JP2014023175A - Grid-connection device - Google Patents

Grid-connection device Download PDF

Info

Publication number
JP2014023175A
JP2014023175A JP2012156520A JP2012156520A JP2014023175A JP 2014023175 A JP2014023175 A JP 2014023175A JP 2012156520 A JP2012156520 A JP 2012156520A JP 2012156520 A JP2012156520 A JP 2012156520A JP 2014023175 A JP2014023175 A JP 2014023175A
Authority
JP
Japan
Prior art keywords
harmonic
voltage
phase
carrier
waveform data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012156520A
Other languages
Japanese (ja)
Other versions
JP6041250B2 (en
Inventor
Kazuyoshi Umezawa
一喜 梅沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2012156520A priority Critical patent/JP6041250B2/en
Publication of JP2014023175A publication Critical patent/JP2014023175A/en
Application granted granted Critical
Publication of JP6041250B2 publication Critical patent/JP6041250B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inverter Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a grid-connection device that synchronizes a grid voltage and the carrier of a power conversion device at high speed, prevents the occurrence of noise and higher harmonics due to a variation of a carrier frequency, and improves the stability of control.SOLUTION: A grid-connection device includes: third harmonic waveform data generating means 32 for generating third harmonic waveform data Sby using a positive phase of a three-phase grid voltage as a reference waveform; a third harmonic table 33 for generating third harmonic waveform data Ssynchronized with a carrier frequency; a coordinate converter 25 for detecting the phase difference ΔΦ between the third harmonic waveform data Sgenerated by the third harmonic waveform data generating means 32 and the third harmonic waveform data Sgenerated by the third harmonic table 33; a synchronization controller 26 for adjusting the carrier frequency so that the phase difference ΔΦ is zero; and a carrier-frequency generating circuit 27. This configuration synchronizes the grid voltage with the carrier of the power conversion device at high speed when a power conversion device is reset and is connected to the grid at the time of restoration of power.

Description

本発明は、太陽光発電システムや風力発電システム、電力平準化システムなどの分散型電源システムに適用される系統連系装置に関し、詳しくは、交流電源系統に停電等の異常が発生した後の復電時に、分散型電源システムを構成する電力変換装置を電源系統に連系させて再起動するための技術に関するものである。   The present invention relates to a grid interconnection device applied to a distributed power supply system such as a solar power generation system, a wind power generation system, or a power leveling system, and more particularly, to recover after an abnormality such as a power failure occurs in an AC power supply system. The present invention relates to a technique for restarting a power conversion device that constitutes a distributed power supply system by connecting it to a power supply system during power transmission.

近年、太陽光発電システムや風力発電システムなどの分散型電源システムの大量導入が進み、その安定運用が課題となっている。
この種の分散型電源システムでは、交流電源系統に連系するための機能として、保護機能及び制御機能が義務付けられており、これらの機能は、停電等の異常が発生した時に分散型電源システムの運転を一旦停止してから再起動することが前提となっている。
In recent years, a large number of distributed power systems such as a solar power generation system and a wind power generation system have been introduced, and the stable operation thereof has become an issue.
In this type of distributed power supply system, protection and control functions are obligated as functions for linking to the AC power supply system, and these functions are used in the distributed power supply system when an abnormality such as a power failure occurs. It is assumed that the operation is once stopped and then restarted.

このため、上記保護機能により、大量の分散型電源システムが交流電源系統の異常により一斉に運転を停止して系統から脱落すると、系統周波数の低下や電圧レベルの変動を招くことが懸念される。従って、瞬時電圧低下等の系統異常の発生時には、分散型電源システムは運転を継続して系統の安定性を確保することが望まれており、また、系統が停電して系統電圧がゼロの状態から分散型電源システムを再起動する場合には、再起動に要する時間ができるだけ短いことが要請されている。   For this reason, there is a concern that, due to the above-described protection function, when a large number of distributed power supply systems stop operating at the same time due to an abnormality in the AC power supply system and drop off from the system, the system frequency is lowered and the voltage level is changed. Therefore, when a system abnormality such as a momentary voltage drop occurs, it is desired that the distributed power supply system continue to operate to ensure the stability of the system, and the system is blacked out and the system voltage is zero. When the distributed power supply system is restarted from the above, it is required that the time required for the restart is as short as possible.

