JP2014020603A - Heat-transfer element - Google Patents

Heat-transfer element Download PDF

Info

Publication number
JP2014020603A
JP2014020603A JP2012157166A JP2012157166A JP2014020603A JP 2014020603 A JP2014020603 A JP 2014020603A JP 2012157166 A JP2012157166 A JP 2012157166A JP 2012157166 A JP2012157166 A JP 2012157166A JP 2014020603 A JP2014020603 A JP 2014020603A
Authority
JP
Japan
Prior art keywords
rib
spacing
partition member
ribs
deflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012157166A
Other languages
Japanese (ja)
Other versions
JP5790600B2 (en
Inventor
Masaru Takada
勝 高田
Hajime Sotokawa
一 外川
Yuichi Ishimaru
裕一 石丸
Kazuteru Okamoto
一輝 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012157166A priority Critical patent/JP5790600B2/en
Publication of JP2014020603A publication Critical patent/JP2014020603A/en
Application granted granted Critical
Publication of JP5790600B2 publication Critical patent/JP5790600B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat-transfer element capable of reducing worsening of draft resistance and improving total heat-transfer efficiency by suppressing contact of partition members with each other due to a warp of the partition members caused by temperature and humidity changes.SOLUTION: A heat-transfer element includes: stacked unit structural members each formed by partition members and a space holding member holding the partition members at a predetermined space, the space holding member including: first space ribs; second space ribs; first warp suppressing ribs connected to the second space ribs, provided between the first space ribs in parallel with respect to each in a predetermined pitch, and lower than the first space ribs, and second warp suppressing ribs connected to the first space ribs, provided between the second space ribs in parallel with respect to each in a predetermined pitch, and lower than the second space ribs, the space holding member being arranged at a position where the first warp suppressing ribs and the second warp suppressing ribs are not opposed to each other, when stacking the unit structural members.

Description

本発明は、室外から室内への給気と、室内から室外への排気とを同時に行う空気調和装置において、流体間での熱や湿度の交換を行う積層構造の熱交換素子に関するものである。   The present invention relates to a heat exchange element having a laminated structure for exchanging heat and humidity between fluids in an air conditioner that performs air supply from the outside to the room and exhaust from the room to the outside at the same time.

近年、暖房及び冷房等の空調機器が発達かつ普及し、空気調和装置を用いた居住区域が拡大するにつれて、換気において温度及び湿度が回収できる空気調和装置用の全熱交換器に対する重要性も高まっている。こうした全熱交換器には熱交換する要素部品として熱交換素子が搭載されている。この熱交換素子は、使用時に屋外から屋内に吸込まれる新鮮な外気と屋内から屋外へ排気される汚れた空気とが混合することなく、顕熱と同時に潜熱も熱交換できるものであり、全熱交換率が高いことが求められている。さらに、換気を行うために気流を流通させる送風装置(ファン、ブロワなど)の消費電力を抑え、全熱交換器の運転音を低く抑えるために、各気流が流通する際の通風抵抗が低いことも求められている。   In recent years, as air-conditioning equipment such as heating and cooling has been developed and popularized and the living area using the air conditioner has expanded, the importance of the total heat exchanger for the air conditioner that can recover temperature and humidity in ventilation has increased. ing. In such total heat exchangers, heat exchange elements are mounted as element parts for heat exchange. This heat exchange element can exchange both sensible heat and latent heat without mixing fresh fresh air sucked indoors from the outside and dirty air exhausted indoors to the outdoors. A high heat exchange rate is required. Furthermore, to reduce the power consumption of the air blower (fan, blower, etc.) that circulates the airflow for ventilation and to reduce the operating noise of the total heat exchanger, the ventilation resistance when each airflow circulates is low. Is also sought.

従来の熱交換素子は気体の遮蔽性、伝熱性及び透湿性を有する仕切部材を断面が波形状の間隔保持部材で挟み、所定の間隔をおいて複数層に重ね合わせた構造が採用されていた。例えば、仕切部材は方形の平板で、間隔保持部材は三角形断面の波形を成形した波形板となっており、間隔保持部材を仕切部材の間にその波形の方向を一枚ごとに90度反転させて交互に積層し、一次気流と二次気流を通す二方向の流体通路を各層間に一層おきに構成しているものがある(特許文献1)。この波形の板厚によって仕切部材の間に形成される通風路の有効面積が小さくなり、さらに、仕切部材と間隔保持部材の接触面積が大きく、熱交換可能な仕切部材の有効面積が小さくなるため全熱交換効率が低くなるという問題がある。また、間隔保持部材が紙等より形成されているため通風路の断面形状が崩れ易く通風抵抗が高くなるという問題があった。   Conventional heat exchange elements employ a structure in which a partition member having gas shielding properties, heat transfer properties, and moisture permeability is sandwiched between interval holding members having a corrugated cross section, and stacked on a plurality of layers at predetermined intervals. . For example, the partition member is a rectangular flat plate, and the spacing member is a corrugated plate having a triangular cross-sectional shape. The spacing member is reversed 90 degrees between the partition members for each corrugated direction. There are some in which two-way fluid passages that are alternately stacked and pass the primary air flow and the secondary air flow are formed between the respective layers (Patent Document 1). Since the corrugated plate thickness reduces the effective area of the ventilation path formed between the partition members, the contact area between the partition member and the spacing member is large, and the effective area of the heat exchangeable partition member is small. There is a problem that the total heat exchange efficiency is lowered. In addition, since the spacing member is made of paper or the like, there is a problem in that the cross-sectional shape of the ventilation path is liable to collapse and the ventilation resistance is increased.

このため近年では、熱交換素子の、間隔保持部材として波形板の代わりに樹脂成形品を使用し仕切部材と樹脂を一体成形する方法が用いられてきた。この構造により、熱交換素子形状の自由度が上がり、全熱交換効率の向上や通風抵抗の低減をしたものがある。(特許文献2)さらに、全熱交換素子の空気漏れ量の低減と湿度交換効率の向上を主な目的として、より緻密かつ密度を高くして作成した仕切部材が開発されており、これらは通気性(透気度)が低く、透湿性に優れ、熱交換素子の仕切部材として非常に良好な性質を有するが、同時に伸縮量が大きいという特徴がある。   For this reason, in recent years, a method of integrally molding a partition member and a resin by using a resin molded product instead of a corrugated plate as a spacing member of a heat exchange element has been used. This structure increases the degree of freedom of the shape of the heat exchange element, and there are some which have improved total heat exchange efficiency and reduced ventilation resistance. (Patent Document 2) Furthermore, partition members created with higher density and higher density have been developed mainly for the purpose of reducing the amount of air leakage of the total heat exchange element and improving the humidity exchange efficiency. It has a low property (air permeability), excellent moisture permeability, and has very good properties as a partition member for a heat exchange element, but at the same time has a large amount of expansion and contraction.

特公昭47−19990号公報Japanese Patent Publication No.47-19990 特開2003−287387号公報JP 2003-287387 A

こういった仕切部材を使用した熱交換素子を多湿環境で使用した場合、仕切部材が膨張して撓むことで上下層を形成する仕切部材同士が接触し、通風路を閉塞してしまうため通風抵抗が増加し、結果として全熱交換効率が低くなるという課題がある。また、仕切部材同士が接触すると、仕切部材の空気と接触する面積が少なくなるため、環境湿温度が改善した場合に通常の状態へ復帰するのが遅れるという課題がある。   When a heat exchange element using such a partition member is used in a humid environment, the partition member expands and bends so that the partition members forming the upper and lower layers come into contact with each other and block the ventilation path. There is a problem that the resistance increases, and as a result, the total heat exchange efficiency is lowered. In addition, when the partition members are in contact with each other, the area of the partition member that is in contact with the air is reduced, so that there is a problem that the return to the normal state is delayed when the environmental humidity temperature is improved.

本発明は上述した従来の課題を解決するためになされたものであり、全熱交換効率向上のため、緻密かつ高密度な素材を仕切部材に使用しても、温湿度変化による仕切部材のたわみによる仕切部材同士の接触を抑制することで通風抵抗の悪化低減及び全熱交換効率の向上を図ることができる熱交換素子を得ることを目的としている。   The present invention has been made to solve the above-described conventional problems, and in order to improve the total heat exchange efficiency, even if a dense and high-density material is used for the partition member, the deflection of the partition member due to temperature and humidity changes. An object of the present invention is to obtain a heat exchange element capable of reducing the deterioration of ventilation resistance and improving the total heat exchange efficiency by suppressing the contact between the partition members due to.

本発明は、伝熱性と透湿性を有する仕切部材と、
前記仕切部材を所定間隔に保持する間隔保持部材と、
で形成された単位構成部材を積層し、前記仕切部材の表面側を通過する一次気流と前記仕切部材の裏面側を通過する二次気流とが前記仕切部材を介して熱と湿度を交換する熱交換素子において、
前記間隔保持部材は、
前記仕切部材の表面に前記一次気流が流れる方向と並行に所定間隔ごとに設けられた第一間隔リブと、前記仕切部材の裏面に前記二次気流が流れる方向と並行に所定間隔ごとに設けられた第二間隔リブと、を備え、
前記第二間隔リブと接続され、前記第一間隔リブの間を所定間隔ごとに並行して設けられた前記第一間隔リブよりも高さが低い第一たわみ抑制リブと、
前記第一間隔リブと接続され、前記第二間隔リブの間を所定間隔ごとに並行して設けられた前記第二間隔リブよりも高さが低い第二たわみ抑制リブと、を備え、
前記単位構成部材を積層したときに前記第一たわみ抑制リブと前記第二たわみ抑制リブが対向しない位置に配置することを特徴とする。
The present invention is a partition member having heat conductivity and moisture permeability,
An interval holding member for holding the partition member at a predetermined interval;
Heat that exchanges heat and humidity through the partition member between the primary airflow that passes through the front surface side of the partition member and the secondary airflow that passes through the back surface side of the partition member. In the exchange element,
The spacing member is
First spacing ribs provided at predetermined intervals in parallel with the direction in which the primary airflow flows on the surface of the partition member, and provided at predetermined intervals in parallel with the direction in which the secondary airflow flows on the back surface of the partition member. A second spacing rib,
A first deflection suppressing rib connected to the second spacing rib and having a height lower than the first spacing rib provided in parallel between the first spacing ribs at predetermined intervals;
A second deflection suppression rib connected to the first spacing rib and having a height lower than that of the second spacing rib provided in parallel between the second spacing ribs at predetermined intervals;
When the unit component members are stacked, the first deflection suppressing rib and the second deflection suppressing rib are arranged at positions where they do not face each other.

