルアミン、2−(ジメチルアミノメチル)フェノール、2,4,6−トリス(ジメチルアミノメチル)フェノール等の脂肪芳香族アミン類;3,9−ビス(3−アミノプロピル)−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン(ATU)、モルホリン、N−メチルモルホリン、ポリオキシプロピレンジアミン、ポリオキシプロピレントリアミン、ポリオキシエチレンジアミン等のエーテル結合を有するアミン類;ジエタノールアミン、トリエタノールアミン等の水酸基含有アミン類;トリエチレンジアミン、ピリジン、ピコリン、ジアザビシクロウンデセン、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水ベンゾフェノンテトラカルボン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、ドデシル無水コハク酸等の酸無水物類;ダイマー酸にジエチレントリアミンやトリエチレンテトラミン等のポリアミンを反応させて得られるポリアミドや各種ポリアミド樹脂、ダイマー酸以外のポリカルボン酸を使ったポリアミド等のポリアミドアミン類;2−エチル−4−メチルイミダゾール等の各種イミダゾール類;ジシアンジアミドおよびその誘導体;ポリオキシプロピレン系ジアミン,ポリオキシプロピレン系トリアミン等のポリオキシプロピレン系アミン類;フェノール類;上記アミン類にエポキシ化合物を反応させて得られるエポキシ変性アミン、上記アミン類にホルマリン、フェノール類を反応させて得られるマンニッヒ変性アミン、マイケル付加変性アミン、アミン化合物とカルボニル化合物との縮合反応により得られるケチミンといった変性アミン類;2,4,6−トリス(ジメチルアミノメチル)フェノールの2−エチルヘキサン酸塩等のアミン塩;N−(β−アミノエチル)−γ−アミノプロピルトリメトキシシランなどの一分子中にアミノ基と加水分解性シリル基を有する化合物等が挙げられる。ケチミン化合物の具体例としては例えば特開平7−242737号公報などが挙げられる。
Epoxy resin curing catalyst / curing agent If necessary, a curing agent for epoxy resin can be included. A conventionally well-known thing can be widely used as a hardening | curing agent for epoxy resins. For example, aliphatic amines such as ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, diethylaminopropylamine, hexamethylenediamine, methylpentamethylenediamine, trimethylhexamethylenediamine, guanidine, tetramethylguanidine, oleylamine; Diamine, isophorone diamine, norbornane diamine, piperidine, N, N′-dimethylpiperazine, N-aminoethylpiperazine, BASF Ramilon C-260, CIBA Araldit HY-964, Rohm and Haas Mensendiamine, , 2-diaminocyclohexane, diaminodicyclohexylmethane, bis (4-amino-3-methylcyclohexyl) methane, bis (4-aminocycline) Hexyl) alicyclic amines such as methane, polycyclohexylpolyamine, 1,8-diazabicyclo [5,4,0] undecene-7 (DBU); m-xylylenediamine, m-phenylenediamine, 4, 4′- Aromatic amines such as diaminodiphenylmethane, 4,4′-diaminodiphenylsulfone; (CH 3 ) 2 N (CH 2 ) n N (CH 3 ) 2 (where n is an integer of 1 to 10) A linear tertiary amine represented by a chain diamine, (CH 3 ) 2 —N (CH 2 ) n —CH 3 (where n is an integer of 0 to 10), N {(CH 2 ) n CH 3 } 3 (wherein n is an integer from 1 to 10) alkyl tertiary monoamines; fats such as benzyldimethylamine, 2- (dimethylaminomethyl) phenol, 2,4,6-tris (dimethylaminomethyl) phenol Aromatic Mines; 3,9-bis (3-aminopropyl) -2,4,8,10-tetraoxaspiro [5,5] undecane (ATU), morpholine, N-methylmorpholine, polyoxypropylenediamine, polyoxy Amines having ether bonds such as propylenetriamine and polyoxyethylenediamine; hydroxyl-containing amines such as diethanolamine and triethanolamine; triethylenediamine, pyridine, picoline, diazabicycloundecene, phthalic anhydride, trimellitic anhydride, anhydrous Acid anhydrides such as pyromellitic acid, benzophenone anhydride tetracarboxylic acid, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, hexahydrophthalic anhydride, dodecyl succinic anhydride; diethylenetriamine as dimer acid Polyamides obtained by reacting polyamines such as triethylenetetramine, various polyamide resins, polyamide amines such as polyamides using polycarboxylic acids other than dimer acid; various imidazoles such as 2-ethyl-4-methylimidazole; dicyandiamide And derivatives thereof; polyoxypropylene-based amines such as polyoxypropylene-based diamine and polyoxypropylene-based triamine; phenols; epoxy-modified amine obtained by reacting an epoxy compound with the above amines; Modified amines such as Mannich modified amine, Michael addition modified amine, ketimine obtained by condensation reaction of amine compound and carbonyl compound; 2,4,6-tris (dimethylaminomethyl) Examples include amine salts such as 2-ethylhexanoate of phenol; compounds having an amino group and a hydrolyzable silyl group in one molecule such as N- (β-aminoethyl) -γ-aminopropyltrimethoxysilane. . Specific examples of the ketimine compound include, for example, JP-A-7-242737.

これらの硬化剤は、単独で用いてもよく2種以上併用してもよい。特に限定はされないが、これらエポキシ樹脂用硬化剤の中では、硬化性や物性バランスの点から、2,4,6−トリス(ジメチルアミノメチル)フェノールやポリオキシプロピレン系ジアミンが好ましい。   These curing agents may be used alone or in combination of two or more. Although not particularly limited, among these curing agents for epoxy resins, 2,4,6-tris (dimethylaminomethyl) phenol and polyoxypropylene-based diamine are preferable from the viewpoint of curability and physical property balance.

斯かるエポキシ樹脂用硬化剤は、エポキシ樹脂の配合量にもよるが、架橋性シリル基を有する重合体100重量部に対し、通常1〜60重量部程度の範囲、好ましくは2〜50重量部程度の範囲で使用されるのが良い。1重量部未満ではエポキシ樹脂の硬化が不十分となり接着強度が低下する。また、60重量部を超えると界面へのブリード等が起こって接着性が低下し好ましくない。   Such a curing agent for epoxy resins is usually in the range of about 1 to 60 parts by weight, preferably 2 to 50 parts by weight with respect to 100 parts by weight of the polymer having a crosslinkable silyl group, depending on the amount of the epoxy resin. It is good to be used within a range. If it is less than 1 part by weight, the epoxy resin is insufficiently cured and the adhesive strength is lowered. On the other hand, when the amount exceeds 60 parts by weight, bleeding to the interface occurs and the adhesiveness is lowered, which is not preferable.

またこの硬化性樹脂組成物に、重合体(I)の架橋性シリル基とエポキシ樹脂のエポキシ基の両方に反応可能な基を有する化合物を添加すると強度がより向上するので好ましい。その具体例としては、例えばN−(β−アミノエチル)−γ−アミノプロピルトリメトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルトリエトキシシラン、γ−グリシドキシプロピルトリメトキシシランなどが挙げられる。   In addition, it is preferable to add a compound having a group capable of reacting to both the crosslinkable silyl group of the polymer (I) and the epoxy group of the epoxy resin to the curable resin composition because the strength is further improved. Specific examples thereof include N- (β-aminoethyl) -γ-aminopropyltrimethoxysilane, N- (β-aminoethyl) -γ-aminopropyltriethoxysilane, and γ-glycidoxypropyltrimethoxysilane. Etc.

