JP2014020302A - Vortex flow generating device - Google Patents

Vortex flow generating device Download PDF

Info

Publication number
JP2014020302A
JP2014020302A JP2012160540A JP2012160540A JP2014020302A JP 2014020302 A JP2014020302 A JP 2014020302A JP 2012160540 A JP2012160540 A JP 2012160540A JP 2012160540 A JP2012160540 A JP 2012160540A JP 2014020302 A JP2014020302 A JP 2014020302A
Authority
JP
Japan
Prior art keywords
flow
outlet
nozzle
fully closed
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012160540A
Other languages
Japanese (ja)
Other versions
JP5861586B2 (en
Inventor
Hiroaki Hattori
宏昭 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012160540A priority Critical patent/JP5861586B2/en
Publication of JP2014020302A publication Critical patent/JP2014020302A/en
Application granted granted Critical
Publication of JP5861586B2 publication Critical patent/JP5861586B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vortex flow generating device which suppresses disturbance of blowing flow from a nozzle 4 and, thereby, stabilizes a tumble flow in the vortex generating device 1 including the nozzle 4 for blowing-out intake air to an intake passage 3 and a rotary valve body 2 for opening and closing a blowing-out port 5 of the nozzle 4.SOLUTION: In a vortex flow generating device 1, there is a totally-closing time exposure portion 18 which is not covered from the downstream side with a valve part 10 even in the totally-closing state, on the port edge 9 of a blowing-out port 5 and, further, the totally-closing time exposure portion 18 retreats to the upstream side and assumes a part of a retreat portion 16 which is not located along a revolution orbital surface of the valve part 10. Thereby, the occurrence of one side leakage flow which occurs on the conventional vortex flow generating device can be prevented. Accordingly, such a state that one side leakage flow disturbs a blowing-out flow can be dissolved, therefore, the disturbance of the blowing-out flow from a nozzle 4 is suppressed and a tumble flow can be stabilized.

Description

本発明は、内燃機関の燃焼室にタンブル流やスワール流等の渦流を発生させる渦流発生装置に関するものである。   The present invention relates to a vortex generator that generates a vortex such as a tumble flow or a swirl flow in a combustion chamber of an internal combustion engine.

従来から、渦流発生装置では、渦流を発生させない状態において弁体が吸気路の中央等に存在しないようにすることで圧力損失の低減を可能とするロータリー式の弁体を採用するものが公知である(例えば、特許文献1参照)。   Conventionally, vortex generators that employ a rotary valve body that enables pressure loss to be reduced by preventing the valve body from being present in the center of the intake passage in a state where no vortex is generated have been known. Yes (for example, see Patent Document 1).

すなわち、従来の渦流発生装置100は、図7および図8に示すように、吸気路101に吸入空気を吹き出すノズル102と、ノズル102の吹出し口103を開閉するロータリー式の弁体104とを備える。ノズル102は、吸気路101を構成する筒状空洞105に同軸的に収容され、筒状空洞105に吸入空気を吹き出す。また、弁体104は、吹出し口103の口縁106を下流側から覆うように公転駆動される弁部107、および公転中心をなすシャフト108と弁部107とを連結するサイドプレート109を有する。   That is, as shown in FIGS. 7 and 8, the conventional eddy current generating apparatus 100 includes a nozzle 102 that blows intake air into the intake passage 101 and a rotary valve body 104 that opens and closes the outlet 103 of the nozzle 102. . The nozzle 102 is coaxially accommodated in a cylindrical cavity 105 constituting the intake passage 101 and blows intake air into the cylindrical cavity 105. Further, the valve body 104 includes a valve portion 107 that is driven to revolve so as to cover the mouth edge 106 of the outlet 103 from the downstream side, and a side plate 109 that connects the shaft 108 that forms the center of revolution and the valve portion 107.

そして、弁体104は、弁部107を目標とする状態まで公転させて吸入空気の吹出し流を吹出し口103の一部周辺に絞って偏らせることで、燃焼室(図示せず。)に渦流を発生させる。
なお、サイドプレート109は、弁部107と一体となってコの字状を呈するように弁部107の両端に1枚ずつ設けられ、ノズル102の外側で回転駆動される。
Then, the valve body 104 revolves to a state where the valve portion 107 is set to a target state, and the intake air blowing flow is narrowed and biased to a part of the outlet 103 so as to vortex into the combustion chamber (not shown). Is generated.
Note that one side plate 109 is provided at each end of the valve unit 107 so as to form a U shape integrally with the valve unit 107, and is driven to rotate outside the nozzle 102.

