JP2014021481A - Hydrogen atom model - Google Patents

Hydrogen atom model Download PDF

Info

Publication number
JP2014021481A
JP2014021481A JP2012172355A JP2012172355A JP2014021481A JP 2014021481 A JP2014021481 A JP 2014021481A JP 2012172355 A JP2012172355 A JP 2012172355A JP 2012172355 A JP2012172355 A JP 2012172355A JP 2014021481 A JP2014021481 A JP 2014021481A
Authority
JP
Japan
Prior art keywords
hydrogen atom
wave function
potential
electric field
orbit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012172355A
Other languages
Japanese (ja)
Inventor
Haruo Matsushima
治男 松島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012172355A priority Critical patent/JP2014021481A/en
Publication of JP2014021481A publication Critical patent/JP2014021481A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an educational tool that prevents educands from going away from science due to lack of a proper educational tool of science and raises their interest in quantum mechanics inclined to be biased only toward mathematical research.SOLUTION: A hydrogen atom model is configured so that supposing that a wave function of a hydrogen atom represented by polar coordinates (r, θ, φ) or parabola coordinates (ξ, η, φ) singularly, or a sum of or a difference between plural ones is regarded as a potential (electrostatic potential), that a result obtained by applying a gradient of a vector calculation and a negative sign is set to an electric field or an electric flux line 2, and that a result obtained by multiplying the same wave function by a unit vector in a θ direction or a ξ or η direction and thereafter applying turning of a vector calculation is set to an electric field or electric flux line 3, one or both of the electric fields are configured into a three-dimensional structure or drawn on a plane, or a potential in a cross section is drawn on a plane. The drawing or the model visualizes the figure of an atom, enables educands to have a close feeling toward sciences, and enables calculation of energy from the electromagnetic field, so that contribution to a science education and research can be expected.

Description

本発明は理科教材としての水素原子模型に関するものである。  The present invention relates to a hydrogen atom model as a science teaching material.

数学的解析のみに走りがちな量子力学にあって、具体的イメージを喚起する教材は極めて限られている。強いて挙げれば図8および図9がある。図8は有名なド・ブロイの原子模型図であり、図9は下記特許文献1で従来例として取り上げられたFig.10の上の三つであり、左から2pz、2py、2px軌道の存在確率分布を表す図である。これらの言わば古典的水素原子像とは異なり、内部構造に踏み込んだ数少ない例として、米国特許公開広報US2010/0028840 A1およびUS2011/0086333 A1がある。図10は前者のFig.3であり、水素原子1s軌道の電気力線2の図とされている。後者にはs軌道における存在確率の矛盾が記載されている。In quantum mechanics, which tends to run only for mathematical analysis, there are very few educational materials that can be used to elicit specific images. For example, there are FIGS. 8 and 9. FIG. 8 is an atomic model diagram of the famous de Broglie, and FIG. 9 is a diagram of FIG. 10 is a diagram showing the existence probability distribution of 2pz, 2py, and 2px trajectories from the left. Unlike these so-called classical hydrogen atom images, US Patent Publications US2010 / 0028840 A1 and US2011 / 0086333 A1 are few examples that have stepped into the internal structure. FIG. 10 shows the former FIG. 3 and is a diagram of electric lines of force 2 of the hydrogen atom 1s orbit. The latter describes a contradiction in the existence probability in the s orbit.

米国特許公開広報US2010/0028840 A1US Patent Publication PR 2010/10/0028840 A1 米国特許公開広報US2011/0086333 A1US Patent Publication US2011 / 0086333 A1

シッフ著 井上健訳 量子力学上 吉岡書店By Schiff Takeshi Inoue Quantum Mechanics Yoshioka Shoten 三枝寿勝、瀬藤憲昭 共著 量子力学演習(シッフの問題解説)吉岡書店Co-authored by Toshikatsu Saegusa and Noriaki Seto Quantum Mechanics Exercise (Schiff's Problem Description) Yoshioka Shoten 芹沢浩著 3次元フラクタル紀行 森北出版株式会社Hiroshi Serizawa 3D Fractal Tour Morikita Publishing Co., Ltd.

しかし波動関数がベクトルポテンシャルであるとする考えは単なる推測に過ぎず、説得力に欠けるうえ、正電荷を有する陽子から外側へ伸びる電気力線2が再び陽子に戻る形状は物理法則に反する。また単純な球対称の波動関数からz軸方向に異方性を持つ電場が導かれる事にも違和感を覚える。However, the idea that the wave function is a vector potential is merely speculation, lacks persuasive power, and the shape of the electric force line 2 extending outward from a positively charged proton returns to the proton is against physical laws. It is also strange that an electric field having anisotropy in the z-axis direction is derived from a simple spherically symmetric wave function.

本発明は上記従来の課題を解決するものであり、量子力学の原点たる水素原子の波動関数が一体何であるのか?に立ち戻り、その解明結果として電磁場分布を提供し、具体的イメージを抱くなど、理科の基礎を形成する量子力学の物理的考察を容易にする等を通し、理科全般に興味を抱かせる事を目的としている。The present invention solves the above conventional problems, and what is the wave function of hydrogen atoms, the origin of quantum mechanics? Going back to, providing an electromagnetic field distribution as a result of elucidation, and having a concrete image, such as facilitating physical considerations of quantum mechanics that form the basis of science, etc. It is said.

