JP2014024205A - Heat shielding and insulating structure - Google Patents

Heat shielding and insulating structure Download PDF

Info

Publication number
JP2014024205A
JP2014024205A JP2012164342A JP2012164342A JP2014024205A JP 2014024205 A JP2014024205 A JP 2014024205A JP 2012164342 A JP2012164342 A JP 2012164342A JP 2012164342 A JP2012164342 A JP 2012164342A JP 2014024205 A JP2014024205 A JP 2014024205A
Authority
JP
Japan
Prior art keywords
heat
insulating
shielding
water
soluble resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012164342A
Other languages
Japanese (ja)
Inventor
Masanori Tateishi
正徳 立石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STAR HARD KK
Original Assignee
STAR HARD KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STAR HARD KK filed Critical STAR HARD KK
Priority to JP2012164342A priority Critical patent/JP2014024205A/en
Publication of JP2014024205A publication Critical patent/JP2014024205A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thermal Insulation (AREA)
  • Laminated Bodies (AREA)
  • Superstructure Of Vehicle (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat shielding and insulating structure which can improve heat damage by shielding heat generated by operation of a power source or external heat, in an operation body, such as a vehicle and equipment, operated by a power source.SOLUTION: In an operation body with a power source, for example, a vehicle 100 with an engine 102, a heat shielding and insulating coating layer 10, in which a large number of heat shielding pigments 13 and balloon particles 11 are arranged using a water-soluble resin 12 as a heat shielding binder, is formed on the outer surface or inner surface of a part receiving heat generated from the engine 102 and/or a part receiving external heat.

Description

本発明は、内燃機関等の動力源によって作動される車両や機器等の作動体において、それら動力源の作動によって発生する熱害の改善を図った遮熱断熱構造に関する。   The present invention relates to a heat insulating and heat insulating structure in which an operation body such as a vehicle or a device operated by a power source such as an internal combustion engine improves heat damage caused by the operation of the power source.

車両、例えば乗用車、バス、トラック等、自動車のエンジンルーム内は、エンジンの作動中、エンジンからの発熱を受け、また、ボンネットや下ボディを通して、太陽光の照射熱、輻射熱、道路からの反射熱を受けて、非常に高温な環境の下に置かれている。外気温が高く、強烈な太陽光の日差しに晒される夏場は特に厳しい環境の下に置かれる。エンジンルーム内が排熱や外部からの吸熱により高温の環境の下に置かれると、エンジンの出力の低下をもたらし、燃費の悪化やCO2の増加の要因となる。   Inside the engine room of a vehicle such as a car, passenger car, bus, truck, etc., heat is generated from the engine while the engine is running, and also through the bonnet and lower body, sunlight irradiation heat, radiation heat, reflected heat from the road And is placed in a very hot environment. In summer, when the outdoor temperature is high and the sun is exposed to intense sunlight, it is placed in a particularly severe environment. If the engine room is placed in a high-temperature environment due to exhaust heat or heat absorption from the outside, the engine output is reduced, resulting in deterioration of fuel consumption and increase of CO2.

また、保冷用または保温用のコンテナを後部に搭載する車両の場合、エンジンからの動力を基にコンプレッサを作動させて、冷媒を循環させ、コンテナ内を保冷または保温しているが、夏場はコンテナが太陽光の照射熱のよる影響を受け、冬場はコンテナが冷気による影響を受けており、コンテナ内を適正温度に保持するためにコンプレッサに負荷がかかり、エンジンの出力低下、燃費の悪化、CO2の増加をもたらしている。   In addition, in the case of a vehicle equipped with a container for cold insulation or heat insulation at the rear, the compressor is operated based on the power from the engine to circulate the refrigerant to keep the inside of the container cold or warm. Is affected by sunlight irradiation heat, and in winter the container is affected by cold air, and the compressor is loaded to maintain the inside of the container at an appropriate temperature, reducing engine output, fuel consumption, CO2 Has brought about an increase.

このような問題は、車両のみならず、内蔵する動力源が発熱する船舶、飛行機、ロケット等の移動体、内蔵する動力源が発熱する屋内または屋外の機器、たとえば、屋内では家庭用または業務用の冷凍冷蔵庫、空調機、屋外では太陽光の照射熱を受ける室外機、大型冷凍倉庫、自動販売機、宅配用冷蔵冷凍保温箱、電源装置、太陽光発電設備、地熱発電設備、熱交換器機等の作動体についても当てはまる。   Such problems include not only vehicles but also moving bodies such as ships, airplanes, and rockets that generate heat from the built-in power source, and indoor or outdoor equipment that generates heat from the built-in power source, for example, indoors or for home use. Refrigerated refrigerators, air conditioners, outdoor units that receive sunlight irradiation heat, large-scale refrigerated warehouses, vending machines, refrigerated storage boxes for home delivery, power supply units, solar power generation facilities, geothermal power generation facilities, heat exchanger machines, etc. This also applies to the actuating body.

断熱構造のパネルでボディの壁面を構成した保冷車のボディ構造の例(特許文献1)、作業車両のエンジンの給排気管を断熱構造とする例(特許文献2)、車両の側面を断熱構造とする例(特許文献3)が提案されている。   An example of a body structure of a cold car in which the wall surface of the body is configured by a panel of a heat insulating structure (Patent Document 1), an example in which an air supply / exhaust pipe of an engine of a work vehicle is a heat insulating structure (Patent Document 2), and a heat insulating structure on a side surface of the vehicle (Patent Document 3) has been proposed.

特開2002−264717号公報JP 2002-264717 A 特開2010−143452号公報JP 2010-143452 A 特開2008−49984号公報JP 2008-49984 A

しかしながら、いずれの従来技術も、既存の車両に対しては断熱構造の適用が困難であり、また、断熱構造化にともない、車両の製造コストが高くなるという課題がある。   However, any of the conventional techniques has a problem that it is difficult to apply a heat insulating structure to an existing vehicle, and the manufacturing cost of the vehicle increases with the heat insulating structure.

本発明は、上記課題に鑑みてなされたもので、動力源によって作動する車両や機器等の作動体において、動力源の作動によって生じる熱あるいは外部熱を遮断して、熱害の改善を図ることが可能な、遮熱断熱構造を提供することを目的とする。   The present invention has been made in view of the above problems, and in an operating body such as a vehicle or a device that is operated by a power source, the heat generated by the operation of the power source or external heat is interrupted to improve heat damage. An object of the present invention is to provide a heat-insulating and heat-insulating structure.

上記課題を解決するために、本発明に係る遮熱断熱構造は、動力源を備える作動体において、動力源から発生する熱を受ける部位および/または外気熱を受ける部位の外面または内面に、水溶性樹脂を遮熱バインダーとして遮熱顔料およびバルーン粒子が多数配列された遮熱断熱膜層を形成してなることを第1の特徴とする。   In order to solve the above-described problems, a heat-insulating and heat-insulating structure according to the present invention is a water-soluble heat-insulating structure provided on an outer surface or an inner surface of a part that receives heat generated from a power source and / or a part that receives outside air heat. The first feature is that a heat insulating heat insulating film layer in which a large number of heat shielding pigments and balloon particles are arranged is formed using a heat-resistant resin as a heat shielding binder.