一般的に、系統連系インバータ等の電力変換装置は、系統電圧の数百倍のキャリア周波数によってPWM(パルス幅変調)制御されており、系統に流れる高調波電流を抑制し、かつ制御を安定化させるために、上記キャリア周波数を系統電圧と同期させて連系させる必要がある。
ここで、図3は、従来の系統連系装置を示すブロック図であり、系統連系インバータ9は、交流電源1、遮断器2,3及び負荷4を有する交流電源系統の線路5に、遮断器6、フィルタコンデンサ7及び交流リアクトル8を介して接続されている。系統連系インバータ9は、系統電圧を直流電圧に変換し、更に所定の大きさ及び周波数の交流電圧に変換して負荷(図示せず)に供給する。
In general, power converters such as grid-connected inverters are PWM (pulse width modulation) controlled by a carrier frequency several hundred times that of the system voltage, suppressing harmonic current flowing in the system and stabilizing the control. In order to achieve this, it is necessary to link the carrier frequency in synchronization with the system voltage.
Here, FIG. 3 is a block diagram showing a conventional grid interconnection device, where the grid interconnection inverter 9 is cut off on the line 5 of the AC power supply system having the AC power supply 1, the circuit breakers 2, 3 and the load 4. It is connected via a device 6, a filter capacitor 7 and an AC reactor 8. The grid interconnection inverter 9 converts the grid voltage into a DC voltage, further converts it into an AC voltage having a predetermined magnitude and frequency, and supplies it to a load (not shown).

線路5には、電圧検出器21及び波形整形回路22を介して正相演算回路23及びゲート信号生成回路28が接続されている。なお、波形整形回路22は、線路5の系統電圧波形に含まれる電圧リップルや高調波成分を除去して波形整形し、整形後の波形の位相が系統電圧波形の位相と一致するように位相を調整する機能を果たしている。   A positive phase arithmetic circuit 23 and a gate signal generation circuit 28 are connected to the line 5 via a voltage detector 21 and a waveform shaping circuit 22. The waveform shaping circuit 22 removes voltage ripples and harmonic components contained in the system voltage waveform of the line 5 to perform waveform shaping, and adjusts the phase so that the phase of the shaped waveform matches the phase of the system voltage waveform. Plays the function to adjust.

正相演算回路23は、波形整形回路22の三相出力波形から正相成分を演算し、更に、移動平均回路24が正相演算回路23の出力波形の位相を90度遅らせた移動平均値を演算することにより、系統電圧から余弦波cosωt及び正弦波sinωt(これらをまとめて正弦波データSとする)が演算される。
一方、キャリア周波数発生回路27から出力される、PWM制御用のキャリアに同期したデータセレクト信号に基づき、系統連系装置内部の正弦波テーブル29に記憶された余弦波cosωt及び正弦波sinωt(これらをまとめて正弦波データSとする)を前記正弦波データSと共に座標変換器25に入力して両正弦波データS,Sの位相差ΔΦを検出し、この位相差ΔΦがゼロになるように同期調節器26を動作させる。そして、同期調節器26の出力に基づいて、系統電圧Sに同期した所定周波数のキャリアSをキャリア周波数発生回路27により生成している。なお、Sは、ゲート信号生成回路28により、系統電圧S及びキャリアSに基づいて生成されるゲート信号(PWMパルス)である。
The positive phase calculation circuit 23 calculates a positive phase component from the three-phase output waveform of the waveform shaping circuit 22, and the moving average circuit 24 further calculates a moving average value obtained by delaying the phase of the output waveform of the positive phase calculation circuit 23 by 90 degrees. By calculating, a cosine wave cos ω 1 t and a sine wave sin ω 1 t (these are collectively referred to as sine wave data S 1 ) are calculated from the system voltage.
On the other hand, is outputted from the carrier frequency generator 27, based on the data select signal synchronized with the carrier for PWM control, the grid interconnection device inside the sine wave table 29 cosine wave cos .omega 2 t and sine wave sinω stored in 2 t detects the phase difference ΔΦ of (these are collectively sine wave data S 2 to be) the sine wave data S coordinate converter both sine wave input to the 25 data S 1 with 1, S 2, the phase difference The synchronous adjuster 26 is operated so that ΔΦ becomes zero. Based on the output of the synchronization regulator 26, a carrier frequency generation circuit 27 generates a carrier S 3 having a predetermined frequency synchronized with the system voltage S 0 . S 4 is a gate signal (PWM pulse) generated by the gate signal generation circuit 28 based on the system voltage S 0 and the carrier S 3 .