ここで、口縁106は、弁部107の公転軌道面に沿って略面一となるように設けられている。そして、渦流発生装置100は、弁部107を口縁106に沿い下流側で公転させることで、吹出し口103を絞らない全開状態と吹出し口103を最も絞る全閉状態との間で、吹出し流の絞り方を調節して渦流を制御する(以下、吹出し口103や口縁106の方向に関し、全閉状態において吹出し流が偏る側を一方側と呼び、吹出し流が偏る側と反対側であって弁部107の出入り口110が存在する側を他方側と呼ぶ。)。
また、ノズル102や弁部107が収容される筒状空洞105は、燃焼室直近の上流側に配置するものであり、例えば、インテークマニホールド111の分岐管の内周である。
Here, the mouth edge 106 is provided so as to be substantially flush along the revolution track surface of the valve portion 107. Then, the vortex generator 100 revolves the valve unit 107 along the mouth edge 106 on the downstream side, so that the blowout flow is between the fully open state where the blowout port 103 is not throttled and the fully closed state where the blowout port 103 is most restricted. The vortex flow is controlled by adjusting the squeezing method (hereinafter, with respect to the direction of the outlet 103 and the mouth edge 106, the side where the outlet flow is biased in the fully closed state is referred to as one side and the side opposite to the side where the outlet flow is biased. The side of the valve portion 107 where the doorway 110 exists is called the other side.)
Further, the cylindrical cavity 105 in which the nozzle 102 and the valve portion 107 are accommodated is disposed on the upstream side in the immediate vicinity of the combustion chamber, and is, for example, the inner periphery of the branch pipe of the intake manifold 111.

ところで、近年のインテークマニホールド111は、軽量化やコストダウンのため樹脂を素材として設けられている。このため、本来、全閉状態等における吹出し流以外の吸入空気の漏れを阻止する点で無用に隙間を設定しないことが理想的であるものの、樹脂の膨張収縮を考慮して各部に隙間を設定している。   By the way, the recent intake manifold 111 is made of resin as a material for weight reduction and cost reduction. For this reason, it is ideal that the gap is not set unnecessarily in terms of preventing leakage of intake air other than the blow-off flow in the fully closed state etc., but the gap is set in each part in consideration of the expansion and contraction of the resin. doing.

しかし、各部に隙間を設定することにより、全閉状態等において吹出し流以外の空気の漏れによって以下のような吹出し流の撹乱が発生する。
例えば、全閉状態では、弁部107と口縁106との隙間113から漏れた空気が、さらにサイドプレート109とノズル102の外壁との間の隙間114を通り、ノズル102の外壁と筒状空洞105の内壁との隙間115に進入する。そして、隙間115に進入した空気は、口縁106の下流端と筒状空洞105側の段との隙間116や、弁部107と筒状空洞105側の軌道沿面117との隙間118から、吹出し流に吸引されて弁部107の下流側に流れ込む。
However, by setting a gap in each part, the following disturbance of the blowing flow occurs due to leakage of air other than the blowing flow in the fully closed state or the like.
For example, in the fully closed state, air leaking from the gap 113 between the valve portion 107 and the mouth edge 106 further passes through the gap 114 between the side plate 109 and the outer wall of the nozzle 102, and the outer wall of the nozzle 102 and the cylindrical cavity 105 enters the gap 115 between the inner wall 105 and the inner wall 105. The air that has entered the gap 115 blows out from the gap 116 between the downstream end of the lip 106 and the step on the cylindrical cavity 105 side, or from the gap 118 between the valve portion 107 and the raceway surface 117 on the cylindrical cavity 105 side. It is sucked by the flow and flows downstream of the valve portion 107.