動力源には、ガソリンエンジン、ディーゼルエンジン、ジェットエンジン、ボイラー等の内燃機関、EV、電動機、水力、風力、太陽光発電、風力発電、水力発電、地熱発電等が含まれる。作動体には、車両、例えば乗用車、バス、トラック等の自動車、自動二輪、原動機付き・アシスト付き自転車、鉄道車両、建設車両、農業車両、飛行機、船舶、ロケット等の移動する物体(移動体)が含まれる。また、作動体には、設置物、例えば屋外に設置された冷凍倉庫、自動販売機、農業用ハウス、発電機、太陽光発電設備の太陽光パネル、風力発電設備の蓄電池箱、地熱発電設備の熱配管、屋内の家庭用または業務用冷蔵庫・冷凍庫、ラジエターを備える熱交換器本体(室外機)、宅配用冷蔵冷凍保冷箱等の固体が含まれる。   Power sources include gasoline engines, diesel engines, jet engines, boilers and other internal combustion engines, EVs, electric motors, hydropower, wind power, solar power generation, wind power generation, hydropower generation, geothermal power generation, and the like. Actuators include moving objects (moving objects) such as vehicles, automobiles such as passenger cars, buses, trucks, motorcycles, motorized / assisted bicycles, railway vehicles, construction vehicles, agricultural vehicles, airplanes, ships, rockets, etc. Is included. In addition, the operating body includes installed objects such as outdoor refrigerated warehouses, vending machines, agricultural houses, generators, solar panels for solar power generation equipment, storage battery boxes for wind power generation equipment, geothermal power generation equipment Solids such as heat pipes, indoor or commercial refrigerators / freezers, heat exchanger bodies (outdoor units) equipped with radiators, refrigerated refrigerator-freezer boxes for home delivery, and the like are included.

動力源から発生する熱には、例えば内燃機関でガソリンやディーゼルを燃焼させることによりエンジンルーム内に発生する熱、エアコンディショナー用の熱交換部からエンジンルーム内に放出される熱、発電機でガスを燃焼させることにより外箱内に発生する熱、本体、配管等の排熱、船内機関室や工場内ユーティリティー設備において動力源から発生する熱等が含まれる。   The heat generated from the power source includes, for example, heat generated in the engine room by burning gasoline or diesel in an internal combustion engine, heat released from the heat exchange part for an air conditioner into the engine room, and gas generated in the generator. This includes heat generated in the outer box by burning, exhaust heat from the main body, piping, etc., heat generated from the power source in the ship engine room and factory utility equipment, and the like.

外気熱には、太陽光による照射熱、太陽光の路面や建物壁面等からの反射熱、輻射熱、寒冷地における冷気、凍結等が含まれる。   The outside air heat includes irradiation heat from sunlight, reflected heat from the road surface or building wall surface of sunlight, radiant heat, cold air in a cold region, freezing and the like.

バルーン粒子は、比重1未満のセラミック系、アルミナ系またはガラス系等のバルーン粒子からなり、断熱性および保温性に優れる。また、比重が1を超える遮熱顔料は、例えば酸化チタンや鉄クロム等からなり、これらは赤外線反射効果があり、遮熱性に優れ、耐久性に優れる。また、セラミック系またはガラス系等のバルーン粒子は吸水率が0.1%以下であり、防水機能があるため、遮熱断熱膜層に防水機能を付与する。   The balloon particles are made of balloon particles such as ceramic, alumina or glass having a specific gravity of less than 1, and are excellent in heat insulation and heat retention. Further, the heat shielding pigment having a specific gravity of more than 1 is made of, for example, titanium oxide or iron chrome, which has an infrared reflection effect, has excellent heat shielding properties, and is excellent in durability. Moreover, since the ceramic or glass-based balloon particles have a water absorption rate of 0.1% or less and have a waterproof function, the waterproof function is imparted to the heat-insulating and heat-insulating film layer.

本発明に係る遮熱断熱構造によると、動力源を備える作動体において、動力源から発生する熱を受ける部位の外面または内面に、水溶性樹脂を遮熱バインダーとして遮熱顔料およびバルーン粒子が多数配列された遮熱断熱膜層を形成することにより、動力源から発生する熱を遮熱して、熱害の改善を図ることができる。   According to the heat-insulating and heat-insulating structure according to the present invention, a large number of heat-shielding pigments and balloon particles using a water-soluble resin as a heat-insulating binder are provided on the outer surface or the inner surface of a portion that receives heat generated from a power source in an operating body including a power source. By forming the arranged heat shielding and heat insulating film layers, heat generated from the power source can be shielded to improve heat damage.

例えば、動力源を備える作動体がエンジンを備える車両である場合、エンジンルーム内の給気管の外面に前記遮熱断熱膜層を塗布することにより、さらには過給システム(ターボチャージャー、スーパーチャージャー等)の外面に前記遮熱断熱膜層を塗布することにより、エンジンルーム内で発生した熱を遮熱断熱膜層が遮熱し、給気管や過給システムを流れる空気の加熱を防止し、エンジンの出力低下を低減する。   For example, when the operating body having a power source is a vehicle having an engine, the superheater system (turbocharger, supercharger, etc.) is further applied by applying the heat-shielding heat insulating film layer on the outer surface of the air supply pipe in the engine room. ) Is applied to the outer surface of the engine room so that the heat generated in the engine room is shielded by the heat insulating heat insulating film layer, preventing the heating of the air flowing through the air supply pipe and the supercharging system. Reduce output drop.

また、例えば、動力源を備える作動体が冷媒を循環させる屋外の冷凍冷蔵倉庫である場合、冷凍冷蔵倉庫の外面に前記遮熱断熱膜層を塗布することにより、外気熱として太陽光からの照射熱、反射熱を遮熱し、冷媒を循環させるポンプの出力負荷を抑制する。さらに、前記遮熱断熱膜層を倉庫の内面に塗布することにより、保温庫として使用する場合の断熱性能を高める。   In addition, for example, when the operating body having a power source is an outdoor refrigerated warehouse that circulates the refrigerant, by applying the heat insulating heat insulating film layer to the outer surface of the refrigerated warehouse, irradiation from sunlight as outside air heat is performed. Heat and reflected heat are shielded, and the output load of the pump that circulates the refrigerant is suppressed. Furthermore, the heat insulation performance in the case of using as a heat storage is improved by apply | coating the said heat insulation heat insulation film layer to the inner surface of a warehouse.

遮熱断熱膜層は、遮熱性に優れる遮熱顔料と断熱性に優れるバルーン粒子を含むから、それらの複合効果により遮熱断熱効果を十分に発揮し、熱害の改善を図ることができる。   Since the heat-insulating and heat-insulating film layer includes a heat-shielding pigment having excellent heat-shielding properties and balloon particles having excellent heat-insulating properties, the heat-insulating and heat-insulating effect can be sufficiently exerted by their combined effect, and the heat damage can be improved.

遮熱断熱膜層は、水溶性樹脂を遮熱バインダーとして遮熱顔料およびバルーン粒子を結合するから、柔軟性に優れ、熱を受ける部位の曲げ形状や変形に追従し、しかもそれらの材料は耐久性に優れる。よって、遮熱断熱膜層を熱を受ける部位の形状に応じて、塗布後に熱を受ける部位に亀裂や割れを生じさせることなく、遮熱断熱効果を長期間維持することができる。   The heat-insulating and heat-insulating membrane layer combines heat-shielding pigments and balloon particles with water-soluble resin as a heat-insulating binder, so it has excellent flexibility and follows the bending shape and deformation of the part that receives heat, and these materials are durable Excellent in properties. Therefore, according to the shape of the part which receives heat from the heat-insulating and heat-insulating film layer, the heat-insulating and heat-insulating effect can be maintained for a long time without causing cracks or cracks in the part receiving heat after application.

本発明に係る遮熱断熱構造は、遮熱断熱膜層の乾燥厚さが100〜3000μであることを第2の特徴とする。   The thermal insulation structure according to the present invention has a second feature that the dry thickness of the thermal insulation film layer is 100 to 3000 μm.

乾燥厚さが100μ未満であると断熱性が低下し、3000μを超えると膜厚み強度が不足し、ひび割れ、亀裂などの原因となる。また、塗布する部位の曲面や変形に対する追従性が低下する。このため100〜3000μの範囲が、断熱性と強度、追従性の理由から好ましい。   If the dry thickness is less than 100 μm, the heat insulating property is lowered, and if it exceeds 3000 μm, the film thickness strength is insufficient, which causes cracks and cracks. Moreover, the followability with respect to the curved surface and deformation | transformation of the site | part to apply | coat falls. For this reason, the range of 100-3000 micrometers is preferable from the reason of heat insulation, intensity | strength, and followable | trackability.

