JP2014024223A - Optical element manufacturing method and optical element - Google Patents

Optical element manufacturing method and optical element Download PDF

Info

Publication number
JP2014024223A
JP2014024223A JP2012164916A JP2012164916A JP2014024223A JP 2014024223 A JP2014024223 A JP 2014024223A JP 2012164916 A JP2012164916 A JP 2012164916A JP 2012164916 A JP2012164916 A JP 2012164916A JP 2014024223 A JP2014024223 A JP 2014024223A
Authority
JP
Japan
Prior art keywords
optical element
glass substrate
shape
manufacturing
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012164916A
Other languages
Japanese (ja)
Other versions
JP6119135B2 (en
Inventor
Toshihiko Kurata
俊彦 倉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2012164916A priority Critical patent/JP6119135B2/en
Publication of JP2014024223A publication Critical patent/JP2014024223A/en
Application granted granted Critical
Publication of JP6119135B2 publication Critical patent/JP6119135B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an optical element manufacturing method to reduce production cost.SOLUTION: The optical element manufacturing method to form, by curing resin material, a DOE molding section stacked on a glass substrate comprises supplying the resin material which is molding material to the surface of the glass substrate formed almost in a disk shape, spreading the resin material by bringing a mold 50 to the surface of the resin-supplied glass substrate, and curing the spread resin material. In the mold 50, a groove section 52 with a pair of wall surfaces of V-shaped cross-section is extending like a circular ring in a facing surface section 53 facing the periphery vicinity of the glass substrate.

Description

本発明は、光学素子およびその製造方法に関する。   The present invention relates to an optical element and a method for manufacturing the same.

光学素子の製造には、成形加工がよく用いられる(例えば、特許文献1を参照)。例えば、ガラス材料と樹脂材料を用いた複合型の回折レンズの成形加工を行う場合、円盤状のガラス基板上に塗布された樹脂材に対して成形型を押圧させ、成形型の転写面に形成された所定の形状(すなわち、回折格子の形状)を樹脂材に転写する。このようにして回折格子の形状が転写された円盤状の樹脂層を成形した後、回折レンズ(ガラス基板)の中心に回折格子が形成されているか検査を行う。   For manufacturing an optical element, molding is often used (see, for example, Patent Document 1). For example, when molding a composite type diffractive lens using a glass material and a resin material, the mold is pressed against a resin material applied on a disk-shaped glass substrate, and formed on the transfer surface of the mold. The predetermined shape (that is, the shape of the diffraction grating) is transferred to the resin material. After forming the disk-shaped resin layer to which the shape of the diffraction grating is transferred in this way, it is inspected whether the diffraction grating is formed at the center of the diffraction lens (glass substrate).

特開2007−131466号公報JP 2007-131466 A

ガラス基板の中心に回折格子が形成されているにもかかわらず、成形型により樹脂材が不均一に押し広げられ、成形後の樹脂層の外周部がガラス基板の外周部に対し偏芯してずれる場合がある。これに対し、成形後の樹脂層のずれを見込んで、予め余分に大きくガラス基板を作製し、樹脂層の成形後にガラス基板(必要に応じて樹脂層)を所定の大きさまで小さく切削加工する方法が考えられる。しかしながら、このような方法では、ガラス基板の切削加工に時間を要し、ガラス基板の材料の歩留まりが低下するため、製造コストが増加する一因となる。   Despite the fact that the diffraction grating is formed at the center of the glass substrate, the resin material is spread unevenly by the molding die, and the outer peripheral portion of the molded resin layer is eccentric with respect to the outer peripheral portion of the glass substrate. There may be deviation. On the other hand, a method in which an excessively large glass substrate is prepared in advance in anticipation of the deviation of the resin layer after molding, and the glass substrate (resin layer if necessary) is cut to a predetermined size after molding the resin layer. Can be considered. However, in such a method, it takes time to cut the glass substrate, and the yield of the material of the glass substrate decreases, which contributes to an increase in manufacturing cost.

本発明は、このような問題に鑑みてなされたものであり、製造コストを低減させることが可能な光学素子の製造方法および光学素子を提供することを目的とする。   The present invention has been made in view of such problems, and an object thereof is to provide an optical element manufacturing method and an optical element capable of reducing manufacturing costs.

このような目的達成のため、本発明に係る光学素子の製造方法は、略円盤状に形成された第1部材の表面に成形材料を供給し、前記成形材料が供給された前記第1部材の前記表面に成形型を近づけて前記成形材料を押し広げ、前記押し広げた前記成形材料を硬化させることにより、前記成形材料を硬化させてなる第2部材を前記第1部材に重ねて成形する光学素子の製造方法であって、前記第1部材の前記表面の外周部近傍、もしくは、前記成形型において前記第1部材の前記外周部近傍と対向する対向面部に、断面視V字形の一対の壁面を有する溝部が円環状に延びて形成されており、以下の条件式を満足している。   In order to achieve such an object, an optical element manufacturing method according to the present invention supplies a molding material to the surface of a first member formed in a substantially disc shape, and the first member to which the molding material is supplied is supplied. An optical for forming a molding material close to the first member by bringing a molding die close to the surface to spread the molding material and curing the spread molding material. A method for manufacturing an element, comprising: a pair of wall surfaces having a V-shaped cross-sectional view in the vicinity of the outer peripheral portion of the surface of the first member, or on the facing surface portion facing the vicinity of the outer peripheral portion of the first member in the mold The groove part which has is extended in the annular | circular shape, and the following conditional expressions are satisfied.

3°≦θ1≦60°
3°≦θ2≦60°
30°≦θ1+θ2≦120°
但し、
θ1:前記断面視V字形の一対の壁面における一方の壁面への傾斜角、
θ2:前記断面視V字形の一対の壁面における他方の壁面への傾斜角。
3 ° ≦ θ1 ≦ 60 °
3 ° ≦ θ2 ≦ 60 °
30 ° ≦ θ1 + θ2 ≦ 120 °
However,
θ1: an inclination angle to one wall surface of the pair of V-shaped wall surfaces in cross section,
θ2: An inclination angle of the pair of V-shaped wall surfaces to the other wall surface in the cross-sectional view.

なお、上述の製造方法において、前記溝部は、前記断面視V字形の一対の壁面に繋がる断面視円弧形の底面を有し、以下の条件式を満足していることが好ましい。   In the above-described manufacturing method, it is preferable that the groove portion has an arc-shaped bottom surface connected to the pair of V-shaped wall surfaces when viewed in cross section and satisfies the following conditional expression.

0.5μm≦R≦5μm
但し、
R:前記底面の曲率半径。
0.5μm ≦ R ≦ 5μm
However,
R: radius of curvature of the bottom surface.

また、上述の製造方法において、前記成形型は、前記光学素子に求められる所定の素子形状を転写するための形状を有した転写面部を有しており、前記溝部は、前記成形型の前記対向面部に、前記転写面部を囲む円環状に形成されることが好ましい。   Further, in the above manufacturing method, the mold has a transfer surface portion having a shape for transferring a predetermined element shape required for the optical element, and the groove portion is opposed to the mold. The surface portion is preferably formed in an annular shape surrounding the transfer surface portion.

さらに、前記転写面部が円形状に形成され、前記溝部の回転対称軸が前記転写面部の回転対称軸と同軸であり、前記第1部材の前記表面に前記成形型を近づける際、前記転写面部および前記溝部の回転対称軸を前記第1部材の回転対称軸と同軸となるように配置することが好ましい。   Further, the transfer surface portion is formed in a circular shape, the rotational symmetry axis of the groove is coaxial with the rotational symmetry axis of the transfer surface portion, and when the mold is brought close to the surface of the first member, the transfer surface portion and It is preferable that the rotational symmetry axis of the groove is arranged so as to be coaxial with the rotational symmetry axis of the first member.