より詳細に説明すると、隙間115の内、一方側に形成された領域に進入した空気は、隙間116から弁部107の下流側に流れ込み、他方側に形成された領域に進入した空気は、隙間118から弁部107の下流側に流れ込む(以下、隙間115の内、一方側に形成された領域における空気の流れを一方側漏れ流(図8(a)参照。)と呼び、他方側に形成された領域における空気の流れを他方側漏れ流(図示せず。)と呼ぶ。)。   More specifically, the air that has entered the region formed on one side of the gap 115 flows into the downstream side of the valve portion 107 from the gap 116, and the air that has entered the region formed on the other side is The air flow in the region formed on one side of the gap 115 is referred to as a one-side leakage flow (see FIG. 8A) and formed on the other side. The air flow in the region thus formed is called the other side leakage flow (not shown)).

この結果、吹出し流は、隙間116から流れ込んだ一方側漏れ流に撹乱され、渦流の形成に支障が発生する。さらに、各部の隙間113〜116等は、樹脂の膨張収縮に応じて変動するため、吹出し流の撹乱状況も変動し、渦流の状態も変動して安定しない(なお、他方側漏れ流は吹出し流から離れて弁部107の下流側に流れ込むことができるので、他方側漏れ流が吹出し流に与える影響はさほど大きくない。)。   As a result, the blown-out flow is disturbed by the one-side leakage flow flowing in from the gap 116, and the formation of the vortex flow is hindered. Furthermore, since the gaps 113 to 116 and the like of each part change according to the expansion and contraction of the resin, the disturbance state of the blowout flow also changes, and the vortex state also changes and is not stable (note that the other side leakage flow is the blowout flow. Since it can flow away to the downstream side of the valve portion 107, the influence of the other side leakage flow on the blowout flow is not so large.)

特許第488541号公報Japanese Patent No. 488541

本発明は、上記の問題点を解決するためになされたものであり、その目的は、吸気路に吸入空気を吹き出すノズルと、ノズルの吹出し口を開閉するロータリー式の弁体とを備える渦流発生装置において、ノズルからの吹出し流の撹乱を抑制して渦流を安定させることにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to generate eddy currents including a nozzle that blows intake air into an intake passage and a rotary valve body that opens and closes the nozzle outlet. In the apparatus, the vortex flow is stabilized by suppressing the disturbance of the blowout flow from the nozzle.

第1の発明の渦流発生装置は、以下のようなノズルおよび弁体を備える。
まず、ノズルは、内燃機関の燃焼室に通じる吸気路を構成する筒状空洞に同軸的に収容され、筒状空洞に吸入空気を吹き出す。次に、弁体は、ノズルの吹出し口の口縁を下流側から覆うように公転駆動される弁部を有し、弁部を目標とする状態まで公転させて吸入空気の吹出し流を吹出し口の一部周辺に絞って偏らせることで、燃焼室に渦流を発生させる。
The vortex generator of the first invention includes the following nozzle and valve body.
First, the nozzle is coaxially accommodated in a cylindrical cavity that forms an intake passage that communicates with the combustion chamber of the internal combustion engine, and blows intake air into the cylindrical cavity. Next, the valve body has a valve portion that is driven to revolve so as to cover the mouth edge of the nozzle outlet from the downstream side, and the valve portion is revolved to a target state so that the outlet flow of the intake air is discharged. A vortex is generated in the combustion chamber by squeezing and biasing to a part of the periphery.

また、渦流発生装置は、吹出し口の口縁を弁部の公転軌道面に沿って略面一となるように設け、弁部を吹出し口の口縁に沿い下流側で公転させることで、吹出し口を絞らない全開状態と吹出し口を最も絞る全閉状態との間で、吹出し流の絞り方を調節して渦流を制御する。
そして、吹出し口の口縁には、全閉状態のときでも弁部により下流側から覆われない全閉時露出部位が存在し、さらに、全閉時露出部位には、上流側に後退して公転軌道面に沿わない後退部位が存在する。
In addition, the vortex generator is provided so that the lip of the outlet is substantially flush along the revolving raceway surface of the valve part, and the valve part is revolved downstream along the lip of the outlet part. The vortex flow is controlled by adjusting the method of throttling the blowout flow between the fully open state where the mouth is not throttled and the fully closed state where the blowout port is most restricted.
In addition, there is a fully-closed exposed part that is not covered from the downstream side by the valve portion even in the fully closed state on the rim of the outlet, and further, the fully closed exposed part is retracted upstream. There is a retreat site that does not follow the revolving raceway surface.