ここで、座標変換器25により両正弦波データS,Sの位相差ΔΦを検出する方法は、例えば特許文献1や特許文献2に記載されている。
すなわち、正規化された互いに直交する相電圧信号vα,vβに対してd−q座標変換を行うと、q軸上の電圧信号v=−cos(θ)・sin(θ’)+sin(θ)・cos(θ’)=sin(θ−θ’)となり、|θ−θ’|=|Δθ|(Δθは位相差)が微小であればsin(θ−θ’)≒Δθとなるため、座標変換演算によってq軸電圧vを求めることとθ,θ’間の位相差Δθを求めることとは等価である。
上記の原理に基づけば、正弦波データS(cosωt及びsinωt)と正弦波データS(cosωt及びsinωt)との位相差ΔΦを求めることできる。
Here, a method of detecting the phase difference ΔΦ between the two sine wave data S 1 and S 2 by the coordinate converter 25 is described in, for example, Patent Document 1 and Patent Document 2.
That is, when the dq coordinate transformation is performed on the normalized phase voltage signals v α and v β that are orthogonal to each other, the voltage signal v q on the q axis = −cos (θ) · sin (θ ′) + sin If (θ) · cos (θ ′) = sin (θ−θ ′), and | θ−θ ′ | = | Δθ | (Δθ is a phase difference), sin (θ−θ ′) ≈Δθ Therefore, obtaining the q-axis voltage v q by coordinate transformation calculation is equivalent to obtaining the phase difference Δθ between θ and θ ′.
Based on the above principle, the phase difference ΔΦ between the sine wave data S 1 (cos ω 1 t and sin ω 1 t) and the sine wave data S 2 (cos ω 2 t and sin ω 2 t) can be obtained.

図4は、図3の従来技術による同期方法を概念的に示しており、従来では、正弦波データSに対して最大位相差が180度である系統電圧S(正弦波データS)にキャリア周波数を同期させる方法をとっていた。 FIG. 4 conceptually shows the synchronization method according to the prior art of FIG. 3, and conventionally, the system voltage S 0 (sine wave data S 1 ) having a maximum phase difference of 180 degrees with respect to the sine wave data S 2 . The method of synchronizing the carrier frequency was used.

なお、特許文献3には、系統に連系される順変換器等の電力変換装置であって、交流入力電圧の位相に内部位相基準を同期させるためにPLL(フェーズロックドループ)制御を行う電力変換装置において、系統が停電した後の復電時に、交流入力電圧の位相と内部位相基準との位相差Δθが所定値以上になった場合にPLL制御回路の制御ゲインを切り替えることにより、PLL動作の整定を早めて電力変換装置の再起動を迅速に行うようにした従来技術が開示されている。   Patent Document 3 discloses a power conversion device such as a forward converter linked to a system, which performs PLL (phase locked loop) control in order to synchronize an internal phase reference with the phase of an AC input voltage. In the converter, at the time of power recovery after a power failure of the system, if the phase difference Δθ between the phase of the AC input voltage and the internal phase reference becomes a predetermined value or more, the PLL operation is switched by switching the control gain of the PLL control circuit. The prior art has been disclosed in which the power conversion device is restarted promptly by speeding up the setting.