本発明は上記目的を達成する為に、水素原子の波動関数にベクトル演算の勾配を施し負号を付けた結果を電場として平面描画あるいは立体構成したものである。In order to achieve the above-mentioned object, the present invention is a three-dimensional drawing or three-dimensional configuration using the electric field as the result of applying a vector calculation gradient to the wave function of hydrogen atoms and adding a negative sign.

本発明の教材としての水素原子模型は、水素原子の波動関数にベクトル演算の勾配を施し負号を付けた結果を電場として平面描画あるいは立体構成したものであり、従来窺い知る事が出来なかった原子内部を目の当たりに見る事ができ、現象解析の際に有用であると共に、理科を学ぶ興味を引き起こすことができる。The hydrogen atom model as a teaching material of the present invention is a three-dimensional drawing or three-dimensional configuration obtained by applying a gradient of a vector operation to the wave function of a hydrogen atom and adding a negative sign as an electric field. The inside of the atom can be witnessed, and it is useful for analyzing phenomena, as well as creating interest in learning science.

本発明の実施の形態1の水素原子1s軌道の電気力線2および磁力線3を示す立体模型Solid model showing electric lines of force 2 and lines of magnetic force 3 of hydrogen atom 1s orbital according to Embodiment 1 of the present invention 本発明の実施の形態1の水素原子2s軌道の電気力線2および磁力線3を示す立体模型Solid model showing electric lines of force 2 and lines of magnetic force 3 of hydrogen atom 2s orbit of Embodiment 1 of the present invention 本発明の実施の形態2の水素原子2pz軌道の電気力線2を示す垂直断面図Vertical sectional view showing electric lines of force 2 of hydrogen atom 2 pz orbit of Embodiment 2 of the present invention 本発明の実施の形態2の水素原子2px軌道の電気力線2を示す垂直断面図Vertical sectional view showing electric lines of force 2 of a hydrogen atom 2 px orbit of Embodiment 2 of the present invention 本発明の実施の形態3の水素原子2px軌道の水平断面の等電位線図Equipotential diagram of horizontal cross section of hydrogen atom 2px orbit of embodiment 3 of the present invention 本発明の実施の形態3の水素原子2px軌道の水平断面の電位の立体透視図Stereoscopic perspective view of potential of horizontal section of hydrogen atom 2px orbit of embodiment 3 of the present invention 本発明の実施の形態4の水素原子2px軌道の磁力線3を示す水平断面図Horizontal sectional view showing lines of magnetic force 3 of the hydrogen atom 2 px orbit of the fourth embodiment of the present invention 従来例の陽子の周囲を電子が波として周回する定在波軌道の平面図Plan view of standing wave orbit where electrons orbit around protons in the conventional example 従来例の2p軌道の存在確率分布を示す立体斜視図3D perspective view showing the existence probability distribution of 2p orbit in the conventional example 従来例の1s軌道の電気力線2を示す垂直断面図Vertical sectional view showing the electric field lines 2 of the 1s track of the conventional example

以下、本発明の実施の形態について図面を参照しながら説明する。極座標(r、θ、φ)および後述する放物線座標(ξ、η、φ)とで表現された水素原子の波動関数の中のエネルギーの小さい4つを、両座標の互いに等しい波動関数を対比して示した。4つに限定したのはこれで大体の特徴が網羅されているのに加えて、高次の軌道はより複雑であり、特徴が表現され難いからである。これ以降、太字斜体でベクトルを表すこととする。aはボーア半径であり、また、電磁場を求めるには正規化係数は不用であるので省略する。Hereinafter, embodiments of the present invention will be described with reference to the drawings. The four energy functions in the wave function of hydrogen atom expressed by polar coordinates (r, θ, φ) and parabolic coordinates (ξ, η, φ) described later are compared with the wave functions that are equal to each other. Showed. The reason for limiting to four is that, in addition to covering the general features, higher-order trajectories are more complex and the features are difficult to represent. Hereinafter, the vector is represented in bold italics. a 0 is the Bohr radius, and since the normalization coefficient is not necessary for obtaining the electromagnetic field, it is omitted.

1s軌道

Figure 2014021481
2s軌道
Figure 2014021481
Figure 2014021481
2pz軌道
Figure 2014021481
Figure 2014021481
2px軌道
Figure 2014021481
1s orbit
Figure 2014021481
2s orbit
Figure 2014021481
Figure 2014021481
2 pz orbit
Figure 2014021481
Figure 2014021481
2px orbit
Figure 2014021481

