JP2014022478A - Vapor cooling device - Google Patents

Vapor cooling device Download PDF

Info

Publication number
JP2014022478A
JP2014022478A JP2012158218A JP2012158218A JP2014022478A JP 2014022478 A JP2014022478 A JP 2014022478A JP 2012158218 A JP2012158218 A JP 2012158218A JP 2012158218 A JP2012158218 A JP 2012158218A JP 2014022478 A JP2014022478 A JP 2014022478A
Authority
JP
Japan
Prior art keywords
liquid
phase refrigerant
heating element
cooling device
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012158218A
Other languages
Japanese (ja)
Inventor
Tomohiro Shimazu
智寛 島津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012158218A priority Critical patent/JP2014022478A/en
Publication of JP2014022478A publication Critical patent/JP2014022478A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the boiling heat transfer coefficient of a natural circulation type vapor cooling device having a heating element 20 dipped in a liquid-phase refrigerant while suppressing deterioration in discharging properties of air bubbles when the heating element 20 coming into contact with the liquid-phase refrigerant to transfer heat to the liquid-phase refrigerant is arranged having one surface 22a substantially in parallel with the gravity direction.SOLUTION: A thickness "x" of a liquid-phase refrigerant layer is so set as to satisfy the mathematical expression (1), where (y) represents a length of the one surface 22a of the heating element 20 in a direction along the gravity direction and "x" represents a thickness of the liquid-phase refrigerant layer present on the one surface 22a of the heating element 20 in the horizontal direction.

Description

本発明は、冷媒の沸騰と凝縮による潜熱移動によって半導体素子等の発熱体を冷却する沸騰冷却装置に関するものである。   The present invention relates to a boiling cooling device that cools a heating element such as a semiconductor element by latent heat transfer caused by boiling and condensation of a refrigerant.

従来、内部に液相冷媒を貯留する貯留部と、貯留部の内部の液相冷媒に浸漬された発熱体と、発熱体の熱によって沸騰気化した気相冷媒を冷却して凝縮させ、液相冷媒を貯留部に戻す凝縮部とを備え、気相冷媒の上昇と液相冷媒の自重等を利用して、貯留部と凝縮部との間で冷媒を循環させる自然循環式の沸騰冷却装置がある(例えば、特許文献1参照。)。   Conventionally, a storage unit that stores liquid-phase refrigerant therein, a heating element that is immersed in the liquid-phase refrigerant inside the storage unit, and a gas-phase refrigerant that is boiled and vaporized by the heat of the heating element are cooled and condensed to form a liquid phase. A natural circulation boiling cooling device that circulates the refrigerant between the storage unit and the condensing unit using a rise of the gas-phase refrigerant and the self-weight of the liquid phase refrigerant, etc. (For example, refer to Patent Document 1).

特許第3876593号公報Japanese Patent No. 3876593

ところで、上述の自然循環式の沸騰冷却装置において、発熱体の液相冷媒に接する一面(伝熱面)が重力方向に略平行となるように、発熱体を液相冷媒中に配置した場合、沸騰熱伝達率の向上のためには、発熱体の一面上に存在する液相冷媒層の水平方向厚さを小さくすれば良い。   By the way, in the above-mentioned natural circulation type boiling cooling device, when the heating element is arranged in the liquid phase refrigerant so that one surface (heat transfer surface) of the heating element in contact with the liquid phase refrigerant is substantially parallel to the direction of gravity, In order to improve the boiling heat transfer coefficient, the horizontal thickness of the liquid-phase refrigerant layer existing on one surface of the heating element may be reduced.

なお、発熱体の一面上に存在する液相冷媒層の水平方向厚さとは、例えば、発熱体の一面と貯留部の側壁とが対向している場合、発熱体の一面とそれに対向する貯留部の側壁(対向面)との間に存在する液相冷媒の水平方向長さ、すなわち、発熱体の一面とその対向面との離間距離である。   The horizontal thickness of the liquid-phase refrigerant layer existing on one surface of the heating element is, for example, when one surface of the heating element and the side wall of the storage unit are opposed to each other, and one surface of the heating element and the storage unit facing it. It is the horizontal direction length of the liquid-phase refrigerant which exists between the side walls (opposing surfaces) of the heat generating element, that is, the separation distance between one surface of the heating element and the opposing surface.

しかし、重力方向に対して略平行に発熱体の一面が配置された自然循環方式の沸騰冷却装置では、発熱体の一面と対向面との離間距離が小さすぎると、発熱体の一面で発生した気泡が、発熱体の一面と対向面の両方に接触した状態となり、気泡の排出性が悪化する。   However, in the natural circulation type boiling cooling device in which one surface of the heating element is arranged substantially parallel to the direction of gravity, if the separation distance between the one surface of the heating element and the opposing surface is too small, it occurs on one surface of the heating element. The air bubbles are in contact with both the one surface and the opposite surface of the heating element, and the air bubble discharge property deteriorates.

この状態の気泡は、1つの気泡に限らず、発熱体の一面と対向面との間に並ぶ連続した複数の気泡のときもある。この状態の気泡は、浮力が重力等とつり合って気泡が上昇しないため、この状態の気泡が抵抗となって、発熱体の一面から次々に発生する気泡の排出が遅れてしまう。   The bubbles in this state are not limited to a single bubble but may be a plurality of continuous bubbles arranged between one surface of the heating element and the opposing surface. The bubbles in this state balance the buoyancy with gravity and the like so that the bubbles do not rise. Therefore, the bubbles in this state become a resistance, and the discharge of bubbles generated one after another from one surface of the heating element is delayed.

この結果、発熱体の一面への液相冷媒の供給が困難となり、沸騰熱伝達率が向上するのではなく、沸騰熱伝達率が低下してしまう。   As a result, it becomes difficult to supply the liquid phase refrigerant to one surface of the heating element, and the boiling heat transfer coefficient is not improved, but the boiling heat transfer coefficient is lowered.