図5は、特許文献3に記載された電力変換装置の制御手段を示すブロック図である。
この制御手段60では、A/D変換回路61から出力される系統電圧を2軸変換回路62により有効電圧(d軸電圧)v及び無効電圧(q軸電圧)vに変換し、PLL制御回路63に入力する。PLL制御回路63は、v,vの位相と内部位相角θとが一致するように閉ループ制御を行い、内部位相角θをスイッチング制御回路66に出力している。このスイッチング制御回路66は、出力電圧制御回路67からの出力電圧基準と前記内部位相角θとに基づいて、順変換器等の電力変換装置(図示せず)を構成するスイッチング素子のPWMパルスを生成する。
また、2軸変換回路62から出力される有効電圧vをヒステリシス付き比較器64に入力し、有効電圧v(≒交流入力電圧の位相と内部位相角θとの位相差Δθ)が所定値以上になった場合に交流入力位相の異常検出信号を出力すると共に、この異常検出信号により、制御ゲイン切換回路65の制御ゲイン1をこれより応答の速い制御ゲイン2に切り換えている。
FIG. 5 is a block diagram showing control means of the power conversion device described in Patent Document 3. As shown in FIG.
In the control unit 60, and converts the effective voltage (d-axis voltage) v d and reactive voltage (q-axis voltage) v q by the two-axis converter 62 a system voltage that is output from the A / D conversion circuit 61, PLL control Input to the circuit 63. The PLL control circuit 63 performs closed loop control so that the phases of v d and v q coincide with the internal phase angle θ, and outputs the internal phase angle θ to the switching control circuit 66. Based on the output voltage reference from the output voltage control circuit 67 and the internal phase angle θ, the switching control circuit 66 generates PWM pulses of switching elements that constitute a power converter (not shown) such as a forward converter. Generate.
The effective voltage v d output from the biaxial conversion circuit 62 is input to the comparator 64 with hysteresis, and the effective voltage v d (≈phase difference Δθ between the phase of the AC input voltage and the internal phase angle θ) is a predetermined value. In this case, an AC input phase abnormality detection signal is output, and the control gain 1 of the control gain switching circuit 65 is switched to a control gain 2 having a faster response than the abnormality detection signal.

上記の構成において、交流入力電圧が正常であり、電力変換装置が正常に運転している場合、位相差Δθは電源系統の擾乱等に起因して許容範囲内で変化する。従って、通常は、制御ゲイン1によりPLL制御の応答性を低くしておき、位相差Δθの変化に追従しないようにしておく。
しかし、交流電源が停電してその後に復電した時には、PLL制御が整定するまで、内部位相角θは電源位相と一致しない。このため、位相差Δθ(≒v)が所定値以上になったら制御ゲイン1を高応答の制御ゲイン2に切り換えることにより、復電後のPLL制御を迅速に整定させている。
In the above configuration, when the AC input voltage is normal and the power converter is operating normally, the phase difference Δθ changes within an allowable range due to disturbance of the power supply system. Therefore, normally, the response of the PLL control is lowered by the control gain 1 so as not to follow the change of the phase difference Δθ.
However, when the AC power supply is interrupted and then restored, the internal phase angle θ does not match the power supply phase until the PLL control is settled. Therefore, when the phase difference Δθ (≈v d ) becomes equal to or greater than a predetermined value, the control gain 1 is switched to the high response control gain 2 to quickly settle the PLL control after power recovery.

特許第4876976号公報(段落[0003]〜[0005]等)Japanese Patent No. 4876976 (paragraphs [0003] to [0005] etc.) 特開2011−229361号公報(段落[0086],[0087]等)JP 2011-229361 A (paragraphs [0086], [0087], etc.) 特開2005−261055号公報(段落[0010]〜[0021]、図1,図2等)Japanese Patent Laying-Open No. 2005-261055 (paragraphs [0010] to [0021], FIG. 1, FIG. 2, etc.)