また、上述の製造方法において、前記所定の素子形状は、回折光学素子を構成する回折格子形状であることが好ましい。   In the manufacturing method described above, the predetermined element shape is preferably a diffraction grating shape constituting a diffractive optical element.

また、上述の製造方法において、前記成形材料として紫外線硬化型樹脂を用いることが好ましい。   In the manufacturing method described above, it is preferable to use an ultraviolet curable resin as the molding material.

また、本発明に係る光学素子は、本発明に係る光学素子の製造方法を用いて製造されるようになっている。   Moreover, the optical element according to the present invention is manufactured using the method for manufacturing an optical element according to the present invention.

本発明によれば、光学素子の製造コストを低減させることが可能となる。   According to the present invention, it becomes possible to reduce the manufacturing cost of an optical element.

第1実施形態における成形型の側断面図である。It is a sectional side view of the shaping | molding die in 1st Embodiment. 回折レンズの側断面図である。It is a sectional side view of a diffractive lens. 第1実施形態における成形型の部分断面図(拡大図)である。It is a fragmentary sectional view (enlarged view) of the shaping | molding die in 1st Embodiment. 溝部の拡大断面図である。It is an expanded sectional view of a groove part. 回折レンズの製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of a diffractive lens. 第1実施形態における回折レンズの成形工程について(a)〜(d)へ順に示す模式図である。It is the schematic diagram shown to (a)-(d) in order about the formation process of the diffraction lens in 1st Embodiment. 第1実施形態におけるシフト検査工程の変形例を示す模式図である。It is a schematic diagram which shows the modification of the shift inspection process in 1st Embodiment. ガラス基板上にDOE成形部を成形した例を示す平断面図である。It is a plane sectional view showing the example which formed the DOE fabrication part on the glass substrate. 溝部の変形例を示す拡大断面図である。It is an expanded sectional view which shows the modification of a groove part. 第2実施形態における回折レンズの成形工程について(a)〜(d)へ順に示す模式図である。It is the schematic diagram shown to (a)-(d) in order about the formation process of the diffraction lens in 2nd Embodiment. 位相フレネルレンズの一例を示す側断面図である。It is a sectional side view showing an example of a phase Fresnel lens. 位相フレネルレンズの一例を示す側断面図である。It is a sectional side view showing an example of a phase Fresnel lens.

以下、図面を参照して本発明の好ましい実施形態について説明する。本実施形態の光学素子として回折レンズ1が図2に示されている。この回折レンズ1は、回折光学素子(DOE:Diffractive Optical Element)を構成するDOE成形部2と、DOE成形部2を支持する透明な支持部3とを有して構成される。DOE成形部2は、透明の樹脂材料を用いて円盤状に成形され、DOE成形部2の表面には、複数の輪帯が同心円状に並ぶ回折格子21が形成されている。なお、各図において、説明容易化のため、回折格子21の輪帯の数を少なく記載しているが、実際の輪帯数は使用可能な程度に十分多いものとする。支持部3は、透明のガラス基板等から構成され、DOE成形部2よりも若干大きい径(もしくは、DOE成形部2と同径)の円盤状に形成される。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. A diffractive lens 1 is shown in FIG. 2 as an optical element of the present embodiment. The diffractive lens 1 includes a DOE molding part 2 that constitutes a diffractive optical element (DOE) and a transparent support part 3 that supports the DOE molding part 2. The DOE molding part 2 is molded into a disk shape using a transparent resin material, and a diffraction grating 21 in which a plurality of annular zones are arranged concentrically is formed on the surface of the DOE molding part 2. In each figure, for ease of explanation, the number of annular zones of the diffraction grating 21 is described to be small, but the actual number of annular zones is assumed to be sufficiently large to be usable. The support portion 3 is made of a transparent glass substrate or the like, and is formed in a disk shape having a slightly larger diameter (or the same diameter as the DOE molding portion 2) than the DOE molding portion 2.

回折レンズ1の製造方法の第1実施形態として、DOE成形部2の成形に用いられる成形型50を図1に示す。第1実施形態における成形型50は、図1に示すような円盤状に形成された金型(スタンパーと称されることもある)であり、成形型50の表面側には、DOE成形部2(回折格子21)の形状を転写するための形状(反転形状)を有した転写面部51に加え、転写面部51を囲む円環状に延びた複数の溝部52が形成されている。転写面部51は、DOE成形部2(回折格子21)の形状に合わせて形成された円形状の転写面51aを有している。   As a first embodiment of the method for manufacturing the diffractive lens 1, a molding die 50 used for molding the DOE molding unit 2 is shown in FIG. The mold 50 in the first embodiment is a mold (also referred to as a stamper) formed in a disk shape as shown in FIG. 1, and the DOE molding section 2 is provided on the surface side of the mold 50. In addition to the transfer surface portion 51 having a shape (inverted shape) for transferring the shape of the (diffraction grating 21), a plurality of groove portions 52 extending in an annular shape surrounding the transfer surface portion 51 are formed. The transfer surface portion 51 has a circular transfer surface 51a formed in accordance with the shape of the DOE molding portion 2 (diffraction grating 21).

転写面部51を囲む複数の溝部52は、図3に示すように、成形型50の径方向に等ピッチ間隔で並ぶ同心円状に形成される。各溝部52は、図4に示すように、断面視V字形の一対の壁面52a,52bと、この一対の壁面52a,52bに繋がる断面視円弧形の底面52cとを有している。本実施形態において、溝部52の深さ方向に(溝部52の回転対称軸と平行に)延びて底面52cの中央を通る軸を基準軸Sxと称する。また、各溝部52の一対の壁面52a,52bにおける一方(図4における左側)の壁面を第1壁面52aと称し、他方の壁面(図4における右側)を第2壁面52bと称する。   As shown in FIG. 3, the plurality of groove portions 52 surrounding the transfer surface portion 51 are formed in concentric circles arranged at equal pitch intervals in the radial direction of the mold 50. As shown in FIG. 4, each groove portion 52 has a pair of wall surfaces 52a and 52b having a V-shaped cross-sectional view and a bottom surface 52c having an arc-shaped cross-sectional view connected to the pair of wall surfaces 52a and 52b. In the present embodiment, an axis that extends in the depth direction of the groove 52 (parallel to the rotational symmetry axis of the groove 52) and passes through the center of the bottom surface 52c is referred to as a reference axis Sx. One of the pair of wall surfaces 52a and 52b of each groove 52 (left side in FIG. 4) is referred to as a first wall surface 52a, and the other wall surface (right side in FIG. 4) is referred to as a second wall surface 52b.

なお、転写面部51および溝部52は、図示しない精密旋盤を用いて、成形型50の回転対称軸を中心に回転させながら切削加工を行うことにより、同一の工程で形成される。そのため、溝部52の回転対称軸が転写面部51の回転対称軸と同軸となるように形成される。   The transfer surface portion 51 and the groove portion 52 are formed in the same process by performing cutting while rotating around the rotational symmetry axis of the mold 50 using a precision lathe (not shown). For this reason, the rotational symmetry axis of the groove portion 52 is formed so as to be coaxial with the rotational symmetry axis of the transfer surface portion 51.