<相溶化剤>
本発明の硬化性組成物には、相溶化剤を添加することができる。このような添加物の具体例は、たとえば、特開2001−329025の明細書に記載されている複数のビニル系モノマーの共重合体等が使用できる。
<Compatibilizer>
A compatibilizing agent can be added to the curable composition of the present invention. As specific examples of such additives, for example, copolymers of a plurality of vinyl monomers described in the specification of JP-A-2001-329025 can be used.

<分子中にα,βジオール構造又はα,γジオール構造を有する化合物>
本発明の硬化性組成物に含有される分子中にα,βジオール構造又はα,γジオール構造を有する化合物を添加しても構わない。α,βジオール構造又はα,γジオール構造を有する化合物としては、一般によく知られたものが利用できる。なお、本明細書中、上記α,βジオール構造は、隣接する炭素原子に2つの水酸基を有する構造を表し、上記α,γジオール構造は、一つおいて隣り合う炭素原子に2つの水酸基を有する構造を表し、また、グリセリン等に代表されるように、α,βジオール構造とα,γジオール構造の両方、ないしは何れかの構造を含むトリオールやテトラオール等のポリオールも含む。
<Compound having an α, β diol structure or an α, γ diol structure in the molecule>
A compound having an α, β diol structure or an α, γ diol structure may be added to the molecule contained in the curable composition of the present invention. As the compound having an α, β diol structure or an α, γ diol structure, generally well-known compounds can be used. In the present specification, the α, β diol structure represents a structure having two hydroxyl groups at adjacent carbon atoms, and the α, γ diol structure has two hydroxyl groups at adjacent carbon atoms. In addition, as represented by glycerin and the like, both α and β diol structures and α and γ diol structures, or polyols such as triols and tetraols containing either structure are also included.

上記分子中にα,βジオール構造又はα,γジオール構造を有する化合物としては特に限定されず、例えば、エチレングリコール、プロピレングリコール、1,3−プロパンジオール、1,2−ブタンジオール、1,3−ブタンジオール、2,3−ブタンジオール、ピナコール、2,2−ジメチル−1,3−プロパンジオール、2−メチル−2−ヒドロキシメチル−1,3−プロパンジオール等のジオール類;グリセリン、1,2,6−ヘキサントリオール、1,1,1−トリス(ヒドロキシメチル)プロパン、2,2−ビス(ヒドロキシメチル)ブタノール等のトリオール類;ペンタエリスリトール、D−ソルビトール、D−マンニトール、ジグリセリン、ポリグリセリン等の4価以上のポリオール類;グリセリンモノステアレート、グリセリンモノイソステアレート、グリセリンモノオレエート、グリセリンモノラウレート、グリセリンモノパルミテート、グリセリンモノカプリレート、グリセリンモノアセテート、グリセリンモノベヘネート等のグリセリンモノカルボン酸エステル類;
ジグリセリンモノステアレート、ジグリセリンモノオレエート、ジグリセリンモノラウレート、テトラグリセリンモノステアレート、テトラグリセリンモノオレエート、テトラグリセリンモノラウレート、テトラグリセリンジステアレート、テトラグリセリンジオレエート、テトラグリセリンジラウレート、デカグリセリンモノステアレート、デカグリセリンモノオレエート、デカグリセリンモノラウレート、デカグリセリンジステアレート、デカグリセリンジオレエート、デカグリセリンジラウレート等のポリグリセリンカルボン酸エステル類;ペンタエリスリトールモノステアレート、ペンタエリスリトールモノイソステアレート、ペンタエリスリトールモノオレエート、ペンタエリスリトールモノラウレート等のペンタエリスリトールモノカルボン酸エステル類;ペンタエリスリトールジステアレート、ペンタエリスリトールジオレエート、ペンタエリスリトールジラウレート等のペンタエリスリトールジカルボン酸エステル類;
ソルビタンモノステアレート、ソルビタンモノオレエート、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノベヘネート等のソルビタンモノカルボン酸エステル類;ソルビタンジステアレート、ソルビタンジオレエート、ソルビタンジラウレート、ソルビタンジパルミテート、ソルビタンジベヘネート等のソルビタンジカルボン酸エスエル類;グリセリンモノステアリルエーテル、グリセリンモノオレイルエーテル、グリセリンモノラウリルエーテル、グリセリンモノ−2−エチルヘキシルエーテル等のグリセリンモノアルキルエーテル類;ジグリセリンモノステアリルエーテル、ジグリセリンモノオレイルエーテル、ジグリセリンモノラウリルエーテル、テトラグリセリンモノステアリルエーテル、テトラグリセリンモノオレイルエーテル、テトラグリセリンモノラウリルエーテル、テトラグリセリンジステアリルエーテル、テトラグリセリンジオレイルエーテル、テトラグリセリンジラウリルエーテル、デカグリセリンモノステアリルエーテル、デカグリセリンモノオレイルエーテル、デカグリセリンモノラウリルエーテル、デカグリセリンジステアリルエーテル、デカグリセリンジオレイルエーテル、デカグリセリンジラウリルエーテル等のポリグリセリンアルキルエーテル類;
ペンタエリスリトールモノステアリルエーテル、ペンタエリスリトールモノオレイルエーテル、ペンタエリスリトールモノラウリルエーテル等のペンタエリスリトールモノアルキルエーテル類;ペンタエリスリトールジステアリルエーテル、ペンタエリスリトールジオレイルエーテル、ペンタエリスリトールジラウリルエーテル等のペンタエリスリトールジアルキルエーテル類;ソルビタンモノステアリルエーテル、ソルビタンモノオレイルエーテル、ソルビタンモノラウリルエーテル等のソルビタンモノアルキルエーテル類;ソルビタンジステアリルエーテル、ソルビタンジオレイルエーテル、ソルビタンジラウリルエーテル等のソルビタンジアルキルエーテル類等を挙げることができる。
The compound having an α, β diol structure or an α, γ diol structure in the molecule is not particularly limited. For example, ethylene glycol, propylene glycol, 1,3-propanediol, 1,2-butanediol, 1,3 Diols such as butanediol, 2,3-butanediol, pinacol, 2,2-dimethyl-1,3-propanediol, 2-methyl-2-hydroxymethyl-1,3-propanediol; glycerin, 1, Triols such as 2,6-hexanetriol, 1,1,1-tris (hydroxymethyl) propane, 2,2-bis (hydroxymethyl) butanol; pentaerythritol, D-sorbitol, D-mannitol, diglycerin, poly Tetravalent or higher polyols such as glycerin; glycerin monostearate, glyce Emissions monoisostearate, glycerin monooleate, glycerin monolaurate, glycerin monopalmitate, glycerin monocaprylate, glycerin monoacetate, glycerin monocarboxylic acid esters such as glycerin monobehenate;
Diglycerol monostearate, diglycerol monooleate, diglycerol monolaurate, tetraglycerol monostearate, tetraglycerol monooleate, tetraglycerol monolaurate, tetraglycerol distearate, tetraglycerol dioleate, tetraglycerol Polyglycerol carboxylates such as dilaurate, decaglycerol monostearate, decaglycerol monooleate, decaglycerol monolaurate, decaglycerol distearate, decaglycerol dioleate, decaglycerol dilaurate; pentaerythritol monostearate, Pentaerythritol such as pentaerythritol monoisostearate, pentaerythritol monooleate, pentaerythritol monolaurate Nokarubon esters; pentaerythritol distearate, pentaerythritol dioleate, pentaerythritol dicarboxylic acid esters such as pentaerythritol dilaurate;
Sorbitan monocarboxylic esters such as sorbitan monostearate, sorbitan monooleate, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monobehenate; sorbitan distearate, sorbitan dioleate, sorbitan dilaurate, sorbitan dipalmitate Sorbitan dicarboxylic acid esters such as sorbitan dibehenate; glycerol monoalkyl ethers such as glycerol monostearyl ether, glycerol monooleyl ether, glycerol monolauryl ether, glycerol mono-2-ethylhexyl ether; diglycerol monostearyl ether, di Glycerol monooleyl ether, diglycerin monolauryl ether, tetraglycerin monostearyl ether, tetraglyceride Monooleyl ether, tetraglycerin monolauryl ether, tetraglycerin distearyl ether, tetraglycerin dioleyl ether, tetraglycerin dilauryl ether, decaglycerin monostearyl ether, decaglycerin monooleyl ether, decaglycerin monolauryl ether, decaglycerin di Polyglycerin alkyl ethers such as stearyl ether, decaglycerin dioleyl ether, decaglycerin dilauryl ether;
Pentaerythritol monoalkyl ethers such as pentaerythritol monostearyl ether, pentaerythritol monooleyl ether and pentaerythritol monolauryl ether; pentaerythritol dialkyl ethers such as pentaerythritol distearyl ether, pentaerythritol dioleyl ether and pentaerythritol dilauryl ether Sorbitan monoalkyl ethers such as sorbitan monostearyl ether, sorbitan monooleyl ether, sorbitan monolauryl ether; sorbitan dialkyl ethers such as sorbitan distearyl ether, sorbitan dioleyl ether, sorbitan dilauryl ether, and the like.