本発明は上記点に鑑みて、発熱体が液相冷媒に浸漬され、発熱体の少なくとも一面が重力方向に略平行となるように設置された自然循環式の沸騰冷却装置であって、気泡の排出性の悪化を抑制しつつ、沸騰熱伝達率の向上が可能な沸騰冷却装置を提供することを目的とする。   In view of the above points, the present invention is a natural circulation boiling cooling device in which a heating element is immersed in a liquid-phase refrigerant and at least one surface of the heating element is substantially parallel to the direction of gravity. An object of the present invention is to provide a boiling cooling device capable of improving the boiling heat transfer coefficient while suppressing the deterioration of the discharge property.

上記目的を達成するため、請求項1に記載の発明では、
発熱体は、液相冷媒に接し、熱を液相冷媒に伝える一面(22a、23a)を有し、一面が重力方向に略平行となるように配置されており、
重力方向に沿った方向での一面の長さをyとし、一面上に存在する液相冷媒層の水平方向での厚さをxとしたとき、下記の数式(1)を満たすように、一面の長さに応じて、液相冷媒層の厚さが設定されていることを特徴としている。
In order to achieve the above object, in the invention described in claim 1,
The heating element has one surface (22a, 23a) that contacts the liquid-phase refrigerant and transfers heat to the liquid-phase refrigerant, and is disposed so that the one surface is substantially parallel to the direction of gravity.
When the length of one surface in the direction along the direction of gravity is y and the thickness in the horizontal direction of the liquid refrigerant layer existing on the one surface is x, the one surface satisfies the following formula (1). The thickness of the liquid-phase refrigerant layer is set according to the length.

Figure 2014022478
ここで、数式(1)は、気泡の排出性が良好となるときの一面の長さyと液相冷媒層の厚さxとの関係を、本発明者が実験から求めたものである。
Figure 2014022478
Here, in the formula (1), the inventor obtained from the experiment the relationship between the length y of one surface when the bubble discharge property is good and the thickness x of the liquid phase refrigerant layer.

このため、沸騰熱伝達率の向上のために液相冷媒層の厚さを小さく設定する際に、数式1を満たすように、液相冷媒層の厚さを設定することで、発熱体の一面から発生した気泡が、発熱体の一面と対向面の両方に接触した状態となることを抑制できる。   For this reason, when setting the thickness of the liquid-phase refrigerant layer to be small in order to improve the boiling heat transfer coefficient, by setting the thickness of the liquid-phase refrigerant layer so as to satisfy Equation 1, one surface of the heating element It can suppress that the bubble which generate | occur | produced from will be in the state which contacted both the one surface and opposing surface of a heat generating body.

よって、本発明によれば、気泡の排出性の悪化を抑制しつつ、沸騰熱伝達率の向上が可能となる。   Therefore, according to the present invention, it is possible to improve the boiling heat transfer rate while suppressing the deterioration of the bubble discharge performance.

なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。   In addition, the code | symbol in the bracket | parenthesis of each means described in this column and the claim is an example which shows a corresponding relationship with the specific means as described in embodiment mentioned later.

第1実施形態における沸騰冷却装置の断面構成を示す図である。It is a figure which shows the cross-sectional structure of the boiling cooling device in 1st Embodiment. 図1中の第1放熱板22の外面22aとその対向面との離間距離xと過熱度ΔTsatとの関係を示すグラフである。It is a graph which shows the relationship between the separation distance x of the outer surface 22a of the 1st heat sink 22 in FIG. 1, and its opposing surface, and superheat degree (DELTA) Tsat . 数式(1)を満たす領域を示すグラフである。It is a graph which shows the area | region which satisfy | fills Numerical formula (1). 第2実施形態における沸騰冷却装置の断面構成を示す図である。It is a figure which shows the cross-sectional structure of the boiling cooling device in 2nd Embodiment.

以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiments, parts that are the same or equivalent to each other will be described with the same reference numerals.

(第1実施形態)
本実施形態の沸騰冷却装置1は、貯留部10と、発熱体20と、凝縮部30とを備えており、冷媒が重力や浮力によって貯留部10と凝縮部30との間を循環する自然循環式のものである。
(First embodiment)
The boiling cooling device 1 of the present embodiment includes a storage unit 10, a heating element 20, and a condensing unit 30, and natural circulation in which refrigerant circulates between the storage unit 10 and the condensing unit 30 by gravity or buoyancy. Of the formula.

貯留部10は、内部に液相冷媒12を貯留するものであり、本実施形態では銅製もしくはアルミニウム製のハウジング11によって構成されている。ハウジング11は、上壁11aと、底壁11bと、側壁11c、11dとを有しており、側壁11c、11dの内壁面は重力方向に平行である。冷媒としては、例えば、ハイドロフルオロエーテル系、ハイドロフルオロカーボン系、ハイドロフルオロケトン系等の絶縁性のフッ素系冷媒が用いられる。また、冷媒は、減圧した状態で封入される。   The storage part 10 stores the liquid-phase refrigerant 12 inside, and is comprised by the housing 11 made from copper or aluminum in this embodiment. The housing 11 has an upper wall 11a, a bottom wall 11b, and side walls 11c and 11d, and the inner wall surfaces of the side walls 11c and 11d are parallel to the direction of gravity. As the refrigerant, for example, an insulating fluorine-based refrigerant such as a hydrofluoroether, hydrofluorocarbon, or hydrofluoroketone is used. Further, the refrigerant is sealed in a decompressed state.