前述した図3,図4の従来技術によると、分散型電源システムにおいて、停電等が発生してその復電後に系統電圧がゼロの状態から系統連系インバータを再起動するような場合、正弦波データSと系統電圧Sとの間の最大位相差が180度あることから、キャリア周波数を系統電圧Sに同期させる動作に時間を要し、同期が確立するまでの間、キャリア周波数が変動して騒音が発生したり、高調波電流の抑制作用が十分に働かない等の問題を生じていた。
また、図5に示した特許文献3の従来技術では、交流電源の復電に伴って高応答の制御ゲイン2に切り換えた際に、却って制御が不安定になる場合があり、これが主回路の過電圧、過電流を引き起こす原因ともなっていた。
According to the prior art of FIGS. 3 and 4 described above, in a distributed power system, when a power failure occurs and the system voltage inverter is restarted from a state where the system voltage is zero after the power recovery, a sine wave since the maximum phase difference between the data S 2 and the system voltage S 0 is 180 degrees, it takes time for the operation to synchronize the carrier frequency in the system voltage S 0, until synchronization is established, the carrier frequency There were problems such as fluctuations that generated noise and the suppression of harmonic currents did not work sufficiently.
Further, in the prior art of Patent Document 3 shown in FIG. 5, when switching to a high response control gain 2 in accordance with the recovery of the AC power supply, the control may become unstable, which is the main circuit. It also caused overvoltage and overcurrent.

そこで、本発明の解決課題は、系統の復電時に電力変換装置を再起動して連系させる場合において、系統電圧と電力変換装置のキャリアとを高速に同期させ、キャリア周波数の変動による騒音や高調波の発生を抑制すると共に、制御の安定性を向上させた系統連系装置を提供することにある。   Therefore, the problem to be solved by the present invention is that when the power converter is restarted and connected when the system is restored, the system voltage and the carrier of the power converter are synchronized at high speed, and noise and An object of the present invention is to provide a grid interconnection device that suppresses the generation of harmonics and improves the stability of control.

上記課題を解決するため、請求項1に係る発明は、三相交流系統電圧に同期したキャリアを用いてPWM制御される電力変換装置を、前記系統に連系させるための系統連系装置において、
前記系統電圧の正相成分を基準波形として第3調波波形データを生成する第3調波波形生成手段と、
前記キャリアの周波数に同期した第3調波波形データを生成する第3調波テーブルと、
前記第3調波波形生成手段により生成された第3調波波形データと前記第3調波テーブルにより生成された第3調波波形データとの位相差を検出する位相差検出手段と、
前記位相差検出手段により検出した位相差がゼロになるように前記キャリアの周波数を調節する手段と、を備えたものである。
In order to solve the above-mentioned problem, the invention according to claim 1 is a grid interconnection device for linking a power conversion device that is PWM-controlled using a carrier synchronized with a three-phase AC grid voltage to the grid.
Third harmonic waveform generation means for generating third harmonic waveform data using the positive phase component of the system voltage as a reference waveform;
A third harmonic table for generating third harmonic waveform data synchronized with the frequency of the carrier;
Phase difference detection means for detecting a phase difference between the third harmonic waveform data generated by the third harmonic waveform generation means and the third harmonic waveform data generated by the third harmonic table;
And means for adjusting the frequency of the carrier so that the phase difference detected by the phase difference detection means becomes zero.

本発明によれば、従来技術における系統電圧と正弦波テーブル内の正弦波データとの最大位相差180度に対して、系統電圧と第3調波テーブル内の第3調波データとの最大位相差が60度になる。すなわち、系統電圧に対する追従範囲を大幅に減少させることができるため制御応答性が向上し、従来の同期時間に比較して数十分の一の時間でキャリア周波数を系統電圧に同期させることができる。
これにより、系統電圧ゼロの状態から復電した際に、電力変換装置のキャリアを系統電圧に迅速に同期させて騒音及び高調波電流を抑制し、電力変換装置を安定して制御することができる。
According to the present invention, the maximum phase difference between the system voltage and the third harmonic data in the third harmonic table with respect to the maximum phase difference of 180 degrees between the system voltage and the sine wave data in the sine wave table in the prior art. The phase difference is 60 degrees. That is, the tracking range with respect to the system voltage can be greatly reduced, so that the control responsiveness is improved, and the carrier frequency can be synchronized with the system voltage in tens of times compared with the conventional synchronization time. .
As a result, when power is restored from a system voltage zero state, the carrier of the power converter can be quickly synchronized with the system voltage to suppress noise and harmonic current, and the power converter can be controlled stably. .