上記化合物の多くは、乳化剤、界面活性剤、分散剤、消泡剤、防曇剤、可溶化剤、増粘剤、滑剤として汎用のものが多く、容易に入手できる。   Many of the above compounds are readily available as many general-purpose compounds such as emulsifiers, surfactants, dispersants, antifoaming agents, antifogging agents, solubilizers, thickeners, and lubricants.

上記の化合物は、単独で使用してもよいし2種以上併用してもよい。上記の化合物の使用量は、架橋性シリル基を有する重合体100重量部に対し、0.01〜100重量部が好ましい。0.01重量部未満であると、目的とする効果が得られず、100重量部を超えると、硬化物の機械的強度が不足するという問題点を生じるため好ましくない。より好ましくは、0.1〜20重量部である。   The above compounds may be used alone or in combination of two or more. The amount of the compound used is preferably 0.01 to 100 parts by weight with respect to 100 parts by weight of the polymer having a crosslinkable silyl group. If the amount is less than 0.01 parts by weight, the intended effect cannot be obtained. If the amount exceeds 100 parts by weight, the mechanical strength of the cured product is insufficient, which is not preferable. More preferably, it is 0.1-20 weight part.

<その他の添加剤>
本発明の硬化性組成物には、硬化性組成物又は硬化物の諸物性の調整を目的として、必要に応じて各種添加剤を添加してもよい。このような添加物の例としては、たとえば、難燃剤、硬化性調整剤、金属不活性化剤、オゾン劣化防止剤、リン系過酸化物分解剤、滑剤、顔料、発泡剤などがあげられる。これらの各種添加剤は単独で用いてもよく、2種類以上を併用してもよい。
<Other additives>
Various additives may be added to the curable composition of the present invention as necessary for the purpose of adjusting various physical properties of the curable composition or the cured product. Examples of such additives include flame retardants, curability modifiers, metal deactivators, ozone degradation inhibitors, phosphorus peroxide decomposers, lubricants, pigments, foaming agents and the like. These various additives may be used alone or in combination of two or more.

このような添加物の具体例は、たとえば、特公平4−69659号、特公平7−108928号、特開昭63−254149号、特開昭64−22904号の各明細書などに記載されている。   Specific examples of such additives are described in, for example, the specifications of JP-B-4-69659, JP-B-7-108928, JP-A-63-254149, and JP-A-64-22904. Yes.

本発明の硬化性組成物は、実質的に無溶剤で使用できる。作業性の観点等から溶剤を使用しても構わないが、環境への影響から使用しないことが望ましい。   The curable composition of the present invention can be used substantially without a solvent. Although a solvent may be used from the viewpoint of workability and the like, it is desirable not to use it because of environmental influences.

本発明の硬化性組成物は、すべての配合成分を予め配合密封保存し、塗布後空気中の湿気により硬化する1成分型として調製しても良く、架橋性シリル基を有する重合体とその硬化剤・硬化触媒を別々にして、別途、充填材、可塑剤、水等の成分を配合しておき、該配合材を使用前に混合する2成分型として調整しても良い。   The curable composition of the present invention may be prepared as a one-component type in which all compounding components are preliminarily blended and stored and cured by moisture in the air after coating, and a polymer having a crosslinkable silyl group and its curing Separately, a component such as a filler, a plasticizer, and water may be added separately from the agent and the curing catalyst, and the mixture may be adjusted as a two-component type that is mixed before use.

例えば、限定はされないが、A剤として、架橋性シリル基を有する重合体等を調整し、B剤として、架橋性シリル基を有する重合体の硬化触媒としての錫化合物、水等を調整しておき、塗布直前に上記のA剤とB剤を混合して使用することも可能である。   For example, but not limited to, as an agent A, a polymer having a crosslinkable silyl group is adjusted, and as a agent B, a tin compound as a curing catalyst for a polymer having a crosslinkable silyl group, water, etc. is adjusted. In addition, the above-mentioned A agent and B agent can be mixed and used immediately before application.

1成分型にすると、塗布の際に混合・混練する手間が不要となり、同時にその際に生じる計量ミス(混合比の間違い)もなくなるため、硬化不良等のミスを防ぐことができる。   In the case of the one-component type, there is no need for mixing and kneading at the time of application, and at the same time, there is no weighing error (mixing ratio error), and thus errors such as poor curing can be prevented.

<硬化性組成物の硬化前の粘度>
硬化性樹脂組成物は、室温における硬化前の粘度が30Pa.s以上の流動性を有するが比較的高粘度な樹脂組成物を塗布することが好ましい。硬化前の粘度が30Pa.s未満程度の低粘度であると、塗布後に発熱体と放熱体との間の硬化物が流失してしまう等して、塗布時の作業性が低下してしまうという課題が生じる。硬化前の粘度は好ましくは40Pa.s以上、より好ましくは50Pa.s以上である。硬化前の粘度は、23℃/50%RH雰囲気下でBS型粘度計を用いて2rpmの条件で測定した値を用いる。硬化前の粘度の上限値に特に制限は無いが、あまり粘度が高すぎると、塗布が困難となったり、塗布時に空気を巻き込んでしまい熱伝導性を低下させる一因となったりする場合があるため、一般的には3000Pa.s以下、好ましくは2000Pa.s以下のものが用いられる。
<Viscosity before curing of curable composition>
The curable resin composition has a viscosity before curing at room temperature of 30 Pa.s. It is preferable to apply a resin composition having fluidity of s or more but relatively high viscosity. The viscosity before curing is 30 Pa. If the viscosity is less than about s, the cured product between the heating element and the heat radiating body will be washed away after application, resulting in a problem that workability during application is reduced. The viscosity before curing is preferably 40 Pa. s or more, more preferably 50 Pa. s or more. As the viscosity before curing, a value measured under the condition of 2 rpm using a BS type viscometer in an atmosphere of 23 ° C./50% RH is used. The upper limit of the viscosity before curing is not particularly limited, but if the viscosity is too high, application may be difficult, or air may be entrained during application, which may cause a decrease in thermal conductivity. Therefore, in general, 3000 Pa. s or less, preferably 2000 Pa.s. Those below s are used.