凝縮部30は、貯留部10で沸騰気化した気相冷媒を冷却して凝縮させ、液相冷媒12を貯留部10に戻すものである。本実施形態では、凝縮部30は、貯留部10の上方に配置されており、内部に冷媒の流路を形成する複数本のチューブ31と、隣り合うチューブ31間に設けられ、放熱面積を拡大するフィン32とを備える熱交換器として構成されている。チューブ31およびフィン32は銅製もしくはアルミニウム製である。チューブ31内の気相冷媒と隣り合うチューブ31間を流れる外部流体としての冷却風との熱交換により、気相冷媒の熱が放出され、気相冷媒が凝縮(液化)する。   The condensing unit 30 cools and condenses the vapor-phase refrigerant boiled and vaporized in the storage unit 10, and returns the liquid-phase refrigerant 12 to the storage unit 10. In this embodiment, the condensing part 30 is arrange | positioned above the storage part 10, is provided between the several tubes 31 which form the flow path of a refrigerant | coolant inside, and the adjacent tubes 31, and expands a thermal radiation area. It is comprised as a heat exchanger provided with the fin 32 to do. The tube 31 and the fin 32 are made of copper or aluminum. By heat exchange between the gas-phase refrigerant in the tube 31 and the cooling air as an external fluid flowing between the adjacent tubes 31, the heat of the gas-phase refrigerant is released and the gas-phase refrigerant is condensed (liquefied).

凝縮部30と貯留部10とは、気相冷媒が流れる気相冷媒配管41と、液相冷媒12が流れる液相冷媒配管42とによって接続されている。具体的には、気相冷媒配管41の一端41aがハウジング11の上部と連通し、気相冷媒配管41の他端41bがチューブ31の上端側と連通しており、液相冷媒配管42の一端42aがハウジング11の下部と連通し、液相冷媒配管42の他端42bがチューブ31の下端側と連通している。   The condensing unit 30 and the storage unit 10 are connected by a gas phase refrigerant pipe 41 through which the gas phase refrigerant flows and a liquid phase refrigerant pipe 42 through which the liquid phase refrigerant 12 flows. Specifically, one end 41 a of the gas-phase refrigerant pipe 41 communicates with the upper portion of the housing 11, the other end 41 b of the gas-phase refrigerant pipe 41 communicates with the upper end side of the tube 31, and one end of the liquid-phase refrigerant pipe 42 42 a communicates with the lower part of the housing 11, and the other end 42 b of the liquid-phase refrigerant pipe 42 communicates with the lower end side of the tube 31.

発熱体20は、貯留部10の内部に配置されており、貯留部10の内部の液相冷媒12に浸漬されている。本実施形態の発熱体20は、発熱部21としての半導体素子と、発熱部21の一面21aに接合された第1放熱板22と、発熱部21の一面21aとは反対側の他面21bに接合された第2放熱板23と、第1、第2放熱板22、23の外面22a、23aを露出しつつ、発熱部21、第1、第2放熱板22、23を封止しているモールド樹脂24とを備えている。第1、第2放熱板22、23は銅製である。   The heating element 20 is arranged inside the storage unit 10 and is immersed in the liquid phase refrigerant 12 inside the storage unit 10. The heating element 20 of the present embodiment includes a semiconductor element as the heating part 21, a first heat radiating plate 22 bonded to one surface 21 a of the heating part 21, and the other surface 21 b opposite to the one surface 21 a of the heating part 21. The heat generating portion 21, the first and second heat radiating plates 22, 23 are sealed while exposing the joined second heat radiating plate 23 and the outer surfaces 22a, 23a of the first and second heat radiating plates 22, 23. And a mold resin 24. The first and second heat radiating plates 22 and 23 are made of copper.

本実施形態では、第1、第2放熱板22、23の外面22a、23aの全域が液相冷媒12に浸漬されており、第1、第2放熱板22、23の外面22a、23aが、それぞれ、液相冷媒12に接し、熱を液相冷媒12に伝える発熱体20の一面(伝熱面)を構成している。なお、第1放熱板22の外面22aが発熱体20の一面を構成し、第2放熱板23の外面23aが発熱体20の他面を構成し、もしくは、第2放熱板23の外面23aが発熱体20の一面を構成し、第1放熱板22の外面22aが発熱体20の他面を構成しているとも言える。   In the present embodiment, the entire outer surfaces 22a, 23a of the first and second radiator plates 22, 23 are immersed in the liquid refrigerant 12, and the outer surfaces 22a, 23a of the first and second radiator plates 22, 23 are Each of them forms one surface (heat transfer surface) of the heating element 20 that is in contact with the liquid phase refrigerant 12 and transfers heat to the liquid phase refrigerant 12. The outer surface 22a of the first heat radiating plate 22 constitutes one surface of the heat generating body 20, the outer surface 23a of the second heat radiating plate 23 forms the other surface of the heat generating body 20, or the outer surface 23a of the second heat radiating plate 23 is formed. It can be said that one surface of the heating element 20 is configured, and the outer surface 22 a of the first heat radiating plate 22 configures the other surface of the heating element 20.

そして、発熱体20は、第1、第2放熱板22、23の外面22a、23aが重力方向に略平行となるように配置され、ハウジング11の上壁11aと底壁11bにモールド樹脂24の一端24aと他端24bとが挿入されて固定されている。モールド樹脂24の一端24aでは、第1放熱板22から延びた接続端子25がモールド樹脂24から露出しており、モールド樹脂24の他端24bでは、半導体素子21に電気的に接続されたリードフレーム26がモールド樹脂24から露出しており、ハウジング11の外側で接続端子25とリードフレーム26とが外部電極と電気的に接続される。   The heating element 20 is arranged so that the outer surfaces 22a and 23a of the first and second heat radiating plates 22 and 23 are substantially parallel to the direction of gravity, and the mold resin 24 is placed on the top wall 11a and the bottom wall 11b of the housing 11. One end 24a and the other end 24b are inserted and fixed. At one end 24 a of the mold resin 24, a connection terminal 25 extending from the first heat dissipation plate 22 is exposed from the mold resin 24, and at the other end 24 b of the mold resin 24, a lead frame electrically connected to the semiconductor element 21. 26 is exposed from the mold resin 24, and the connection terminal 25 and the lead frame 26 are electrically connected to the external electrode outside the housing 11.