本発明の実施形態を示すブロック図である。It is a block diagram which shows embodiment of this invention. 本発明の実施形態による同期方法の概念図である。FIG. 3 is a conceptual diagram of a synchronization method according to an embodiment of the present invention. 従来技術を示す構成図である。It is a block diagram which shows a prior art. 図3の従来技術による同期方法の概念図である。It is a conceptual diagram of the synchronization method by the prior art of FIG. 特許文献3に記載された従来技術の構成図である。It is a block diagram of the prior art described in patent document 3. FIG.

以下、図に沿って本発明の実施形態を説明する。図1は、この実施形態に係る系統連系装置の構成図であり、図3と同一の構成要素には同一の番号を付してある。
図1において、波形整形回路22の三相出力波形は正相演算回路23に入力され、系統電圧Sの正相成分が演算される。この正相成分は、第3調波波形生成回路31により第3調波cos3ωtに変換されると共に、移動平均回路24及び第3調波波形生成回路32を介して第3調波sin3ωtに変換される。これらの第3調波cos3ωt,sin3ωtをまとめて第3調波データS31とする。
また、キャリア周波数発生回路27からのデータセレクト信号に基づき、系統連系装置内部の第3調波テーブル33に記憶された第3調波cos3ωt,sin3ωt(これらをまとめて第3調波データS32とする)が、座標変換器25に入力されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram of a grid interconnection device according to this embodiment, and the same components as those in FIG. 3 are denoted by the same reference numerals.
In Figure 1, the three-phase output waveform of the waveform shaping circuit 22 is input to the positive phase calculation circuit 23, the positive phase component of the system voltage S 0 is calculated. The positive phase component is converted into the third harmonic cos 3ω 1 t by the third harmonic waveform generation circuit 31 and also the third harmonic sin 3ω 1 via the moving average circuit 24 and the third harmonic waveform generation circuit 32. converted to t. These third harmonic cos 3ω 1 t and sin 3ω 1 t are collectively referred to as third harmonic data S 31 .
Further, based on the data select signal from the carrier frequency generation circuit 27, the third harmonics cos3ω 2 t, sin3ω 2 t (collectively the third harmonics) stored in the third harmonic table 33 inside the grid interconnection device. Wave data S 32 ) is input to the coordinate converter 25.

座標変換器25では、第3調波cos3ωt,sin3ωt,cos3ωt,sin3ωtに基づき、第3調波データS31,S32の位相差ΔΦを検出する。
この位相差ΔΦは、図3において説明したように、
−cos(θ)・sin(θ’)+sin(θ)・cos(θ’)≒Δθ
の関係から、θ=3ωt,θ’=3ωtとおけば、
ΔΦ≒−cos(3ωt)・sin(3ωt)+sin(3ωt)・cos(3ωt)
により求めることができる。
The coordinate converter 25, a third harmonic cos3ω 1 t, sin3ω 1 t, cos3ω 2 t, based on sin3ω 2 t, detects the phase difference ΔΦ of the third harmonic data S 31, S 32.
As described in FIG. 3, this phase difference ΔΦ is
−cos (θ) · sin (θ ′) + sin (θ) · cos (θ ′) ≈Δθ
From this relationship, if θ = 3ω 1 t and θ ′ = 3ω 2 t,
ΔΦ≈−cos (3ω 1 t) · sin (3ω 2 t) + sin (3ω 1 t) · cos (3ω 2 t)
It can ask for.

同期調節器26は、上記位相差ΔΦがゼロになるように動作し、キャリア周波数発生回路27は、同期調節器26の出力から系統電圧Sに同期した所定周波数のキャリアSを生成する。なお、Sは、キャリアSと系統電圧Sとに基づいてゲート信号生成回路28により生成されるゲート信号(PWMパルス)であり、このゲート信号Sにより系統連系インバータ9の半導体スイッチング素子が駆動される。 The synchronization regulator 26 operates so that the phase difference ΔΦ becomes zero, and the carrier frequency generation circuit 27 generates a carrier S 3 having a predetermined frequency synchronized with the system voltage S 0 from the output of the synchronization regulator 26. S 4 is a gate signal (PWM pulse) generated by the gate signal generation circuit 28 based on the carrier S 3 and the system voltage S 0, and the semiconductor switching of the system interconnection inverter 9 is performed by the gate signal S 4. The element is driven.