本発明に係る遮熱断熱構造は、比重が1を超える遮熱顔料として、酸化チタン(TiO)または鉄クロム(Fe−Cr)を用いることを、第3の特徴とする。 The thermal barrier heat insulating structure according to the present invention is characterized in that titanium oxide (TiO 2 ) or iron chromium (Fe—Cr) is used as the thermal barrier pigment having a specific gravity exceeding 1.

本発明に係る遮熱断熱構造の施工方法は、動力源を備える作動体において、動力源から発生する熱を受ける部位および/または外気熱を受ける部位の外面または内面に、水溶性樹脂により被覆されたセラミック系またはガラス系の多数のバルーン粒子と、水溶性樹脂により被覆された遮熱顔料を含む混練水溶液を塗布し、乾燥させて、前記熱を受ける部位の外面または内面に、水溶性樹脂を遮熱バインダーとして遮熱顔料およびバルーン粒子が多数配列された遮熱断熱塗膜層を形成することを第1の特徴とする。   In the construction method of the heat-insulating and heat insulating structure according to the present invention, in the operating body including a power source, the outer surface or the inner surface of the portion that receives heat generated from the power source and / or the portion that receives outside air heat is coated with a water-soluble resin. Apply a kneaded aqueous solution containing a large number of ceramic or glass-based balloon particles and a heat-shielding pigment coated with a water-soluble resin, and dry to apply a water-soluble resin to the outer surface or inner surface of the portion that receives the heat. The first feature is to form a heat-insulating and heat-insulating coating layer in which a large number of heat-shielding pigments and balloon particles are arranged as a heat-shielding binder.

本発明に係る遮熱断熱構造の施工方法は、動力源を備える作動体において、動力源から発生する熱を受ける部位および/または外気熱を受ける部位の外面または内面に、水溶性樹脂により被覆された比重1未満のセラミック系またはガラス系の多数のバルーン粒子と、水溶性樹脂をバインダーとして比重1未満のセラミック系またはガラス系のバルーン粒子および比重1超の遮熱顔料が結合された多数のバルーン粒子・遮熱顔料結合体を含む混練水溶液を塗布し、乾燥させて、前記熱を受ける部位の外面または内面に、表層部に水溶性樹脂を遮熱バインダーとしてバルーン粒子と遮熱顔料が結合されたバルーン粒子・遮熱顔料結合体が多数配列され、内層部に水溶性樹脂をバインダーとしてバルーン粒子が多数配列された遮熱断熱膜層を形成することを第2の特徴とする。   In the construction method of the heat-insulating and heat insulating structure according to the present invention, in the operating body including a power source, the outer surface or the inner surface of the portion that receives heat generated from the power source and / or the portion that receives outside air heat is coated with a water-soluble resin. A large number of ceramic or glass balloon particles having a specific gravity of less than 1, a combination of ceramic or glass balloon particles having a specific gravity of less than 1 and a thermal barrier pigment having a specific gravity of more than 1 using a water-soluble resin as a binder. Balloon particles and heat-shielding pigments are bonded to the outer or inner surface of the part that receives heat by using a water-soluble resin as a heat-shielding binder on the outer or inner surface of the heat-receiving part. A large number of balloon particles / heat-shielding pigment conjugates are arranged, and a heat-insulating and heat-insulating film layer in which many balloon particles are arranged using a water-soluble resin as a binder on the inner layer The second said Rukoto.

遮熱断熱構造を施工するにあたり、熱を受ける部位の外面または内面に、水溶性樹脂により被覆された比重1未満のセラミック系またはガラス系の多数のバルーン粒子と、水溶性樹脂をバインダーとして比重1未満のセラミック系またはガラス系のバルーン粒子および比重1超の遮熱顔料が結合された多数のバルーン粒子・遮熱顔料結合体を含む混練水溶液を塗布することにより、バルーン粒子の浮力によって、バルーン粒子に結合された比重が1を超える遮熱顔料が塗膜層の表層部に浮上する。   When constructing a heat-insulating and heat insulating structure, the outer surface or inner surface of the part that receives heat has a large number of ceramic or glass balloon particles with a specific gravity of less than 1 coated with a water-soluble resin, and a specific gravity of 1 using a water-soluble resin as a binder. By applying a kneaded aqueous solution containing a large number of balloon particles / heat shielding pigments combined with ceramic or glass balloon particles less than 1 and a heat shielding pigment having a specific gravity of more than 1, The thermal barrier pigment having a specific gravity of more than 1 floats on the surface layer of the coating layer.

比重1超の遮熱顔料は、その重さによって沈降し、単体では塗膜層の表層部に浮上しないのに対し、バルーン粒子の浮力を利用して塗膜層の表層部に浮上させ遮熱顔料を表面に並べて露出および強固に定着させることができる。これにより、乾燥後の部位の表層部に遮熱顔料が並ぶことにより、遮熱性、断熱性、防水性、保温性に優れた施工を行なえる。   A thermal barrier pigment with a specific gravity of more than 1 settles according to its weight and does not float on the surface layer of the coating layer by itself, but floats on the surface layer of the coating layer using the buoyancy of the balloon particles. The pigment can be exposed and firmly fixed on the surface. As a result, the heat shielding pigments are arranged on the surface layer of the part after drying, so that construction excellent in heat shielding properties, heat insulating properties, waterproof properties, and heat retaining properties can be performed.

塗膜層の乾燥後は、遮熱バインダーがバルーン粒子と遮熱顔料の結合状態を強固かつ柔軟に保持し、塗膜層の耐久性、柔軟性を発揮する。水溶性樹脂を用い、有機溶剤を使用しないから、作業環境や安全衛生にも最適である。   After the coating layer is dried, the thermal barrier binder holds the bonding state between the balloon particles and the thermal barrier pigment firmly and flexibly, and demonstrates the durability and flexibility of the coating layer. Because it uses water-soluble resin and does not use organic solvent, it is ideal for work environment and safety and health.

本発明に係る遮熱断熱構造の施工方法は、混練水溶液を得るにあたり、バルーン粒子100重量部に対し、水10〜400重量部、水溶性樹脂10〜500重量部を混錬して一次混練水溶液を得、一次混練水溶液100重量部に対し、遮熱顔料1〜80重量部を混錬して最終の混練水溶液を得ることを第3の特徴とする。   In the construction method of the heat insulating and heat insulating structure according to the present invention, in obtaining a kneaded aqueous solution, the primary kneaded aqueous solution is obtained by kneading 10 to 400 parts by weight of water and 10 to 500 parts by weight of a water-soluble resin with respect to 100 parts by weight of balloon particles. A third characteristic is that the final kneaded aqueous solution is obtained by kneading 1 to 80 parts by weight of the heat shielding pigment with respect to 100 parts by weight of the primary kneaded aqueous solution.

以上説明したように、本発明に係る遮熱断熱構造によると、動力源を備える車両、機器、冷凍冷蔵コンテナ、冷凍倉庫等において、動力源から生じる熱を受ける部位の外面や内面に遮熱断熱膜層を塗布形成することによって、また、外気熱を受ける部位の外面や内面に遮熱断熱塗膜層を塗布形成することによって、動力源から生じる熱を遮断し、あるいは外気熱を遮断し、これによって、動力源の出力負荷の軽減、燃費の悪化防止を図り、CO2の増加防止を図ることができるという優れた効果を奏する。   As described above, according to the heat-insulating and heat-insulating structure according to the present invention, in vehicles, equipment, refrigerated containers, refrigerated warehouses and the like equipped with a power source, the heat-insulating and heat-insulating materials are provided on the outer surface and inner surface of the portion that receives heat generated from the power source. By coating and forming a film layer, and by applying and forming a thermal barrier heat insulating coating layer on the outer surface and inner surface of the part that receives external air heat, the heat generated from the power source is blocked, or the outdoor air heat is blocked, As a result, the output load of the power source can be reduced, the fuel consumption can be prevented from deteriorating, and the increase in CO2 can be prevented.