本発明に係る熱交換素子は、たわみ抑制リブを流路の上下で重なり合わない位置に配置したことにより、仕切部材が温湿度環境の変化により伸縮した場合でも、熱交換を行う2つの流路の静圧差により仕切部材が変形してたわんだ際にもっとも変位量が大きくなる中央部の位置が上下層でずれるため、伸縮した仕切部材同士が接触する可能性が低くなる。これにより仕切部材が伸縮してたわんだ場合でも、流体と仕切部材表面の接触面積が確保されるため熱交換量の維持ができ、また、温湿度環境が改善した場合の仕切部材の変化を早くすることができ、通常の状態へ早く復帰することができる。   The heat exchange element according to the present invention has two flow paths for exchanging heat even when the partition member expands and contracts due to a change in the temperature and humidity environment by arranging the deflection suppression ribs at positions where they do not overlap above and below the flow path. When the partition member is deformed and bent due to the static pressure difference, the position of the central portion where the amount of displacement is greatest is shifted in the upper and lower layers, so that the possibility that the expanded and contracted partition members contact each other is reduced. As a result, even when the partition member is expanded and contracted, the contact area between the fluid and the partition member surface is secured, so that the heat exchange amount can be maintained, and the change of the partition member when the temperature and humidity environment is improved can be accelerated. And can quickly return to the normal state.

本発明の実施の形態1に係る熱交換素子の斜視図。The perspective view of the heat exchange element which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る単位構成部材一層分の斜視図。FIG. 3 is a perspective view of one unit component member according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る単位構成部材一層分の4面図の模式図。The schematic diagram of the 4th page figure for the unit structural member one layer which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る熱交換素子における通風路を示す模式図。The schematic diagram which shows the ventilation path in the heat exchange element which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るたわみ抑制リブと仕切部材のたわみとの関係を示す図。The figure which shows the relationship between the bending suppression rib which concerns on Embodiment 1 of this invention, and the bending of a partition member. 本発明の実施の形態2に係るたわみ抑制リブと仕切部材のたわみとの関係を示す図。The figure which shows the relationship between the bending suppression rib which concerns on Embodiment 2 of this invention, and the bending of a partition member. 本発明の実施の形態3に係る熱交換素子の斜視図。The perspective view of the heat exchange element which concerns on Embodiment 3 of this invention. 図7のE−E断面図。EE sectional drawing of FIG.

実施の形態1
以下、本発明の実施の形態1について図面を参照して説明する。図1は本発明の実施の形態1に係る熱交換素子の斜視図であり、図2は本発明の実施の形態1に係る単位構成部材の一層分の斜視図である。
図1に示すように、熱交換素子1は表裏を通過する空気の熱交換を行う伝熱性と透湿性と遮蔽性を有する仕切部材3と、この仕切部材3を所定間隔に保持する間隔保持部材4と、仕切部材3のたわみを抑制するたわみ抑制リブ7とで形成された単位構成部材2を一枚ごとに90度反転させて交互に積層したものであり、仕切部材3の表側を通過する一次気流Aと仕切部材3の裏側を通過する二次気流Bとが仕切部材3を介して、熱と湿分を交換させるものである。
以下で熱交換素子1を構成する各要素について詳細を説明する。
Embodiment 1
Embodiment 1 of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view of a heat exchange element according to Embodiment 1 of the present invention, and FIG. 2 is a perspective view of one unit component member according to Embodiment 1 of the present invention.
As shown in FIG. 1, the heat exchange element 1 includes a partition member 3 having heat conductivity, moisture permeability, and shielding properties for exchanging heat passing through the front and back, and a spacing member that holds the partition member 3 at a predetermined interval. 4 and the unit constituting member 2 formed by the deflection suppressing rib 7 that suppresses the deflection of the partition member 3 are inverted by 90 degrees for each sheet and alternately stacked, and passes the front side of the partition member 3. The primary airflow A and the secondary airflow B passing through the back side of the partition member 3 exchange heat and moisture via the partition member 3.
Details of each element constituting the heat exchange element 1 will be described below.

仕切部材3は、一次気流Aと二次気流Bとの間で熱と湿度の交換がなされる際に、熱と湿分を透過させる媒体となるものである。一次気流Aと二次気流Bが流れた場合、仕切部材3の両面に高温側(または高湿側)の気流中の熱(もしくは水蒸気)の温度差(もしくは水蒸気分圧差)を利用し、高温側(高湿側)から低温側(もしくは低湿側)へ仕切部材3を介して移行することで温度(湿度)の交換がなされる。また同時に仕切部材3は一次気流Aと二次気流Bの混合を防止し、両気流間での二酸化炭素および臭い成分等の移行を抑制できることが必要である。これらを満足するためには、仕切部材3は緻密かつ高密度なもので密度が0.95[g/cm]以上で透気抵抗度(JIS:P8628)が200秒/100cc以上で、かつ透湿性を有するものがよい。具体的には、仕切部材3の素材としては、和紙や無機添料を入れた防燃紙、その他特殊な加工を施した特殊加工紙、樹脂とパルプを混抄した紙などを原料とし、透湿性や難燃性等の機能性を付与するために薬剤処理をほどこした透湿膜や、透湿性を有するオキシエチレン基を含むポリウレタン系樹脂、オキシエチレン基を含むポリエステル系樹脂、末端あるいは側鎖にスルホン酸基、アミノ基、水酸基、カルボキシル基を含む樹脂等で形成された非水溶性の親水性高分子薄膜に多孔質シート(不織布や延伸PTFE膜など)を熱や接着剤等により接着したもの、また顕熱交換器の場合には伝熱性と気体遮蔽性のみを有するポリスチレン系のABS、AS、PS、ポリオレフィン系のPP、PEなどの樹脂シート、樹脂フィルム等である。 The partition member 3 serves as a medium through which heat and moisture are transmitted when heat and humidity are exchanged between the primary airflow A and the secondary airflow B. When the primary airflow A and the secondary airflow B flow, the temperature difference (or water vapor partial pressure difference) of the heat (or water vapor) in the air flow on the high temperature side (or high humidity side) is utilized on both surfaces of the partition member 3 to increase the temperature. The temperature (humidity) is exchanged by moving through the partition member 3 from the side (high humidity side) to the low temperature side (or low humidity side). At the same time, the partition member 3 needs to prevent mixing of the primary airflow A and the secondary airflow B, and to suppress the transfer of carbon dioxide, odor components, etc. between the airflows. In order to satisfy these requirements, the partition member 3 is a dense and high-density material having a density of 0.95 [g / cm 2 ] or more and an air permeability resistance (JIS: P8628) of 200 seconds / 100 cc or more. What has moisture permeability is good. Specifically, as the material of the partition member 3, the raw material is Japanese paper, flame retardant paper containing inorganic additives, other specially processed paper, paper mixed with resin and pulp, and the like. Moisture permeable membranes that have been treated with chemicals to impart functionality such as flame retardancy, polyurethane-based resins containing oxyethylene groups with moisture permeability, polyester-based resins containing oxyethylene groups, and terminal or side chains A porous sheet (nonwoven fabric, expanded PTFE membrane, etc.) bonded to a water-insoluble hydrophilic polymer thin film formed of a resin containing a sulfonic acid group, amino group, hydroxyl group, carboxyl group, etc. by heat or an adhesive. In the case of a sensible heat exchanger, it is a resin sheet or resin film such as polystyrene-based ABS, AS, PS, polyolefin-based PP, PE, etc., which has only heat transfer and gas shielding properties.

また、仕切部材3は伝熱性、透湿性、気体遮蔽性を向上させるために、セルロース繊維(パルプ)を十分叩解して繊維をフィブリル化し、それを用いて抄紙した後スーパーカレンダー等でカレンダー加工(押しつぶし)を行う製造方法が用いられている。この製造方法で製造された仕切部材3は、厚さ20〜60μm程度、密度も0.9g/cm3以上からほぼ1g/cm3に近いものやさらに大きいものも登場しており、通常の紙(厚さ約100〜150μm、密度約0.6〜0.8g/cm3程度)と比べて、緻密かつ高密度な構造となっている。また気体遮蔽性の面でも、従来は多孔質の紙などに目止め材としてポリビニルアルコールを塗布して透気抵抗度を高めていたが、上述のような高密度化された仕切部材3であれば特段そのような加工をしなくとも、高密度で穴をセルロース繊維自体でふさがれているため、5,000秒/100cc程度が確保されている。 Further, in order to improve heat transfer, moisture permeability, and gas shielding properties, the partition member 3 is made by thoroughly beating cellulose fibers (pulp) to fibrillate the fibers, making paper using them, and then calendering with a super calender or the like ( The manufacturing method which performs crushing) is used. The partition member 3 manufactured by this manufacturing method has a thickness of about 20 to 60 μm, a density of 0.9 g / cm 3 or more to nearly 1 g / cm 3 or larger, and a normal paper is also available. Compared to (thickness of about 100 to 150 μm, density of about 0.6 to 0.8 g / cm 3 ), it has a dense and high-density structure. Also, in terms of gas shielding properties, conventionally, polyvinyl alcohol is applied as a sealing material to porous paper or the like to increase the air resistance. However, in the partition member 3 having a high density as described above, For example, even if such processing is not performed, since the holes are closed with the cellulose fibers themselves at a high density, about 5,000 seconds / 100 cc is secured.

間隔保持部材4は、単位構成部材2を積層した際に通風路の高さを一定に保持する役割を有している。具体的には、間隔保持部材4は、熱交換素子1の外枠を構成し、熱交換素子1両端からの空気漏れを防止するため、気流が流れる方向に並行し、両端に設けられた遮蔽リブ5と、遮蔽リブ5と並行して所定間隔で複数本設けられ熱交換素子1を積層した際に積層方向の仕切部材3の間隔を保持し通風路を形成する間隔リブ6とによって構成されている。   The interval holding member 4 has a role of keeping the height of the ventilation path constant when the unit constituent members 2 are stacked. Specifically, the spacing member 4 constitutes an outer frame of the heat exchange element 1, and in order to prevent air leakage from both ends of the heat exchange element 1, shields provided at both ends in parallel with the airflow direction. A plurality of ribs 5 and a plurality of spaced ribs 6 are provided in parallel with the shielding ribs 5 at predetermined intervals, and the interval ribs 6 keep the intervals of the partition members 3 in the stacking direction and form the ventilation paths when the heat exchange elements 1 are stacked. ing.