貯留部10では、沸騰熱伝達率の向上のために、発熱体20の一面上に存在する液相冷媒層の水平方向での厚さxが小さく設定されている。さらに、重力方向に沿った方向での発熱体20の一面の長さをyとし、発熱体20の一面上に存在する液相冷媒層の水平方向での厚さをxとしたとき、下記の数式(1)を満たすように、発熱体20の一面の長さyに応じて、液相冷媒層の厚さxが設定されている。   In the storage unit 10, the horizontal thickness x of the liquid phase refrigerant layer existing on one surface of the heating element 20 is set small in order to improve the boiling heat transfer coefficient. Furthermore, when the length of one surface of the heating element 20 in the direction along the gravity direction is y and the thickness of the liquid phase refrigerant layer existing on the one surface of the heating element 20 in the horizontal direction is x, the following The thickness x of the liquid-phase refrigerant layer is set according to the length y of one surface of the heating element 20 so as to satisfy Equation (1).

Figure 2014022478
発熱体20の一面上に存在する液相冷媒層とは、発熱体20の一面に接する液相冷媒12であって、発生した気泡13が上昇する流路となる部分のことである。本実施形態において、重力方向に沿った方向での発熱体20の一面の長さyは、第1、第2放熱板22、23の外面22a、23aの重力方向長さであり、発熱体20の一面上に存在する液相冷媒層の水平方向での厚さxは、第1、第2放熱板22、23の外面22a、23aとそれに対向するハウジング11の内壁面(対向面)との水平方向での離間距離である。例えば、第1、第2放熱板22、23の外面22a、23aの重力方向長さが47mmのとき、第1、第2放熱板22、23の外面22a、23a上に存在する液相冷媒層の厚さが6mm以上に設定されている。
Figure 2014022478
The liquid-phase refrigerant layer existing on one surface of the heating element 20 is the liquid-phase refrigerant 12 in contact with one surface of the heating element 20 and is a portion that becomes a flow path in which the generated bubbles 13 rise. In the present embodiment, the length y of the one surface of the heating element 20 in the direction along the gravity direction is the length of the outer surfaces 22a and 23a of the first and second radiator plates 22 and 23 in the direction of gravity. The horizontal thickness x of the liquid refrigerant layer existing on one surface is determined by the outer surfaces 22a and 23a of the first and second heat radiating plates 22 and 23 and the inner wall surface (facing surface) of the housing 11 facing the outer surfaces 22a and 23a. The separation distance in the horizontal direction. For example, when the gravity direction length of the outer surfaces 22a and 23a of the first and second heat radiating plates 22 and 23 is 47 mm, the liquid refrigerant layer existing on the outer surfaces 22a and 23a of the first and second heat radiating plates 22 and 23. Is set to 6 mm or more.

ここで、数式(1)について説明する。   Here, Formula (1) will be described.

本発明者は、図1に示す構成の沸騰冷却装置1において、第1放熱板22の外面22a上に存在する液相冷媒層の水平方向での厚さ、すなわち、第1放熱板22の外面22aとその対向面との離間距離xを各値に設定して過熱度ΔTsatを測定した。過熱度ΔTsatは、下記式で示され、T、Tの測定結果より算出される。
ΔTsat=T−T
:気泡が発生しているときの冷媒温度(液体の飽和温度)、T:発熱体の表面温度
また、このときの測定条件は次の通りである。発熱体の第1放熱板22の外面(伝熱面)22aの大きさは、重力方向(縦方向)長さyが47mmであり、横方向長さが21mmである。用いた冷媒はハイドロフルオロエーテル系である。冷媒は、沸騰冷却装置1の内部に減圧状態に封入されており、具体的には、外気温20℃のとき、沸騰冷却装置1の内部圧力(飽和蒸気圧)が約20kPaとなるように封入されている。沸騰冷却装置1の内部が減圧状態の場合、大気圧の場合と比較して、発生する気泡が巨大化するので、発熱体の一面と対向面の両方に接触した状態となりやすく、気泡の排出性の悪化が顕著となる。
In the boiling cooling apparatus 1 having the configuration shown in FIG. 1, the inventor of the present invention has a horizontal thickness of the liquid-phase refrigerant layer existing on the outer surface 22 a of the first heat radiating plate 22, that is, the outer surface of the first heat radiating plate 22. The degree of superheat ΔT sat was measured by setting the separation distance x between 22a and the facing surface to each value. The degree of superheat ΔT sat is expressed by the following formula and is calculated from the measurement results of T r and T w .
ΔT sat = T r −T w
T r : refrigerant temperature when bubbles are generated (saturation temperature of liquid), T w : surface temperature of heating element The measurement conditions at this time are as follows. As for the size of the outer surface (heat transfer surface) 22a of the first heat radiating plate 22 of the heating element, the gravity direction (vertical direction) length y is 47 mm, and the lateral length is 21 mm. The refrigerant used is a hydrofluoroether type. The refrigerant is sealed inside the boiling cooling device 1 in a depressurized state. Specifically, when the outside air temperature is 20 ° C., the refrigerant is sealed so that the internal pressure (saturated vapor pressure) of the boiling cooling device 1 is about 20 kPa. Has been. When the inside of the boiling cooling device 1 is in a reduced pressure state, the generated bubbles become enormous compared to the case of atmospheric pressure, so that it is likely to be in contact with both the one surface and the opposite surface of the heating element, and the bubble discharge property The deterioration becomes remarkable.