また、本発明に係る遮熱断熱構造の施工方法によると、動力源を備える車両、機器、冷凍コンテナ、冷凍倉庫等に対し、低コストで遮熱断熱構造を施工することができ、施工された遮熱断熱塗膜層は、ひび割れ・亀裂などを起こさない柔軟性を持ち、吸気管等の曲面や凹凸面をもつ部位に高い品質で施工でき、耐久性に優れるという効果を奏する。   In addition, according to the construction method of the thermal insulation heat insulation structure according to the present invention, the thermal insulation thermal insulation structure can be constructed at low cost for the vehicle, equipment, refrigeration container, refrigeration warehouse, etc. equipped with a power source. The heat-insulating and heat-insulating coating layer has flexibility that does not cause cracks and cracks, and can be applied to a portion having a curved surface or an uneven surface such as an intake pipe with high quality, and has an effect of excellent durability.

本発明の第1実施形態を示すもので、車両のエンジンルーム内に遮熱断熱構造を施工した状態を示す斜視図、The perspective view which shows the 1st Embodiment of this invention and shows the state which constructed the heat insulation heat insulation structure in the engine room of a vehicle, 遮熱断熱構造の要部拡大断面図、The principal part expanded sectional view of the heat insulation heat insulation structure, 混練水溶液を製造するフローチャート図、Flow chart for producing a kneaded aqueous solution, 遮熱断熱膜層の説明図、Explanatory drawing of the thermal insulation heat insulation film layer, 本発明の第2実施形態を示すもので、冷凍コンテナ車のコンテナ天井の外面および内面に遮熱断熱構造を施工した状態を示す斜視図、The perspective view which shows the 2nd Embodiment of this invention, and shows the state which constructed the heat insulation heat insulation structure in the outer surface and inner surface of the container ceiling of a refrigerated container vehicle, 本発明の第3実施形態を示すもので、自動販売機の外面に遮熱断熱構造を施工した状態を示す斜視図である。The 3rd Embodiment of this invention is shown and it is a perspective view which shows the state which constructed the heat insulation heat insulation structure in the outer surface of a vending machine.

本発明を実施するための形態について、図面を参照して説明する。図1ないし図4は本発明の第1実施形態を示すもので、図1において、符号100は車両を示している。   DESCRIPTION OF EMBODIMENTS Embodiments for carrying out the present invention will be described with reference to the drawings. 1 to 4 show a first embodiment of the present invention. In FIG. 1, reference numeral 100 denotes a vehicle.

図1に示すように、車両100のエンジンルーム101内にはエンジン102が配置されている。エンジン102の吸気側のキャブレター103とエアダクト104との間には吸気管105が接続されている。そして、エアダクト104から吸気管105にかけて、外面に遮熱断熱塗膜層10が形成されている。また、過給システム(ターボチャージャー、スーパーチャージャー等)107の外面にも遮熱断熱塗膜層10が形成されている。   As shown in FIG. 1, an engine 102 is disposed in an engine room 101 of the vehicle 100. An intake pipe 105 is connected between the carburetor 103 on the intake side of the engine 102 and the air duct 104. A heat insulating and heat insulating coating layer 10 is formed on the outer surface from the air duct 104 to the intake pipe 105. In addition, a heat insulating and heat insulating coating layer 10 is also formed on the outer surface of the supercharging system (turbocharger, supercharger, etc.) 107.

遮熱断熱塗膜層10は、図2に示すように、表層部10Aに水溶性樹脂12を遮熱バインダーとしてバルーン粒子11と遮熱顔料13が結合したバルーン粒子・遮熱顔料結合体16が多数配列され、内層部10Bに水溶性樹脂12をバインダーとしてバルーン粒子11が多数配列されている。   As shown in FIG. 2, the heat-insulating and heat-insulating coating layer 10 has a balloon particle / heat-insulating pigment assembly 16 in which the balloon particles 11 and the heat-insulating pigment 13 are bonded to the surface layer portion 10A using the water-soluble resin 12 as a heat-insulating binder. Many balloon particles 11 are arranged in the inner layer portion 10B with the water-soluble resin 12 as a binder.

遮熱断熱塗膜層10は、エアダクト104から吸気管105にかけてその外面に、および過給システム107の外面に、混練水溶液17、すなわち水溶性樹脂12により被覆された多数のバルーン粒子11と、水溶性樹脂12をバインダーとしてバルーン粒子11および遮熱顔料13が結合された多数のバルーン粒子・遮熱顔料結合体16を含む混練水溶液17が塗布および乾燥されて形成されている。   The heat-insulating and heat-insulating coating layer 10 is formed on the outer surface from the air duct 104 to the intake pipe 105 and on the outer surface of the supercharging system 107 with a large number of balloon particles 11 coated with the kneaded aqueous solution 17, that is, the water-soluble resin 12. A kneaded aqueous solution 17 containing a large number of balloon particles / heat-shielding pigment assemblies 16 in which the balloon particles 11 and the heat-shielding pigment 13 are bound using the conductive resin 12 as a binder is applied and dried.

遮熱断熱塗膜層3の乾燥厚さtは、混練水溶液17の1回または数回の重ね塗りによって、100〜3000μに設定されている。図2に示すように、遮熱断熱塗膜層10の表層部10Aは内層部10Bよりも遮熱顔料13の占める割合が高く、内層部10Bは表層部10Aよりもバルーン粒子11の占める割合が高くなっている。バルーン粒子11には比重が1未満のセラミック系またはガラス系が用いられ、遮熱顔料13には比重が1を超える酸化チタンまたは鉄クロムが用いられる。   The dry thickness t of the heat-insulating and heat-insulating coating layer 3 is set to 100 to 3000 μm by applying the kneaded aqueous solution 17 once or several times. As shown in FIG. 2, the surface layer portion 10A of the heat-insulating and heat-insulating coating layer 10 has a higher proportion of the heat-shielding pigment 13 than the inner layer portion 10B, and the inner layer portion 10B has a proportion of the balloon particles 11 occupied than the surface layer portion 10A. It is high. A ceramic or glass system having a specific gravity of less than 1 is used for the balloon particles 11, and titanium oxide or iron chromium having a specific gravity of more than 1 is used for the thermal barrier pigment 13.

遮熱断熱塗膜層10中、表層部10Aの遮熱顔料13と水溶性樹脂遮熱バインダー12により遮熱効果が発揮される。また、表層部10Aおよび内層部10Bのバルーン粒子11により断熱されて断熱効果が発揮される。   In the heat-insulating and heat-insulating coating layer 10, the heat-shielding effect is exhibited by the heat-shielding pigment 13 and the water-soluble resin heat-insulating binder 12 in the surface layer portion 10 </ b> A. Moreover, it heat-insulates by the balloon particle | grains 11 of 10 A of surface layer parts, and the inner layer part 10B, and the heat insulation effect is exhibited.

バルーン粒子11は、保温性に優れるとともに、吸水率が0.1%以下で防水機能があり、遮熱断熱塗膜層10に防水機能を付与する。これにより、真空断熱材1に優れた保温性と防水性を付与できる。   The balloon particles 11 are excellent in heat retention and have a waterproof function with a water absorption rate of 0.1% or less, and impart a waterproof function to the heat-insulating and heat-insulating coating layer 10. Thereby, the heat insulating property and waterproofness which were excellent in the vacuum heat insulating material 1 can be provided.

上記構成の遮熱断熱構造は以下のようにして施工される。   The heat insulation heat insulation structure of the said structure is constructed as follows.