図2に示すように遮蔽リブ5は、単位構成部材2の周縁部に形成され、仕切部材3の表面の両側にそれぞれ一次気流Aが流れる方向と並行に設けられた第一遮蔽リブ5aと、仕切部材3の裏面の両側にそれぞれ二次気流Bが流れる方向と並行に設けられた第二遮蔽リブ5bとから構成される。
間隔リブ6は、第二遮蔽リブ5bと接続され、前記第一遮蔽リブ5aの間を所定間隔ごとに並行して設けられた第一間隔リブ6aと、第一遮蔽リブ5aと接続され、第二遮蔽リブ5bの間を所定間隔ごとに並行して設けられた第二間隔リブ6bとで構成される。
なお、この遮蔽リブ5と間隔リブ6の高さは仕切部材3が湿気を含んで膨張しても通風路が閉塞されない高さにする必要がある。
また、隣り合う間隔リブ6間に間隔リブ6と並行に所定間隔に複数本設けられ仕切部材3のたわみによる風路閉塞を抑制するたわみ抑制リブ7が構成されている。
具体的には、たわみ抑制リブ7は、第二遮蔽リブ5b又は第二間隔リブ6bと接続され、第一間隔リブ6aの間を所定間隔ごとに並行して設けられた第一たわみ抑制リブ7aと、第一遮蔽リブ5a又は第一間隔リブ6aと接続され、第二間隔リブ6bの間を所定間隔ごとに並行して設けられた第二たわみ抑制リブ7bとで構成される。
As shown in FIG. 2, the shielding rib 5 is formed at the peripheral edge of the unit component member 2, and the first shielding rib 5 a provided in parallel with the direction in which the primary airflow A flows on both sides of the surface of the partition member 3, It is comprised from the 2nd shielding rib 5b provided in parallel with the direction where the secondary airflow B flows on both sides of the back surface of the partition member 3, respectively.
The spacing rib 6 is connected to the second shielding rib 5b, and is connected to the first shielding rib 5a and the first shielding rib 5a provided in parallel between the first shielding ribs 5a at predetermined intervals. It is comprised with the 2nd space | interval rib 6b provided in parallel for every predetermined space between the 2 shielding ribs 5b.
Note that the height of the shielding rib 5 and the spacing rib 6 needs to be set so that the ventilation path is not blocked even when the partition member 3 expands with moisture.
Further, a plurality of deflection suppressing ribs 7 are provided between the adjacent spacing ribs 6 at predetermined intervals in parallel with the spacing ribs 6 so as to suppress air passage blockage due to the deflection of the partition member 3.
Specifically, the deflection suppression rib 7 is connected to the second shielding rib 5b or the second interval rib 6b, and the first deflection suppression rib 7a provided in parallel between the first interval ribs 6a at predetermined intervals. And the second shielding ribs 7b connected to the first shielding ribs 5a or the first spacing ribs 6a and provided in parallel between the second spacing ribs 6b at predetermined intervals.

つづいて、第一たわみ抑制リブ7a及び第二たわみ抑制リブ7bの詳細な構成について図3を用いて説明する。図3は本発明の実施の形態1に係る単位構成部材2一層分の4面図の模式図である。   Next, a detailed configuration of the first deflection suppression rib 7a and the second deflection suppression rib 7b will be described with reference to FIG. FIG. 3 is a schematic diagram of four views of two unit constituent members according to Embodiment 1 of the present invention.

図3に示すように、単位構成部材2の表面側に構成される第一たわみ抑制リブ7aは第一間隔リブ6aの間を等間隔に4個設けられており、裏面側に構成される第二たわみ抑制リブ7bは第二間隔リブ6bの間を等間隔に5個設けられている。さらに、単位構成部材2の表面側に構成される第一遮蔽リブ5a、第一間隔リブ6a、第一たわみ抑制リブ7aと裏面側に構成される第二遮蔽リブ5b、第二間隔リブ6b、第二たわみ抑制リブ7bは90度ずれた(直交した)構成となっている。
この第一たわみ抑制リブ7aと第二たわみ抑制リブ7bは、通風路を広く確保し、通風路内を通過する空気の圧力損失を抑制するために第一遮蔽リブ5a、第二遮蔽リブ5b、第一間隔リブ6a、第二間隔リブ6bよりも高さを低く、リブ幅を薄くする。また、仕切部材3の伝熱面積や透湿面積を阻害しないようリブの奥行を短くする。具体的には積層時に上の層の第二たわみ抑制リブ7bと下の層の第一たわみ抑制リブ7aが干渉(接触)しないよう、高さは第一間隔リブ6a、第二間隔リブ6bのリブ高さの1/2未満が望ましい。また、たわみ抑制リブ7のリブ幅は伝熱面積、透湿面積の阻害要因となるため、成形にて可能な限り極力細いことが望まれる。
また、表面側には4個の第一たわみ抑制リブ7aが構成され、裏面側に5個の第二たわみ抑制リブ7bが構成されているため、第一たわみ抑制リブ7aと第二たわみ抑制リブ7bはずれて配置されている。
As shown in FIG. 3, four first deflection suppression ribs 7a configured on the front surface side of the unit component member 2 are provided at equal intervals between the first spacing ribs 6a, and a first configuration configured on the back surface side. Five two deflection suppression ribs 7b are provided at equal intervals between the second spacing ribs 6b. Furthermore, the 1st shielding rib 5a comprised on the surface side of the unit structural member 2, the 1st space | interval rib 6a, the 1st deflection | deviation suppression rib 7a, the 2nd shielding rib 5b comprised on the back surface side, the 2nd space | interval rib 6b, The second deflection suppressing rib 7b is configured to be shifted (orthogonal) by 90 degrees.
The first deflection suppression rib 7a and the second deflection suppression rib 7b secure a wide ventilation path and suppress the pressure loss of the air passing through the ventilation path, so that the first shielding rib 5a, the second shielding rib 5b, The height is lower than the first interval rib 6a and the second interval rib 6b, and the rib width is reduced. Further, the depth of the rib is shortened so as not to hinder the heat transfer area and moisture permeability area of the partition member 3. Specifically, the height of the first spacing rib 6a and the second spacing rib 6b is such that the second deflection suppressing rib 7b of the upper layer and the first deflection suppressing rib 7a of the lower layer do not interfere (contact) at the time of lamination. It is desirable that the rib height is less than 1/2. Moreover, since the rib width of the deflection suppressing rib 7 becomes an impediment to the heat transfer area and the moisture permeable area, it is desirable that the bending suppression rib 7 be as thin as possible by molding.
In addition, four first deflection suppression ribs 7a are formed on the front surface side, and five second deflection suppression ribs 7b are configured on the rear surface side. Therefore, the first deflection suppression rib 7a and the second deflection suppression rib 7b are formed. 7b is arranged off.

上記のような構成を有する単位構成部材2は第一遮蔽リブ5a、第二遮蔽リブ5b、第一間隔リブ6a、第二間隔リブ6b、第一たわみ抑制リブ7a、第二たわみ抑制リブ7bの形状を彫った金型に、成形前に前記仕切部材3を入れて成形することにより得ることができる。これらのリブ以外にも例えば、積層時の位置あわせのための凹凸や穴、成形品を押し出すためのストリッパーを受けるための部分等が適宜設けられることもある。これにより多数積層した際に仕切部材3の間隔を保持する役目をする。   The unit component member 2 having the above-described configuration includes a first shielding rib 5a, a second shielding rib 5b, a first spacing rib 6a, a second spacing rib 6b, a first deflection suppressing rib 7a, and a second deflection suppressing rib 7b. It can be obtained by putting the partition member 3 in a mold having a shape carved before molding. In addition to these ribs, for example, irregularities and holes for alignment at the time of stacking, portions for receiving a stripper for extruding a molded product, and the like may be provided as appropriate. This serves to maintain the spacing between the partition members 3 when a large number of layers are stacked.

また、単位構成部材2は、概ね方形(1次気流Aと2次気流Bが直交する場合)もしくは平行四辺形状(一次気流Aと二次気流Bが斜交する場合)を成し、仕切部材3の成形時の挿入位置ズレにより製造不良となることを極力防ぐため、また空気漏れに対する信頼性を増すため、一般には第一遮蔽リブ5a、第二遮蔽リブ5bは第一間隔リブ6a、第二間隔リブ6bよりも幅が広く設計される。また第一間隔リブ6a、第二間隔リブ6bは仕切部材3上の占有面積が増加すると、仕切部材3の直接伝熱、透湿面積が失われることになるため、そのリブの幅は極力狭いことが望まれる。幅が狭いことにより、使用する樹脂量の削減にもなる。間隔保持部材4に用いる樹脂は、ポリプロピレン(PP)、アクリロニトリル−ブタジエン−スチレン(ABS)、ポリスチレン(PS)、アクリロニトリル-スチレン(AS)、ポリカーボネート(PC)、その他一般的な樹脂で希望の形状に成形可能なものであればよい。このようにリブを樹脂で成形することにより、間隔保持部材4の湿度による変形を抑え、安定な通風路を構成することができる。また、これら樹脂は難燃剤を添加して難燃化したり、無機分を添加して寸法安定性や強度の向上を図ることができる。また、目的によっては発泡剤(物理発泡剤・化学発泡剤)を添加して樹脂を発泡させ、樹脂量の削減などを図ることも可能である。   Further, the unit component member 2 has a substantially square shape (when the primary airflow A and the secondary airflow B are orthogonal) or a parallelogram shape (when the primary airflow A and the secondary airflow B cross each other), and is a partition member. In general, the first shielding rib 5a and the second shielding rib 5b are generally composed of the first spacing rib 6a and the second spacing rib 5b in order to prevent the manufacturing failure due to the insertion position deviation at the time of molding as much as possible. The width is designed to be wider than the double spacing rib 6b. Moreover, since the direct heat transfer and moisture permeable area of the partition member 3 is lost when the occupied area on the partition member 3 increases, the width of the ribs is as narrow as possible. It is desirable. The narrow width also reduces the amount of resin used. The resin used for the spacing member 4 is polypropylene (PP), acrylonitrile-butadiene-styrene (ABS), polystyrene (PS), acrylonitrile-styrene (AS), polycarbonate (PC), and other general resins in a desired shape. Any material that can be molded may be used. By forming the ribs with resin in this manner, it is possible to suppress deformation due to the humidity of the spacing member 4 and to configure a stable ventilation path. In addition, these resins can be made flame retardant by adding a flame retardant, or an inorganic component can be added to improve dimensional stability and strength. Further, depending on the purpose, it is possible to add a foaming agent (physical foaming agent / chemical foaming agent) to foam the resin to reduce the amount of resin.