<<使用法、用途>>
本発明の組成物は、発熱材料とヒートスプレッダー、ヒートスプレッダーと冷却部材、との間にある熱を伝えるサーマルインターフェイスとして用いることが出来る。また、ヒートスプレッダー自身としても使用可能である。発熱材料としては、特に限定はされないが、発熱性のあるヒーター、温度センサ、演算素子、トランジスタ、発光素子などの電子部品等が挙げられる。冷却部材としては、特に限定はされないが、放熱材料として放熱フィン等のヒートシンク等、グラファイトシート(グラファイトフィルム)、液体セラミックスやペルチェ素子等が挙げられる。これらの発熱材料からの熱を冷却部材等に放散させる熱伝導性材料として好適に用いられるものであり、放熱材料自身として用いても構わないということである。また、ヒートスプレッダーと冷却部材を兼ねても構わない。また最近では携帯電話内の薄型基盤チップ上のシール材やシールド缶内へ充填し放熱用材料としても使用可能である。
<< Usage and usage >>
The composition of the present invention can be used as a thermal interface that transfers heat between the heat generating material and the heat spreader, or between the heat spreader and the cooling member. It can also be used as a heat spreader itself. Although it does not specifically limit as a heat-generating material, Electronic components, such as a heater with a heat_generation | fever, a temperature sensor, an arithmetic element, a transistor, and a light emitting element, etc. are mentioned. The cooling member is not particularly limited, and examples of the heat radiating material include a heat sink such as a heat radiating fin, a graphite sheet (graphite film), liquid ceramics, a Peltier element, and the like. It is preferably used as a thermally conductive material that dissipates heat from these heat generating materials to a cooling member or the like, and may be used as the heat radiating material itself. Moreover, you may serve as a heat spreader and a cooling member. Recently, it can also be used as a heat dissipation material by filling a sealing material on a thin base chip in a mobile phone or a shielding can.

本発明の組成物は、ビニル系重合体をベース樹脂として用いることから、耐熱性、耐候性、耐薬品性、耐水性に優れるため、過酷な使用に耐え得るものである。また、電気絶縁性のフィラーを主体に使用する場合は電気絶縁性にも優れ、電気絶縁性が求められる部位に使用できる。一方、電気導電性のフィラーを主体に使用する場合には、電気導電性に優れ、電気導電性が求められる部位にも使用できる。   Since the composition of the present invention uses a vinyl polymer as a base resin, it is excellent in heat resistance, weather resistance, chemical resistance and water resistance, and can withstand severe use. In addition, when an electrically insulating filler is mainly used, it is excellent in electrical insulation and can be used in a site where electrical insulation is required. On the other hand, when an electrically conductive filler is mainly used, it is excellent in electrical conductivity and can also be used in a site where electrical conductivity is required.

更に、本発明の組成物は、発熱体と放熱体との間に塗布した後、発熱体と放熱体との間にて硬化させてなるものであるため、これら発熱材料や放熱材料との密着性に優れ、多少の凹凸があっても充分に熱を伝えることが可能である。   Furthermore, since the composition of the present invention is applied between the heat generating body and the heat radiating body and then cured between the heat generating body and the heat radiating body, it is in close contact with these heat generating materials and heat radiating materials. It has excellent properties and can sufficiently transfer heat even with some unevenness.

熱伝導性を活かした用途として限定はされないが、環状シロキサンによる接点障害が起きないため、携帯電話やパソコンなどの小型電子機器に特に好適である。更に、自動車や家電等の電気・電子部品材料、電線・ケーブル用絶縁被覆材などの電気絶縁材料、電気電子用ポッティング剤等の様々な用途に利用可能である。   Although it is not limited as a use utilizing thermal conductivity, it is particularly suitable for a small electronic device such as a mobile phone or a personal computer because a contact failure due to cyclic siloxane does not occur. Furthermore, it can be used for various applications such as electric and electronic component materials such as automobiles and home appliances, electric insulating materials such as insulating coating materials for electric wires and cables, and potting agents for electric and electronic devices.

以下に、本発明の具体的な実施例を比較例と併せて説明するが、本発明は、下記実施例に限定されるものではない。   Specific examples of the present invention will be described below together with comparative examples, but the present invention is not limited to the following examples.

下記合成例、実施例および比較例中「部」および「%」は、それぞれ「重量部」および「重量%」を表す。   In the following synthesis examples, examples and comparative examples, “part” and “%” represent “part by weight” and “% by weight”, respectively.

本発明における重合体の合成例を以下に示した。   Synthesis examples of the polymer in the present invention are shown below.

下記合成例中、「数平均分子量」および「分子量分布(重量平均分子量と数平均分子量の比)」は、ゲルパーミエーションクロマトグラフィー(GPC)を用いた標準ポリスチレン換算法により算出した。ただし、GPCカラムとしてポリスチレン架橋ゲルを充填したもの(shodex GPC K−804;昭和電工製)、GPC溶媒としてクロロホルムを用いた。   In the following synthesis examples, “number average molecular weight” and “molecular weight distribution (ratio of weight average molecular weight to number average molecular weight)” were calculated by a standard polystyrene conversion method using gel permeation chromatography (GPC). However, a GPC column packed with polystyrene cross-linked gel (shodex GPC K-804; manufactured by Showa Denko) and chloroform as a GPC solvent were used.

(合成例1)
数平均分子量約2,000のポリオキシプロピレンジオールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキシドの重合を行い、数平均分子量25,500(送液システムとして東ソー製HLC−8120GPCを用い、カラムは東ソー製TSK−GEL Hタイプを用い、溶媒はTHFを用いて測定したポリスチレン換算値)のポリプロピレンオキシドを得た。続いて、この水酸基末端ポリプロピレンオキシドの水酸基に対して1.2倍当量のNaOMeメタノール溶液を添加してメタノールを留去し、更に塩化アリルを添加して末端の水酸基をアリル基に変換した。未反応の塩化アリルを減圧脱揮により除去した。得られた未精製のアリル基末端ポリプロピレンオキシド100重量部に対し、n−ヘキサン300重量部と、水300重量部を混合攪拌した後、遠心分離により水を除去し、得られたヘキサン溶液に更に水300重量部を混合攪拌し、再度遠心分離により水を除去した後、ヘキサンを減圧脱揮により除去した。以上により、末端がアリル基である数平均分子量約25,500の2官能ポリプロピレンオキシドを得た。
(Synthesis Example 1)
Polyoxypropylene diol having a number average molecular weight of about 2,000 is used as an initiator, and propylene oxide is polymerized with a zinc hexacyanocobaltate glyme complex catalyst. A TOS-GEL H type manufactured by Tosoh was used as the column, and a polypropylene oxide (polystyrene equivalent value measured using THF) was obtained as the solvent. Subsequently, a 1.2-fold equivalent NaOMe methanol solution was added to the hydroxyl group of the hydroxyl group-terminated polypropylene oxide to distill off the methanol, and allyl chloride was added to convert the terminal hydroxyl group into an allyl group. Unreacted allyl chloride was removed by vacuum devolatilization. After mixing and stirring 300 parts by weight of n-hexane and 300 parts by weight of water with respect to 100 parts by weight of the obtained unpurified allyl group-terminated polypropylene oxide, water was removed by centrifugation, and the resulting hexane solution was further added. 300 parts by weight of water was mixed and stirred, and after removing water again by centrifugation, hexane was removed by vacuum devolatilization. Thus, a bifunctional polypropylene oxide having a number average molecular weight of about 25,500 having an allyl group at the end was obtained.