図2は、図1の実施形態による同期方法を概念的に示したものである。
本実施形態では、図2に示すように、系統電圧Sから、図1の第3調波波形生成回路31,32が第3調波データS31を生成し、同時に、第3調波テーブル33がキャリア周波数に同期した第3調波データS32を生成する。これらの第3調波データS31,S32を座標変換器25及び同期調節器26により同期制御することで、結果として系統電圧Sにキャリア周波数を同期させることが可能となる。
この実施形態によれば、系統電圧Sと第3調波データS32との間の最大位相差は60度となり、従来技術の図4における系統電圧Sと正弦波データSとの間の最大位相差180度に比較して位相追従範囲が小さくなる。このため、位相同期制御に要する時間が少なくなり、系統の復電後に系統連系インバータ9のキャリアを系統電圧に対して高速に同期させ、系統電圧ゼロの状態から短時間で再起動することができる。
FIG. 2 conceptually illustrates a synchronization method according to the embodiment of FIG.
In the present embodiment, as shown in FIG. 2, the system voltage S 0, the third harmonic wave generating circuits 31 and 32 in FIG. 1 generates the third harmonic data S 31, at the same time, the third harmonic table 33 generates a third harmonic data S 32 synchronized with the carrier frequency. These third harmonic data S 31, S 32 to control synchronized by the coordinate converter 25 and the sync controller 26, it is possible to synchronize the carrier frequency in the system voltage S 0 as a result.
According to this embodiment, the maximum phase difference between the system voltage S 0 and the third harmonic data S 32 is 60 degrees, and between the system voltage S 0 and the sine wave data S 2 in FIG. 4 of the prior art. The phase tracking range is smaller than the maximum phase difference of 180 degrees. For this reason, the time required for the phase-synchronized control is reduced, and after the system is restored, the carrier of the grid interconnection inverter 9 can be synchronized with the grid voltage at a high speed and restarted in a short time from the system voltage zero state. it can.

本発明は、インバータだけでなく、コンバータを含む各種の電力変換装置を交流電源系統に連系させるシステムに利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used for a system that links not only an inverter but also various power conversion devices including a converter to an AC power supply system.

1:交流電源
2,3,6:遮断器
4:負荷
5:線路
7:フィルタコンデンサ
8:交流リアクトル
9:系統連系インバータ
21:電圧検出器
22:波形整形回路
23:正相演算回路
24:移動平均回路
25:座標変換器
26:同期調節器
27:キャリア周波数発生回路
28:ゲート信号生成回路
31,32:第3調波波形生成回路
33:第3調波テーブル
1: AC power supply 2, 3, 6: Circuit breaker 4: Load 5: Line 7: Filter capacitor 8: AC reactor 9: Grid-connected inverter 21: Voltage detector 22: Waveform shaping circuit 23: Positive phase calculation circuit 24: Moving average circuit 25: Coordinate converter 26: Synchronization controller 27: Carrier frequency generation circuit 28: Gate signal generation circuit 31, 32: Third harmonic waveform generation circuit 33: Third harmonic table

Claims (1)

三相交流電源系統の電圧に同期したキャリアを用いてPWM制御される電力変換装置を前記電源系統に連系させるための系統連系装置において、
三相系統電圧の正相成分を基準波形として第3調波波形データを生成する第3調波波形生成手段と、
前記キャリアの周波数に同期した第3調波波形データを生成する第3調波テーブルと、
前記第3調波波形生成手段により生成された第3調波波形データと前記第3調波テーブルにより生成された第3調波波形データとの位相差を検出する位相差検出手段と、
前記位相差検出手段により検出した位相差がゼロになるように前記キャリアの周波数を調節する手段と、
を備えたことを特徴とする系統連系装置。
In a system interconnection device for linking a power converter that is PWM controlled using a carrier synchronized with the voltage of a three-phase AC power supply system to the power supply system,
Third harmonic waveform generation means for generating third harmonic waveform data using the positive phase component of the three-phase system voltage as a reference waveform;
A third harmonic table for generating third harmonic waveform data synchronized with the frequency of the carrier;
Phase difference detection means for detecting a phase difference between the third harmonic waveform data generated by the third harmonic waveform generation means and the third harmonic waveform data generated by the third harmonic table;
Means for adjusting the frequency of the carrier so that the phase difference detected by the phase difference detection means becomes zero;
A grid interconnection device characterized by comprising:
JP2012156520A 2012-07-12 2012-07-12 Grid interconnection device Active JP6041250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012156520A JP6041250B2 (en) 2012-07-12 2012-07-12 Grid interconnection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012156520A JP6041250B2 (en) 2012-07-12 2012-07-12 Grid interconnection device