上記のような構成を有する単位構成部材2を各層ごとに90度ずつずらして積層すると図1に記載の熱交換素子1が完成する。
つづいて、実施の形態1に係る単位構成部材2を積層した熱交換素子1における第一たわみ抑制リブ7aと第二たわみ抑制リブ7bの位置関係を説明する。図4は本発明の実施の形態1に係る熱交換素子1の通風路を示す模式図であり、図5は本発明の実施の形態1に係るたわみ抑制リブと仕切部材のたわみとの関係を示す図である。
図4に示すように、仕切部材3、第一間隔リブ6a、第二間隔リブ6bで囲まれた領域である通風路内に第一たわみ抑制リブ7a、第二たわみ抑制リブ7bが形成される。上の段に構成される第二たわみ抑制リブ7bと、下の段に構成される第一たわみ抑制リブ7aは、ずれて等間隔に配置されているため対向する位置関係にない。よって、図5に示すように、第一たわみ抑制リブ7aと第二たわみ抑制リブ7bの位置が対向する関係にない(ずれている)ため、温湿度環境の変化により仕切部材3が伸びた場合でも、熱交換を行う通風路の圧力差により変形した場合にもっとも変位量が大きくなる中央部の位置が上下でずれるため、上下の仕切部材3同士が接触する可能性が低くなる。これにより仕切部材3がたわんだ状況でも通風路が確保され、仕切部材3と空気が接触し続けるため熱交換量を維持することができる。また温湿度環境が改善した場合には、仕切部材3と空気が接触しているため、仕切部材3を元の状態へ早く戻すことができ、圧力損失等を通常の状態へ早く復帰させることが出来る。さらに仕切部材3同士が接触しないため、仕切部材3の表面に気体遮蔽性を持たせた層を設けている場合などには、接触により表面の層が傷つく危険性を下げることができる。よって、利用可能な仕切部材3の種類を拡大できる効果もある。
特に、第一たわみ抑制リブ7aと第二たわみ抑制リブ7bの配置間隔を半ピッチずつずらす(上の段の第二たわみ抑制リブ7bの中間点に下の段の第一たわみ抑制リブ7aが配置される)ことで、温湿環境の変化による仕切部材3が伸びた場合でも、変化量が最も大きいたわみ抑制リブ7間の中央部に対向する位置には高さの低いたわみ抑制リブ7しかないため第一たわみ抑制リブ7aと第二たわみ抑制リブ7bが接触することはない。
When the unit constituent members 2 having the above-described configuration are laminated by shifting by 90 degrees for each layer, the heat exchange element 1 shown in FIG. 1 is completed.
Next, the positional relationship between the first deflection suppression rib 7a and the second deflection suppression rib 7b in the heat exchange element 1 in which the unit structural members 2 according to Embodiment 1 are stacked will be described. FIG. 4 is a schematic diagram showing the ventilation path of the heat exchange element 1 according to Embodiment 1 of the present invention, and FIG. 5 shows the relationship between the deflection suppressing rib and the deflection of the partition member according to Embodiment 1 of the present invention. FIG.
As shown in FIG. 4, the first deflection suppression rib 7a and the second deflection suppression rib 7b are formed in the ventilation path, which is a region surrounded by the partition member 3, the first spacing rib 6a, and the second spacing rib 6b. . The second deflection suppression rib 7b configured in the upper stage and the first deflection suppression rib 7a configured in the lower stage are not positioned so as to face each other because they are arranged at equal intervals. Therefore, as shown in FIG. 5, when the partition member 3 extends due to a change in the temperature and humidity environment because the positions of the first deflection suppression rib 7a and the second deflection suppression rib 7b are not in a relationship of being opposed (displaced). However, since the position of the central part where the displacement becomes the largest when it is deformed due to the pressure difference of the ventilation path that performs heat exchange, the upper and lower partition members 3 are less likely to come into contact with each other. Thereby, even when the partition member 3 is bent, a ventilation path is ensured, and the heat exchange amount can be maintained because the partition member 3 and the air are kept in contact with each other. Further, when the temperature and humidity environment is improved, since the partition member 3 and the air are in contact with each other, the partition member 3 can be quickly returned to the original state, and pressure loss and the like can be quickly returned to the normal state. I can do it. Further, since the partition members 3 are not in contact with each other, when a layer having gas shielding properties is provided on the surface of the partition member 3, the risk of damage to the surface layer due to contact can be reduced. Therefore, there is an effect that the types of usable partition members 3 can be expanded.
In particular, the arrangement interval of the first deflection suppression rib 7a and the second deflection suppression rib 7b is shifted by a half pitch (the first deflection suppression rib 7a of the lower step is arranged at the midpoint of the second deflection suppression rib 7b of the upper step). Thus, even when the partition member 3 is elongated due to a change in the temperature and humidity environment, only the deflection suppression rib 7 having a low height is present at a position facing the central portion between the deflection suppression ribs 7 having the largest change amount. Therefore, the first deflection suppression rib 7a and the second deflection suppression rib 7b do not contact each other.

このような製造方法で熱交換素子1を得ることにより、まず流路の断面形状が矩形状となるため、同じ層高さで同じ配置間隔(山ピッチ)を持つ三角形流路(先行技術文献1に記載の熱交換素子)よりも等価直径(圧損が等価な円管に置き換えたときの円管の大きさ、流路断面積をS、流路の周長をLとした時に4S/Lで求められる)が大きくなり圧力損失が低くなる効果がある。さらに間隔保持部材4及びたわみ抑制リブ7が仕切部材3を拘束する線となり、多数並ぶことで仕切部材3上のたわむことができる部分の長さ(自由長)を短く抑えるため仕切部材3の積層方向のたわみ寸法も小さくなり、仕切部材3が伸びたことによる流路面積の減少量及び圧力損失の増大を抑制できる。また、たわみ抑制リブ7は高さが低く、奥行きが短く、幅が細いため、間隔保持部材4、たわみ抑制リブ7を入れたことで失っていた仕切部材3の伝熱面積や透湿面積の減少を抑制でき、熱交換効率や湿度交換効率も向上する効果がある。
なお、図4及び図5で示した通風路は第一間隔リブ6aと第二間隔リブ6bで囲まれたもののみであるが、第一遮蔽リブ5a、第二遮蔽リブ5b、第一間隔リブ6aと第二間隔リブ6bで囲まれたものであってもよい。また、本実施の形態1においては表面側に第一たわみ抑制リブ7aを4個、裏面側に第二たわみ抑制リブ7bを5個設けた構成をしているが、この個数に限らず、上面側に構成される第一たわみ抑制リブ7aと裏面側に構成される第二たわみ抑制リブ7bの配置間隔がずれる構成であればよい。
By obtaining the heat exchange element 1 by such a manufacturing method, first, since the cross-sectional shape of the flow path becomes a rectangular shape, triangular flow paths having the same layer height and the same arrangement interval (crest pitch) (prior art document 1) 4S / L when the diameter of the circular tube, the cross-sectional area of the flow channel is S, and the peripheral length of the flow channel is L Required) and pressure loss is reduced. Further, the spacing member 4 and the deflection suppressing rib 7 serve as a line for restraining the partition member 3, and the partition member 3 is laminated in order to keep the length (free length) of the part that can be deflected on the partition member 3 short by arranging a large number. The deflection dimension in the direction is also reduced, and the decrease in the channel area and the increase in pressure loss due to the extension of the partition member 3 can be suppressed. Further, since the deflection suppressing rib 7 has a low height, a short depth, and a narrow width, the heat transfer area and moisture permeable area of the partition member 3 that have been lost by inserting the gap holding member 4 and the deflection suppressing rib 7 are reduced. Reduction can be suppressed, and the heat exchange efficiency and the humidity exchange efficiency are also improved.
4 and 5 are only those surrounded by the first spacing rib 6a and the second spacing rib 6b, the first shielding rib 5a, the second shielding rib 5b, and the first spacing rib. It may be surrounded by 6a and the second spacing rib 6b. In the first embodiment, the first deflection suppressing ribs 7a are provided on the front surface side and five second deflection suppressing ribs 7b are provided on the rear surface side. The arrangement | positioning space | interval of the 1st bending | deflection suppression rib 7a comprised by the side and the 2nd bending | deflection suppression rib 7b comprised by the back surface should just be a structure shifted.

実施の形態2
実施の形態1では、たわみ抑制リブを等間隔(等ピッチ)で配置した熱交換素子に関するものであったが、実施の形態2では、たわみ抑制リブを不等ピッチ(不等間隔)で配置した熱交換素子に関するものである。実施の形態2については図6を用いて説明する。なお、実施の形態2では、実施の形態1との相違点を中心に説明し、同一の構成要素については同一の符号を付す。
Embodiment 2
The first embodiment relates to the heat exchange element in which the deflection suppressing ribs are arranged at equal intervals (equal pitch), but in the second embodiment, the deflection suppressing ribs are arranged at unequal pitches (unequal intervals). The present invention relates to a heat exchange element. The second embodiment will be described with reference to FIG. In the second embodiment, differences from the first embodiment will be mainly described, and the same components are denoted by the same reference numerals.