これらにベクトル演算の勾配(数式上ではgradまたは∇と表現される)を施し負号を付けた結果が電場であり、各点の電場方向を連続的に結んだ線が電気力線2である。1sおよび2s軌動は立体的模型として、rが一定である球の一部をθやφが一定となる面で切り欠き、その表面に前記式から得られた電気力線2と、後述する磁力線3の両者を組合せて表現する方式を採用。これを実施形態1とする。2pzおよび2px軌動は多少複雑なので垂直断面における電気力線2の分布図を実施形態2とする。また、電位も物理量であり、電場と同様に意味を持つので、水平断面での分布図を実施形態3とする。磁力線3のみの断面図を実施形態4とする。The result obtained by applying a gradient of vector calculation (expressed as grad or ∇ in the mathematical expression) to these and attaching a negative sign is an electric field, and a line continuously connecting the electric field directions of each point is an electric field line 2. . The 1s and 2s trajectories are a three-dimensional model, in which a part of a sphere having a constant r is cut out at a surface where θ and φ are constant, and electric force lines 2 obtained from the above formula are formed on the surface thereof, as will be described later. Adopting a combination of both lines of magnetic force 3 This is referred to as a first embodiment. Since 2pz and 2px trajectories are somewhat complicated, a distribution diagram of electric field lines 2 in a vertical section is referred to as a second embodiment. The potential is also a physical quantity and has the same meaning as the electric field. Therefore, a distribution diagram in a horizontal section is referred to as a third embodiment. A sectional view of only the magnetic force lines 3 is referred to as a fourth embodiment.

図1は本発明実施形態1に係る教材としての水素原子模型である。前記数1に示した1s軌道の極座標波動関数にベクトル演算の勾配を施して負号を付けて求めた電場Eは

Figure 2014021481
となる。iはr方向の単位ベクトルである。
電場がr方向成分のみであるから、電気力線2は中心から外側に向かう放射状直線となる。
後述の如く、磁力線3は前記従来例1で開示されたものを採用、式は次式で示す。ただし、磁束と磁場の正確な区別や係数μ等は磁力線3に必ずしも必要でないので省略した。
Figure 2014021481
ここでiφはφ方向の単位ベクトルである。電磁場両者の立体的関係を示すべく、半径6センチの白色プラスッチック球4を、φ=0およびπの垂直面5と、θ=π/2の水平面6とで四分の一切り取り、外周の球面7を含め、これらの面上に、電気力線2または磁力線3の、面と平行な成分を描いたものである。垂直面5には電気力線2が、水平面6には電気力線2と磁力線3とが平行成分を持つので、数6数7のr方向の変化を反映すべく線間距離を、中心付近は密に、周囲に向かって徐々に粗とした。球面7には磁力線3が平行成分を持つので、数式中にθが含まれていない事を反映させ、等しい線間距離で描いた。半径6センチの中に、r=6a内部の電気力線2を赤色、磁力線3を緑色で描いた。FIG. 1 is a hydrogen atom model as a teaching material according to Embodiment 1 of the present invention. The electric field E obtained by applying a gradient of vector calculation to the polar coordinate wave function of the 1s orbit shown in Equation 1 and adding a negative sign is given by
Figure 2014021481
It becomes. i r is a unit vector in the r direction.
Since the electric field has only the r-direction component, the electric field lines 2 are radial straight lines from the center to the outside.
As will be described later, the magnetic field lines 3 are those disclosed in the conventional example 1, and the formula is shown by the following formula. However, the precise distinction between magnetic flux and magnetic field, the coefficient μ 0 and the like are omitted because they are not necessarily required for the magnetic force lines 3.
Figure 2014021481
Here, is a unit vector in the φ direction. In order to show the three-dimensional relationship between the two electromagnetic fields, a white plastic sphere 4 having a radius of 6 cm is cut into quarters by a vertical plane 5 with φ = 0 and π and a horizontal plane 6 with θ = π / 2, and an outer spherical surface. The components parallel to the surface of the lines of electric force 2 or the lines of magnetic force 3 are drawn on these surfaces including 7. Since the electric force line 2 is on the vertical plane 5 and the electric force line 2 and the magnetic force line 3 are on the horizontal plane 6, the distance between the lines is set near the center to reflect the change in the r direction of several 6 Was dense and gradually rough towards the periphery. Since the magnetic force line 3 has a parallel component on the spherical surface 7, the fact that θ is not included in the mathematical formula is reflected, and the spherical surface 7 is drawn with an equal line distance. In a radius of 6 centimeters, the electric force lines 2 inside r = 6a 0 are drawn in red and the magnetic lines 3 are drawn in green.

図2は本発明実施形態1に係る教材としての水素原子模型であり、水素原子2s軌道の電磁場分布を表している。前記数2に示した2s軌道の極座標波動関数にベクトル演算の勾配を施して負号を付けると次式が得られる。

Figure 2014021481
磁場は次式で示す。
Figure 2014021481
基本的に図1と同様であるが、2s軌道の電場の式がr=4aでゼロになる為に、垂直、水平両面ともその付近に赤色の電気力線2が描かれていない事が異なる。FIG. 2 is a hydrogen atom model as a teaching material according to Embodiment 1 of the present invention, and represents the electromagnetic field distribution of the hydrogen atom 2s orbit. When the polar coordinate wave function of the 2s orbit shown in Equation 2 is subjected to a vector calculation gradient and attached with a negative sign, the following equation is obtained.
Figure 2014021481
The magnetic field is given by
Figure 2014021481
Basically the same as in FIG. 1, but since the electric field formula of the 2s orbit is zero at r = 4a 0 , the red electric field lines 2 are not drawn in the vicinity of both vertical and horizontal surfaces. Different.