まず、混錬水溶液17を準備する。図3のフローチャートに示すように、混練装置の容器内にバルーン粒子11、水14、水溶性樹脂12の各材料を投入し、攪拌および混練して、一次混錬物15を得る。各材料の配合割合はバルーン粒子100重量部に対し、水50重量部、水溶性樹脂50重量部とする。なお、バルーン粒子100重量部に対し、水は10〜400重量部のうちから、水溶性樹脂は10〜500重量部のうちから、それぞれ適宜選択できる。   First, a kneaded aqueous solution 17 is prepared. As shown in the flowchart of FIG. 3, each material of balloon particles 11, water 14, and water-soluble resin 12 is put into a container of a kneading apparatus, and stirred and kneaded to obtain a primary kneaded material 15. The blending ratio of each material is 50 parts by weight of water and 50 parts by weight of water-soluble resin with respect to 100 parts by weight of balloon particles. Note that water can be appropriately selected from 10 to 400 parts by weight and water-soluble resin from 10 to 500 parts by weight with respect to 100 parts by weight of the balloon particles.

容器内で攪拌板を回転させることにより、個々のバルーン粒子11の周囲に水溶性樹脂12がコーティングされる。バルーン粒子11はセラミック系を用い、粒径20ミクロン〜60ミクロン、平均空孔率10%以上、比重0.8以下の酸化アルミニウム(Al)の球状体を用いる。酸化アルミニウムは、約1400℃の高温で焼成されることによって球体形状で平均空孔率10%以上のバルーン粒子が安定して得られる。水溶性樹脂12にはアクリル樹脂等を用いる。 By rotating the stirring plate in the container, the water-soluble resin 12 is coated around each balloon particle 11. The balloon particles 11 are made of ceramic, and use a spherical body of aluminum oxide (Al 2 O 3 ) having a particle size of 20 to 60 microns, an average porosity of 10% or more, and a specific gravity of 0.8 or less. When the aluminum oxide is fired at a high temperature of about 1400 ° C., balloon particles having a spherical shape and an average porosity of 10% or more can be stably obtained. An acrylic resin or the like is used for the water-soluble resin 12.

次に、容器中の一次混練物15に遮熱顔料(酸化チタン)13を投入し、攪拌および混練して、最終の混練水溶液(二次混練物)17を得る。このときの配合割合は、一次混練物100重量部に対し、遮熱顔料30重量部とする。なお、一次混錬物100重量部に対し、酸化チタンは1〜80重量部のうちから適宜選択することができる。   Next, the heat shielding pigment (titanium oxide) 13 is put into the primary kneaded material 15 in the container, and stirred and kneaded to obtain a final aqueous kneaded solution (secondary kneaded material) 17. The blending ratio at this time is 30 parts by weight of the heat shielding pigment with respect to 100 parts by weight of the primary kneaded product. In addition, a titanium oxide can be suitably selected from 1-80 weight part with respect to 100 weight part of primary kneaded materials.

酸化チタン13を後から投入することで個々のバルーン粒子11の周囲に水溶性樹脂12が遮熱バインダーとなって遮熱顔料13が結合し、バルーン粒子・遮熱顔料結合体16を形成する。また、バルーン粒子・遮熱顔料結合体16が互いに結合し、複合ユニットUを構成する場合もある。そして、個々のバルーン粒子11の浮力の合計が、遮熱顔料13の沈降力を上回ることにより、個々のバルーン粒子・遮熱顔料結合体16(あるいはそれらの複合ユニット)が混練水溶物17の表層部に浮上する。   When the titanium oxide 13 is introduced later, the water-soluble resin 12 becomes a heat-shielding binder around each balloon particle 11 to bond the heat-shielding pigment 13 to form a balloon particle / heat-shielding pigment combined body 16. Further, the balloon particle / heat-shielding pigment combination 16 may be combined with each other to form a composite unit U. When the total buoyancy of the individual balloon particles 11 exceeds the settling force of the heat shielding pigment 13, the individual balloon particles / heat shielding pigment combined body 16 (or their composite unit) becomes the surface layer of the kneaded aqueous solution 17. Rise to the club.

そして、かかる混練水溶物17をエアダクト104から吸気管105にかけてその外面に、および過給システム107の外面に塗布することにより、図4に示すように、乾燥前の塗膜層10の表層部10Aにバルーン粒子・遮熱顔料結合体16が浮上して多数配列され、また、内層部10Bにバルーン粒子11が多数配列され、乾燥後、遮熱顔料13が表層部10Aに並ぶように定着する。   Then, the kneaded aqueous solution 17 is applied to the outer surface of the air duct 104 from the air duct 104 to the intake pipe 105 and to the outer surface of the supercharging system 107, whereby the surface layer portion 10A of the coating layer 10 before drying is applied as shown in FIG. A large number of balloon particles / heat-shielding pigment assemblies 16 are floated and arranged, and a large number of balloon particles 11 are arranged on the inner layer portion 10B. After drying, the heat-shielding pigment 13 is fixed so as to be aligned on the surface layer portion 10A.

乾燥後は、水溶性樹脂12が遮熱バインダーとしてバルーン粒子11と遮熱顔料13の結合状態を強固に保持し、凹凸変形または湾曲変形するエアダクト104および吸気管105の外面に柔軟に追随し、塗膜層10の耐久性を発揮する。さらには、水溶性樹脂12を用い、有機溶剤を使用しないから、有機溶剤を使用する場合に有機溶剤が表層に表出し、遮熱顔料のもつ本来の機能を阻害する事態を防止できる。   After drying, the water-soluble resin 12 firmly holds the bonded state of the balloon particles 11 and the heat-shielding pigment 13 as a heat-shielding binder, and flexibly follows the outer surfaces of the air duct 104 and the intake pipe 105 that are deformed or curved, The durability of the coating layer 10 is exhibited. Furthermore, since the water-soluble resin 12 is used and no organic solvent is used, it is possible to prevent the organic solvent from appearing on the surface layer when the organic solvent is used, thereby inhibiting the original function of the heat-shielding pigment.

エンジンルーム101内のエアダクト104および吸気管105の外面に、過給システム107の外面に、それぞれ遮熱断熱塗膜層10を施工したから、エンジン102の作動によりエンジンルーム101内に発生する熱による熱害を低減できる。すなわち、エンジンルーム101内に熱が蓄積されても、遮熱断熱塗膜層10の遮熱効果によって、エアダクト104から吸気管105に吸入された空気、過給システム107により圧縮される空気が加熱されず、したがって、加熱空気がキャブレター103からエンジン102に供給されることがなく、エンジン102の出力の低下が防止される。よって、アクセルの踏み量も増加せず、燃費の悪化、CO2の増加がない。   Since the heat-insulating and heat-insulating coating film layer 10 is applied to the outer surface of the air duct 104 and the intake pipe 105 in the engine room 101 and to the outer surface of the supercharging system 107, the heat generated in the engine room 101 due to the operation of the engine 102 is caused. Thermal damage can be reduced. That is, even if heat is accumulated in the engine room 101, the air sucked into the intake pipe 105 from the air duct 104 and the air compressed by the supercharging system 107 are heated by the heat shielding effect of the heat insulating heat insulating coating layer 10. Therefore, heated air is not supplied from the carburetor 103 to the engine 102, and a decrease in the output of the engine 102 is prevented. Therefore, the amount of pedaling of the accelerator does not increase, fuel consumption is not deteriorated, and CO2 is not increased.