図6に示すように、実施の形態2に係る熱交換素子1は、第一たわみ抑制リブ7aの配置間隔が最も広いものの中点と、第二たわみ抑制リブ7bの配置間隔の最も狭いものの中点とが対向する位置関係となるように第一たわみ抑制リブ7a、第二たわみ抑制リブ7bを配置され、第一たわみ抑制リブ7aの配置間隔が最も狭いものの中点と、第二たわみ抑制リブ7bの配置間隔の最も広いものの中点とが対向する関係となるように第一たわみ抑制リブ7a、第二たわみ抑制リブ7bを配置されている。
このように配置することで、温湿度環境の変化により仕切部材3が伸びた場合でも、熱交換を行う流路の圧力差により変形した場合に最も変位量が大きくなる中央部の位置が最も変位量が小さい中央部の位置と対向するため上下の仕切部材3同士が接触する可能性が低くなる。これにより仕切部材3がたわんだ状況でも、仕切部材3と空気とが接触される続けるため熱交換量を維持することができる。また温湿度環境が改善した場合には、仕切部材3と空気が接触しているため、仕切部材3を元の状態へ早く戻すことができ、圧力損失等を通常の状態へ早く復帰させることが出来る。さらに仕切部材3同士が接触しないため、仕切部材3の表面に気体遮蔽性を持たせた層を設けている場合などには、接触により表面の層が傷つく危険性を下げることができる。よって、利用可能な仕切部材3の種類を拡大できる効果もある。また、不等間隔に配置することにより、間隔が短くなった部分は単位構成部材2の面方向の曲げ強度が向上する効果もある。
なお、図6で示した通風路は第一間隔リブ6aと第二間隔リブ6bで囲まれたもののみであるが、第一遮蔽リブ5a、第二遮蔽リブ5b、第一間隔リブ6と第二間隔リブ6bで囲まれたものであってもよい。また、本実施の形態2においては表面側に第一たわみ抑制リブ7aを5個、裏面側に第二たわみ抑制リブ7bを6個設けた構成をしているが、個数はこの限りではない。また、適宜実施の形態1に係る等ピッチと織り交ぜてもよい。織り交ぜることで、面方向の曲げ強度を得つつ、仕切部材3同士の接触を抑制することができる。
As shown in FIG. 6, the heat exchange element 1 according to the second embodiment has a middle point where the first deflection suppression rib 7 a is arranged at the widest interval and a configuration where the second deflection suppression rib 7 b is arranged at the narrowest interval. The first deflection suppression rib 7a and the second deflection suppression rib 7b are arranged so that the points are opposed to each other, and the middle point of the first deflection suppression rib 7a having the smallest arrangement interval and the second deflection suppression rib The first deflection suppression rib 7a and the second deflection suppression rib 7b are arranged so that the midpoint of the widest arrangement interval of 7b is opposed to each other.
By arranging in this way, even when the partition member 3 is extended due to a change in the temperature and humidity environment, the position of the central portion where the amount of displacement is the largest when the partition member 3 is deformed due to the pressure difference in the heat exchange channel is the most displaced. Since it opposes the position of the center part with a small amount, the possibility that the upper and lower partition members 3 come into contact with each other is reduced. Thereby, even when the partition member 3 is bent, the partition member 3 and the air are kept in contact with each other, so that the heat exchange amount can be maintained. Further, when the temperature and humidity environment is improved, since the partition member 3 and the air are in contact with each other, the partition member 3 can be quickly returned to the original state, and pressure loss and the like can be quickly returned to the normal state. I can do it. Further, since the partition members 3 are not in contact with each other, when a layer having gas shielding properties is provided on the surface of the partition member 3, the risk of damage to the surface layer due to contact can be reduced. Therefore, there is an effect that the types of usable partition members 3 can be expanded. Further, by arranging them at unequal intervals, there is an effect that the bending strength in the surface direction of the unit constituent member 2 is improved in the portions where the intervals are shortened.
Note that the ventilation path shown in FIG. 6 is only surrounded by the first spacing rib 6a and the second spacing rib 6b, but the first shielding rib 5a, the second shielding rib 5b, the first spacing rib 6 and the first spacing rib 6b. It may be surrounded by the two-interval ribs 6b. In the second embodiment, the first deflection suppression ribs 7a are provided on the front surface side and the six second deflection suppression ribs 7b are provided on the rear surface side. However, the number is not limited to this. Moreover, you may interweave with the equal pitch which concerns on Embodiment 1 suitably. By interweaving, the contact between the partition members 3 can be suppressed while obtaining the bending strength in the surface direction.

実施の形態3
実施の形態1及び2では、直交流型の熱交換素子に関するものについて説明してきたが、実施の形態3では対向流型の熱交換素子に関するものである。実施の形態3については図7及び図8を用いて説明する。なお、実施の形態3では、実施の形態1及び実施の形態2との相違点を中心に説明し、同一の構成要素については同一の符号を付す。図7は本発明の実施の形態3に係る熱交換素子の斜視図であり、図8は図7のE−E断面図である。
Embodiment 3
Although Embodiments 1 and 2 have been described with respect to a cross flow type heat exchange element, Embodiment 3 relates to a counter flow type heat exchange element. The third embodiment will be described with reference to FIGS. In the third embodiment, differences from the first and second embodiments will be mainly described, and the same components are denoted by the same reference numerals. 7 is a perspective view of a heat exchange element according to Embodiment 3 of the present invention, and FIG. 8 is a cross-sectional view taken along line EE of FIG.

対向流型の熱交換素子11は表裏を通過する空気の熱交換を行う伝熱性と透湿性と遮蔽性を有する仕切部材13と、この仕切部材13を所定間隔に保持する略S字形状をした間隔保持部材14と、仕切部材13のたわみを抑制する前記間隔保持部材14に並行して備えられたたわみ抑制リブ17とで形成された単位構成部材12を一枚ごとに表裏反転させて交互に積層したものであり、仕切部材13の表側を通過する一次気流Aと仕切部材13の裏側を通過する二次気流Bとが仕切部材13を介して、熱と湿分を交換させるものである。   The counter-flow type heat exchange element 11 has a substantially S-shaped partition member 13 having heat transfer, moisture permeability and shielding properties for exchanging heat passing through the front and back surfaces, and holding the partition member 13 at a predetermined interval. The unit constituent members 12 formed by the spacing members 14 and the deflection restraining ribs 17 provided in parallel with the spacing members 14 that restrain the deflection of the partition members 13 are alternately reversed by turning each unit upside down. The primary airflow A passing through the front side of the partition member 13 and the secondary airflow B passing through the back side of the partition member 13 exchange heat and moisture via the partition member 13.

間隔保持部材14は、途中で曲がりが付いた略S字形状の遮蔽リブ15と、この遮蔽リブ15と並行に所定間隔に複数本設けられ熱交換素子11を積層した際に積層方向の仕切部材13の間隔を保持し通風路を形成する間隔リブ16により構成される。   The spacing member 14 is a partition member in the stacking direction when a plurality of substantially S-shaped shielding ribs 15 bent in the middle and a plurality of heat exchange elements 11 provided in a predetermined spacing in parallel with the shielding ribs 15 are stacked. The gap rib 16 is formed with a gap of 13 and forming a ventilation path.

遮蔽リブ15は、単位構成部材12の周縁部に形成され、仕切部材13の表面の両側にそれぞれ一次気流Aが流れる方向と並行に設けられた略S字形状の第三遮蔽リブ15aと、仕切部材13の裏面の両側にそれぞれ二次気流Bが流れる方向と並行に設けられた略S字形状の第四遮蔽リブ15bとから構成される。
間隔リブ16は、第四遮蔽リブ15bと接続され、前記第三遮蔽リブ15aの間を所定間隔ごとに並行して設けられた第三間隔リブ16aと、第三遮蔽リブ15aと接続され、第四遮蔽リブ15bの間を所定間隔ごとに並行して設けられた第四間隔リブ16bとで構成される。
なお、この遮蔽リブ15と間隔リブ16の高さは仕切部材13が湿気を含んで膨張しても風路が閉塞されない高さにする必要がある。
The shielding rib 15 is formed at the peripheral edge of the unit component member 12, and has a substantially S-shaped third shielding rib 15 a provided in parallel to the direction in which the primary airflow A flows on both sides of the surface of the partition member 13. It is comprised from the substantially S-shaped 4th shielding rib 15b provided in parallel with the direction where the secondary airflow B flows on both sides of the back surface of the member 13, respectively.
The spacing ribs 16 are connected to the fourth shielding ribs 15b, and are connected to the third shielding ribs 15a and the third spacing ribs 15a provided in parallel between the third shielding ribs 15a at predetermined intervals. It is comprised with the 4th space | interval rib 16b provided in parallel for every predetermined space between the 4 shielding ribs 15b.
The height of the shielding ribs 15 and the spacing ribs 16 needs to be set so that the air passage is not blocked even if the partition member 13 expands with moisture.

遮蔽リブ15及び間隔リブ16は線対称に2種類の配置があり仕切部材13と間隔保持部材14が一体化された単位構成部材12を積層した際に、表面の第三遮蔽リブ15a及び第三間隔リブ16aが、その上に積層された次の単位構成部材12の裏面の第四遮蔽リブ15b及び第四間隔リブ16bとそれぞれに当接する位置となるように配置されていて、表裏の間隔リブ6同士、遮蔽リブ5同士はそれぞれ互いに突き当たって接触して風路を形成している。   The shielding ribs 15 and the spacing ribs 16 are arranged in two kinds of line symmetry, and when the unit component member 12 in which the partition member 13 and the spacing member 14 are integrated is laminated, the third shielding rib 15a and the third shielding rib 15a on the surface are laminated. The spacing ribs 16a are arranged so as to be in contact with the fourth shielding ribs 15b and the fourth spacing ribs 16b on the back surface of the next unit constituent member 12 stacked on the spacing ribs 16a. 6 and the shielding ribs 5 are in contact with each other and contact to form an air passage.

また、隣り合う間隔リブ16間に間隔リブ16と並行に所定間隔に複数本設けられ仕切部材13のたわみによる風路閉塞を抑制するたわみ抑制リブ17が構成されている。
具体的には、たわみ抑制リブ17は、第四遮蔽リブ15b又は第四間隔リブ16bと接続され、第三間隔リブ16aの間を所定間隔ごとに並行して設けられた第三たわみ抑制リブ17aと、第三遮蔽リブ15a又は第三間隔リブ16aと接続され、第四間隔リブ16bの間を所定間隔ごとに並行して設けられた第四たわみ抑制リブ17bとで構成される。
Further, a plurality of deflection suppressing ribs 17 are provided between the adjacent spacing ribs 16 at predetermined intervals in parallel with the spacing ribs 16 so as to suppress air passage blockage due to the deflection of the partition member 13.
Specifically, the deflection suppressing rib 17 is connected to the fourth shielding rib 15b or the fourth interval rib 16b, and the third deflection suppressing rib 17a provided in parallel between the third interval ribs 16a at predetermined intervals. And a fourth deflection suppressing rib 17b connected to the third shielding rib 15a or the third spacing rib 16a and provided in parallel between the fourth spacing ribs 16b at predetermined intervals.

たわみ抑制リブ17は積層時に下の層の第三たわみ抑制リブ17aと上の層の第四たわみ抑制リブ17bが干渉(接触)しない様に、リブ高さは遮蔽リブ15及び間隔リブ16のリブ高さの1/2未満、少なくとも流路高さの1/2未満が望ましい。また、たわみ抑制リブ17のリブ幅は伝熱面積、透湿面積の阻害要因となるため、成形にて可能な限り極力細いことが望まれる。   The height of the deflection suppressing ribs 17 is such that the third deflection suppressing ribs 17a of the lower layer and the fourth deflection suppressing ribs 17b of the upper layer do not interfere (contact) when stacked. It is desirable that the height is less than ½ and at least less than ½ of the flow path height. Further, since the rib width of the deflection suppressing rib 17 becomes an obstructive factor for the heat transfer area and the moisture permeable area, it is desired that the deflection suppressing rib 17 be as thin as possible in the molding.