図2に示すように、発熱体20(発熱部21)の熱流束qが30W/cm以下の場合では、x≧6のとき、過熱度ΔTsatの値が一定となり、x=∞のときのΔTsatと同一となっていた。この結果より、第1放熱板22の外面22aの重力方向長さが47mmのとき、第1放熱板22の外面22aとその対向面との離間距離xを6mm以上に設定することで、気泡の排出性の悪化を抑制しつつ、沸騰熱伝達率の向上が可能となる。 As shown in FIG. 2, when the heat flux q of the heating element 20 (heating element 21) is 30 W / cm 2 or less, the value of the superheat degree ΔT sat is constant when x ≧ 6, and when x = ∞. It was the same as ΔT sat of. From this result, when the length in the gravity direction of the outer surface 22a of the first heat radiating plate 22 is 47 mm, the separation distance x between the outer surface 22a of the first heat radiating plate 22 and the opposing surface is set to 6 mm or more, thereby It is possible to improve the boiling heat transfer coefficient while suppressing the deterioration of the discharge performance.

そして、発熱体20の一面の重力方向長さが47mm以外の場合でも、このときと同様の関係が成立すると仮定し、発熱体20の一面の重力方向長さをyとしたときの一般式が数式(1)である。   And even if the gravity direction length of one surface of the heating element 20 is other than 47 mm, it is assumed that the same relationship as this time is established, and the general formula when the gravity direction length of one surface of the heating element 20 is y is Equation (1).

ここで、図3に示すように、縦軸が発熱体の一面の重力方向長さyであり、横軸が発熱体の一面上に存在する液相冷媒層の水平方向厚さxであるグラフにおいて、x=(6/47)yの直線よりも下側の斜線領域が数式(1)を満たす領域である。なお、図3中の直線は、原点と(x、y)=(6、47)の2点を通る直線である。   Here, as shown in FIG. 3, the vertical axis is the gravity direction length y of one surface of the heating element, and the horizontal axis is the horizontal thickness x of the liquid-phase refrigerant layer existing on one surface of the heating element. , A hatched area below the straight line of x = (6/47) y is an area that satisfies Expression (1). Note that the straight line in FIG. 3 is a straight line that passes through the origin and two points (x, y) = (6, 47).

さらに、図3には、発熱体の一面の重力方向長さyが47mm以外の場合において、図2の測定と同様に、ΔTsatを測定した結果を示している。x=∞と仮定したときのΔTsatと比較して、ΔTsatの差が1K以上の場合を×、ΔTsatの差が1K未満の場合を○とした。なお、x=∞と仮定したときとは、気泡が発熱体の一面と対向面の両方に接触しないことが明らかな程十分に大きな距離としたときを意味する。図3に示すように、数式(1)を満たす斜線領域内に○が示され、数式(1)を満たさない斜線領域外に×が示されていることから、数式(1)が適切であることがわかる。 Further, FIG. 3 shows the result of measuring ΔT sat as in the case of the measurement in FIG. 2 when the length y in the gravity direction of one surface of the heating element is other than 47 mm. Compared with ΔT sat when x = ∞, the case where the difference in ΔT sat was 1K or more was evaluated as x, and the case where the difference in ΔT sat was less than 1K was evaluated as ○. Note that when x = ∞ is assumed, the distance is sufficiently large so that it is clear that the bubbles do not contact both the one surface and the opposite surface of the heating element. As shown in FIG. 3, ◯ is shown in the hatched area that satisfies the formula (1), and x is shown outside the hatched area that does not satisfy the formula (1), so the formula (1) is appropriate. I understand that.

なお、図2、図3に示す実験結果は、ハイドロフルオロエーテル系の冷媒を用いた場合のものであるが、ハイドロフルオロエーテル系の冷媒と物性値が類似している他のフッ素系冷媒においても、同様の結果が得られることが推測される。   The experimental results shown in FIG. 2 and FIG. 3 are for the case where a hydrofluoroether refrigerant is used, but in other fluorine refrigerants whose physical property values are similar to those of the hydrofluoroether refrigerant. It is speculated that similar results can be obtained.

次に、本実施形態の沸騰冷却装置1の作用効果について説明する。   Next, the effect of the boiling cooling device 1 of this embodiment is demonstrated.

貯留部10において、発熱体20の発熱部21が作動して発熱すると、発熱部21の熱が第1、第2放熱板22、23の外面22a、23aから液相冷媒12に伝達されることにより、液相冷媒12が沸騰気化(蒸発)する。このとき、液相冷媒12が蒸発することによる蒸発潜熱により第1、第2放熱板22、23の外面22a、23aが冷却される。   When the heat generating part 21 of the heat generating element 20 is activated and generates heat in the storage part 10, the heat of the heat generating part 21 is transmitted to the liquid phase refrigerant 12 from the outer surfaces 22 a and 23 a of the first and second heat radiating plates 22 and 23. As a result, the liquid-phase refrigerant 12 is boiled and evaporated (evaporated). At this time, the outer surfaces 22a and 23a of the first and second radiator plates 22 and 23 are cooled by the latent heat of vaporization caused by the evaporation of the liquid-phase refrigerant 12.

貯留部10で沸騰気化した気相冷媒は、貯留部10の上部から上昇して、気相冷媒配管41の内部を通って凝縮部30に流入し、冷却されて凝縮し、液相冷媒12となる。液相冷媒12は、自重によって、凝縮部30の下部から下降し、液相冷媒配管42を通って、貯留部10に戻る。このようにして、冷媒の沸騰と凝縮による潜熱移動によって発熱体20が冷却される。   The gas-phase refrigerant boiled and vaporized in the storage unit 10 rises from the upper part of the storage unit 10, flows into the condensation unit 30 through the inside of the gas-phase refrigerant pipe 41, is cooled and condensed, and the liquid-phase refrigerant 12 Become. The liquid phase refrigerant 12 descends from the lower part of the condensing unit 30 due to its own weight, returns to the storage unit 10 through the liquid phase refrigerant pipe 42. In this way, the heating element 20 is cooled by the latent heat transfer caused by the boiling and condensation of the refrigerant.