図3は本発明実施形態2に係る教材としての水素原子模型であり、任意のφ一定垂直面における2pz軌道の電気力線2を描いた図である。前述の数3の放物線座標波動関数u100に勾配演算を施し負号を付けると電場Eは次式で表される。

Figure 2014021481
ここで、iξおよびiηは各々ξ、η方向の単位ベクトルである。この式に前記特許文献2に開示された方法を適用してr=6aの範囲の電気力線2を複数本描いた。FIG. 3 is a hydrogen atom model as a teaching material according to Embodiment 2 of the present invention, and is a diagram depicting electric force lines 2 of 2 pz orbit in an arbitrary φ constant vertical plane. When the gradient calculation is performed on the parabolic coordinate wave function u 100 of the above-described formula 3 and a negative sign is added, the electric field E is expressed by the following equation.
Figure 2014021481
Here, i ξ and i η are unit vectors in the ξ and η directions, respectively. A plurality of lines of electric force 2 in the range of r = 6a 0 were drawn by applying the method disclosed in Patent Document 2 to this equation.

図4は本発明実施形態2に係る教材としての水素原子模型(描画)である。前述の数5、2px軌道の極座標表示された二つの波動関数の差に勾配演算を施し負号を付けると電場Eは次式になる。

Figure 2014021481
このままでは複雑、特徴把握困難なので、垂直断面としてφ方向ベクトル成分ゼロになるφ=0およびπの面を選択した。図1から図3と同様にr=6aの範囲を、図3と同一方法で描いた。FIG. 4 is a hydrogen atom model (drawing) as a teaching material according to Embodiment 2 of the present invention. If the gradient calculation is performed on the difference between the two wave functions represented by the polar coordinates of the above-mentioned formula 5, 2px orbit and a negative sign is added, the electric field E is expressed by the following equation.
Figure 2014021481
Since this is complicated and it is difficult to grasp the features, planes with φ = 0 and π that have zero φ-direction vector components are selected as vertical sections. Similar to FIGS. 1 to 3, the range of r = 6a 0 was drawn in the same manner as in FIG.

図5は本発明実施形態3に係る教材としての水素原子模型(描画)である。前述の数11で表された電場は、電位の勾配であるから、等電位線とは垂直に交わっているはずである。
従って作図プログラムを一部修正、任意の点を代入して求めた電場の方向と垂直な方向に微小な一定距離はなれた第2の点を求め、これを再代入し再び電場を計算、得られた電場と垂直な方向に前述と同一微小距離はなれた第三の点を求めて再度電場計算を行う方法を繰り返して描いたものであり、r=6aの範囲の2px軌道の等電位線図である。
FIG. 5 is a hydrogen atom model (drawing) as a teaching material according to Embodiment 3 of the present invention. The electric field represented by the above equation 11 is a potential gradient, and therefore should be perpendicular to the equipotential line.
Therefore, a part of the drawing program was modified, and a second point that was separated by a small fixed distance in the direction perpendicular to the direction of the electric field obtained by substituting an arbitrary point was obtained. electric field and the direction perpendicular to the above in the same small distance are those drawn following the procedure of performing again the electric field calculation seeking third point familiar equipotential diagram of 2px orbital range of r = 6a 0 It is.

図6は本発明実施形態3に係る教材としての水素原子模型(描画)である。前述の数5に図5の場合と同様にφ=0を代入した後に直角座標(x、y、z)で表示すると次の数12になる。

Figure 2014021481
この式を前記非特許文献3の40−41頁記載のプログラムに取り入れ、マイクロソフト社のVisualC++6.0のプログラムに修正、−6a<x<6aおよび−a<z<6aの範囲を描いた2px軌道の電位の立体透視図である。FIG. 6 is a hydrogen atom model (drawing) as a teaching material according to Embodiment 3 of the present invention. As in the case of FIG. 5 after substituting φ = 0 in the above equation 5, when expressed in rectangular coordinates (x, y, z), the following equation 12 is obtained.
Figure 2014021481
This formula is incorporated into the program described in pages 40-41 of Non-Patent Document 3 and modified to Microsoft's Visual C ++ 6.0 program. The range of −6a 0 <x <6a 0 and −a 0 <z <6a 0 is set. It is a three-dimensional perspective view of the potential of the drawn 2 px orbit.

図7は本実施形態4に係る教材としての水素原子模型(描画)である。前述の数5にθ方向の単位ベクトルiθを掛け、転回演算を施した後にθ=π/2を代入し、数13を得る。

Figure 2014021481
これが2px軌道の磁場であり、図1から図3と同様にr=6aの範囲を、図3と同一方法で複数本の磁力線3を描いた。FIG. 7 shows a hydrogen atom model (drawing) as a teaching material according to the fourth embodiment. Multiplied by the unit vector i theta of theta direction to the number 5 above, by substituting θ = π / 2 after performing turning operations, get the number 13.
Figure 2014021481
This is a magnetic field of 2 px orbit, and a plurality of magnetic lines 3 are drawn in the same method as FIG. 3 in the range of r = 6a 0 as in FIGS.