本実施の形態3に係るたわみ抑制リブ17を、仕切部材13の表裏で位置をずらして配置している点に特徴がある。仕切部材の13表裏で第三たわみ抑制リブ17a、第四たわみ抑制リブ17bの位置をずらすと、単位構成部材12を積層した際にも流路内で積層方向に位置をずらすことが出来る。また、間隔保持部材14を積層して構成される通風路内に複数のたわみ抑制リブ17を設置する場合には、実施の形態1及び実施の形態2と同様にたわみ抑制リブ17の設置間隔を表裏で半ピッチすらしたり、不等ピッチとするなどの方法も用いることが出来る。
本実施の形態3に係る熱交換素子11は、実施の形態1及び実施の形態2に係る熱交換素子1と同様に温湿度環境の変化により仕切部材13が伸びた場合でも、熱交換を行う通風路の圧力差により変形した場合にもっとも変位量が大きくなる中央部の位置が上下でずれるため、上下の仕切部材13同士が接触する可能性が低くなる。これにより仕切部材13がたわんだ状況でも、仕切部材13と空気とが接触される続けるため熱交換量を維持することができる。また温湿度環境が改善した場合には、仕切部材13と空気が接触しているため、仕切部材13を元の状態へ早く戻すことができ、圧力損失等を通常の状態へ早く復帰させることが出来る。さらに仕切部材13同士が接触しないため、仕切部材13の表面に気体遮蔽性を持たせた層を設けている場合などには、接触により表面の層が傷つく危険性を下げることができる。よって、利用可能な仕切部材13の種類を拡大できる効果もある。
The deflection suppressing rib 17 according to the third embodiment is characterized in that the position is shifted on the front and back of the partition member 13. By shifting the positions of the third deflection suppressing rib 17a and the fourth deflection suppressing rib 17b on the front and back of the partition member 13, the position can be shifted in the stacking direction in the flow path even when the unit component members 12 are stacked. Moreover, when installing the some bending suppression rib 17 in the ventilation path comprised by laminating | stacking the space | interval holding member 14, the installation space | interval of the bending suppression rib 17 is set like Embodiment 1 and Embodiment 2. Methods such as even half-pitch on the front and back and non-uniform pitch can also be used.
The heat exchange element 11 according to the third embodiment performs heat exchange even when the partition member 13 extends due to a change in the temperature and humidity environment, similarly to the heat exchange element 1 according to the first and second embodiments. When the deformation is caused by the pressure difference in the ventilation path, the position of the central portion where the displacement becomes the largest is displaced up and down, so the possibility that the upper and lower partition members 13 are in contact with each other is reduced. As a result, even when the partition member 13 is bent, the amount of heat exchange can be maintained because the partition member 13 and the air are kept in contact with each other. Further, when the temperature and humidity environment is improved, since the partition member 13 and the air are in contact, the partition member 13 can be quickly returned to the original state, and the pressure loss and the like can be quickly returned to the normal state. I can do it. Further, since the partition members 13 do not come into contact with each other, when a layer having gas shielding properties is provided on the surface of the partition member 13, the risk of the surface layer being damaged by the contact can be reduced. Therefore, there is an effect that the types of usable partition members 13 can be expanded.

特に、第三たわみ抑制リブ17aと第四たわみ抑制リブ17bの配置間隔を半ピッチずつずらす(上の段の第四たわみ抑制リブ17bの中間点に下の段の第三たわみ抑制リブ17aが配置される)ことで、温湿環境の変化による仕切部材13が伸びた場合でも、変化量が最も大きいたわみ抑制リブ17間の中央部に対向する位置には高さの低いたわみ抑制リブ17しかないため第三たわみ抑制リブ17aと第四たわみ抑制リブ17bが接触することはない。   In particular, the arrangement interval of the third deflection suppression rib 17a and the fourth deflection suppression rib 17b is shifted by a half pitch (the lower deflection third deflection suppression rib 17a is arranged at an intermediate point of the upper deflection fourth rib 17b). Thus, even when the partition member 13 is extended due to a change in the temperature and humidity environment, only the deflection suppression rib 17 having a low height is located at the position facing the central portion between the deflection suppression ribs 17 having the largest change amount. Therefore, the third deflection suppression rib 17a and the fourth deflection suppression rib 17b do not contact each other.

また、不当ピッチを採用すると温湿度環境の変化により仕切部材13が伸びた場合でも、熱交換を行う流路の圧力差により変形した場合に最も変位量が大きくなる中央部の位置が最も変位量が小さい中央部の位置と対向するため上下の仕切部材13同士が接触する可能性が低くなる。これにより仕切部材13がたわんだ状況でも、仕切部材13と空気との接触面積が確保されるため熱交換量を維持できる効果がある。また温湿度環境が改善した場合には、仕切部材13と空気が接触しているため、仕切部材13を元の状態へ早く戻すことができ、圧力損失等を通常の状態へ早く復帰させることが出来る。さらに仕切部材13同士が接触しないため、仕切部材13の表面に気体遮蔽性を持たせた層を設けている場合などには、接触により表面の層が傷つく危険性を下げることができる。よって、利用可能な仕切部材13の種類を拡大できる効果もある。さらに不等間隔に配置することにより、間隔が短くなった部分は単位構成部材12の面方向の曲げ強度が向上する効果もある。   In addition, when an inappropriate pitch is adopted, even when the partition member 13 is extended due to a change in the temperature and humidity environment, the position of the central portion where the displacement becomes the largest when the partition member 13 is deformed due to the pressure difference of the heat exchange channel is the displacement. Therefore, the possibility that the upper and lower partition members 13 come into contact with each other is reduced. Accordingly, even when the partition member 13 is bent, the contact area between the partition member 13 and the air is ensured, so that the heat exchange amount can be maintained. Further, when the temperature and humidity environment is improved, since the partition member 13 and the air are in contact, the partition member 13 can be quickly returned to the original state, and the pressure loss and the like can be quickly returned to the normal state. I can do it. Further, since the partition members 13 do not come into contact with each other, when a layer having gas shielding properties is provided on the surface of the partition member 13, the risk of the surface layer being damaged by the contact can be reduced. Therefore, there is an effect that the types of usable partition members 13 can be expanded. Further, by arranging them at unequal intervals, there is an effect that the bending strength in the surface direction of the unit constituting member 12 is improved at the portion where the intervals are shortened.

また、一般的に、対向流型の熱交換素子11は直交流型の熱交換素子1よりも同じ伝熱面積を有する場合に熱や湿度の交換効率が優れるが、通風路が長くなることや通風路内に曲がりが入ることによる圧力損失が高くなるという課題がある。また対向流型熱交換素子11の対向流の部分(図8の断面E−Eの通風路の部分)では、直交流では交差して細かい間隔で仕切部材3を支えていたリブが同一方向に並ぶため、一通風路の幅が同じ場合には直交流型熱交換素子1(実施の形態1、実施の形態2に係る熱交換素子)よりもより長い間隔で仕切部材13を支えることになる。そのため仕切部材13が温湿度条件によって伸びてたわんだ場合、支点間距離が長いためより大きくたわんでしまい、通風路を大きく塞いでさらに圧力損失を増大させてしまう。   In general, the counter-flow type heat exchange element 11 is superior in heat and humidity exchange efficiency when it has the same heat transfer area as the cross-flow type heat exchange element 1, but the air flow path becomes longer. There is a problem that the pressure loss due to bending in the ventilation path is increased. In the counterflow portion of the counterflow type heat exchange element 11 (the portion of the ventilation path of the cross section EE in FIG. 8), the ribs that cross the crossflow and support the partition member 3 at a fine interval are in the same direction. Therefore, when the width of one ventilation path is the same, the partition member 13 is supported at a longer interval than the cross-flow heat exchange element 1 (the heat exchange element according to the first embodiment and the second embodiment). . Therefore, when the partition member 13 is extended and bent due to the temperature and humidity conditions, the distance between the fulcrums is long, and the deflection is increased, and the air passage is largely blocked to further increase the pressure loss.

そこで本実施の形態3に係る熱交換素子11を得ることにより、実施の形態1及び実施の形態2と同様に断面形状が矩形状となることで圧力損失を抑制することができる点、圧力損失を極力抑えながらたわみ抑制リブ17を多数入れることで仕切部材13を拘束する線となり、仕切部材13上のたわむことができる部分の長さ(自由長)を短く抑えるため仕切部材13の積層方向のたわみ寸法も小さくなり、仕切部材13が伸びたことによる通風路の面積の減少量及び圧力損失の増大を抑制できるという効果を得ることができる。このため、従来の直交流型熱交換素子よりも交換効率が高く、従来の対向流形熱交換素子よりも圧力損失を抑えた熱交換素子を得ることができる。   Therefore, by obtaining the heat exchange element 11 according to the third embodiment, the pressure loss can be suppressed by making the cross-sectional shape rectangular as in the first and second embodiments, the pressure loss. By inserting a large number of deflection suppression ribs 17 while suppressing as much as possible, the partition member 13 is constrained, and in order to keep the length (free length) of the portion on the partition member 13 that can be deflected short, The deflection dimension is also reduced, and it is possible to obtain an effect that the reduction in the area of the ventilation path and the increase in pressure loss due to the extension of the partition member 13 can be suppressed. Therefore, it is possible to obtain a heat exchange element having higher exchange efficiency than the conventional cross-flow type heat exchange element and suppressing pressure loss as compared with the conventional counterflow type heat exchange element.