本実施形態では、上述の通り、第1、第2放熱板22、23の外面22a、23aとその対向面との水平方向での離間距離xが、沸騰熱伝達率の向上のためにできるだけ小さく、かつ、数式(1)を満たすように設定されている。このため、第1、第2放熱板22、23の外面22a、23aから気泡13が発生したときに、第1、第2放熱板22、23の外面22a、23aとその対向面との両方に気泡13が接触した状態となることなく、発生した気泡13を上昇させることができる。   In the present embodiment, as described above, the horizontal separation distance x between the outer surfaces 22a and 23a of the first and second heat radiating plates 22 and 23 and the opposing surfaces thereof is as small as possible in order to improve the boiling heat transfer coefficient. And is set so as to satisfy the formula (1). For this reason, when bubbles 13 are generated from the outer surfaces 22a and 23a of the first and second heat radiating plates 22 and 23, both the outer surfaces 22a and 23a of the first and second heat radiating plates 22 and 23 and the opposing surfaces thereof. The generated bubbles 13 can be raised without being in contact with the bubbles 13.

よって、本実施形態によれば、気泡13の排出性の悪化を抑制しつつ、沸騰熱伝達率の向上が可能となる。   Therefore, according to the present embodiment, it is possible to improve the boiling heat transfer rate while suppressing the deterioration of the dischargeability of the bubbles 13.

(第2実施形態)
本実施形態の沸騰冷却装置1は、図4に示すように、貯留部10の内部に発熱体20が複数配置されている点が第1実施形態と異なり、その他の構成については、第1実施形態と同様である。なお、図4では、凝縮部30、気相冷媒配管41、液相冷媒配管42を省略している。
(Second Embodiment)
As shown in FIG. 4, the boiling cooling device 1 of the present embodiment is different from the first embodiment in that a plurality of heating elements 20 are arranged inside the storage unit 10. It is the same as the form. In FIG. 4, the condensing unit 30, the gas-phase refrigerant pipe 41, and the liquid-phase refrigerant pipe 42 are omitted.

複数の発熱体20は、貯留部10の内部で液相冷媒12に浸漬されており、隣り合う発熱体20の一面同士を対向させるとともに、対向する一面同士の間に液相冷媒12が介在するように配置されている。具体的には、同じ構造の3つの発熱体20がハウジング11の内部に配置されており、例えば、図4中の左から1番目の発熱体20の第2放熱板23の外面23aと左から2番目の発熱体20の第1放熱板22の外面22aとが対向し、両外面23aと22aとの間に液相冷媒が介在している。   The plurality of heating elements 20 are immersed in the liquid refrigerant 12 inside the storage unit 10, the surfaces of the adjacent heating elements 20 are opposed to each other, and the liquid phase refrigerant 12 is interposed between the opposing surfaces. Are arranged as follows. Specifically, three heating elements 20 having the same structure are arranged inside the housing 11. For example, the outer surface 23 a of the second heat radiation plate 23 of the first heating element 20 from the left in FIG. The outer surface 22a of the 1st heat sink 22 of the 2nd heat generating body 20 opposes, and the liquid phase refrigerant | coolant is interposing between both the outer surfaces 23a and 22a.

本実施形態においても、第1実施形態と同様に、図4中の左から1番目の発熱体20の第1放熱板22の外面22aと対向するハウジング11の内壁面(対向面)との水平方向での離間距離xが、数式(1)を満たすように設定されている。図4中の左から3番目の発熱体20も同様である。   Also in the present embodiment, as in the first embodiment, the horizontal surface between the outer surface 22a of the first heat radiating plate 22 of the first heating element 20 from the left in FIG. The separation distance x in the direction is set so as to satisfy Expression (1). The same applies to the third heating element 20 from the left in FIG.

さらに、本実施形態では、図4に示すように、隣り合う発熱体20の一面同士の間に存在する液相冷媒層を水平方向で2つの領域に分け、一方の発熱体20の一面(例えば、図4中の左から1番目の発熱体20の第2放熱板23の外面23a)上に存在する液相冷媒層の厚さxと、他方の発熱体20の一面(例えば、図4中の左から2番目の発熱体20の第1放熱板22の外面22a)上に存在する液相冷媒層の厚さxとが、それぞれ、数式(1)を満たすように設定されている。   Further, in the present embodiment, as shown in FIG. 4, the liquid refrigerant layer existing between the surfaces of the adjacent heating elements 20 is divided into two regions in the horizontal direction, and one surface of one heating element 20 (for example, 4, the thickness x of the liquid-phase refrigerant layer present on the outer surface 23 a of the second heat radiating plate 23 of the first heating element 20 from the left in FIG. 4, and one surface of the other heating element 20 (for example, in FIG. 4). The thickness x of the liquid-phase refrigerant layer existing on the outer surface 22a of the first heat radiating plate 22 of the second heating element 20 from the left is set so as to satisfy the formula (1).

すなわち、対向する発熱体20の一面同士の間に存在する液相冷媒層の水平方向厚さを2xとして、この液相冷媒層の水平方向厚さが、数式(1)を満たすように、設定されている。具体的には、図4中の左から1番目の発熱体20の第2放熱板23の外面23aと左から2番目の発熱体20の第1放熱板22の外面22aとの離間距離2xが、数式(1)を満たすように、設定されている。   That is, the horizontal thickness of the liquid refrigerant layer existing between the surfaces of the opposing heating elements 20 is set to 2x, and the horizontal thickness of the liquid refrigerant layer satisfies the formula (1). Has been. Specifically, the separation distance 2x between the outer surface 23a of the second heat radiating plate 23 of the first heat generating element 20 from the left in FIG. 4 and the outer surface 22a of the first heat radiating plate 22 of the second heat generating element 20 from the left in FIG. , So as to satisfy the formula (1).