得られたアリル末端ポリプロピレンオキシド100重量部に対し、触媒として白金含量3wt%の白金ビニルシロキサン錯体イソプロパノール溶液150ppmを添加して、トリメトキシシラン0.95重量部と90℃で5時間反応させ、トリメトキシシリル基末端ポリオキシプロピレン系重合体(I−2)を得た。上記と同様、1H−NMRの
測定の結果、末端のトリメトキシシリル基は1分子あたり平均して1.3個であった。
To 100 parts by weight of the obtained allyl-terminated polypropylene oxide, 150 ppm of a platinum vinylsiloxane complex isopropanol solution having a platinum content of 3 wt% was added as a catalyst, and reacted with 0.95 parts by weight of trimethoxysilane at 90 ° C. for 5 hours. A methoxysilyl group-terminated polyoxypropylene polymer (I-2) was obtained. As described above, 1H-NMR measurement showed that the number of terminal trimethoxysilyl groups was 1.3 on average per molecule.

(合成例2) 架橋性シリル基を有するポリ(アクリル酸−n−ブチル/アクリル酸エチル/アクリル酸2−メトキシエチル)共重合体の合成例
窒素雰囲気下、250L反応機にCuBr(1.21kg)、アセトニトリル(10.8kg)、アクリル酸ブチル(7.19kg)、アクリル酸エチル(10.3kg)、アクリル酸2−メトキシエチル(8.47kg)及び2,5−ジブロモアジピン酸ジエチル(3.37kg)を加え、70〜80℃で30分程度撹拌した。これにペンタメチルジエチレントリアミンを加え、反応を開始した。反応開始30分後から2時間かけて、アクリル酸ブチル(28.8kg)、アクリル酸エチル(41.3kg)、アクリル酸2−メトキシエチル(33.9kg)の混合物を連続的に追加した。反応途中ペンタメチルジエチレントリアミンを適宜添加し、内温70℃〜90℃となるようにした。ここまでで使用したペンタメチルジエチレントリアミン総量は243gであった。反応開始から4時間後、80℃で減圧下、加熱攪拌することにより揮発分を除去した。これにアセトニトリル(32.5kg)、1,7−オクタジエン(30.9kg)、ペンタメチルジエチレントリアミン(486g)を添加して4時間撹拌を続けた。混合物を80℃で減圧下、加熱攪拌して揮発分を除去した。
Synthesis Example 2 Synthesis Example of Poly (n-butyl acrylate / ethyl acrylate / 2-methoxyethyl acrylate) copolymer having a crosslinkable silyl group CuBr (1.21 kg) in a 250 L reactor under a nitrogen atmosphere ), Acetonitrile (10.8 kg), butyl acrylate (7.19 kg), ethyl acrylate (10.3 kg), 2-methoxyethyl acrylate (8.47 kg) and diethyl 2,5-dibromoadipate (3. 37 kg) was added and stirred at 70-80 ° C. for about 30 minutes. To this was added pentamethyldiethylenetriamine to initiate the reaction. A mixture of butyl acrylate (28.8 kg), ethyl acrylate (41.3 kg), and 2-methoxyethyl acrylate (33.9 kg) was continuously added over 2 hours after 30 minutes from the start of the reaction. During the reaction, pentamethyldiethylenetriamine was appropriately added so that the internal temperature became 70 ° C to 90 ° C. The total amount of pentamethyldiethylenetriamine used so far was 243 g. Four hours after the start of the reaction, volatile components were removed by heating and stirring at 80 ° C. under reduced pressure. Acetonitrile (32.5 kg), 1,7-octadiene (30.9 kg) and pentamethyldiethylenetriamine (486 g) were added thereto, and stirring was continued for 4 hours. The mixture was heated and stirred at 80 ° C. under reduced pressure to remove volatile components.

この濃縮物にトルエンを加え、重合体を溶解させた後、ろ過助剤として珪藻土、吸着剤として珪酸アルミ、ハイドロタルサイトを加え、酸素窒素混合ガス雰囲気下(酸素濃度6%)、加熱攪拌した。混合液中の固形分をろ過で除去し、ろ液を内温100℃で減圧下、加熱攪拌して揮発分を除去した。   Toluene was added to this concentrate to dissolve the polymer, diatomaceous earth was added as a filter aid, aluminum silicate and hydrotalcite were added as adsorbents, and the mixture was heated and stirred in an oxygen-nitrogen mixed gas atmosphere (oxygen concentration 6%). . The solid content in the mixed solution was removed by filtration, and the filtrate was heated and stirred at an internal temperature of 100 ° C. under reduced pressure to remove volatile components.

更にこの濃縮物に吸着剤として珪酸アルミ、ハイドロタルサイト、熱劣化防止剤を加え、減圧下、加熱攪拌した(平均温度約175℃、減圧度10Torr以下)。   Furthermore, aluminum silicate, hydrotalcite, and a heat deterioration inhibitor were added as adsorbents to this concentrate, and the mixture was heated and stirred under reduced pressure (average temperature of about 175 ° C., reduced pressure of 10 Torr or less).

更に吸着剤として珪酸アルミ、ハイドロタルサイトを追加し、酸化防止剤を加え、酸素窒素混合ガス雰囲気下(酸素濃度6%)、加熱攪拌した。   Furthermore, aluminum silicate and hydrotalcite were added as adsorbents, an antioxidant was added, and the mixture was heated and stirred in an oxygen-nitrogen mixed gas atmosphere (oxygen concentration 6%).

この濃縮物にトルエンを加え、重合体を溶解させた後、混合液中の固形分をろ過で除去し、ろ液を減圧下加熱攪拌して揮発分を除去し、アルケニル基を有する重合体を得た。   Toluene was added to this concentrate to dissolve the polymer, and then the solid content in the mixed solution was removed by filtration. The filtrate was heated and stirred under reduced pressure to remove volatile matter, and the polymer having an alkenyl group was removed. Obtained.

このアルケニル基を有する重合体、ジメトキシメチルシラン(アルケニル基に対して2.0モル当量)、オルトギ酸メチル(アルケニル基に対して1.0モル当量)、白金触媒[ビス(1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン)白金錯体触媒のキシレン溶液:以下白金触媒という](白金として重合体1kgに対して10mg)を混合し、窒素雰囲気下、100℃で加熱攪拌した。アルケニル基が消失したことを確認し、反応混合物を濃縮して末端にジメトキシシリル基を有するポリ(アクリル酸−n−ブチル/アクリル酸エチル/アクリル酸2−メトキシエチル)共重合体[P1]を得た。得られた共重合体の数平均分子量は約18000、分子量分布は1.2であった。共重合体1分子当たりに導入された平均のシリル基の数を1H NMR分析により求めたところ、約1.9個であった。 Polymer having this alkenyl group, dimethoxymethylsilane (2.0 molar equivalents relative to alkenyl group), methyl orthoformate (1.0 molar equivalents relative to alkenyl group), platinum catalyst [bis (1,3-divinyl -1,1,3,3-tetramethyldisiloxane) platinum complex catalyst xylene solution: hereinafter referred to as platinum catalyst] (10 mg as platinum relative to 1 kg of polymer) is mixed and heated and stirred at 100 ° C. in a nitrogen atmosphere. did. After confirming the disappearance of the alkenyl group, the reaction mixture was concentrated to obtain a poly (n-butyl acrylate / ethyl acrylate / 2-methoxyethyl acrylate) copolymer [P1] having a dimethoxysilyl group at the terminal. Obtained. The number average molecular weight of the obtained copolymer was about 18000, and the molecular weight distribution was 1.2. When the average number of silyl groups introduced per molecule of the copolymer was determined by 1 H NMR analysis, it was about 1.9.