1 熱交換素子
2 単位構成部材
3 仕切部材
4 間隔保持部材
5 遮蔽リブ
5a 第一遮蔽リブ
5b 第二遮蔽リブ
6 間隔リブ
6a 第一間隔リブ
6b 第二間隔リブ
7 たわみ抑制リブ
7a 第一たわみ抑制リブ
7b 第二たわみ抑制リブ
11 熱交換素子
12 単位構成部材
13 仕切部材
14 間隔保持部材
15 遮蔽リブ
15a 第三遮蔽リブ
15b 第四遮蔽リブ
16 間隔リブ
16a 第三間隔リブ
16b 第四間隔リブ
17 たわみ抑制リブ
17a 第三たわみ抑制リブ
17b 第四たわみ抑制リブ
DESCRIPTION OF SYMBOLS 1 Heat exchange element 2 Unit structural member 3 Partition member 4 Space | interval holding member 5 Shielding rib 5a First shielding rib 5b Second shielding rib 6 Interval rib 6a First interval rib 6b Second interval rib 7 Deflection suppression rib 7a First deflection suppression Rib 7b Second deflection suppressing rib 11 Heat exchange element 12 Unit component member 13 Partition member 14 Spacing holding member 15 Shielding rib 15a Third shielding rib 15b Fourth shielding rib 16 Spacing rib 16a Third spacing rib 16b Fourth spacing rib 17 Deflection Suppression rib 17a Third deflection suppression rib 17b Fourth deflection suppression rib

Claims (11)

伝熱性と透湿性を有する仕切部材と、
前記仕切部材を所定間隔に保持する間隔保持部材と、
で形成された単位構成部材を積層し、前記仕切部材の表面側を通過する一次気流と前記仕切部材の裏面側を通過する二次気流とが前記仕切部材を介して熱と湿度を交換する熱交換素子において、
前記間隔保持部材は、
前記仕切部材の表面に前記一次気流が流れる方向と並行に所定間隔ごとに設けられた第一間隔リブと、前記仕切部材の裏面に前記二次気流が流れる方向と並行に所定間隔ごとに設けられた第二間隔リブと、を備え、
前記第二間隔リブと接続され、前記第一間隔リブの間を所定間隔ごとに並行して設けられた前記第一間隔リブよりも高さが低い第一たわみ抑制リブと、
前記第一間隔リブと接続され、前記第二間隔リブの間を所定間隔ごとに並行して設けられた前記第二間隔リブよりも高さが低い第二たわみ抑制リブと、を備え、
前記単位構成部材を積層したときに前記第一たわみ抑制リブと前記第二たわみ抑制リブが対向しない位置に配置することを特徴とする熱交換素子。
A partition member having heat conductivity and moisture permeability;
An interval holding member for holding the partition member at a predetermined interval;
Heat that exchanges heat and humidity through the partition member between the primary airflow that passes through the front surface side of the partition member and the secondary airflow that passes through the back surface side of the partition member. In the exchange element,
The spacing member is
First spacing ribs provided at predetermined intervals in parallel with the direction in which the primary airflow flows on the surface of the partition member, and provided at predetermined intervals in parallel with the direction in which the secondary airflow flows on the back surface of the partition member. A second spacing rib,
A first deflection suppressing rib connected to the second spacing rib and having a height lower than the first spacing rib provided in parallel between the first spacing ribs at predetermined intervals;
A second deflection suppression rib connected to the first spacing rib and having a height lower than that of the second spacing rib provided in parallel between the second spacing ribs at predetermined intervals;
A heat exchange element, wherein the unit deflection members are arranged at positions where the first deflection suppression rib and the second deflection suppression rib do not face each other.
伝熱性と透湿性を有する仕切部材と、
前記仕切部材を所定間隔に保持する間隔保持部材と、
で形成された単位構成部材を積層し、前記仕切部材の表面側を通過する一次気流と前記仕切部材の裏面側を前記一次気流と交差して通過する二次気流とが前記仕切部材を介して熱と湿度を交換する熱交換素子において、
前記間隔保持部材は、
前記仕切部材の表面に前記一次気流が流れる方向と並行に所定間隔ごとに設けられた第一間隔リブと、前記仕切部材の裏面に前記二次気流が流れる方向と並行に所定間隔ごとに設けられた第二間隔リブと、を備え、
前記第二間隔リブと接続され、前記第一間隔リブの間を所定間隔ごとに並行して設けられた前記第一間隔リブよりも高さが低い第一たわみ抑制リブと、
前記第一間隔リブと接続され、前記第二間隔リブの間を所定間隔ごとに並行して設けられた前記第二間隔リブよりも高さが低い第二たわみ抑制リブと、を備え、
前記単位構成部材を積層したときに前記第一たわみ抑制リブと前記第二たわみ抑制リブが対向しない位置に配置することを特徴とする熱交換素子。
A partition member having heat conductivity and moisture permeability;
An interval holding member for holding the partition member at a predetermined interval;
The primary structural airflow passing through the surface side of the partition member and the secondary airflow passing through the back surface side of the partition member intersecting with the primary airflow are passed through the partition member. In heat exchange elements that exchange heat and humidity,
The spacing member is
First spacing ribs provided at predetermined intervals in parallel with the direction in which the primary airflow flows on the surface of the partition member, and provided at predetermined intervals in parallel with the direction in which the secondary airflow flows on the back surface of the partition member. A second spacing rib,
A first deflection suppressing rib connected to the second spacing rib and having a height lower than the first spacing rib provided in parallel between the first spacing ribs at predetermined intervals;
A second deflection suppression rib connected to the first spacing rib and having a height lower than that of the second spacing rib provided in parallel between the second spacing ribs at predetermined intervals;
A heat exchange element, wherein the unit deflection members are arranged at positions where the first deflection suppression rib and the second deflection suppression rib do not face each other.
伝熱性と透湿性を有する仕切部材と、
前記仕切部材を所定間隔に保持する間隔保持部材と、
で形成された単位構成部材を積層し、前記仕切部材の表面側を通過する一次気流と前記仕切部材の裏面側を前記一次気流と並行して通過する二次気流とが前記仕切部材を介して熱と湿度を交換する熱交換素子において、
前記間隔保持部材は、
前記仕切部材の表面に前記一次気流が流れる方向と並行に所定間隔ごとに設けられた第一間隔リブと、前記仕切部材の裏面に前記二次気流が流れる方向と並行に所定間隔ごとに設けられた第二間隔リブと、を備え、
前記第二間隔リブと接続され、前記第一間隔リブの間を所定間隔ごとに並行して設けられた前記第一間隔リブよりも高さが低い第一たわみ抑制リブと、
前記第一間隔リブと接続され、前記第二間隔リブの間を所定間隔ごとに並行して設けられた前記第二間隔リブよりも高さが低い第二たわみ抑制リブと、を備え、
前記単位構成部材を積層したときに前記第一たわみ抑制リブと前記第二たわみ抑制リブが対向しない位置に配置することを特徴とする熱交換素子。
A partition member having heat conductivity and moisture permeability;
An interval holding member for holding the partition member at a predetermined interval;
And the secondary airflow passing through the rear surface side of the partition member in parallel with the primary airflow is passed through the partition member. In heat exchange elements that exchange heat and humidity,
The spacing member is
First spacing ribs provided at predetermined intervals in parallel with the direction in which the primary airflow flows on the surface of the partition member, and provided at predetermined intervals in parallel with the direction in which the secondary airflow flows on the back surface of the partition member. A second spacing rib,
A first deflection suppressing rib connected to the second spacing rib and having a height lower than the first spacing rib provided in parallel between the first spacing ribs at predetermined intervals;
A second deflection suppression rib connected to the first spacing rib and having a height lower than that of the second spacing rib provided in parallel between the second spacing ribs at predetermined intervals;
A heat exchange element, wherein the unit deflection members are arranged at positions where the first deflection suppression rib and the second deflection suppression rib do not face each other.
伝熱性と透湿性を有する仕切部材と、
前記仕切部材を所定間隔に保持する間隔保持部材と、
で形成された単位構成部材を積層し、前記仕切部材の表面側を通過する一次気流と前記仕切部材の裏面側を通過する二次気流とが前記仕切部材を介して熱と湿度を交換する熱交換素子において、
前記間隔保持部材は、
前記仕切部材の表面の両側にそれぞれ前記一次気流が流れる方向と並行に設けられた第一遮蔽リブと、前記仕切部材の裏面の両側にそれぞれ前記二次気流が流れる方向と並行に設けられた第二遮蔽リブと、
前記第二遮蔽リブと接続され、前記第一遮蔽リブの間を所定間隔ごとに並行して設けられた第一間隔リブと、前記第一遮蔽リブと接続され、前記第一遮蔽リブの間を所定間隔ごとに並行して設けられた第二間隔リブと、を備え、
前記第二遮蔽リブまたは前記第二間隔リブと接続され、前記第一間隔リブの間を所定間隔ごとに並行して設けられた前記第一間隔リブよりも高さが低い第一たわみ抑制リブと、
前記第一遮蔽リブまたは前記第一間隔リブと接続され、前記第二間隔リブの間を所定間隔ごとに並行して設けられた前記第二間隔リブよりも高さが低い第二たわみ抑制リブと、を備え、
前記単位構成部材を積層したときに前記第一たわみ抑制リブと前記第二たわみ抑制リブが対向しない位置に配置することを特徴とする熱交換素子。
A partition member having heat conductivity and moisture permeability;
An interval holding member for holding the partition member at a predetermined interval;
Heat that exchanges heat and humidity through the partition member between the primary airflow that passes through the front surface side of the partition member and the secondary airflow that passes through the back surface side of the partition member. In the exchange element,
The spacing member is
First shielding ribs provided in parallel to the direction in which the primary airflow flows on both sides of the surface of the partition member, and first directions provided in parallel to the direction in which the secondary airflow flows on both sides of the back surface of the partition member, respectively. Two shielding ribs,
Connected to the second shielding rib, a first spacing rib provided in parallel between the first shielding ribs at predetermined intervals, connected to the first shielding rib, and between the first shielding ribs A second interval rib provided in parallel at every predetermined interval,
A first deflection suppressing rib connected to the second shielding rib or the second spacing rib and having a height lower than the first spacing rib provided in parallel between the first spacing ribs at predetermined intervals; ,
A second deflection suppressing rib connected to the first shielding rib or the first spacing rib and having a height lower than the second spacing rib provided in parallel between the second spacing ribs at predetermined intervals; With
A heat exchange element, wherein the unit deflection members are arranged at positions where the first deflection suppression rib and the second deflection suppression rib do not face each other.
伝熱性と透湿性を有する仕切部材と、
前記仕切部材を所定間隔に保持する間隔保持部材と、
で形成された単位構成部材を積層し、前記仕切部材の表面側を通過する一次気流と前記仕切部材の裏面側を前記一次気流と交差して通過する二次気流とが前記仕切部材を介して熱と湿度を交換する熱交換素子において、
前記間隔保持部材は、
前記仕切部材の表面の両側にそれぞれ前記一次気流が流れる方向と並行に設けられた第一遮蔽リブと、前記仕切部材の裏面の両側にそれぞれ前記二次気流が流れる方向と並行に設けられた第二遮蔽リブと、
前記第二遮蔽リブと接続され、前記第一遮蔽リブの間を所定間隔ごとに並行して設けられた第一間隔リブと、前記第一遮蔽リブと接続され、前記第一遮蔽リブの間を所定間隔ごとに並行して設けられた第二間隔リブと、を備え、
前記第二遮蔽リブまたは前記第二間隔リブと接続され、前記第一間隔リブの間を所定間隔ごとに並行して設けられた前記第一間隔リブよりも高さが低い第一たわみ抑制リブと、
前記第一遮蔽リブまたは前記第一間隔リブと接続され、前記第二間隔リブの間を所定間隔ごとに並行して設けられた前記第二間隔リブよりも高さが低い第二たわみ抑制リブと、を備え、
前記単位構成部材を積層したときに前記第一たわみ抑制リブと前記第二たわみ抑制リブが対向しない位置に配置することを特徴とする熱交換素子。
A partition member having heat conductivity and moisture permeability;
An interval holding member for holding the partition member at a predetermined interval;
The primary structural airflow passing through the surface side of the partition member and the secondary airflow passing through the back surface side of the partition member intersecting with the primary airflow are passed through the partition member. In heat exchange elements that exchange heat and humidity,
The spacing member is
First shielding ribs provided in parallel to the direction in which the primary airflow flows on both sides of the surface of the partition member, and first directions provided in parallel to the direction in which the secondary airflow flows on both sides of the back surface of the partition member, respectively. Two shielding ribs,
Connected to the second shielding rib, a first spacing rib provided in parallel between the first shielding ribs at predetermined intervals, connected to the first shielding rib, and between the first shielding ribs A second interval rib provided in parallel at every predetermined interval,
A first deflection suppressing rib connected to the second shielding rib or the second spacing rib and having a height lower than the first spacing rib provided in parallel between the first spacing ribs at predetermined intervals; ,
A second deflection suppressing rib connected to the first shielding rib or the first spacing rib and having a height lower than the second spacing rib provided in parallel between the second spacing ribs at predetermined intervals; With
A heat exchange element, wherein the unit deflection members are arranged at positions where the first deflection suppression rib and the second deflection suppression rib do not face each other.
伝熱性と透湿性を有する仕切部材と、
前記仕切部材を所定間隔に保持する間隔保持部材と、
で形成された単位構成部材を積層し、前記仕切部材の表面側を通過する一次気流と前記仕切部材の裏面側を前記一次気流と並行して通過する二次気流とが前記仕切部材を介して熱と湿度を交換する熱交換素子において、
前記間隔保持部材は、
前記仕切部材の表面の両側にそれぞれ前記一次気流が流れる方向と並行に設けられた第一遮蔽リブと、前記仕切部材の裏面の両側にそれぞれ前記二次気流が流れる方向と並行に設けられた第二遮蔽リブと、
前記第二遮蔽リブと接続され、前記第一遮蔽リブの間を所定間隔ごとに並行して設けられた第一間隔リブと、前記第一遮蔽リブと接続され、前記第一遮蔽リブの間を所定間隔ごとに並行して設けられた第二間隔リブと、を備え、
前記第二遮蔽リブまたは前記第二間隔リブと接続され、前記第一間隔リブの間を所定間隔ごとに並行して設けられた前記第一間隔リブよりも高さが低い第一たわみ抑制リブと、
前記第一遮蔽リブまたは前記第一間隔リブと接続され、前記第二間隔リブの間を所定間隔ごとに並行して設けられた前記第二間隔リブよりも高さが低い第二たわみ抑制リブと、を備え、
前記単位構成部材を積層したときに前記第一たわみ抑制リブと前記第二たわみ抑制リブが対向しない位置に配置することを特徴とする熱交換素子。
A partition member having heat conductivity and moisture permeability;
An interval holding member for holding the partition member at a predetermined interval;
And the secondary airflow passing through the rear surface side of the partition member in parallel with the primary airflow is passed through the partition member. In heat exchange elements that exchange heat and humidity,
The spacing member is
First shielding ribs provided in parallel to the direction in which the primary airflow flows on both sides of the surface of the partition member, and first directions provided in parallel to the direction in which the secondary airflow flows on both sides of the back surface of the partition member, respectively. Two shielding ribs,
Connected to the second shielding rib, a first spacing rib provided in parallel between the first shielding ribs at predetermined intervals, connected to the first shielding rib, and between the first shielding ribs A second interval rib provided in parallel at every predetermined interval,
A first deflection suppressing rib connected to the second shielding rib or the second spacing rib and having a height lower than the first spacing rib provided in parallel between the first spacing ribs at predetermined intervals; ,
A second deflection suppressing rib connected to the first shielding rib or the first spacing rib and having a height lower than the second spacing rib provided in parallel between the second spacing ribs at predetermined intervals; With
A heat exchange element, wherein the unit deflection members are arranged at positions where the first deflection suppression rib and the second deflection suppression rib do not face each other.
前記間隔保持部材は略S字形状をしたことを特徴とする請求項3または6記載の熱交換素子。 The heat exchange element according to claim 3 or 6, wherein the spacing member has a substantially S shape. 前記第一たわみ抑制リブと前記第二たわみ抑制リブの配置間隔を同一にし、前記第一たわみ抑制リブが隣り合う前記第二たわみ抑制リブの中点に配置することを特徴とする請求項1乃至7のいずれかに記載の熱交換素子。 The first deflection suppressing rib and the second deflection suppressing rib are arranged at the same interval, and the first deflection suppressing rib is arranged at a midpoint between the adjacent second bending suppressing ribs. The heat exchange element according to any one of 7. 前記第一たわみ抑制リブと前記第二たわみ抑制リブの配置間隔を不等間隔とすることを特徴とする請求項1乃至7のいずれかに記載の熱交換素子。 The heat exchange element according to any one of claims 1 to 7, wherein an arrangement interval between the first deflection suppression rib and the second deflection suppression rib is an unequal interval. 前記第一たわみ抑制リブと前記第二たわみ抑制リブの配置を不等間隔にし、前記第一たわみ抑制リブが隣り合う前記第二たわみ抑制リブの中点に配置することを特徴とする請求項1乃至7のいずれかに記載の熱交換素子。 2. The first deflection suppression rib and the second deflection suppression rib are arranged at unequal intervals, and the first deflection suppression rib is disposed at a midpoint between the adjacent second deflection suppression ribs. The heat exchange element in any one of thru | or 7. 前記第一たわみ抑制リブと前記第二たわみ抑制リブは、通風路高さの1/4以下であることを特徴とする請求項1乃至10のいずれかに記載の熱交換素子。 The heat exchange element according to any one of claims 1 to 10, wherein the first deflection suppression rib and the second deflection suppression rib are ¼ or less of the air passage height.
JP2012157166A 2012-07-13 2012-07-13 Heat exchange element Active JP5790600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012157166A JP5790600B2 (en) 2012-07-13 2012-07-13 Heat exchange element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012157166A JP5790600B2 (en) 2012-07-13 2012-07-13 Heat exchange element