以上のように構成した教材の動作、作用に入る前に、シュレディンガー方程式の解、波動関数が何か?を説明する。波動関数は電位(静電ポテンシャル)である。理由は、1)電位は仕事量を単位に持つスカラー量であるから、仕事量(エネルギー)を取り扱うスカラー方程式であるシュレディンガー方程式の解に相応しい。2)波動関数中に正負の値が出現する事の説明がつく。3)陽子の周囲を電子の等価的な電荷が分散分布しているとの基本的な原子像と矛盾しない。4)現在の存在確率説と本質部分は同一であるから、既存の種々の実験結果などとの矛盾が少ない。などが挙げられる。What is the solution to the Schrödinger equation and the wave function before the operation and action of the teaching material configured as described above? Will be explained. The wave function is a potential (electrostatic potential). The reasons are as follows: 1) Since the electric potential is a scalar amount having the work amount as a unit, it is suitable for the solution of the Schrödinger equation which is a scalar equation that handles the work amount (energy). 2) Explain that positive and negative values appear in the wave function. 3) It is consistent with the basic atomic image that the equivalent charge of electrons is distributed around the proton. 4) Since the essence part is the same as the present existence probability theory, there is little contradiction with various existing experimental results. Etc.

上記3)を簡単に補足する。電磁気学の基礎として、単一の電荷量qから距離rの位置にある観測点で、電位φが次式で定義される。

Figure 2014021481
電位は重畳可能であるから、n個の電荷による合成電位φが、
Figure 2014021481
と定義される。この考えを、正電荷の陽子の周囲を電子の負電荷が等価的に分散分布していると仮定する水素原子に適用すれば、観測点の関数として、これら全ての正負電荷を重畳した電位が定義可能である。それが波動関数であるとの考えである。4)は、任意の点を電子が通過する頻度に着目したのが存在確率であるのに対し、電荷量に着目したのが等価分散電荷分布であり、両者は比例すると考えられる。The above 3) is simply supplemented. As a basis of electromagnetism, a potential φ is defined by the following equation at an observation point located at a distance r from a single charge amount q.
Figure 2014021481
Since the potentials can be superimposed, the combined potential φ n by n charges is
Figure 2014021481
It is defined as If this idea is applied to a hydrogen atom that assumes that the negative charge of electrons is equivalently distributed around the positively charged proton, the potential that superimposes all these positive and negative charges as a function of the observation point becomes It can be defined. The idea is that it is a wave function. In 4), the existence probability focuses on the frequency of electrons passing through an arbitrary point, while the equivalent distributed charge distribution focuses on the charge amount, and both are considered to be proportional.

水素原子の波動関数が電位であるならば、ベクトル演算の勾配を施し負号を付ければ電場が求められる。数6、数8に示した如く結果は至って単純で、1sおよび2s軌道の電場の方向は半径方向であり、波動関数自体と同じ球対称である。前述の解決しようとする課題が全て解決される。If the wave function of a hydrogen atom is an electric potential, an electric field can be obtained by applying a gradient of vector calculation and adding a negative sign. As shown in Equations 6 and 8, the result is very simple, and the direction of the electric field of the 1s and 2s orbits is the radial direction, which is the same spherical symmetry as the wave function itself. All the problems to be solved are solved.

2pz軌道の波動関数は放物線座標表示のシュレディンガー方程式から直接導かれた波動関数、u100(ξ、η、φ)および u010(ξ、η、φ)と、それぞれに等しい和および差の極座標表示の波動関数である。理由、1)シュレディンガー方程式を表現する座標として放物線座標と極座標とに優劣があるとは考えられない。2)シュレディンガー方程式から直接導かれた波動関数は、複数の波動関数の和あるいは差で表された波動関数よりなんらかの強い意味を有していると考えられる。3)電位説で波動関数を見なおすと、直接導かれた波動関数であるu100(ξ、η、φ)および u010(ξ、η、φ)は、ξ=0、η=0の原点で最大値を示し、そのまま採用可能である。2pz orbital wave functions are derived directly from the Schroedinger equation in parabolic coordinates, u 100 (ξ, η, φ) and u 010 (ξ, η, φ), and polar coordinate representations of equal and different sums, respectively. Is the wave function of Reasons 1) It cannot be considered that parabola coordinates and polar coordinates are superior or inferior as coordinates expressing the Schrodinger equation. 2) It is considered that the wave function directly derived from the Schrödinger equation has some stronger meaning than the wave function represented by the sum or difference of a plurality of wave functions. 3) When the wave function is re-examined in the potential theory, the directly derived wave functions u 100 (ξ, η, φ) and u 010 (ξ, η, φ) are the origins of ξ = 0 and η = 0. Indicates the maximum value, and can be used as it is.

放物線座標において2sおよび2pz軌道に対応する直接解はu100(ξ、η、φ)およびu010(ξ、η、φ)であり、従来の確率振幅説が主張する2pz軌道の波動関数は両者の差を取らなければならない。上記理由2)によりシュレディンガー方程式が「波動関数=電位」を示唆していると解釈できる。
この考えに立って従来の2px軌道の波動関数を見なおすと、原点で最大値とならない。原点で最大にするには2s軌道の波動関数との差を求めればよい。その結果が数5である。
The direct solutions corresponding to 2s and 2pz orbits in parabolic coordinates are u 100 (ξ, η, φ) and u 010 (ξ, η, φ), and the wave functions of the 2pz orbit claimed by the conventional probability amplitude theory are both The difference must be taken. For the reason 2), it can be interpreted that the Schrodinger equation suggests "wave function = potential".
If the wave function of the conventional 2 px orbit is reconsidered based on this idea, the maximum value is not reached at the origin. What is necessary is just to obtain | require the difference with the wave function of 2s orbit to make it the maximum at an origin. The result is Equation 5.