これにより、一方側漏れ流(図8(a)参照。)を弁部の上流側でノズル内の吸入空気の流れに合流させたり、一方側漏れ流の発生を阻止したりすることができる。このため、一方側漏れ流が吹出し流を撹乱する状態を解消することができるので、ノズルからの吹出し流の撹乱を抑制して渦流を安定させることができる。   Accordingly, the one-side leakage flow (see FIG. 8A) can be merged with the flow of the intake air in the nozzle on the upstream side of the valve portion, or the one-side leakage flow can be prevented from occurring. For this reason, since the state where the one-side leakage flow disturbs the blowing flow can be eliminated, the disturbance of the blowing flow from the nozzle can be suppressed and the vortex flow can be stabilized.

また、第1の発明に従属する第2の発明によれば、後退部位は、吹出し口の口縁の内、弁部の公転軌道面に沿って略面一となっている非後退部位の上流端よりも上流側まで後退している。
これにより、全閉状態と全開状態との間の任意の閉状態においても、一方側漏れ流を弁部の上流側でノズル内の吸入空気の流れに合流させたり、一方側漏れ流の発生を阻止したりすることができる。このため、全閉状態以外の閉状態においても、一方側漏れ流が吹出し流を撹乱する状態を解消することができる。
Further, according to the second invention subordinate to the first invention, the retreating part is upstream of the non-retreating part which is substantially flush with the revolving raceway surface of the valve portion in the rim of the outlet. Retreats upstream from the end.
As a result, even in any closed state between the fully closed state and the fully open state, the one-side leakage flow is merged with the flow of the intake air in the nozzle on the upstream side of the valve section, or the one-side leakage flow is not generated. Can be blocked. For this reason, even in a closed state other than the fully closed state, it is possible to eliminate the state in which the one-side leakage flow disturbs the blowing flow.

渦流発生装置を含むインテークマニホールドの部分斜視図である(実施例)。It is a fragmentary perspective view of the intake manifold containing a vortex | eddy_current generator (Example). (a)は図1のI−Iで切断した斜視図により渦流発生装置の全閉状態を示す部分斜視図であり、(b)は図1のI−Iで切断した斜視図により渦流発生装置の全開状態を示す部分斜視図である(実施例)。(A) is a partial perspective view showing a fully closed state of the eddy current generating device by a perspective view cut along II of FIG. 1, and (b) is a vortex generator by a perspective view cut by II of FIG. It is a fragmentary perspective view which shows the fully open state of (Example). 渦流発生装置の全閉状態を示す断面図である(実施例)。It is sectional drawing which shows the fully closed state of an eddy current generator (Example). 渦流発生装置の全閉状態を示す正面図である(実施例)。It is a front view which shows the fully closed state of an eddy current generator (Example). 渦流発生装置の全開状態を示す断面図である(実施例)。It is sectional drawing which shows the fully open state of an eddy current generator (Example). 渦流発生装置の全開状態を示す正面図である(実施例)。It is a front view which shows the fully open state of an eddy current generator (Example). (a)は渦流発生装置の全閉状態を示す断面図であり、(b)は渦流発生装置の全閉状態を示す正面図である(従来例)。(A) is sectional drawing which shows the fully closed state of an eddy current generator, (b) is a front view which shows the fully closed state of an eddy current generator (conventional example). (a)は図7(a)の部分拡大図であり、(b)は図7(b)の部分拡大図である(従来例)。(A) is the elements on larger scale of Drawing 7 (a), (b) is the elements on larger scale of Drawing 7 (b) (conventional example).

実施形態の渦流発生装置を実施例に基づき説明する。   The eddy current generator according to the embodiment will be described based on examples.

〔実施例の構成〕
実施例の渦流発生装置1の構成を、図1〜図6を用いて説明する。
渦流発生装置1は、例えば、内燃機関の燃焼室(図示せず。)にタンブル流を発生させるものであり、渦流発生装置1の弁体2は、タンブル流を発生させない状態において吸気路3の中央等に存在しないようにすることで、圧力損失の低減を可能とするロータリー式である。
[Configuration of Example]
The structure of the eddy current generator 1 of an Example is demonstrated using FIGS.
The vortex generator 1 generates, for example, a tumble flow in a combustion chamber (not shown) of an internal combustion engine, and the valve body 2 of the vortex generator 1 has a suction passage 3 in a state where no tumble flow is generated. It is a rotary type that makes it possible to reduce pressure loss by not existing in the center.