Publications (2)

Publication Number Publication Date
JP2014020603A true JP2014020603A (en) 2014-02-03
JP5790600B2 JP5790600B2 (en) 2015-10-07

Family

ID=50195712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012157166A Active JP5790600B2 (en) 2012-07-13 2012-07-13 Heat exchange element

Country Status (1)

Country Link
JP (1) JP5790600B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021131725A1 (en) * 2019-12-23 2021-07-01 パナソニックIpマネジメント株式会社 Heat exchange element and heat exchange ventilation device using same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0875385A (en) * 1994-08-31 1996-03-19 Matsushita Seiko Co Ltd Heat exchanging element
JPH08110076A (en) * 1994-10-11 1996-04-30 Matsushita Seiko Co Ltd Heat exchanging element
JP2003287387A (en) * 2002-03-28 2003-10-10 Matsushita Ecology Systems Co Ltd Heat exchange membrane and heat exchange element
WO2008126372A1 (en) * 2007-03-30 2008-10-23 Panasonic Corporation Heat exchange element
JP2011137573A (en) * 2009-12-28 2011-07-14 Daihen Tech Kk Heat exchange element and heat exchange unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0875385A (en) * 1994-08-31 1996-03-19 Matsushita Seiko Co Ltd Heat exchanging element
JPH08110076A (en) * 1994-10-11 1996-04-30 Matsushita Seiko Co Ltd Heat exchanging element
JP2003287387A (en) * 2002-03-28 2003-10-10 Matsushita Ecology Systems Co Ltd Heat exchange membrane and heat exchange element
WO2008126372A1 (en) * 2007-03-30 2008-10-23 Panasonic Corporation Heat exchange element
JP2011137573A (en) * 2009-12-28 2011-07-14 Daihen Tech Kk Heat exchange element and heat exchange unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021131725A1 (en) * 2019-12-23 2021-07-01 パナソニックIpマネジメント株式会社 Heat exchange element and heat exchange ventilation device using same

Also Published As

Publication number Publication date
JP5790600B2 (en) 2015-10-07

Similar Documents

Publication Publication Date Title
WO2013157040A1 (en) Heat-exchange element and air conditioner
US10352629B2 (en) Heat exchange element
JP5817652B2 (en) Total heat exchange element
JP5110641B2 (en) Total heat exchanger
JP5905015B2 (en) Double air flow exchanger with improved heat and moisture transfer
JP5610777B2 (en) Total heat exchange element
JP2015169401A (en) heat exchange element and heat exchanger
JP5790600B2 (en) Heat exchange element
EP4023997B1 (en) Heat exchange plate and heat exchanger containing same
JPWO2013157056A1 (en) Heat exchange element
JP2005282904A (en) Heat exchanger
JP5781221B2 (en) Heat exchange element and air conditioner
JP3461697B2 (en) Heat exchange element
JP2013257107A (en) Heat exchanging element, and method of manufacturing the same
JP7126617B2 (en) Heat exchange element and heat exchange ventilator
WO2024053082A1 (en) Heat exchange element and heat exchange ventilation device
JP2006071150A (en) Heat exchanging element
KR20180115853A (en) Plastic Heat Exchanger for Heat Recovery
JP7372472B2 (en) Heat exchange elements and heat exchange ventilation equipment
CN213687255U (en) Filter screen assembly, air treatment device and air conditioner
KR102695137B1 (en) Cross flow type total heat exchanger having exchanging plate
KR20080084569A (en) Total heat exchanger and manufacturing method for the same
JP2016151406A (en) Total heat-transfer element and heat exchanging type ventilation equipment
JP2012189264A (en) Total heat exchange element
KR20080026941A (en) Total heat exchanger element using different material

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150720

R151 Written notification of patent or utility model registration

Ref document number: 5790600

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250