第1実施形態における回折レンズ1の製造方法について、図5に示すフローチャートを参照しながら説明する。まず予め、DOE成形部2を成形するための樹脂材20や、支持部3となるガラス基板30を作製した後、ガラス基板30の上に図6(d)に示すような突起状の輪帯22を有するDOE成形部2aを成形する(ステップST101)。   A method of manufacturing the diffractive lens 1 in the first embodiment will be described with reference to the flowchart shown in FIG. First, a resin material 20 for molding the DOE molding part 2 and a glass substrate 30 to be the support part 3 are prepared in advance, and then a projecting annular zone as shown in FIG. The DOE molding part 2a having 22 is molded (step ST101).

この成形工程において、まず、図6(a)に示すように、ガラス基板30を図示しないステージ上に載置する。ここで、ガラス基板30は、円盤状に形成された透明のガラス基板である。次に、図6(b)に示すように、ガラス基板30の表面中央部にDOE成形部2aを成形するための紫外線硬化特性を有する未硬化の(液状の)樹脂材20を塗布する。なお、DOE成形部2aに用いられる成形材料(樹脂材20)として紫外線硬化樹脂が用いられる。次に、図6(c)に示すように、樹脂材20が塗布されたガラス基板30の表面に成形型50を上方から近づけて、樹脂材20を略円盤状に押し広げる。この状態で、ガラス基板30の裏面側から樹脂材20に向けて紫外線を所定の照射量だけ照射し、未硬化の樹脂材20を硬化させた後、離型する。そうすると、成形型50の転写面51aが樹脂材20に当接することにより回折格子21の形状が樹脂材20に転写されるとともに、成形型50により押し広げられる樹脂材20の一部が成形型50の溝部52に入り込む。そのため、図6(d)に示すように、ガラス基板30の上に回折格子21を囲む突起状の輪帯22を有するDOE成形部2aが成形される。   In this forming step, first, as shown in FIG. 6A, the glass substrate 30 is placed on a stage (not shown). Here, the glass substrate 30 is a transparent glass substrate formed in a disk shape. Next, as shown in FIG. 6 (b), an uncured (liquid) resin material 20 having an ultraviolet curing property for molding the DOE molded portion 2 a is applied to the center of the surface of the glass substrate 30. In addition, an ultraviolet curable resin is used as a molding material (resin material 20) used for the DOE molding part 2a. Next, as shown in FIG. 6C, the molding die 50 is brought close to the surface of the glass substrate 30 coated with the resin material 20 from above, and the resin material 20 is pushed out in a substantially disk shape. In this state, ultraviolet rays are irradiated from the back surface side of the glass substrate 30 toward the resin material 20 by a predetermined irradiation amount, the uncured resin material 20 is cured, and then released. Then, the shape of the diffraction grating 21 is transferred to the resin material 20 by the transfer surface 51 a of the mold 50 coming into contact with the resin material 20, and a part of the resin material 20 that is spread by the mold 50 is formed in the mold 50. It enters into the groove portion 52. Therefore, as shown in FIG. 6 (d), a DOE forming portion 2 a having a protruding annular zone 22 surrounding the diffraction grating 21 is formed on the glass substrate 30.

このようにして、ガラス基板30の上に図6(d)に示すようなDOE成形部2aを成形する。その後、ガラス基板30の中心軸AX1に対する回折格子21の中心軸AX2のシフト量を測定する(ステップST102)。このシフト検査工程において、求めたシフト量が所定の閾値の範囲内である場合には正常と判定され、求めたシフト量が所定の閾値を超えた場合には異常と判定される。そして、シフト量を測定した後、旋盤等によりガラス基板30および突起状の輪帯22を含むDOE成形部2aの外周部をカットする仕上げ工程や、最終的な製品検査工程等を経て、DOE成形部2および支持部3からなる回折レンズ1が製造される。   In this way, the DOE forming part 2a as shown in FIG. 6 (d) is formed on the glass substrate 30. Thereafter, the shift amount of the central axis AX2 of the diffraction grating 21 with respect to the central axis AX1 of the glass substrate 30 is measured (step ST102). In this shift inspection process, when the obtained shift amount is within a predetermined threshold range, it is determined as normal, and when the obtained shift amount exceeds the predetermined threshold value, it is determined as abnormal. Then, after measuring the shift amount, the DOE molding is performed through a finishing process for cutting the outer periphery of the DOE molding part 2a including the glass substrate 30 and the protruding annular zone 22 with a lathe, a final product inspection process, and the like. The diffractive lens 1 including the part 2 and the support part 3 is manufactured.

第1実施形態では、成形型50の表面側中央部に円形状の転写面部51が形成される。また、成形型50の表面側外周部近傍、すなわち、成形型50においてガラス基板30の外周部近傍と対向する対向面部53に、転写面部51を囲む円環状の溝部52が当該転写面部51と同軸に形成される。そのため、ガラス基板30の表面に成形型50を近づける際、転写面部51および溝部52の回転対称軸をガラス基板30の回転対称軸と同軸となるように配置すれば、成形型50が樹脂材20を押し広げる際、樹脂材20の一部が円環状に繋がる溝部52に入り込むことで、樹脂材20を均一に(回転対称に)押し広げることができる。これにより、回折格子21だけでなく、DOE成形部2a自体もガラス基板30と同軸に形成される。この結果、第1実施形態によれば、DOE成形部2aのずれを見込んで、予め余分に大きくガラス基板30を作製する必要がないため、ガラス基板30の切削加工に時間を要することなく、ガラス基板30の材料の歩留まりが向上して、回折レンズ1の製造コストを低減させることが可能になる。   In the first embodiment, a circular transfer surface portion 51 is formed in the center portion on the surface side of the mold 50. An annular groove 52 surrounding the transfer surface portion 51 is coaxial with the transfer surface portion 51 in the vicinity of the outer peripheral portion on the surface side of the mold 50, that is, on the facing surface portion 53 facing the vicinity of the outer periphery of the glass substrate 30 in the mold 50. Formed. Therefore, when the molding die 50 is brought close to the surface of the glass substrate 30, if the rotational symmetry axes of the transfer surface portion 51 and the groove portion 52 are arranged so as to be coaxial with the rotational symmetry axis of the glass substrate 30, the molding die 50 becomes the resin material 20. When the resin material 20 is spread, a part of the resin material 20 enters the groove portion 52 connected in an annular shape, so that the resin material 20 can be uniformly spread (rotationally symmetric). Thereby, not only the diffraction grating 21 but also the DOE molding portion 2 a itself is formed coaxially with the glass substrate 30. As a result, according to the first embodiment, it is not necessary to manufacture the glass substrate 30 in advance excessively in anticipation of the shift of the DOE molding portion 2a. The yield of the material of the substrate 30 is improved, and the manufacturing cost of the diffractive lens 1 can be reduced.

なお、各溝部52の第1壁面52aおよび第2壁面52bは、次の条件式(1)〜(3)で表される条件を満足するように形成されるのが好ましい。但し、基準軸Sxから第1壁面52aへの傾斜角をθ1とし、基準軸Sxから第2壁面52bへの傾斜角をθ2とする(図4を参照)。   In addition, it is preferable that the 1st wall surface 52a and the 2nd wall surface 52b of each groove part 52 are formed so that the conditions represented by following conditional expression (1)-(3) may be satisfied. However, the inclination angle from the reference axis Sx to the first wall surface 52a is θ1, and the inclination angle from the reference axis Sx to the second wall surface 52b is θ2 (see FIG. 4).