参考までに説明する。放物線座標(ξ、η、φ)でも水素原子の波動関数が導出される事が、現在市販中の二三の教科書に紹介されている。詳細に記載されているものとして、前記非特許文献1の110−113頁および非特許文献2の66−68頁がある。それらを基に上述の数1から数5を計算した。
それらによると放物線座標(ξ、η、φ)は直角座標(x、y、z)および極座標(r、θ、φ)各々との間に

Figure 2014021481
で定義される座標であり、波動関数は3つの量子数n、n、mを順に添字としてu100の様に表現される。This will be explained for reference. The fact that the wave function of hydrogen atoms is derived even in parabolic coordinates (ξ, η, φ) is introduced in a few textbooks on the market. Non-Patent Document 1 pages 110-113 and Non-Patent Document 2 pages 66-68 are described in detail. Based on these, the above formulas 1 to 5 were calculated.
According to them, parabolic coordinates (ξ, η, φ) are between rectangular coordinates (x, y, z) and polar coordinates (r, θ, φ), respectively.
Figure 2014021481
The wave function is expressed as u 100 with the three quantum numbers n 1 , n 2 , and m in order as subscripts.

次に磁場の説明をする為に、水素原子像「中心に位置する正電荷陽子の周囲に負電荷電子が定在波として存在する」に立ち帰る。定在波を形成するには二通りあり、一つは互いに逆方向を向いた二つの進行波により形成され、もう一つは図8に見られる様に、円周上の進行波が周回遅れに追い付く事により形成される。いずれにしても動いている波の存在の上に定在波が出現する。波としてであっても、電荷が動いていれば、それは電流である。その電流の一瞬の姿が定在波であり、その定在波が形成する電位(静電ポテンシャル)が波動関数であるとの考えが本発明の基礎である。Next, in order to explain the magnetic field, we return to the hydrogen atom image “negatively charged electrons exist as standing waves around the positively charged proton located at the center”. There are two ways to form a standing wave, one is formed by two traveling waves that are opposite to each other, and the other is, as seen in FIG. It is formed by catching up with. In any case, a standing wave appears on top of a moving wave. Even as a wave, if the charge is moving, it is a current. The idea that the instantaneous state of the current is a standing wave and the potential (electrostatic potential) formed by the standing wave is a wave function is the basis of the present invention.

これを数式表現する。前述の電位の式、数13の電荷qの各々が同一のベクトル速度vで動いているとし、係数を変更するとベクトルポテンシャルAになる。さらにvをシグマの外に出す等で前記電位φとの関係を見ると

Figure 2014021481
となる。速度vの方向は電子の軌道方向であろうが、電子の軌道そのものは不明である。
しかし少なくともs軌道では、統計上の平均的軌道を陽子を中心とする円と考えて差し支えなかろう。さすれば電流の方向は大円方向であるθ方向が最適である。ベクトル速度vをviθと変更すれば上式は次の様になる。
Figure 2014021481
このベクトルポテンシャルを転回演算すれば磁束が得られ、μで割れば磁場となる。前記特許文献1の「波動関数=ベクトルポテンシャル」説に根拠が与えられた事になる。This is expressed mathematically. Wherein the aforementioned potential, and each of the charge q i of Equation 13 is moving in the same vector velocity v, becomes the vector potential A n Changing the coefficients. Furthermore, when the relationship with the potential φ n is seen by taking v out of the sigma,
Figure 2014021481
It becomes. The direction of velocity v will be the direction of the electron trajectory, but the electron trajectory itself is unknown.
However, at least in the s orbit, the statistical average orbit can be considered as a circle centered on protons. In this case, the direction of the current is optimal in the θ direction, which is a great circle direction. If the vector velocity v is changed to vi θ , the above equation becomes as follows.
Figure 2014021481
A magnetic flux is obtained by rotating this vector potential, and a magnetic field is obtained by dividing by μ 0 . The basis is given to the “wave function = vector potential” theory of Patent Document 1.

しかしθ方向とは地球に例えると南方向であり、東西方向や上下方向が全て排除された事になる。s軌道においても、東西方向は否定できない。さらに他の軌道では図9から類推する如く、楕円が球対称に配置された様な軌道を周回していると考えられるから、上下方向を考えるべきであろう。何れにしろθ以外の方向、特に楕円に必須のr方向成分を考慮すべきである。だが、残念ながらr方向のベクトルポテンシャルを回転演算するとゼロになってしまう。However, the θ direction is the south direction compared to the earth, and the east-west direction and the vertical direction are all excluded. Even in the s orbit, the east-west direction cannot be denied. Furthermore, in other orbits, as estimated from FIG. 9, it is considered that the ellipse orbits the sphere symmetrically arranged, so the up and down direction should be considered. In any case, the r direction component essential for directions other than θ, particularly for an ellipse, should be considered. However, unfortunately, if the vector potential in the r direction is rotated, it becomes zero.