(実施例1)
合成例1で得られた重合体:50重量部、合成例2で得られた重合体:50重量部、可塑剤W−7010(DIC製)):95重量部、酸化防止剤Irganox1010(BASF製):1重量部、熱伝導性充填材BF083(水酸化アルミナニウム、日本軽金属製):440重量部、酸化亜鉛1種(堺化学工業製)):108重量部を手混ぜで十分攪拌混練した後に、5L二軸バタフライミキサーを用いて加熱混練しながら真空脱水した。脱水完了後に冷却し、貯蔵安定性改良剤DMA:(田岡化学工業製)5重量部、脱水剤A171(モメンティブパフォーマンスマテリアル製):2重量部、硬化触媒ネオデカン酸錫U−50(日東化成製)):4重量部、バーサチック10(ヘキシオンスペシャルティケミカルズ製):4重量部と混合し、1液型硬化性樹脂組成物を得た。評価結果を表−1に示す。
Example 1
Polymer obtained in Synthesis Example 1: 50 parts by weight, polymer obtained in Synthesis Example 2: 50 parts by weight, plasticizer W-7010 (manufactured by DIC): 95 parts by weight, antioxidant Irganox 1010 (manufactured by BASF) ): 1 part by weight, heat conductive filler BF083 (alumina hydroxide, made by Nippon Light Metal): 440 parts by weight, zinc oxide type 1 (manufactured by Sakai Chemical Industry)): 108 parts by weight were sufficiently stirred and kneaded. Later, vacuum dehydration was performed while heating and kneading using a 5 L biaxial butterfly mixer. Cooled after completion of dehydration, storage stability improver DMA: (manufactured by Taoka Chemical Co., Ltd.) 5 parts by weight, dehydrant A171 (manufactured by Momentive Performance Materials): 2 parts by weight, curing catalyst, tin neodecanoate U-50 (manufactured by Nitto Kasei) ): 4 parts by weight, versatic 10 (manufactured by Hexion Specialty Chemicals): mixed with 4 parts by weight to obtain a one-component curable resin composition. The evaluation results are shown in Table-1.

(実施例2)
合成例1で得られた重合体:10重量部、合成例2で得られた重合体:90重量部、可塑剤W−7010(DIC製)):95重量部、酸化防止剤Irganox1010(BASF製):1重量部、熱伝導性充填材BF083(水酸化アルミナニウム、日本軽金属製):440重量部、酸化亜鉛1種(堺化学工業製)):108重量部を手混ぜで十分攪拌混練した後に、5L二軸バタフライミキサーを用いて加熱混練しながら真空脱水した。脱水完了後に冷却し、貯蔵安定性改良剤(DMA:田岡化学工業製)5重量部、脱水剤A171(モメンティブパフォーマンスマテリアル製):2重量部、硬化触媒ネオデカン酸錫U−50(日東化成製):4重量部、バーサチック10(ヘキシオンスペシャルティケミカルズ製):4重量部と混合し、硬化性樹脂組成を得た。評価結果を表−1に示す。
(Example 2)
10 parts by weight of the polymer obtained in Synthesis Example 1, 90 parts by weight of the polymer obtained in Synthesis Example 2, 95 parts by weight of plasticizer W-7010 (manufactured by DIC), Irganox 1010 antioxidant (manufactured by BASF) ): 1 part by weight, heat conductive filler BF083 (alumina hydroxide, made by Nippon Light Metal): 440 parts by weight, zinc oxide type 1 (manufactured by Sakai Chemical Industry)): 108 parts by weight were sufficiently stirred and kneaded. Later, vacuum dehydration was performed while heating and kneading using a 5 L biaxial butterfly mixer. Cooled after completion of dehydration, storage stability improver (DMA: manufactured by Taoka Chemical Co., Ltd.) 5 parts by weight, dehydrating agent A171 (produced by Momentive Performance Materials): 2 parts by weight, curing catalyst, tin neodecanoate U-50 (manufactured by Nitto Kasei) : 4 parts by weight, Versatic 10 (manufactured by Hexion Specialty Chemicals): mixed with 4 parts by weight to obtain a curable resin composition. The evaluation results are shown in Table-1.

(比較例1)
合成例1で得られた重合体:50重量部、合成例2で得られた重合体:50重量部、可塑剤(W−7010DIC製)):95重量部、酸化防止剤(Irganox1010(BASF製)):1重量部、熱伝導性充填材(BF083(水酸化アルミナニウム、日本軽金属製)440重量部、酸化亜鉛1種(堺化学工業製))108重量部を手混ぜで十分攪拌混練した後に、5L二軸バタフライミキサーを用いて加熱混練しながら真空脱水した。脱水完了後に冷却し、貯蔵安定性改良剤(DMA:田岡化学工業製)5重量部、脱水剤(A171(モメンティブパフォーマンスマテリアル製)):2重量部、硬化触媒(U−220H(日東化成製):2重量部と混合し、硬化性樹脂組成物を得た。評価結果を表−1に示す。
(Comparative Example 1)
Polymer obtained in Synthesis Example 1: 50 parts by weight, polymer obtained in Synthesis Example 2: 50 parts by weight, plasticizer (manufactured by W-7010DIC): 95 parts by weight, antioxidant (Irganox 1010 (manufactured by BASF) )): 1 part by weight, 108 parts by weight of thermally conductive filler (BF083 (alumina hydroxide, Nippon Light Metal)), 108 parts by weight of zinc oxide (manufactured by Sakai Chemical Industry), and kneaded with sufficient stirring. Later, vacuum dehydration was performed while heating and kneading using a 5 L biaxial butterfly mixer. Cooled after completion of dehydration, storage stability improver (DMA: manufactured by Taoka Chemical Co., Ltd.) 5 parts by weight, dehydrating agent (A171 (produced by Momentive Performance Materials)): 2 parts by weight, curing catalyst (U-220H (manufactured by Nitto Kasei)) The curable resin composition was obtained by mixing with 2 parts by weight, and the evaluation results are shown in Table 1.