3°≦θ1≦60° …(1)
3°≦θ2≦60° …(2)
30°≦θ1+θ2≦120° …(3)
3 ° ≦ θ1 ≦ 60 ° (1)
3 ° ≦ θ2 ≦ 60 ° (2)
30 ° ≦ θ1 + θ2 ≦ 120 ° (3)

上記条件式(1)〜(3)で表される条件を満足するように溝部52を形成すれば、樹脂材20が溝部52に沿って流れやすくなるので、樹脂材20をより均一に(回転対称に)押し広げることができ、上述したように、回折レンズ1の製造コストを低減させることが可能になる。また、離型を容易に行うことができるので、回折レンズ1の製造を容易にすることができる。   If the groove portion 52 is formed so as to satisfy the conditions expressed by the conditional expressions (1) to (3), the resin material 20 can easily flow along the groove portion 52, so that the resin material 20 is more uniformly (rotated). (Symmetrically) can be spread out, and as described above, the manufacturing cost of the diffractive lens 1 can be reduced. Moreover, since the mold release can be easily performed, the diffractive lens 1 can be easily manufactured.

また、各溝部52の底面52cは、次の条件式(4)で表される条件を満足するように形成されるのが好ましい。但し、底面52cの曲率半径をRとする(図4を参照)。   Moreover, it is preferable that the bottom surface 52c of each groove part 52 is formed so that the conditions represented by the following conditional expression (4) may be satisfied. However, the radius of curvature of the bottom surface 52c is R (see FIG. 4).

0.5μm≦R≦5μm …(4)   0.5 μm ≦ R ≦ 5 μm (4)

上記条件式(4)で表される条件を満足するように溝部52を形成すれば、溝部52での樹脂材20の流れやすさを損なうことなく、溝部52を容易に加工することができるので、回折レンズ1の製造を容易にすることができる。   If the groove 52 is formed so as to satisfy the condition expressed by the conditional expression (4), the groove 52 can be easily processed without impairing the ease of flow of the resin material 20 in the groove 52. The diffractive lens 1 can be easily manufactured.

また、第1実施形態におけるシフト検査工程では、DOE成形部2aに形成された輪帯22を利用して、ガラス基板30の中心軸AX1に対する回折格子21の中心軸AX2のシフト量を測定することができる。具体的にはまず、図7に示すように、図示しないシフト検査用のカメラを用いて、ガラス基板30の外周部と輪帯22を含む高倍率の拡大画像を複数の測定位置(例えば、90度間隔の4つの測定位置)で撮像する。ガラス基板30の外周部と輪帯22を含む複数の(4つの)拡大画像A1〜A4を撮像すると、各拡大画像A1〜A4に対して画像処理を行うことで、各測定位置でのガラス基板30の外周部と輪帯22(複数の輪帯22のうち最も外側に位置するもの)との径方向の間隔L1〜L4をそれぞれ測定する。   Further, in the shift inspection process in the first embodiment, the shift amount of the central axis AX2 of the diffraction grating 21 with respect to the central axis AX1 of the glass substrate 30 is measured using the annular zone 22 formed in the DOE molding portion 2a. Can do. Specifically, as shown in FIG. 7, first, using a shift inspection camera (not shown), a high-magnification enlarged image including the outer peripheral portion of the glass substrate 30 and the annular zone 22 is displayed at a plurality of measurement positions (for example, 90 Images are taken at four measurement positions at intervals of degrees. When a plurality of (four) enlarged images A1 to A4 including the outer peripheral portion of the glass substrate 30 and the annular zone 22 are imaged, the glass substrate at each measurement position is obtained by performing image processing on each of the enlarged images A1 to A4. The distances L1 to L4 in the radial direction between the outer peripheral portion 30 and the annular zone 22 (the outermost zone among the plurality of annular zones 22) are measured.

第1実施形態の成形型50は、転写面部51および当該転写面部51と同軸の溝部52を有しており、回折格子21を囲む円環状の輪帯22が当該回折格子21と同軸に形成される。そのため、ガラス基板30の外周部と輪帯22を含む高倍率の拡大画像A1〜A4に基づき、輪帯22を介してシフト量を高精度に測定することが可能となる。なおこのとき、ガラス基板30の外周部と輪帯22が円形であるため、回折格子21の中心軸AX2(すなわち、輪帯22の中心軸)がガラス基板30の中心軸AX1と合っているときには、各測定位置での径方向の間隔L1〜L4は同じであるが、回折格子21の中心軸AX2がガラス基板30の中心軸AX1に対してシフトしているときには、各測定位置での径方向の間隔L1〜L4が異なることになる。これにより、複数の測定位置での径方向の間隔L1〜L4に基づいて、シフト量を高精度に求めることができる。   The mold 50 of the first embodiment has a transfer surface portion 51 and a groove portion 52 coaxial with the transfer surface portion 51, and an annular ring zone 22 surrounding the diffraction grating 21 is formed coaxially with the diffraction grating 21. The Therefore, the shift amount can be measured with high accuracy via the annular zone 22 based on the high-magnification enlarged images A1 to A4 including the outer peripheral portion of the glass substrate 30 and the annular zone 22. At this time, since the outer peripheral portion of the glass substrate 30 and the annular zone 22 are circular, the central axis AX2 of the diffraction grating 21 (that is, the central axis of the annular zone 22) is aligned with the central axis AX1 of the glass substrate 30. The distances L1 to L4 in the radial direction at each measurement position are the same, but when the central axis AX2 of the diffraction grating 21 is shifted with respect to the central axis AX1 of the glass substrate 30, the radial direction at each measurement position. The intervals L1 to L4 are different. Accordingly, the shift amount can be obtained with high accuracy based on the radial intervals L1 to L4 at the plurality of measurement positions.

なお、シフト量の測定は、上述した方法に限られるものではなく、例えば、ガラス基板30の外周部と輪帯22を含む高倍率の拡大画像を120度間隔の3つの測定位置で撮像し、各測定位置での径方向の間隔をそれぞれ測定してもよく、複数の測定位置で撮像すればよい。また例えば、シフト検査用のカメラを用いて、ガラス基板30の外周部と回折格子21の外周部を含む画像を撮像し、この画像に対して所定の画像処理を行うことで、ガラス基板30の外周部と回折格子21の外周部との径方向の間隔を複数の測定位置(周方向に異なる位置)で測定するようにしてもよい。   Note that the measurement of the shift amount is not limited to the method described above. For example, a high-magnification enlarged image including the outer peripheral portion of the glass substrate 30 and the annular zone 22 is captured at three measurement positions at intervals of 120 degrees. The distance in the radial direction at each measurement position may be measured, and images may be taken at a plurality of measurement positions. In addition, for example, by using a shift inspection camera, an image including the outer periphery of the glass substrate 30 and the outer periphery of the diffraction grating 21 is captured, and predetermined image processing is performed on the image. You may make it measure the space | interval of the radial direction of an outer peripheral part and the outer peripheral part of the diffraction grating 21 in several measurement positions (positions which differ in the circumferential direction).