エンジンルーム101のボンネット106の両面または片面に遮熱断熱塗膜層10を施工することにより、遮熱断熱効果をさらに高めることができる。すなわち、ボンネット106の表面に遮熱断熱塗膜層10を施工することにより、ボンネット106の表面への太陽光の照射熱、反射熱、輻射熱を遮熱し、特に夏場のエンジンの出力低下、エアコンの能力低下、燃費の悪化を防止できる。ボンネット106の裏面に遮熱断熱塗膜層10を施工することにより、断熱効果を高め、特に冬場の暖気運転の時間短縮、燃費の悪化防止、バッテリーの能力低下を防止できる。   By applying the heat-insulating and heat-insulating coating film layer 10 on both surfaces or one surface of the hood 106 of the engine room 101, the heat-insulating and heat-insulating effect can be further enhanced. That is, by applying the heat-insulating and heat-insulating coating layer 10 on the surface of the bonnet 106, the surface of the bonnet 106 is shielded from sunlight irradiation heat, reflected heat, and radiant heat. Capability reduction and fuel consumption deterioration can be prevented. By applying the heat-insulating and heat-insulating coating film layer 10 on the back surface of the bonnet 106, it is possible to enhance the heat insulation effect, and particularly to shorten the time for warm-up operation in winter, to prevent deterioration of fuel consumption, and to prevent deterioration of battery performance.

なお、車両100のボディの外面または内面に遮熱断熱塗膜層10を施工して、遮熱断熱効果をさらに高めてよい。エアコンの負荷を低減できる。   In addition, the heat-insulating and heat-insulating coating layer 10 may be applied to the outer surface or the inner surface of the body of the vehicle 100 to further enhance the heat-insulating and heat-insulating effect. The load on the air conditioner can be reduced.

車両100は、図1に示す乗用車の他、バス、トラック等の自動車であってよく、エンジンルーム内の吸気管、車体ボディの外内面に遮熱断熱塗膜層10を塗布形成することで、エンジン出力負荷の軽減、燃費悪化の防止を図ることができる。また、自動二輪、原動機付き・アシスト付き自転車、鉄道車両、建設車両、農業車両にも適用できる。   The vehicle 100 may be an automobile such as a bus or a truck in addition to the passenger car shown in FIG. 1, and by applying and forming the heat-insulating and heat-insulating coating film layer 10 on the outer surface of the intake pipe in the engine room and the vehicle body, It is possible to reduce engine output load and prevent deterioration of fuel consumption. It can also be applied to motorcycles, motorized / assisted bicycles, railway vehicles, construction vehicles, and agricultural vehicles.

図5は本発明の第2実施形態を示すもので、図中、符号200は冷凍冷蔵用、保温用、チルド用コンテナ車を示している。   FIG. 5 shows a second embodiment of the present invention. In the figure, reference numeral 200 denotes a container car for freezing and refrigeration, for keeping warm, and for chilling.

本実施形態のコンテナ車200は、車両の架台201に冷凍冷蔵用、保温用、チルド用コンテナ202が搭載されている。コンテナ202は、図示しないエンジンの作動によりコンプレッサを作動させ、配管を通して冷媒を循環させ、コンテナ内部を一定温度に冷凍冷蔵、保温、チルドするようになっている。   In the container vehicle 200 according to the present embodiment, a container 202 for freezing / refrigeration, heat insulation, and chilling is mounted on a vehicle base 201. The container 202 is configured to operate a compressor by operating an engine (not shown), circulate a refrigerant through a pipe, refrigerate the inside of the container, keep it warm, and chill.

そして、コンテナ202の天井、両側面、背面の外面および内面に、遮熱断熱塗膜層10が施工形成されている。遮熱断熱塗膜層10の構造は第1実施形態と同様である。   And the heat-shielding heat insulation coating-film layer 10 is construction-formed on the ceiling of the container 202, both sides | surfaces, the outer surface of a back surface, and an inner surface. The structure of the heat-insulating and heat-insulating coating layer 10 is the same as that in the first embodiment.

コンテナ202の外面に遮熱断熱塗膜層10が施工されることにより、コンテナ202の外面への太陽光の照射熱、反射熱、輻射熱を遮熱し、コンテナ202の内面に遮熱断熱塗膜層10が施工されることにより、コンテナ202内の冷気を断熱し、両遮熱断熱効果によって、冷媒を循環させるコンプレッサの負荷を軽減し、エンジンの出力負荷を軽減し、燃費の悪化、CO2の増加を防止できる。   By applying the thermal insulation heat insulating coating layer 10 on the outer surface of the container 202, the outer surface of the container 202 is shielded from sunlight irradiation heat, reflected heat, and radiant heat, and the thermal insulation thermal insulation coating layer is applied to the inner surface of the container 202. 10 is installed to insulate the cool air in the container 202, and the heat insulation and heat insulation effect reduces the load on the compressor that circulates the refrigerant, reduces the engine output load, deteriorates fuel consumption, and increases CO2. Can be prevented.

図6は本発明の第3実施形態を示すもので、図中、符号300は屋外に設置される自動販売機を示している。   FIG. 6 shows a third embodiment of the present invention. In the figure, reference numeral 300 indicates a vending machine installed outdoors.

本実施形態の自動販売機300は、外箱301の内部に販売用の飲料缶302を保冷しまたは保温するためのコンプレッサと冷媒配管と熱交換部が配設されている。夏場は特に外気温が高く、太陽光の照射量も大きく、冬場は特に外気温が低い。   In the vending machine 300 of the present embodiment, a compressor, a refrigerant pipe, and a heat exchanging unit are provided in the outer box 301 for keeping or cooling the beverage can 302 for sale. The outdoor temperature is particularly high in summer, the amount of sunlight is large, and the outdoor temperature is particularly low in winter.

そこで、自動販売機300の外箱301の底面を含む外面全体に、遮熱断熱塗膜層10を塗布施工することにより、自動販売機300の外箱301の外面への太陽光の照射熱、反射熱、輻射熱を遮熱し、夏場のコンプレッサの出力負荷を軽減し、冬場の冷気の伝熱を断熱して、冬場のコンプレッサの出力負荷を軽減し、節電を図ることができる。   Therefore, by applying and applying the heat-shielding heat-insulating coating film layer 10 to the entire outer surface including the bottom surface of the outer box 301 of the vending machine 300, the heat of irradiation of sunlight on the outer surface of the outer box 301 of the vending machine 300, It can shield reflected heat and radiant heat, reduce the output load of the compressor in summer, and insulate the heat transfer of cold air in winter, reduce the output load of the compressor in winter and save power.

遮熱断熱塗膜層10は、上記以外の屋外設置物、例えば冷凍倉庫の屋根や外内面、暖房用バーナーを用いる農業用ハウス、発電機、屋外蓄熱タンク、太陽光発電設備の太陽光パネル、風力発電設備の蓄電池箱、地熱発電設備の熱配管等にも適用可能である。また、屋内設置物、例えば家庭用または業務用冷蔵庫・冷凍庫、保温庫にも適用可能である。さらには、市場等で用いる保冷箱、宅配用冷蔵冷凍保冷箱等にも適用可能である。   The heat-insulating and heat-insulating coating layer 10 is an outdoor installation other than the above, for example, a roof or outer surface of a freezer warehouse, an agricultural house using a heating burner, a generator, an outdoor heat storage tank, a solar panel of a solar power generation facility, It can also be applied to storage battery boxes for wind power generation facilities, heat piping for geothermal power generation facilities, and the like. Further, the present invention can also be applied to indoor installations, for example, household or commercial refrigerators / freezers and heat storages. Furthermore, the present invention can be applied to a cold box used in a market or the like, a refrigerated cold box for home delivery, and the like.

遮熱断熱塗膜層10は、上記以外の移動体、例えば飛行機、船舶、ロケット等の機体の外内面に適用可能である。   The heat-insulating and heat-insulating coating layer 10 can be applied to the outer inner surface of a moving body other than the above, for example, an aircraft, a ship, a rocket or the like.