本実施形態においても、複数の発熱体20のすべてにおいて、発熱体20の第1、第2放熱板22の外面22a、23a上に存在する液相冷媒層の水平方向厚さxが、数式(1)を満たすように設定されているので、第1実施形態と同様の効果を奏する。   Also in the present embodiment, in all of the plurality of heating elements 20, the horizontal thickness x of the liquid refrigerant layer existing on the outer surfaces 22a and 23a of the first and second heat radiating plates 22 of the heating elements 20 is expressed by the formula ( Since it is set so as to satisfy 1), the same effects as in the first embodiment can be obtained.

(他の実施形態)
(1)上述の各実施形態では、第1、第2放熱板22、23を設け、発熱体20の両面を冷却していたが、第1、第2放熱板22、23の一方のみを設け、発熱体20の片面を冷却する場合においても本発明の適用が可能である。
(Other embodiments)
(1) In each of the above-described embodiments, the first and second heat radiating plates 22 and 23 are provided and both surfaces of the heating element 20 are cooled. However, only one of the first and second heat radiating plates 22 and 23 is provided. The present invention can also be applied to the case where one side of the heating element 20 is cooled.

(2)上述の各実施形態において、発熱体20の第1、第2放熱板22、23を省略し、発熱部21の一面21aおよび他面21bが液相冷媒12に接するようにしても良い。この場合、発熱部21の一面21aが発熱体の一面に相当する。   (2) In each of the embodiments described above, the first and second heat radiating plates 22 and 23 of the heating element 20 may be omitted, and the one surface 21a and the other surface 21b of the heat generating portion 21 may be in contact with the liquid phase refrigerant 12. . In this case, one surface 21a of the heat generating portion 21 corresponds to one surface of the heat generator.

(3)上述の各実施形態において、発熱体20の第1、第2放熱板22、23の外面22a、23aに、多孔質層を設けても良い。この場合、多孔質層の外面(受熱面とは反対側の面)が、発熱体20の一面に相当するため、数式(1)を満たすように、多孔質層の外面上に存在する液相冷媒層の水平方向での厚さを設定すれば良い。   (3) In each above-mentioned embodiment, you may provide a porous layer in the outer surfaces 22a and 23a of the 1st, 2nd heat sinks 22 and 23 of the heat generating body 20. FIG. In this case, since the outer surface of the porous layer (the surface opposite to the heat receiving surface) corresponds to one surface of the heating element 20, the liquid phase present on the outer surface of the porous layer so as to satisfy Equation (1). What is necessary is just to set the thickness in the horizontal direction of a refrigerant | coolant layer.

(4)上述の各実施形態において、発熱体20の第1、第2放熱板22、23の外面22a、23aに、複数本の柱状のピンを備えるピンフィンを設けても良い。この場合、ピンフィンの先端の位置からの液相冷媒層の厚さをxとして、xが数式(1)を満たすように設定する。このように液相冷媒層が複数の厚さを有する場合、液相冷媒層の厚さが最小となる位置での液相冷媒層の厚さをxとする。すなわち、発熱体の一面上のどの位置においても、発熱体の一面上に存在する液相冷媒層の水平方向厚さが、数式(1)を満たすように設定する。   (4) In each of the above-described embodiments, pin fins including a plurality of columnar pins may be provided on the outer surfaces 22a and 23a of the first and second heat radiating plates 22 and 23 of the heating element 20. In this case, the thickness of the liquid refrigerant layer from the position of the tip of the pin fin is set to x, and x is set so as to satisfy the formula (1). When the liquid phase refrigerant layer has a plurality of thicknesses as described above, the thickness of the liquid phase refrigerant layer at the position where the thickness of the liquid phase refrigerant layer is minimized is set to x. That is, at any position on one surface of the heating element, the horizontal thickness of the liquid-phase refrigerant layer existing on one surface of the heating element is set so as to satisfy Equation (1).

(5)上述の各実施形態では、発熱体の一面とその対向面とが平行であったが、完全に平行でない場合であっても本発明の適用が可能である。例えば、ハウジング11の側壁11c、11dが、上側ほど発熱体20の一面との離間距離が大きくなるように、傾斜している場合、発熱体20の一面の下端では液相冷媒層の水平方向厚さが最小となり、上端では液相冷媒層の水平方向厚さが最大となる。この場合では、液相冷媒層の最小厚さが、数式(1)を満たすように設定すれば良い。   (5) In each of the above-described embodiments, one surface of the heating element and its opposite surface are parallel to each other, but the present invention can be applied even when it is not completely parallel. For example, when the side walls 11c and 11d of the housing 11 are inclined so that the distance from the one surface of the heating element 20 increases toward the upper side, the horizontal thickness of the liquid refrigerant layer at the lower end of the one surface of the heating element 20 The horizontal thickness of the liquid-phase refrigerant layer is maximized at the upper end. In this case, what is necessary is just to set so that the minimum thickness of a liquid phase coolant layer may satisfy | fill Numerical formula (1).

(6)上述の各実施形態を実施可能な範囲で組み合わせても良い。   (6) You may combine each above-mentioned embodiment in the range which can be implemented.