ところで、本願の発明者は、第1実施形態に係る回折レンズ1の製造方法について実験を行った。まず予め、図3に示すように、複数の溝部52の総幅:L=2mm、溝部52のピッチ:P=0.04mm、溝部52の深さ:h=0.02mm、複数の溝部52の最内径:φ1=16.6mm、複数の溝部52の最外径:φ2=18.6mm、となるように成形型50を作製した。また、図4に示すように、基準軸Sxから第1壁面52aへの傾斜角:θ1=45°、基準軸Sxから第2壁面52bへの傾斜角:θ2=45°、底面52cの曲率半径:R=1μm、となるように溝部52を形成した。また予め、直径が28mm、厚さが2.8mmのガラス基板30を作製した。また予め、25℃における粘度が500mPa・sの未硬化の樹脂材20を作製した。そして、上述の第1実施形態と同様にして、ガラス基板30の表面中央部に未硬化の樹脂材20を塗布し、ガラス基板30の表面に成形型50を上方から近づけて樹脂材20を略円盤状に押し広げ、ガラス基板30の上に厚さが0.1mmのDOE成形部2aを成形した。   By the way, the inventor of this application experimented about the manufacturing method of the diffraction lens 1 which concerns on 1st Embodiment. First, as shown in FIG. 3, the total width of the plurality of grooves 52: L = 2 mm, the pitch of the grooves 52: P = 0.04 mm, the depth of the grooves 52: h = 0.02 mm, The mold 50 was produced so that the innermost diameter: φ1 = 16.6 mm and the outermost diameter of the plurality of groove portions 52: φ2 = 18.6 mm. Further, as shown in FIG. 4, the inclination angle from the reference axis Sx to the first wall surface 52a: θ1 = 45 °, the inclination angle from the reference axis Sx to the second wall surface 52b: θ2 = 45 °, and the curvature radius of the bottom surface 52c. : The groove 52 was formed so that R = 1 μm. A glass substrate 30 having a diameter of 28 mm and a thickness of 2.8 mm was prepared in advance. In addition, an uncured resin material 20 having a viscosity at 25 ° C. of 500 mPa · s was prepared in advance. Then, in the same manner as in the first embodiment described above, the uncured resin material 20 is applied to the center of the surface of the glass substrate 30, and the molding material 50 is brought close to the surface of the glass substrate 30 from above to substantially reduce the resin material 20. A DOE molded part 2 a having a thickness of 0.1 mm was formed on the glass substrate 30 by spreading it into a disk shape.

ここで、図8に示すように、ガラス基板30の中心軸(回転対称軸)とDOE成形部2aの外周部との最大距離をDmaxとし、ガラス基板30の中心軸とDOE成形部2aの外周部との最小距離をDminとする。上述した実験条件で複数のサンプルを作製し、DmaxおよびDminを測定した結果、DmaxとDminとの差の平均値が0.59mmで、標準偏差が0.17であった。本実施形態によれば、ガラス基板30(外周部)に対するDOE成形部2a(外周部)のシフト量(偏芯量)が1mm以下となることがわかる。   Here, as shown in FIG. 8, the maximum distance between the central axis (rotation symmetry axis) of the glass substrate 30 and the outer periphery of the DOE molding portion 2a is Dmax, and the central axis of the glass substrate 30 and the outer periphery of the DOE molding portion 2a. Let Dmin be the minimum distance to the part. A plurality of samples were produced under the above-described experimental conditions, and Dmax and Dmin were measured. As a result, the average difference between Dmax and Dmin was 0.59 mm, and the standard deviation was 0.17. According to this embodiment, it turns out that the shift amount (eccentricity) of the DOE shaping | molding part 2a (outer peripheral part) with respect to the glass substrate 30 (outer peripheral part) will be 1 mm or less.

なお、上述の第1実施形態において、支持部3としてガラス基板30を用いているが、これに限られるものではなく、例えば、プラスチック製の基板であってもよく、透明な材料であればよい。   In the first embodiment described above, the glass substrate 30 is used as the support portion 3. However, the present invention is not limited to this. For example, a plastic substrate may be used as long as it is a transparent material. .

また、上述の第1実施形態において、DOE成形部2および支持部3(DOE成形部2aおよびガラス基板30)がそれぞれ円盤状に形成されているが、これに限られるものではなく、これらの少なくともいずれかの面が球面もしくは非球面であってもよい。   Moreover, in the above-mentioned 1st Embodiment, although the DOE shaping | molding part 2 and the support part 3 (DOE shaping | molding part 2a and the glass substrate 30) are each formed in disk shape, it is not restricted to this, At least these of these Either surface may be spherical or aspheric.

また、上述の第1実施形態において、複数の溝部52が成形型50の径方向に等ピッチ間隔で並んでいるが、これに限られるものではなく、等ピッチでなくてもよい。また、条件によっては、溝部52が単数であってもよい。   Further, in the first embodiment described above, the plurality of groove portions 52 are arranged at equal pitch intervals in the radial direction of the mold 50. However, the present invention is not limited to this and may not be equal pitch. Moreover, the groove part 52 may be single according to conditions.

また、上述の第1実施形態において、シフト量を測定した後、輪帯22を含むDOE成形部2aの外周部をカットしているが、これに限られるものではなく、光学性能上問題がなければ、外周部をカットせずに輪帯22を残すようにしてもよい。   In the first embodiment described above, after measuring the shift amount, the outer peripheral portion of the DOE molding portion 2a including the annular zone 22 is cut. However, the present invention is not limited to this, and there is no problem in optical performance. For example, the annular zone 22 may be left without cutting the outer peripheral portion.

また、上述の第1実施形態において、溝部52の断面が左右対称に形成されているが、これに限られるものではなく、左右非対称に形成されてもよい。例えば、図9(a)に示すように、溝部52の第1壁面52a′が第2壁面52b′より傾斜してもよく、また例えば、図9(b)に示すように、溝部52の第2壁面52b″が第1壁面52a″より傾斜してもよい。すなわち、上述の条件式(1)〜(3)で表される条件を満足するように溝部52を形成すればよい。   Further, in the first embodiment described above, the cross section of the groove 52 is formed symmetrically. However, the present invention is not limited to this, and the groove 52 may be formed asymmetrical. For example, as shown in FIG. 9A, the first wall surface 52a ′ of the groove portion 52 may be inclined with respect to the second wall surface 52b ′. For example, as shown in FIG. The two wall surfaces 52b ″ may be inclined with respect to the first wall surface 52a ″. That is, the groove 52 may be formed so as to satisfy the conditions represented by the conditional expressions (1) to (3) described above.

続いて、回折レンズ1の製造方法の第2実施形態について説明する。なお、第2実施形態における製造フローは、第1実施形態における製造フローと比較して、シフト検査工程を設けていない点が異なる。まず予め、DOE成形部2を成形するための樹脂材20や、支持部3となるガラス基板60を作製した後、ガラス基板60の上に図10(d)に示すような輪帯63を裏面側に有するDOE成形部2bを成形する。   Then, 2nd Embodiment of the manufacturing method of the diffraction lens 1 is described. The manufacturing flow in the second embodiment is different from the manufacturing flow in the first embodiment in that a shift inspection process is not provided. First, the resin material 20 for molding the DOE molding part 2 and the glass substrate 60 to be the support part 3 are prepared in advance, and then the annular zone 63 as shown in FIG. The DOE molding part 2b that is provided on the side is molded.

第2実施形態の成形型55は、図10(b)に示すような円盤状に形成された金型であり、成形型55の表面側には、DOE成形部2(回折格子21)の形状を転写するための形状(反転形状)を有した転写面部51のみが形成されている。第2実施形態の転写面部51は、第1実施形態と同様に形成され、DOE成形部2(回折格子21)の形状に合わせて形成された円形状の転写面51aを有している。   The mold 55 according to the second embodiment is a mold formed in a disk shape as shown in FIG. 10B, and the shape of the DOE molding part 2 (diffraction grating 21) is formed on the surface side of the mold 55. Only the transfer surface portion 51 having a shape (inverted shape) for transferring the image is formed. The transfer surface portion 51 of the second embodiment is formed in the same manner as in the first embodiment, and has a circular transfer surface 51a formed in accordance with the shape of the DOE molding portion 2 (diffraction grating 21).