本発明者は、コンテナの外部天井部に遮熱断熱塗膜層を全面に施工した冷凍冷蔵コンテナ車(10トン/以下、実施例1という)と、未施工の冷凍冷蔵コンテナ車(10トン/以下、比較例1という)の遮熱断熱評価試験を行った。実施例1の冷凍冷蔵コンテナ車は、コンテナの外部天井部に混練水溶液を全面に塗布し、乾燥させて、乾燥厚さ100μの遮熱断熱塗膜層を形成した。混練水溶液は、セラミック系バルーン粒子100重量部に対し、水50重量部、水溶性エポキシ樹脂50重量部の割合で攪拌して一次混練物を得、一次混練物100重量部に酸化チタン30重量部の割合で攪拌し最終の混練水溶液を得た。   The present inventor has developed a refrigerated container truck (10 tons / hereinafter referred to as Example 1) having a heat-insulating and heat-insulating coating layer applied on the entire surface of the outer ceiling of the container, and a non-constructed refrigerated container truck (10 tons / ton). Hereinafter, the thermal insulation heat insulation evaluation test of Comparative Example 1) was performed. In the refrigerated container truck of Example 1, the kneaded aqueous solution was applied to the entire surface of the external ceiling of the container and dried to form a heat-insulating and heat-insulating coating film layer having a dry thickness of 100 μm. The kneaded aqueous solution was stirred at a ratio of 50 parts by weight of water and 50 parts by weight of a water-soluble epoxy resin to 100 parts by weight of ceramic balloon particles to obtain a primary kneaded product, and 30 parts by weight of titanium oxide in 100 parts by weight of the primary kneaded product. The final kneaded aqueous solution was obtained.

比較例1と実施例1の冷凍冷蔵コンテナ車について、各コンテナの外部天井部および室内側天井部に温度計を設置し、冬季−春季−夏季−秋季の各季節の晴れた日に駐車場に留置された状態で、かつ、コンテナ扉は開放状態にして、外部天井部温度と室内側天井部温度をそれぞれ測定した。測定結果を表1に示す。   For the refrigerated container trucks of Comparative Example 1 and Example 1, thermometers were installed on the external ceiling and indoor ceiling of each container, and the parking lot was opened on a sunny day in each season of winter-spring-summer-autumn. The indwelling state and the container door were opened, and the external ceiling temperature and the indoor side ceiling temperature were measured. The measurement results are shown in Table 1.

Figure 2014024205
Figure 2014024205

表1に示すとおり、比較例1の冷凍冷蔵コンテナ車に比べ、実施例1の冷凍冷蔵コンテナ車は、コンテナの外部天井部の温度が冬季で10℃、春季で16℃、夏季で24℃、秋季で10℃、それぞれ低く、遮熱効果が高いことが分かった。また、比較例1の冷凍冷蔵コンテナ車に比べ、実施例1の冷凍冷蔵コンテナ車は、コンテナの室内側天井部の温度が春季で7℃、夏季で11℃、秋季で4℃、それぞれ低く、断熱効果が高いことも分かった。   As shown in Table 1, compared to the refrigerated container truck of Comparative Example 1, the refrigerated container truck of Example 1 has a temperature of the external ceiling of the container of 10 ° C. in winter, 16 ° C. in spring, 24 ° C. in summer, It was found that the heat shielding effect was high at 10 ° C. in the fall. Further, compared with the refrigerated container truck of Comparative Example 1, the refrigerated container truck of Example 1 has a lower temperature of the container indoor ceiling at 7 ° C. in spring, 11 ° C. in summer, and 4 ° C. in autumn, respectively. It was also found that the heat insulation effect is high.

さらに、発明者らは、比較例1と実施例1の冷凍冷蔵コンテナ車を用いて、夏季の一定期間(約1ヶ月)、月平均9600km走行し、走行距離と燃料消費量の関係から、それぞれの燃料消費率を求めた。その結果、比較例1の冷凍冷蔵コンテナ車の燃料消費率平均値が2.65km/Lであるのに対し、実施例1の冷凍冷蔵コンテナ車の燃料消費率平均値は2.92km/Lと、平均0.27km/Lの燃費改善を図ることができた。   Furthermore, the inventors use the refrigerated container truck of Comparative Example 1 and Example 1 to travel for an average of 9600 km per month for a certain period of summer (about 1 month), and from the relationship between the travel distance and fuel consumption, The fuel consumption rate was calculated. As a result, the average fuel consumption rate of the refrigerated container truck of Comparative Example 1 is 2.65 km / L, whereas the average fuel consumption rate of the refrigerated container truck of Example 1 is 2.92 km / L. The average fuel consumption was improved to 0.27 km / L.

本発明者は、エンジンルーム内のエンジンに続く吸気ダクトに遮熱断熱塗膜層を全面に施工したバス(以下、実施例2という)と、未施工のバス(以下、比較例2という)の遮熱断熱評価試験を行った。実施例2のバスは、吸気ダクトに混練水溶液を全面に塗布し、乾燥させて、乾燥厚さ100μの遮熱断熱塗膜層を形成した。混練水溶液は、実施例1と同じ材料、配合とした。   The inventor of the present invention has a bus (hereinafter referred to as Example 2) in which a heat insulating and heat insulating coating layer is applied to the entire surface of an air intake duct following an engine in an engine room, and a non-constructed bus (hereinafter referred to as Comparative Example 2). A heat insulation and insulation evaluation test was conducted. In the bath of Example 2, the kneaded aqueous solution was applied to the entire surface of the intake duct and dried to form a heat-insulating and heat-insulating coating layer having a dry thickness of 100 μm. The kneaded aqueous solution was made of the same material and composition as in Example 1.

比較例2と実施例2のバスについて、1月から7月までの7ヶ月間、運行した走行距離(平均約4,000km)と燃料使用量を測定し、それぞれの燃料消費率を求めた。その結果、比較例2のバスの燃料消費率平均値が2.55km/Lであるのに対し、実施例2のバスの燃料消費率平均値は2.68km/Lと、平均0.13km/Lの燃費改善を図ることができた。   About the bus | bath of the comparative example 2 and Example 2, the driving | running | working distance (average about 4,000 km) and fuel consumption which were operated for seven months from January to July were measured, and each fuel consumption rate was calculated | required. As a result, the average fuel consumption rate of the bus of Comparative Example 2 is 2.55 km / L, whereas the average fuel consumption rate of the bus of Example 2 is 2.68 km / L, which is an average of 0.13 km / L. The fuel efficiency of L could be improved.

本発明に係る遮熱断熱構造は、動力源によって作動する車両、飛行機、船舶、ロケット等の移動体、動力源によって作動する機器等、自動販売機等の屋外設置物、保冷箱等に対する遮熱断熱の用途に広く利用可能である。   The heat-insulating and heat-insulating structure according to the present invention is a heat-insulating device for vehicles, airplanes, ships, rockets and other movable bodies operated by a power source, equipment operated by a power source, outdoor installations such as vending machines, and cold storage boxes. It can be widely used for thermal insulation.

10 遮熱断熱塗膜層
10A 表層部
10B 内層部
11 バルーン粒子
12 水溶性樹脂(水溶性樹脂バインダー)
13 遮熱顔料
14 水
15 一次混錬物
16 バルーン粒子・遮熱顔料結合体
17 混練水溶液
100 車両
101 エンジンルーム
102 エンジン
103 キャブレター
104 エアダクト
105 吸気管
106 ボンネット
107 過給システム
200 コンテナ車
201 架台
202 コンテナ
300 自動販売機
301 外箱
DESCRIPTION OF SYMBOLS 10 Heat-shielding heat insulation coating-film layer 10A Surface layer part 10B Inner layer part 11 Balloon particle 12 Water-soluble resin (water-soluble resin binder)
DESCRIPTION OF SYMBOLS 13 Thermal insulation pigment 14 Water 15 Primary kneaded material 16 Balloon particle and thermal insulation pigment combination 17 Kneading aqueous solution 100 Vehicle 101 Engine room 102 Engine 103 Carburetor 104 Air duct 105 Intake pipe 106 Bonnet 107 Supercharging system 200 Container vehicle 201 Base 202 Container 300 Vending machine 301 Outer box

Claims (6)