(比較例2)
合成例1で得られた重合体:10重量部、合成例2で得られた重合体:90重量部、可塑剤(W−7010DIC製)):95重量部、酸化防止剤(Irganox1010(BASF製)):1重量部、熱伝導性充填材(BF083(水酸化アルミナニウム、日本軽金属製)440重量部、酸化亜鉛1種(堺化学工業製))108重量部を手混ぜで十分攪拌混練した後に、5L二軸バタフライミキサーを用いて加熱混練しながら真空脱水した。脱水完了後に冷却し、貯蔵安定性改良剤(DMA:田岡化学工業製)5重量部、脱水剤(A171(モメンティブパフォーマンスマテリアル製)):2重量部、硬化触媒(U−220H(日東化成製):2重量部と混合し、硬化性樹脂組成物を得た。評価結果を表−1に示す。
(Comparative Example 2)
Polymer obtained in Synthesis Example 1: 10 parts by weight, polymer obtained in Synthesis Example 2: 90 parts by weight, plasticizer (manufactured by W-7010DIC): 95 parts by weight, antioxidant (Irganox 1010 (manufactured by BASF) )): 1 part by weight, 108 parts by weight of thermally conductive filler (BF083 (alumina hydroxide, Nippon Light Metal)), 108 parts by weight of zinc oxide (manufactured by Sakai Chemical Industry), and kneaded with sufficient stirring. Later, vacuum dehydration was performed while heating and kneading using a 5 L biaxial butterfly mixer. Cooled after completion of dehydration, storage stability improver (DMA: manufactured by Taoka Chemical Co., Ltd.) 5 parts by weight, dehydrating agent (A171 (produced by Momentive Performance Materials)): 2 parts by weight, curing catalyst (U-220H (manufactured by Nitto Kasei)) The curable resin composition was obtained by mixing with 2 parts by weight, and the evaluation results are shown in Table 1.

〔硬化性測定〕
恒温室(23℃/50%RH)にて得られた組成物をアルミ板上へ約3mm程度になるように塗布し、表面が硬化するまでの時間を硬化性とした。
〔粘度測定〕
得られた組成物にて硬化前の粘度を恒温室(23℃/50%RH)で東京計器製BS型粘度計を用い、2rpmで測定した。
〔貯蔵安定性測定〕
得られた組成物を50ccアルミチューブに充填し、50℃乾燥機にて貯蔵した。
〔熱伝導率測定〕
硬化性組成物の熱伝導率は京都電子工業(株)製ホットディスク法熱伝導率測定装置TPA−501を用い、予め約3mm厚みの硬化物シートを用い4φサイズのセンサーを厚み3mm、直径20mmの円盤状サンプル2枚で挟む方法にて23℃雰囲気中で測定した。
(Curability measurement)
The composition obtained in a temperature-controlled room (23 ° C./50% RH) was applied onto an aluminum plate so as to have a thickness of about 3 mm, and the time until the surface was cured was determined to be curable.
(Viscosity measurement)
The viscosity before curing of the obtained composition was measured at 2 rpm using a BS type viscometer manufactured by Tokyo Keiki Co., Ltd. in a thermostatic chamber (23 ° C./50% RH).
[Storage stability measurement]
The obtained composition was filled in a 50 cc aluminum tube and stored in a 50 ° C. dryer.
(Thermal conductivity measurement)
The thermal conductivity of the curable composition was measured using a hot disk method thermal conductivity measuring device TPA-501 manufactured by Kyoto Electronics Industry Co., Ltd., using a cured product sheet of about 3 mm thickness in advance, a 4φ size sensor having a thickness of 3 mm and a diameter of 20 mm. The measurement was performed in an atmosphere at 23 ° C. by sandwiching the two disk-shaped samples.

Figure 2014024958
Figure 2014024958

Claims (11)

(A)1個のケイ素原子上に3個の水酸基または加水分解性基を少なくとも1個有する反応性ケイ素含有オキシアルキレン有機系重合体、(B)1個のケイ素原子上に少なくとも2個の水酸気基または加水分解性基を少なくとも1個有する(メタ)アクリル酸エステル系有機重合体、(C)可塑剤、(D)熱伝導性充填剤を含有する、硬化後の熱伝導率が0.5W/mK以上である硬化性樹脂組成物。 (A) a reactive silicon-containing oxyalkylene organic polymer having at least one hydroxyl group or hydrolyzable group on one silicon atom, and (B) at least two water molecules on one silicon atom. A (meth) acrylic acid ester-based organic polymer having at least one acid group or hydrolyzable group, (C) a plasticizer, and (D) a thermally conductive filler, having a thermal conductivity of 0 after curing. A curable resin composition of 5 W / mK or more. さらに、(E)成分としてカルボン酸錫塩、および(F)成分としてカルボン酸を含有する請求項1に記載の硬化性組成物。 The curable composition according to claim 1, further comprising a carboxylic acid tin salt as the component (E) and a carboxylic acid as the component (F). さらに、(G)成分として貯蔵安定性改良剤を含有する請求項1及び2に記載の硬化性組成物。 Furthermore, the curable composition of Claim 1 and 2 which contains a storage stability improving agent as (G) component. (A)成分/(B)成分の重量比が1/99〜50/50である請求項1−3に記載の硬化性組成物。 The weight ratio of (A) component / (B) component is 1 / 99-50 / 50, The curable composition of Claim 1-3. 組成物中における(A)成分の有機重合体及び(B)成分の有機重合体の合計量の体積比率が50%以下である請求項1−4に記載の硬化性組成物。 The curable composition according to claim 1-4, wherein the volume ratio of the total amount of the organic polymer of component (A) and the organic polymer of component (B) in the composition is 50% or less. (A)成分の有機重合体、および(B)成分の有機重合体の分子量分布が1.8未満である請求項1−5に記載の硬化性組成物。 The curable composition according to claim 1, wherein the molecular weight distribution of the organic polymer of component (A) and the organic polymer of component (B) is less than 1.8. (A)成分の反応性ケイ素基が一般式(1)、(B)成分の反応性ケイ素基一般式(2)で表されることを特徴とする請求項1−5に記載の硬化性組成物。
−[Si(R12-a(Y)aO]m−Si(X)3 ・・・ (1)
(式中、R1は炭素数1〜20のアルキル基、炭素数6〜20のアリール基、炭素数7〜20のアラルキル基、または(R′)3SiO−で表されるトリオルガノシロキシ基を示す(式中、R′は炭素数1〜20の1価の炭化水素基を示す。複数のR′は同一であってもよく又は異なっていてもよい)。R1が2個以上存在するとき、それらは同一であってもよく、異なっていてもよい。Y又はXは水酸基または加水分解性基を示す。Y又はXが2個以上存在するとき、それらは同一であってもよく、異なっていてもよい。aは1、または2を示す。aは0、1、または2を示す。mは0〜19の整数を示す。)
−[Si(R32-c(W)cO]n−Si(R23-b(Z)b ・・・ (2)
(式中、R2およびR3は、同一若しくは異なって、炭素数1〜20のアルキル基、炭素数6〜20のアリール基、炭素数7〜20のアラルキル基、または(R“)3SiO−で表されるトリオルガノシロキシ基を示す(式中、R”は炭素数1〜20の1価の炭化水素基を示す。複数のR“は同一であってもよく又は異なっていてもよい)。R2またはR3がそれぞれ2個以上存在するとき、それらは同一であってもよく、異なっていてもよい。Z及びWは水酸基または加水分解性基を示す。又、Z及びWがそれぞれ2個以上存在するとき、それらは同一であってもよく、異なっていてもよい。bは1または2を示す。cは0、1、または2を示す。nは0〜19の整数を示す。)
The reactive silicon group of the component (A) is represented by the general formula (1) and the reactive silicon group of the component (B) (2), and the curable composition according to claim 1-5 object.
- [Si (R 1) 2 -a (Y) a O] m -Si (X) 3 ··· (1)
(In the formula, R 1 is an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or a triorganosiloxy group represented by (R ′) 3 SiO—. (wherein, R 'is a monovalent represents a hydrocarbon group. multiple R C20' may be different may or be the same) are shown there .R 1 is two or more When they are, they may be the same or different, Y or X represents a hydroxyl group or a hydrolyzable group, and when two or more Y or X are present, they may be the same. A represents 1 or 2, a represents 0, 1, or 2. m represents an integer of 0 to 19.)
-[Si (R 3 ) 2-c (W) c O] n -Si (R 2 ) 3-b (Z) b (2)
(Wherein R 2 and R 3 are the same or different and are each an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or (R ″) 3 SiO. (Wherein R ″ represents a monovalent hydrocarbon group having 1 to 20 carbon atoms. A plurality of R ″ may be the same or different). When two or more R 2 or R 3 are present, they may be the same or different, Z and W each represent a hydroxyl group or a hydrolyzable group, and Z and W are When two or more each exist, they may be the same or different, b represents 1 or 2, c represents 0, 1, or 2. n represents an integer of 0 to 19. Show.)
(C)成分である可塑剤が、ポリエステル系化合物、ピロメリット酸系化合物等から選ばれてなる、少なくとも1種である求項1−7に記載の硬化性組成物。 The curable composition according to Claims 1-7, wherein the plasticizer as component (C) is at least one selected from polyester compounds, pyromellitic acid compounds, and the like. (D)成分である熱伝導性充填剤が、黒鉛、窒化アルミニウム、窒化ホウ素、酸化アルミニウム、酸化亜鉛、酸化マグネシウム、水酸化アルミニウム、銀や銅を主成分とするナノフィラーから選ばれる少なくとも1種である請求項1−8に記載の硬化性組成物。 The thermally conductive filler as component (D) is at least one selected from graphite, aluminum nitride, boron nitride, aluminum oxide, zinc oxide, magnesium oxide, aluminum hydroxide, nanofiller mainly composed of silver or copper The curable composition according to claim 1-8. (G)成分である貯蔵安定性改良剤がメチルエステル系化合物である 請求項1−9に記載硬化性組成物 The curable composition according to claim 1-9, wherein the storage stability improving agent as component (G) is a methyl ester compound. 請求項1−11記載の硬化性組成物が、発熱体及び/あるいは放熱体と一体化し硬化した放熱部材。 A heat dissipation member obtained by integrating and curing the curable composition according to claim 1-11 with a heating element and / or a heat dissipation element.
JP2012166221A 2012-07-26 2012-07-26 Curable composition Pending JP2014024958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012166221A JP2014024958A (en) 2012-07-26 2012-07-26 Curable composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012166221A JP2014024958A (en) 2012-07-26 2012-07-26 Curable composition