第2実施形態のガラス基板60は、図10(a)に示すような円盤状に形成された透明のガラス基板であり、ガラス基板60の表面側の外周部近傍には、複数の溝部62が円環状に延びて形成されている。第2実施形態の溝部62は、ガラス基板60の径方向に等ピッチ間隔で並ぶ同心円状に形成される。各溝部62は、第1実施形態の溝部52と同様の形状(上下反転させた形状)であり、詳細な図示を省略するが、断面視V字形の一対の壁面と、この一対の壁面に繋がる断面視円弧形の底面とを有している。また、第2実施形態の溝部62において、第1実施形態の溝部52と同様に、基準軸、第1壁面、および第2壁面を定義するものとし、これらの詳細な説明および図示を省略する。   The glass substrate 60 of the second embodiment is a transparent glass substrate formed in a disc shape as shown in FIG. 10A, and a plurality of groove portions 62 are provided in the vicinity of the outer peripheral portion on the surface side of the glass substrate 60. It is formed to extend in an annular shape. The groove portions 62 of the second embodiment are formed in concentric circles arranged at equal pitch intervals in the radial direction of the glass substrate 60. Each groove portion 62 has the same shape (vertically inverted shape) as the groove portion 52 of the first embodiment and is not shown in detail, but is connected to a pair of V-shaped wall surfaces in cross section and the pair of wall surfaces. And a bottom surface having an arc shape in cross section. Moreover, in the groove part 62 of 2nd Embodiment, a reference axis, a 1st wall surface, and a 2nd wall surface shall be defined similarly to the groove part 52 of 1st Embodiment, These detailed description and illustration are abbreviate | omitted.

なお、第2実施形態の溝部62は、図示しない研削機を用いて、ガラス基板60の回転対称軸を中心に回転させながら研削加工を行うことにより、溝部62の回転対称軸がガラス基板60の回転対称軸と同軸となるように形成される。   In addition, the groove part 62 of 2nd Embodiment grinds, rotating around the rotational symmetry axis of the glass substrate 60 using a grinder which is not illustrated, so that the rotational symmetry axis of the groove part 62 is the same as that of the glass substrate 60. It is formed so as to be coaxial with the rotational symmetry axis.

第2実施形態の成形工程では、まず、図10(a)に示すように、ガラス基板60を図示しないステージ上に載置する。次に、図10(b)に示すように、ガラス基板60の表面中央部に第1実施形態と同様の未硬化の(液状の)樹脂材20を塗布する。次に、図10(c)に示すように、樹脂材20が塗布されたガラス基板30の表面に成形型55を上方から近づけて、樹脂材20を略円盤状に押し広げる。この状態で、ガラス基板60の裏面側から樹脂材20に向けて紫外線を所定の照射量だけ照射し、未硬化の樹脂材20を硬化させた後、離型する。そうすると、成形型55の転写面51aが樹脂材20に当接することにより回折格子21の形状が樹脂材20に転写されるとともに、成形型55により押し広げられる樹脂材20の一部がガラス基板60の溝部62に入り込む。そのため、図10(d)に示すように、ガラス基板60の上に回折格子21を囲むように視認される輪帯63を裏面側に有するDOE成形部2bが成形される。   In the molding process of the second embodiment, first, as shown in FIG. 10A, the glass substrate 60 is placed on a stage (not shown). Next, as shown in FIG. 10B, an uncured (liquid) resin material 20 similar to that of the first embodiment is applied to the center of the surface of the glass substrate 60. Next, as shown in FIG. 10C, the molding die 55 is brought close to the surface of the glass substrate 30 coated with the resin material 20 from above to spread the resin material 20 in a substantially disk shape. In this state, ultraviolet rays are irradiated from the back surface side of the glass substrate 60 toward the resin material 20 by a predetermined irradiation amount, the uncured resin material 20 is cured, and then released. Then, the shape of the diffraction grating 21 is transferred to the resin material 20 by the transfer surface 51 a of the mold 55 coming into contact with the resin material 20, and a part of the resin material 20 that is spread by the mold 55 is part of the glass substrate 60. The groove 62 enters. Therefore, as shown in FIG. 10 (d), a DOE molding portion 2b having an annular zone 63 that is visually recognized so as to surround the diffraction grating 21 on the glass substrate 60 is molded.

このようにして、ガラス基板60の上に図10(d)に示すようなDOE成形部2bを成形する。その後、旋盤等によりガラス基板60および輪帯63を含むDOE成形部2bの外周部をカットする仕上げ工程や、最終的な製品検査工程等を経て、DOE成形部2および支持部3からなる回折レンズ1が製造される。   In this manner, the DOE forming portion 2b as shown in FIG. 10 (d) is formed on the glass substrate 60. After that, a diffractive lens composed of the DOE molding part 2 and the support part 3 is subjected to a finishing process for cutting the outer peripheral part of the DOE molding part 2b including the glass substrate 60 and the annular zone 63 by a lathe, a final product inspection process, and the like. 1 is manufactured.

第2実施形態では、ガラス基板60の外周部近傍に、成形型55の転写面部51よりも径が大きい円環状の溝部62がガラス基板60と同軸に形成される。そのため、ガラス基板60の表面に成形型55を近づける際、転写面部51の回転対称軸をガラス基板60の回転対称軸と同軸となるように配置すれば、成形型55が樹脂材20を押し広げる際、樹脂材20の一部が円環状に繋がる溝部62に入り込むことで、樹脂材20を均一に(回転対称に)押し広げることができる。これにより、回折格子21だけでなく、DOE成形部2b自体もガラス基板60と同軸に形成される。この結果、第2実施形態によれば、第1実施形態と同様に、回折レンズ1の製造コストを低減させることが可能になる。   In the second embodiment, an annular groove 62 having a diameter larger than that of the transfer surface portion 51 of the molding die 55 is formed coaxially with the glass substrate 60 in the vicinity of the outer peripheral portion of the glass substrate 60. Therefore, when the molding die 55 is brought close to the surface of the glass substrate 60, if the rotational symmetry axis of the transfer surface portion 51 is arranged so as to be coaxial with the rotational symmetry axis of the glass substrate 60, the molding die 55 spreads the resin material 20. At this time, since a part of the resin material 20 enters the groove portion 62 connected in an annular shape, the resin material 20 can be uniformly spread (rotationally symmetric). Thereby, not only the diffraction grating 21 but also the DOE molding part 2 b itself is formed coaxially with the glass substrate 60. As a result, according to the second embodiment, the manufacturing cost of the diffractive lens 1 can be reduced as in the first embodiment.

なお、各溝部62の第1壁面および第2壁面は、前述の条件式(1)〜(3)で表される条件を満足するように形成されるのが好ましい。なお、第1実施形態と同様に、溝部62における基準軸から第1壁面への傾斜角をθ1とし、基準軸から第2壁面への傾斜角をθ2とする。このようにすれば、第1実施形態と同様に、回折レンズ1の製造コストを低減させることが可能になる。また、離型を容易に行うことができるので、回折レンズ1の製造を容易にすることができる。   In addition, it is preferable that the 1st wall surface and 2nd wall surface of each groove part 62 are formed so that the conditions represented by the above-mentioned conditional expression (1)-(3) may be satisfied. As in the first embodiment, the inclination angle from the reference axis to the first wall surface in the groove 62 is θ1, and the inclination angle from the reference axis to the second wall surface is θ2. In this way, the manufacturing cost of the diffractive lens 1 can be reduced as in the first embodiment. Moreover, since the mold release can be easily performed, the diffractive lens 1 can be easily manufactured.