Publications (2)

Publication Number Publication Date
JP2014023175A true JP2014023175A (en) 2014-02-03
JP6041250B2 JP6041250B2 (en) 2016-12-07

Family

ID=50197527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012156520A Active JP6041250B2 (en) 2012-07-12 2012-07-12 Grid interconnection device

Country Status (1)

Country Link
JP (1) JP6041250B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112595892A (en) * 2020-12-24 2021-04-02 哈尔滨理工大学 Power grid harmonic detection device
WO2023112225A1 (en) * 2021-12-15 2023-06-22 株式会社東芝 Electric power conversion device and control method for electric power conversion device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442780A (en) * 1990-06-06 1992-02-13 Toshiba Corp Pwm controller
JPH04368429A (en) * 1991-06-14 1992-12-21 Hitachi Ltd Controller for inverter
JP2005020947A (en) * 2003-06-27 2005-01-20 Fuji Electric Systems Co Ltd Pwm carrier wave synchronizing method and power conversion system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442780A (en) * 1990-06-06 1992-02-13 Toshiba Corp Pwm controller
JPH04368429A (en) * 1991-06-14 1992-12-21 Hitachi Ltd Controller for inverter
JP2005020947A (en) * 2003-06-27 2005-01-20 Fuji Electric Systems Co Ltd Pwm carrier wave synchronizing method and power conversion system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112595892A (en) * 2020-12-24 2021-04-02 哈尔滨理工大学 Power grid harmonic detection device
WO2023112225A1 (en) * 2021-12-15 2023-06-22 株式会社東芝 Electric power conversion device and control method for electric power conversion device

Also Published As

Publication number Publication date
JP6041250B2 (en) 2016-12-07

Similar Documents

Publication Publication Date Title
JP5877648B2 (en) Distributed power system
JP6030263B1 (en) Power interconnection device for grid connection and output current control method thereof
JP5585371B2 (en) Distributed power system
JP2012205325A5 (en)
US11424693B2 (en) Three-level power conversion device, three-level power conversion device control method, and storage medium
TWI661653B (en) Uninterruptible power supply apparatus and test method for uninterruptible power supply apparatus
JP6159271B2 (en) Power converter and control method of power converter
JP6538544B2 (en) Self-excited reactive power compensator
JP5580095B2 (en) Grid-connected inverter device
TWI604697B (en) Phase-locked loop method for a utility parallel system
JP5398233B2 (en) Independent operation detection device for inverter and isolated operation detection method
JP2011015493A (en) Distributed power supply device
JP6583922B2 (en) Power converter
JP6498112B2 (en) Power conversion device and power interconnection system
JP6041250B2 (en) Grid interconnection device
JP5776308B2 (en) Grid interconnection power converter
JP2011188690A (en) Islanding detection device of inverter and method of detecting islanding
JP6361398B2 (en) Control device for power conversion device for grid connection, and power conversion device for grid connection
JP6392708B2 (en) Self-excited power converter
JP6631311B2 (en) Power generation system
JP6758242B2 (en) Inverter controller
Noppakant et al. Study of power grid connection with an unstable source from Elevator Energy Regenerative Unit (EERU)
JP6110093B2 (en) Inverter device and control method
Sahoo et al. Improved Low Voltage Ride-Through Performance of Single-phase Power Converters using Hybrid Grid Synchronization
WO2014050934A1 (en) Single-phase voltage type ac-dc converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161017

R150 Certificate of patent or registration of utility model

Ref document number: 6041250

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161030

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250