1 沸騰冷却装置
10 貯留部
12 液相冷媒
20 発熱体
22a 第1放熱板の外面(発熱体の一面)
23a 第2放熱板の外面(発熱体の一面)
30 凝縮部
DESCRIPTION OF SYMBOLS 1 Boiling cooler 10 Reservoir part 12 Liquid phase refrigerant 20 Heat generating body 22a The outer surface (one surface of a heat generating body) of a 1st heat sink
23a Outer surface of second heat sink (one surface of heating element)
30 Condensing section

Claims (3)

内部に液相冷媒(12)を貯留する貯留部(10)と、
前記貯留部の内部の液相冷媒に浸漬された発熱体(20)と、
前記貯留部で沸騰気化した気相冷媒を冷却して凝縮させ、液相冷媒を前記貯留部に戻す凝縮部(30)とを備える自然循環式の沸騰冷却装置において、
前記発熱体は、液相冷媒に接し、熱を液相冷媒に伝える一面(22a、23a)を有し、前記一面が重力方向に略平行となるように配置されており、
重力方向に沿った方向での前記一面の長さをyとし、前記一面上に存在する液相冷媒層の水平方向での厚さをxとしたとき、下記の数式(1)を満たすように、前記一面の長さに応じて、前記液相冷媒層の厚さが設定されていることを特徴とする沸騰冷却装置。
Figure 2014022478
A reservoir (10) for storing the liquid-phase refrigerant (12) therein;
A heating element (20) immersed in a liquid refrigerant inside the reservoir;
In the natural circulation boiling cooling device, comprising a condensing unit (30) that cools and condenses the vapor-phase refrigerant boiled and vaporized in the storage unit and returns the liquid-phase refrigerant to the storage unit.
The heating element has one surface (22a, 23a) that is in contact with the liquid phase refrigerant and transmits heat to the liquid phase refrigerant, and the one surface is arranged so as to be substantially parallel to the direction of gravity.
When the length of the one surface in the direction along the direction of gravity is y and the thickness in the horizontal direction of the liquid phase refrigerant layer existing on the one surface is x, the following formula (1) is satisfied. The boiling cooling device is characterized in that the thickness of the liquid-phase refrigerant layer is set according to the length of the one surface.
Figure 2014022478
前記発熱体は、隣り合う前記発熱体の一面同士を対向させるとともに、対向する前記一面同士の間に液相冷媒が介在するように、複数配置されており、
対向する前記一面同士の間に存在する液相冷媒層の水平方向厚さを2xとして、対向する前記一面同士の間に存在する液相冷媒層の水平方向厚さが、前記数式(1)を満たすように、設定されていることを特徴とする請求項1に記載の沸騰冷却装置。
A plurality of the heating elements are arranged so that one surface of the adjacent heating elements faces each other, and a liquid refrigerant is interposed between the facing surfaces.
The horizontal thickness of the liquid refrigerant layer existing between the opposing surfaces is 2x, and the horizontal thickness of the liquid refrigerant layer existing between the opposing surfaces is expressed by the equation (1). The boiling cooling device according to claim 1, wherein the boiling cooling device is set so as to satisfy.
前記発熱体の熱流束が30W/cm以下であることを特徴とする請求項1または2に記載の沸騰冷却装置。
The boiling cooling device according to claim 1 or 2, wherein the heat flux of the heating element is 30 W / cm 2 or less.
JP2012158218A 2012-07-16 2012-07-16 Vapor cooling device Pending JP2014022478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012158218A JP2014022478A (en) 2012-07-16 2012-07-16 Vapor cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012158218A JP2014022478A (en) 2012-07-16 2012-07-16 Vapor cooling device

Publications (1)

Publication Number Publication Date
JP2014022478A true JP2014022478A (en) 2014-02-03

Family

ID=50197053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012158218A Pending JP2014022478A (en) 2012-07-16 2012-07-16 Vapor cooling device

Country Status (1)

Country Link
JP (1) JP2014022478A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020126936A (en) * 2019-02-05 2020-08-20 富士通株式会社 Immersion cooling device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020126936A (en) * 2019-02-05 2020-08-20 富士通株式会社 Immersion cooling device
JP7235959B2 (en) 2019-02-05 2023-03-09 富士通株式会社 Liquid immersion cooling device

Similar Documents

Publication Publication Date Title
JP6015675B2 (en) COOLING DEVICE AND ELECTRONIC DEVICE USING THE SAME
US8813834B2 (en) Quick temperature-equlizing heat-dissipating device
JP2014214985A (en) Evaporator, cooler, and electronic apparatus
JP2018115858A (en) Cooling device, heat receiving part and ebullition part for use therein, and method for producing the same
JPWO2013018667A1 (en) COOLING DEVICE AND ELECTRONIC DEVICE USING THE SAME
WO2010095373A1 (en) Ebullient cooling apparatus
JP2013007501A (en) Cooling device
JP2014074568A (en) Loop type thermo-siphon and electronic apparatus
JP6102815B2 (en) Cooler
JP5092931B2 (en) Boiling cooler
JP2013033807A (en) Cooling device and electronic apparatus using the same
JP2014022478A (en) Vapor cooling device
JP5125869B2 (en) Cooling system
JP6048308B2 (en) Cooler
JP2012237491A (en) Flat cooling device, method for manufacturing the same and method for using the same
TW201616080A (en) Evaporator, cooling apparatus and electronic apparatus
JPH07161888A (en) Boiling cooling unit and manufacture thereof
JP7233336B2 (en) Boiling heat transfer member, cooler with boiling heat transfer member, and cooling device with boiling heat transfer member
US20140366572A1 (en) Cooling device
JP2021188890A (en) Heat transfer member and cooling device having heat transfer member
CN111818756A (en) Heat exchanger with integrated two-phase radiator
WO2013073696A1 (en) Cooling device and electronic device using same
JP7444703B2 (en) Heat transfer member and cooling device having heat transfer member
JP2015140949A (en) Cooling device and data center including the same
JP7476913B2 (en) Pumps, heat pipes