また、各溝部62の底面は、前述の条件式(4)で表される条件を満足するように形成されるのが好ましい。なお、第1実施形態と同様に、溝部62における底面の曲率半径をRとする。このようにすれば、第1実施形態と同様に、回折レンズ1の製造を容易にすることができる。   In addition, the bottom surface of each groove 62 is preferably formed so as to satisfy the condition represented by the conditional expression (4). Note that the radius of curvature of the bottom surface of the groove 62 is R, as in the first embodiment. In this way, the diffractive lens 1 can be easily manufactured as in the first embodiment.

なお、上述の第2実施形態において、支持部3としてガラス基板60を用いているが、これに限られるものではなく、例えば、プラスチック製の基板であってもよく、透明な材料であればよい。   In the second embodiment described above, the glass substrate 60 is used as the support portion 3, but is not limited to this. For example, a plastic substrate may be used as long as it is a transparent material. .

また、上述の第2実施形態において、DOE成形部2および支持部3(DOE成形部2bおよびガラス基板60)がそれぞれ円盤状に形成されているが、これに限られるものではなく、これらの少なくともいずれかの面が球面もしくは非球面であってもよい。   Further, in the second embodiment described above, the DOE molding part 2 and the support part 3 (DOE molding part 2b and glass substrate 60) are each formed in a disk shape, but are not limited thereto, and at least these Either surface may be spherical or aspheric.

また、上述の第2実施形態において、複数の溝部62がガラス基板60の径方向に等ピッチ間隔で並んでいるが、これに限られるものではなく、等ピッチでなくてもよい。また、条件によっては、溝部62が単数であってもよい。   In the second embodiment described above, the plurality of groove portions 62 are arranged at equal pitch intervals in the radial direction of the glass substrate 60. However, the present invention is not limited to this and may not be equal pitch. Moreover, the groove part 62 may be single according to conditions.

また、上述の第2実施形態において、輪帯63を含むDOE成形部2bの外周部をカットしているが、これに限られるものではなく、光学性能上問題がなければ、外周部をカットせずに輪帯63を残すようにしてもよい。   In the second embodiment described above, the outer peripheral portion of the DOE molding portion 2b including the annular zone 63 is cut. However, the present invention is not limited to this, and if there is no problem in optical performance, the outer peripheral portion can be cut. Instead, the annular zone 63 may be left.

また、上述の第2実施形態において、溝部62の断面が左右対称に形成されているが、これに限られるものではなく、第1実施形態と同様に、左右非対称に形成されてもよい。すなわち、上述の条件式(1)〜(3)で表される条件を満足するように溝部62を形成すればよい。   Further, in the second embodiment described above, the cross section of the groove 62 is formed symmetrically. However, the present invention is not limited to this, and may be formed asymmetrical as in the first embodiment. That is, the groove portion 62 may be formed so as to satisfy the conditions expressed by the above conditional expressions (1) to (3).

また、上述の第1および第2実施形態において、単層のDOE成形部2を有する回折レンズ1を例に説明したが、これに限られるものではなく、密着複層型の位相フレネルレンズ(以下、PFレンズと称する)であっても、本発明を適用可能である。例えば、図11に示すような、低屈折率高分散の樹脂材料を用いて前述の成形型50(もしくは成形型55)により成形された第1のDOE層72と、第1のDOE層72を支持するガラス基板である第1の支持層73と、高屈折率低分散の樹脂材料を用いて第1のDOE層72に積層された第2のDOE層74と、第2のDOE層74を支持するガラス基板である第2の支持層75とを有したPFレンズ71であってもよい。また例えば、図12に示すような、低屈折率高分散の樹脂材料を用いて前述の成形型50(もしくは成形型55)により成形された第1のDOE層82と、第1のDOE層82を支持するガラス基板である支持層83と、高屈折率低分散の樹脂材料を用いて第1のDOE層82に積層された第2のDOE層84とを有したPFレンズ81であってもよい。   In the first and second embodiments described above, the diffractive lens 1 having the single-layer DOE molded portion 2 has been described as an example. The present invention can be applied even to a PF lens. For example, as shown in FIG. 11, a first DOE layer 72 and a first DOE layer 72 formed by the above-described mold 50 (or mold 55) using a resin material having a low refractive index and high dispersion are used. A first support layer 73 which is a glass substrate to be supported, a second DOE layer 74 laminated on the first DOE layer 72 using a resin material having a high refractive index and low dispersion, and a second DOE layer 74 It may be a PF lens 71 having a second support layer 75 that is a glass substrate to be supported. Further, for example, as shown in FIG. 12, a first DOE layer 82 and a first DOE layer 82 formed by the above-described mold 50 (or mold 55) using a resin material having a low refractive index and high dispersion. Even a PF lens 81 having a support layer 83 that is a glass substrate that supports the second DOE layer 84 laminated on the first DOE layer 82 using a resin material having a high refractive index and low dispersion. Good.

また、上述の第1および第2実施形態において、回折光学素子の一種である回折レンズ1を例に説明したが、これに限られるものではなく、一般的なフレネルレンズや、非球面レンズ、マイクロレンズアレイ等の光学素子であっても、本発明を適用可能である。   In the first and second embodiments described above, the diffractive lens 1 which is a kind of diffractive optical element has been described as an example. However, the present invention is not limited to this, and a general Fresnel lens, an aspheric lens, a micro lens, The present invention can also be applied to an optical element such as a lens array.

1 回折レンズ(光学素子)
2 DOE成形部 3 支持部
20 樹脂材(成形材料)
21 回折格子 22 輪帯
30 ガラス基板(第1実施形態)
50 成形型(第1実施形態)
51 転写面部(51a 転写面)
52 溝部(52a 第1壁面、52b 第2壁面、52c 底面)
55 成形型(第2実施形態)
60 ガラス基板(第2実施形態)
62 溝部
71 PFレンズ(回折光学素子の変形例)
81 PFレンズ(回折光学素子の変形例)
1 Diffraction lens (optical element)
2 DOE molding part 3 Support part 20 Resin material (molding material)
21 Diffraction grating 22 Ring zone 30 Glass substrate (first embodiment)
50 Mold (first embodiment)
51 Transfer surface (51a Transfer surface)
52 Groove (52a first wall surface, 52b second wall surface, 52c bottom surface)
55 Mold (Second Embodiment)
60 Glass substrate (second embodiment)
62 Groove 71 PF lens (modified example of diffractive optical element)
81 PF lens (modified example of diffractive optical element)

Claims (7)