そこで再度放物線座標を扱う。1s軌道の波動関数u000(ξ、η、φ)にξ方向の単位ベクトルiξを掛け、回転演算を施し、その結果を磁場Hとすると

Figure 2014021481
となる。数7には無いθ方向の変化はあるものの、r方向の変化は類似であり、何よりもφ方向成分のみの関数である点で数7と同一である。r方向成分を多分に有するξ方向の電流からもφ方向成分のみの磁場が得られたので、1s軌道の水素原子の磁場はφ方向成分のみを有すると判断できる。従って単純な極座標表示の波動関数を採用したものである。Therefore, parabolic coordinates are handled again. When the wave function u 000 (ξ, η, φ) of the 1 s orbit is multiplied by the unit vector i ξ in the ξ direction, the rotation calculation is performed, and the result is the magnetic field H.
Figure 2014021481
It becomes. Although there is a change in the θ direction that is not in Equation 7, the change in the r direction is similar and is the same as Equation 7 in that it is a function of only the φ direction component. Since the magnetic field of only the φ direction component is obtained from the current in the ξ direction having a large r direction component, it can be determined that the magnetic field of hydrogen atoms in the 1s orbit has only the φ direction component. Therefore, a simple polar coordinate wave function is employed.

作用に移る。本発明によれば、言わば水素原子内部の可視化が実現され、波動関数の差が内部電磁場の差にどの様に反映されるかが理解できる。例えば1s軌道は電磁場共に中心付近に集中しており、2s軌道は1s軌道より外側に拡大し、r=2aで電場がゼロになっている事などである。また前記特許文献1では触れられていない、負電荷の等価的分散分布が推測できる。電磁気学の基礎知識によれば電気力線2は正電荷から出発し、電場の方向を結んで負電荷に至る線分であるから、例えば図3および数10式から、2pz軌道ではξ=6a、η=0の点、極座標表示すればr=3a、θ=πを中心に負電荷が集中していると推測できる。図2および数8式から2s軌道ではr=4aの球面上を中心にに負電荷が分布していると推測できる。図1と数6式から1s軌道では陽子の近傍に負電荷が集中していると推測できる。図4と数11式から2px軌道ではφ=0、θ=π/2、r=3aを中心に負電荷が集中していると推測できる。Move on to action. According to the present invention, so-called visualization of the inside of a hydrogen atom is realized, and it can be understood how the difference in the wave function is reflected in the difference in the internal electromagnetic field. For example 1s orbital is concentrated in the vicinity of the center in the field both, 2s orbital is expanded outward from the 1s orbital, the electric field at r = 2a 0 is such that is zero. Further, an equivalent dispersion distribution of negative charges, which is not mentioned in Patent Document 1, can be estimated. According to the basic knowledge of electromagnetism, the electric force line 2 is a line segment starting from a positive charge and connecting the direction of the electric field to the negative charge. For example, from FIG. 3 and Equation 10, ξ = 6a in a 2 pz orbit. If the points of 0 and η = 0 and polar coordinates are displayed, it can be estimated that negative charges are concentrated around r = 3a 0 and θ = π. From FIG. 2 and Equation 8, it can be inferred that negative charges are distributed around the spherical surface of r = 4a 0 in the 2s orbit. From FIG. 1 and Equation 6, it can be inferred that negative charges are concentrated in the vicinity of the proton in the 1s orbit. From FIG. 4 and Equation 11, it can be inferred that negative charges are concentrated around φ = 0, θ = π / 2, and r = 3a 0 in the 2px orbit.

さらに、本発明により求められた電場の式から、前記特許文献1では算出されていない電場エネルギーが計算できる。ns軌道の電場の式(ただし正規化係数を含む)を二乗し、全空間に亘って積分すると、エネルギーは1/(a )となり、これはボーアのエネルギー準位に比例すると同時に、前記特許文献1で算出された磁場のエネルギーとも一致する。この結果は同文献の主張する無損失共振器説の後押しをすると共に、波動関数=電位の傍証となろう。Furthermore, the electric field energy not calculated in Patent Document 1 can be calculated from the electric field formula obtained by the present invention. If we square the ns orbital electric field equation (including the normalization factor) and integrate it over the whole space, the energy is 1 / (a 0 2 n 2 ), which is proportional to Bohr's energy level. The magnetic field energy calculated in Patent Document 1 also coincides. This result will support the lossless resonator theory claimed by the same document, and will support the wave function = potential.

以上述べた様に本発明の効果は、従来窺い知る事が出来なかった原子の内部構造を示す模型や図が理科、特に量子力学の興味を喚起し理科離れを食い止めるだけでなく、数学のみに偏った推論により生じかねない誤りを未然に防ぐ一助となる。さらに水素原子のエネルギー準位を電磁場分布から計算でき、量子力学教育に貢献する事をも期待される。As described above, the effect of the present invention is not only the science and models that show the internal structure of the atoms that could not be known in the past, but especially the science of quantum mechanics to stop the separation from science, not only to mathematics. It helps to prevent errors that may occur due to biased reasoning. In addition, the energy level of hydrogen atoms can be calculated from the electromagnetic field distribution, which is expected to contribute to quantum mechanics education.

本発明にかかる教材としての水素原子模型は水素原子内部の姿を可視化させ、難解で取っ付き難い量子力学に親近感を抱かせ、理科離れを防止し、教育や研究にも有用である。The hydrogen atom model as a teaching material according to the present invention visualizes the inside of the hydrogen atom, makes the quantum mechanics difficult and difficult to attach, prevents the separation of science, and is useful for education and research.