Publications (1)

Publication Number Publication Date
JP2014024958A true JP2014024958A (en) 2014-02-06

Family

ID=50198906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012166221A Pending JP2014024958A (en) 2012-07-26 2012-07-26 Curable composition

Country Status (1)

Country Link
JP (1) JP2014024958A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018180319A1 (en) * 2017-03-30 2018-10-04 積水化学工業株式会社 Thermally conductive foam sheet
WO2020165288A1 (en) * 2019-02-13 2020-08-20 Sika Technology Ag Thermally conductive curable composition
CN112189043A (en) * 2018-06-25 2021-01-05 Sika技术股份公司 Catalyst-free curable compositions based on silane-functional polymers
US11162004B2 (en) 2016-09-23 2021-11-02 Nichia Corporation Electrically conductive adhesive and electrically conductive material
CN115558451A (en) * 2022-02-16 2023-01-03 宜兴市普利泰电子材料有限公司 Sealing material for improving safety and production efficiency of power battery
WO2023210582A1 (en) * 2022-04-27 2023-11-02 Agc株式会社 Production method for reactive silicon group-containing organic polymer
WO2023210586A1 (en) * 2022-04-27 2023-11-02 Agc株式会社 Production method for producing reactive silicon group-containing organic polymer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005097898A1 (en) * 2004-04-01 2005-10-20 Kaneka Corporation Curable composition
JP2006274094A (en) * 2005-03-30 2006-10-12 Kaneka Corp Composition for heat dissipation sheet and heat dissipation sheet obtained by curing the same
WO2006112340A1 (en) * 2005-04-15 2006-10-26 Kaneka Corporation Curable composition and cured article excellent in transparency
JP2010053331A (en) * 2008-07-29 2010-03-11 Kaneka Corp Thermally conductive material
JP2012001614A (en) * 2010-06-16 2012-01-05 Cemedine Co Ltd Flame-retardant thermoconductive curable composition having excellent storage stability

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005097898A1 (en) * 2004-04-01 2005-10-20 Kaneka Corporation Curable composition
JP2006274094A (en) * 2005-03-30 2006-10-12 Kaneka Corp Composition for heat dissipation sheet and heat dissipation sheet obtained by curing the same
WO2006112340A1 (en) * 2005-04-15 2006-10-26 Kaneka Corporation Curable composition and cured article excellent in transparency
JP2010053331A (en) * 2008-07-29 2010-03-11 Kaneka Corp Thermally conductive material
JP2012001614A (en) * 2010-06-16 2012-01-05 Cemedine Co Ltd Flame-retardant thermoconductive curable composition having excellent storage stability

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11162004B2 (en) 2016-09-23 2021-11-02 Nichia Corporation Electrically conductive adhesive and electrically conductive material
US11739238B2 (en) 2016-09-23 2023-08-29 Nichia Corporation Electrically conductive adhesive and electrically conductive material
WO2018180319A1 (en) * 2017-03-30 2018-10-04 積水化学工業株式会社 Thermally conductive foam sheet
CN112189043A (en) * 2018-06-25 2021-01-05 Sika技术股份公司 Catalyst-free curable compositions based on silane-functional polymers
WO2020165288A1 (en) * 2019-02-13 2020-08-20 Sika Technology Ag Thermally conductive curable composition
CN115558451A (en) * 2022-02-16 2023-01-03 宜兴市普利泰电子材料有限公司 Sealing material for improving safety and production efficiency of power battery
CN115558451B (en) * 2022-02-16 2023-12-08 普利泰电子材料江苏有限公司 Sealing material for improving safety and production efficiency of power battery
WO2023210582A1 (en) * 2022-04-27 2023-11-02 Agc株式会社 Production method for reactive silicon group-containing organic polymer
WO2023210586A1 (en) * 2022-04-27 2023-11-02 Agc株式会社 Production method for producing reactive silicon group-containing organic polymer

Similar Documents

Publication Publication Date Title
JP5607298B2 (en) Thermal conductive material
JP4629475B2 (en) Composition for heat dissipation sheet and heat dissipation sheet obtained by curing the composition
JP4809060B2 (en) Curable composition
JP4656575B2 (en) Curable composition
JP4829107B2 (en) Curable composition
JP5550831B2 (en) Curable composition
JPWO2005095485A1 (en) Curable composition
JP4805675B2 (en) Curable composition
JP5420933B2 (en) Curable composition
JP5226324B2 (en) Curable composition
JPWO2007029733A1 (en) Curable composition
JP2014024958A (en) Curable composition
JP2010111870A (en) Curable composition and sealing material for multilayered glass
JP5185530B2 (en) Sealing material
JP2010100839A (en) Curable composition for solar cell module and solar cell module
JP4794171B2 (en) Curable composition
JP5048386B2 (en) Curable composition
JP4439790B2 (en) Curable composition
JP5015516B2 (en) Curable composition
JP2010116444A (en) Curable composition
JP2009173709A (en) Curable composition
JP2007145880A (en) One-component curable composition
JP2006225487A (en) Curable composition
JP2007137955A (en) Curable composition
JP2007302749A (en) Curable composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160308

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160927