略円盤状に形成された第1部材の表面に成形材料を供給し、前記成形材料が供給された前記第1部材の前記表面に成形型を近づけて前記成形材料を押し広げ、前記押し広げた前記成形材料を硬化させることにより、前記成形材料を硬化させてなる第2部材を前記第1部材に重ねて成形する光学素子の製造方法であって、
前記第1部材の前記表面の外周部近傍、もしくは、前記成形型において前記第1部材の前記外周部近傍と対向する対向面部に、断面視V字形の一対の壁面を有する溝部が円環状に延びて形成されており、
以下の条件式を満足することを特徴とする光学素子の製造方法。
3°≦θ1≦60°
3°≦θ2≦60°
30°≦θ1+θ2≦120°
但し、
θ1:前記断面視V字形の一対の壁面における一方の壁面への傾斜角、
θ2:前記断面視V字形の一対の壁面における他方の壁面への傾斜角。
A molding material is supplied to the surface of the first member formed in a substantially disc shape, and a molding die is brought close to the surface of the first member to which the molding material is supplied to spread the molding material, and the spread A method for producing an optical element, wherein a second member obtained by curing the molding material is overlaid on the first member by curing the molding material,
A groove portion having a pair of V-shaped wall surfaces in a cross-sectional view extends in an annular shape in the vicinity of the outer peripheral portion of the surface of the first member or in the opposing surface portion facing the vicinity of the outer peripheral portion of the first member in the mold. Formed,
The manufacturing method of the optical element characterized by satisfying the following conditional expressions:
3 ° ≦ θ1 ≦ 60 °
3 ° ≦ θ2 ≦ 60 °
30 ° ≦ θ1 + θ2 ≦ 120 °
However,
θ1: an inclination angle to one wall surface of the pair of V-shaped wall surfaces in cross section,
θ2: An inclination angle of the pair of V-shaped wall surfaces to the other wall surface in the cross-sectional view.
前記溝部は、前記断面視V字形の一対の壁面に繋がる断面視円弧形の底面を有し、
以下の条件式を満足することを特徴とする請求項1に記載の光学素子の製造方法。
0.5μm≦R≦5μm
但し、
R:前記底面の曲率半径。
The groove portion has a bottom in an arc shape in cross section connected to a pair of wall surfaces in the V shape in cross section,
The optical element manufacturing method according to claim 1, wherein the following conditional expression is satisfied.
0.5μm ≦ R ≦ 5μm
However,
R: radius of curvature of the bottom surface.
前記成形型は、前記光学素子に求められる所定の素子形状を転写するための形状を有した転写面部を有しており、
前記溝部は、前記成形型の前記対向面部に、前記転写面部を囲む円環状に形成されることを特徴とする請求項1または2に記載の光学素子の製造方法。
The molding die has a transfer surface portion having a shape for transferring a predetermined element shape required for the optical element,
3. The method of manufacturing an optical element according to claim 1, wherein the groove portion is formed in an annular shape surrounding the transfer surface portion on the facing surface portion of the mold.
前記転写面部が円形状に形成され、
前記溝部の回転対称軸が前記転写面部の回転対称軸と同軸であり、
前記第1部材の前記表面に前記成形型を近づける際、前記転写面部および前記溝部の回転対称軸を前記第1部材の回転対称軸と同軸となるように配置することを特徴とする請求項3に記載の光学素子の製造方法。
The transfer surface portion is formed in a circular shape,
The rotational symmetry axis of the groove is coaxial with the rotational symmetry axis of the transfer surface,
4. When the mold is brought close to the surface of the first member, the rotational symmetry axis of the transfer surface portion and the groove portion is arranged so as to be coaxial with the rotational symmetry axis of the first member. The manufacturing method of the optical element of description.
前記所定の素子形状は、回折光学素子を構成する回折格子形状であることを特徴とする請求項1から4のいずれか一項に記載の光学素子の製造方法。   5. The method of manufacturing an optical element according to claim 1, wherein the predetermined element shape is a diffraction grating shape constituting the diffractive optical element. 前記成形材料として紫外線硬化型樹脂を用いることを特徴とする請求項1から5のいずれか一項に記載の光学素子の製造方法。   6. The method for manufacturing an optical element according to claim 1, wherein an ultraviolet curable resin is used as the molding material. 請求項1から6のいずれか一項に記載の光学素子の製造方法を用いて製造されることを特徴とする光学素子。   It manufactures using the manufacturing method of the optical element as described in any one of Claim 1 to 6, The optical element characterized by the above-mentioned.
JP2012164916A 2012-07-25 2012-07-25 Optical element manufacturing method and optical element Active JP6119135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012164916A JP6119135B2 (en) 2012-07-25 2012-07-25 Optical element manufacturing method and optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012164916A JP6119135B2 (en) 2012-07-25 2012-07-25 Optical element manufacturing method and optical element

Publications (2)

Publication Number Publication Date
JP2014024223A true JP2014024223A (en) 2014-02-06
JP6119135B2 JP6119135B2 (en) 2017-04-26

Family

ID=50198360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012164916A Active JP6119135B2 (en) 2012-07-25 2012-07-25 Optical element manufacturing method and optical element

Country Status (1)

Country Link
JP (1) JP6119135B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10578949B2 (en) 2017-02-03 2020-03-03 Apple Inc. Asymmetric zones in a Fresnel lens

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05220773A (en) * 1992-02-14 1993-08-31 Olympus Optical Co Ltd Method and mold for molding composite optical element
JP2001277260A (en) * 2000-03-30 2001-10-09 Seiko Epson Corp Micro-lens array, its production method, and original board and display for producing it
JP2011017748A (en) * 2009-07-07 2011-01-27 Nikon Corp Method and device for manufacturing diffraction optical element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05220773A (en) * 1992-02-14 1993-08-31 Olympus Optical Co Ltd Method and mold for molding composite optical element
JP2001277260A (en) * 2000-03-30 2001-10-09 Seiko Epson Corp Micro-lens array, its production method, and original board and display for producing it
JP2011017748A (en) * 2009-07-07 2011-01-27 Nikon Corp Method and device for manufacturing diffraction optical element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10578949B2 (en) 2017-02-03 2020-03-03 Apple Inc. Asymmetric zones in a Fresnel lens
US11467472B2 (en) 2017-02-03 2022-10-11 Apple Inc. Asymmetric zones in a fresnel lens

Also Published As

Publication number Publication date
JP6119135B2 (en) 2017-04-26

Similar Documents

Publication Publication Date Title
JP5208778B2 (en) Bonding optical element and manufacturing method thereof
US7835087B2 (en) Method of producing a lens
JP5834458B2 (en) Optical element manufacturing method and optical element
JP2003160343A (en) Molding die for forming optical element and optical element
JP2007334120A (en) Diffraction optical element, optical system using the same, and method for manufacturing diffraction optical element
Manaf et al. Design and fabrication of Si-HDPE hybrid Fresnel lenses for infrared imaging systems
WO2019124353A1 (en) Production method for spectacle lens molding mold and production method for spectacle lens
JP6119135B2 (en) Optical element manufacturing method and optical element
US20210129466A1 (en) Optical element and method for manufacturing the same
US20130010362A1 (en) Diffractive optical element and imaging apparatus using the same
JP5189420B2 (en) Resin lens and resin lens molding method
US20200132885A1 (en) Optical element with antireflection structure, mold for manufacturing, method of manufacturing optical element with antireflection structure, and imaging apparatus
JP5742234B2 (en) Optical element molding die, optical element manufacturing method, and optical element
US8531770B2 (en) Diffractive optical element and optical device
JP2012189995A (en) Diffraction optical element and imaging apparatus using the same
JP2008030160A (en) Method for centering circular lens and method for manufacturing circular lens using the method
JPS6337309A (en) Manufacture of composite type lens
JP2007333859A (en) Compound optical element and its manufacturing method
US20120327514A1 (en) Diffractive optical element and imaging apparatus using the same
WO2011013339A1 (en) Light pickup lens
JP2020071361A5 (en)
Li et al. An integrated approach to design and fabrication of a miniature endoscope using freeform optics
JP2014024222A (en) Optical element molding die, optical element manufacturing method, and optical element
JP2008129229A (en) Composite optical element and method of manufacturing composite optical element
JP2008008945A (en) Optical element, optical element holder and optical element module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170313

R150 Certificate of patent or registration of utility model

Ref document number: 6119135

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250