2 電気力線
3 磁力線
4 球
5 垂直面
6 水平面
7 球面(球表面)
2 electric field lines 3 magnetic field lines 4 sphere 5 vertical surface 6 horizontal surface 7 spherical surface (sphere surface)

Claims (3)

水素原子の波動関数単独あるいは複数の波動関数の和あるいは差あるいは和および差にベクトル演算の勾配を施し負号を付けた結果を電場として平面描画あるいは立体構成した水素原子模型。  A hydrogen atom model in which the wave function of a hydrogen atom alone or the sum of a plurality of wave functions, or the difference between sums and differences, and the result of adding a negative sign to the result of adding a negative sign to the plane as an electric field. 水素原子の波動関数単独あるいは複数の波動関数の和あるいは差あるいは和および差を電位(静電ポテンシャル)として平面描画した水素原子模型。  Hydrogen atom model in which the wave function of hydrogen atom alone or the sum or difference of multiple wave functions or the sum and difference are drawn as potential (electrostatic potential). 水素原子の波動関数単独あるいは複数の波動関数の和あるいは差あるいは和および差に、ベクトル演算の勾配を施し負号を付けた結果を電場とし、波動関数が極座標で表されている場合はθ方向の単位ベクトルを、放物線座標で表されている場合はξ方向あるいはη方向の単位ベクトルを、波動関数に掛けた後に回転演算を施した結果を磁場として両者を同時に描画または立体構成した水素原子模型。  When the wave function is expressed in polar coordinates, the wave function of hydrogen atom or the sum or difference of multiple wave functions or the sum and difference of the wave functions, and the result of applying a gradient of vector operation and adding a negative sign to the electric field. If the unit vector is expressed in parabolic coordinates, the unit vector in the ξ direction or η direction is multiplied by the wave function, and the result of rotation is applied to the magnetic field. .
JP2012172355A 2012-07-17 2012-07-17 Hydrogen atom model Pending JP2014021481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012172355A JP2014021481A (en) 2012-07-17 2012-07-17 Hydrogen atom model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012172355A JP2014021481A (en) 2012-07-17 2012-07-17 Hydrogen atom model

Publications (1)

Publication Number Publication Date
JP2014021481A true JP2014021481A (en) 2014-02-03

Family

ID=50196361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012172355A Pending JP2014021481A (en) 2012-07-17 2012-07-17 Hydrogen atom model

Country Status (1)

Country Link
JP (1) JP2014021481A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015207264A (en) * 2014-04-22 2015-11-19 松島 治男 Method of displaying existence probability of electron in hydrogen atom
CN105679154A (en) * 2016-04-07 2016-06-15 齐齐哈尔大学 Mechanics experimental instrument of rotation paraboloid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015207264A (en) * 2014-04-22 2015-11-19 松島 治男 Method of displaying existence probability of electron in hydrogen atom
CN105679154A (en) * 2016-04-07 2016-06-15 齐齐哈尔大学 Mechanics experimental instrument of rotation paraboloid
CN105679154B (en) * 2016-04-07 2018-08-28 齐齐哈尔大学 A kind of mechanics experiment instrument of the paraboloid of revolution

Similar Documents

Publication Publication Date Title
Andringa et al. ‘Stringy’Newton–Cartan gravity
Titov et al. Magnetic topology of coronal hole linkages
Jing et al. Statistical analysis of torus and kink instabilities in solar eruptions
Bergman et al. Band touching from real-space topology in frustrated hopping models
Inoue et al. Magnetohydrodynamic modeling of a solar eruption associated with an X9. 3 flare observed in the active region 12673
Wang et al. A hybrid simulation of Mercury’s magnetosphere for the MESSENGER encounters in year 2008
Wang et al. The role of active region coronal magnetic field in determining coronal mass ejection propagation direction
Li et al. Deflection of charged massive particles by a four-dimensional charged Einstein–Gauss–Bonnet black hole
Diacu The non-existence of centre-of-mass and linear-momentum integrals in the curved N-body problem
JP2014021481A (en) Hydrogen atom model
JP2013117706A (en) Hydrogen atomic model
Yasi et al. Direct calculation of the lattice Green function with arbitrary interactions for general crystals
JP2014153707A (en) Electromagnetic field display method of hydrogen atom
Małkiewicz Reduced phase space approach to Kasner universe and the problem of time in quantum theory
Kim et al. Quark number susceptibility with finite chemical potential in holographic QCD
Onorato et al. How can magnetic forces do work? Investigating the problem with students
Yeates The minimal helicity of solar coronal magnetic fields
JP2012163930A (en) Hydrogen atomic model
Yu The Novikov conjecture
Oxman et al. Coloured loops in 4D and their effective field representation
JP2013257523A (en) Hydrogen atom model
Jezierski et al. The 3+ 1 decomposition of conformal Yano–Killing tensors and ‘momentary’charges for the spin-2 field
Sahade et al. Understanding the Deflection of the “Cartwheel CME”: Data Analysis and Modeling
Šmída et al. The ultra-high energy cosmic rays image of Virgo A
Ben-Nun et al. Deflection of coronal mass ejections in unipolar ambient magnetic fields