動力源を備える作動体において、動力源から発生する熱を受ける部位および/または外気熱を受ける部位の外面または内面に、水溶性樹脂を遮熱バインダーとして遮熱顔料およびバルーン粒子が多数配列された遮熱断熱膜層を形成してなることを特徴とする遮熱断熱構造。   In an operating body having a power source, a large number of heat-shielding pigments and balloon particles are arranged with a water-soluble resin as a heat-shielding binder on the outer surface or the inner surface of the portion receiving heat generated from the power source and / or the portion receiving external air heat. A heat insulating and heat insulating structure characterized by forming a heat insulating and heat insulating film layer. 遮熱断熱膜層の乾燥厚さが100〜3000μであることを特徴とする請求項1に記載の遮熱断熱構造。   The heat-insulating and heat-insulating structure according to claim 1, wherein the heat-insulating and heat-insulating film layer has a dry thickness of 100 to 3000 µm. 遮熱顔料として、酸化チタンまたは鉄クロムが用いられることを特徴とする請求項1または請求項2に記載の遮熱断熱構造。   The heat-insulating and heat-insulating structure according to claim 1 or 2, wherein titanium oxide or iron chrome is used as the heat-insulating pigment. 動力源を備える作動体において、動力源から発生する熱を受ける部位および/または外気熱を受ける部位の外面または内面に、水溶性樹脂により被覆されたセラミック系またはガラス系の多数のバルーン粒子と、水溶性樹脂により被覆された遮熱顔料を含む混練水溶液を塗布し、乾燥させて、前記熱を受ける部位の外面または内面に、水溶性樹脂を遮熱バインダーとして遮熱顔料およびバルーン粒子が多数配列された遮熱断熱塗膜層を形成することを特徴とする遮熱断熱構造の施工方法。   In a working body having a power source, a large number of ceramic or glass balloon particles coated with a water-soluble resin on an outer surface or an inner surface of a portion receiving heat generated from the power source and / or a portion receiving external air heat; Applying a kneaded aqueous solution containing a heat-shielding pigment coated with a water-soluble resin, drying it, and arranging a large number of heat-shielding pigments and balloon particles using the water-soluble resin as a heat-shielding binder on the outer or inner surface of the heat-receiving part A method for constructing a heat-insulating and heat-insulating structure, comprising forming a heat-insulating and heat-insulating coating film layer. 動力源を備える作動体において、動力源から発生する熱を受ける部位および/または外気熱を受ける部位の外面または内面に、水溶性樹脂により被覆された比重1未満のセラミック系またはガラス系の多数のバルーン粒子と、水溶性樹脂をバインダーとして比重1未満のセラミック系またはガラス系のバルーン粒子および比重1超の遮熱顔料が結合された多数のバルーン粒子・遮熱顔料結合体を含む混練水溶液を塗布し、乾燥させて、前記熱を受ける部位の外面または内面に、表層部に水溶性樹脂を遮熱バインダーとしてバルーン粒子と遮熱顔料が結合されたバルーン粒子・遮熱顔料結合体が多数配列され、内層部に水溶性樹脂をバインダーとしてバルーン粒子が多数配列された遮熱断熱塗膜層を形成することを特徴とする遮熱断熱構造の施工方法。   In an actuating body including a power source, a large number of ceramic systems or glass systems having a specific gravity of less than 1 coated with a water-soluble resin on the outer surface or the inner surface of a portion receiving heat generated from the power source and / or a portion receiving external air heat Applying a kneaded aqueous solution containing balloon particles and many balloon particles / heat-shielding pigments combined with ceramic or glass-based balloon particles with a specific gravity of less than 1 and a heat-shielding pigment with a specific gravity of more than 1 using a water-soluble resin as a binder. Then, a large number of balloon particles / heat-shielding pigment assemblies in which balloon particles and a heat-shielding pigment are combined with a water-soluble resin as a heat-shielding binder on the surface layer are arranged on the outer surface or inner surface of the part that receives heat. In addition, a heat-insulating and heat-insulating coating layer in which a large number of balloon particles are arranged using a water-soluble resin as a binder on the inner layer is formed. Method. 混練水溶液を得るにあたり、バルーン粒子100重量部に対し、水10〜400重量部、水溶性樹脂10〜500重量部を混錬して一次混練水溶液を得、一次混練水溶液100重量部に対し、遮熱顔料1〜80重量部を混錬して最終の混練水溶液を得ることを特徴とする請求項4または請求項5記載の遮熱断熱構造の施工方法。   In obtaining a kneaded aqueous solution, 10 to 400 parts by weight of water and 10 to 500 parts by weight of a water-soluble resin are kneaded with 100 parts by weight of balloon particles to obtain a primary kneaded aqueous solution. The construction method for a heat insulating and heat insulating structure according to claim 4 or 5, wherein 1 to 80 parts by weight of a thermal pigment is kneaded to obtain a final kneaded aqueous solution.
JP2012164342A 2012-07-25 2012-07-25 Heat shielding and insulating structure Pending JP2014024205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012164342A JP2014024205A (en) 2012-07-25 2012-07-25 Heat shielding and insulating structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012164342A JP2014024205A (en) 2012-07-25 2012-07-25 Heat shielding and insulating structure

Publications (1)

Publication Number Publication Date
JP2014024205A true JP2014024205A (en) 2014-02-06

Family

ID=50198345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012164342A Pending JP2014024205A (en) 2012-07-25 2012-07-25 Heat shielding and insulating structure

Country Status (1)

Country Link
JP (1) JP2014024205A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019002671A (en) * 2017-06-14 2019-01-10 合資会社Gs工事 Method for improving air-conditioning efficiency of outdoor machine storing air-conditioning mechanism therein

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019002671A (en) * 2017-06-14 2019-01-10 合資会社Gs工事 Method for improving air-conditioning efficiency of outdoor machine storing air-conditioning mechanism therein

Similar Documents

Publication Publication Date Title
Bai et al. Overview of energy harvesting and emission reduction technologies in hybrid electric vehicles
Pan et al. A portable renewable solar energy-powered cooling system based on wireless power transfer for a vehicle cabin
Gritsuk et al. Improving engine pre-start and after-start heating by using the combined heating system
Alani et al. Enhancing the fuel saving and emissions reduction of light-duty vehicle by a new design of air conditioning worked by solar energy
Alam A proposed model for utilizing exhaust heat to run automobile air-conditioner
CN107275427A (en) A kind of compound photovoltaic and photothermal integral component based on shape substrate
JP2014024205A (en) Heat shielding and insulating structure
CN207715229U (en) Engine-cooling system and power generation movable charging vehicle
CN110001356A (en) Electric automobile air-conditioning system based on phase-change thermal storage
CN101871703A (en) Lithium bromide absorbing type refrigeration and heat supply device
CN210257911U (en) Electric automobile air conditioning system based on phase change heat storage
CN209022715U (en) A kind of Vehicular solar energy room temp regulator
Riess et al. Heating an electric car with a biofuel operated heater during cold seasons–design, application and test
CN202547182U (en) Device for converting heat energy of tail gas of automobile and ship to energy of air conditioners of automobile and ship
Haas et al. Increasing the driving range of electric vehicles using secondary energies–a review
Ma et al. Optimization of the waste heat reclaim system in Hybrid-power Gas Engine-driven Heat Pump
CN105937312A (en) Double-pipe water-circulation-temperature-control bus station with fans
Wang et al. Analysis of factors affecting the performance of a novel micro-channel heat pipe PV-Trombe wall system for space heating
CN207260676U (en) Rechargeable multi-storied garage based on polyphenyl plate heat preserving
CN105042937B (en) Energy conversion system based on metal micro-holes pipe network
CN105937315A (en) Dual-pipeline water circulation temperature-control bus stop
CN201646312U (en) Vehicular solar photoelectric semiconductor air conditioner
CN200976508Y (en) Improved apparatus for power system
CN108068582A (en) Direct cold-storage or the energy-storage box of accumulation of heat
CN216915861U (en) Air energy air conditioner for railway vehicle