すなわち、渦流発生装置1は、吸気路3に吸入空気を吹き出すノズル4と、ノズル4の吹出し口5を開閉するロータリー式の弁体2とを備え、例えば、燃焼室直近の上流側に配置されるインテークマニホールド6の分岐管内に設けられる。なお、インテークマニホールド6は、軽量化やコストダウンのため樹脂を素材として設けられている。また、弁体2は金属を素材として設けられ、ノズル4は樹脂または金属を素材として設けられている。   That is, the vortex generator 1 includes a nozzle 4 that blows intake air into the intake passage 3 and a rotary valve body 2 that opens and closes a blow-out port 5 of the nozzle 4. For example, the vortex generator 1 is disposed upstream of the combustion chamber. Provided in the branch pipe of the intake manifold 6. The intake manifold 6 is made of resin as a material for weight reduction and cost reduction. The valve body 2 is provided with a metal as a material, and the nozzle 4 is provided with a resin or a metal as a material.

まず、ノズル4は、インテークマニホールド6の分岐管の内周(以下、筒状空洞8と呼ぶ。)に同軸的に収容され、筒状空洞8に吸入空気を吹き出す。
また、弁体2は、吹出し口5の口縁9を下流側から覆うように公転駆動される弁部10、および公転中心をなすシャフト11と弁部10とを連結するサイドプレート12を有する。そして、弁体2は、弁部10を目標とする状態まで公転させて吸入空気の吹出し流を吹出し口5の一部周辺に絞って偏らせることで、燃焼室にタンブル流を発生させる。
First, the nozzle 4 is coaxially accommodated in the inner periphery of the branch pipe of the intake manifold 6 (hereinafter referred to as a cylindrical cavity 8), and blows intake air into the cylindrical cavity 8.
Further, the valve body 2 includes a valve portion 10 that is driven to revolve so as to cover the edge 9 of the outlet 5 from the downstream side, and a side plate 12 that connects the shaft 11 that forms the center of revolution and the valve portion 10. Then, the valve body 2 revolves the valve portion 10 to a target state and restricts the blown flow of the intake air around a part of the blowout port 5 to generate a tumble flow in the combustion chamber.

なお、サイドプレート12は、弁部10と一体となってコの字状を呈するように弁部10の両端に1枚ずつ設けられ、ノズル4の外側で回転駆動される。また、弁部10を公転駆動したり、サイドプレート12を回転駆動したりするためのトルクは、インテークマニホールド6において分岐管が並ぶ方向の一端に配置されるアクチュエータ13により得られる。   One side plate 12 is provided at each end of the valve unit 10 so as to form a U shape integrally with the valve unit 10, and is driven to rotate outside the nozzle 4. In addition, torque for driving the valve portion 10 to revolve or rotationally drive the side plate 12 is obtained by an actuator 13 disposed at one end of the intake manifold 6 in the direction in which the branch pipes are arranged.

ここで、吹出し口5の口縁9は、弁部10の公転軌道面に沿って略面一となるように設けられている。
そして、渦流発生装置1は、弁部10を口縁9に沿い下流側で公転させることで、吹出し口5を絞らない全開状態と吹出し口5を最も絞る全閉状態との間で、吹出し流の絞り方を調節してタンブル流を制御する(以下、吹出し口5や口縁9の方向に関し、全閉状態において吹出し流が偏る側を一方側と呼び、吹出し流が偏る側と反対側であって弁部10の出入り口14が存在する側を他方側と呼ぶ。)。
Here, the rim 9 of the outlet 5 is provided so as to be substantially flush along the revolution track surface of the valve portion 10.
And the eddy current generator 1 revolves the valve part 10 along the lip 9 on the downstream side, so that the blowout flow is between the fully open state where the blowout port 5 is not throttled and the fully closed state where the blowout port 5 is most restricted. The tumble flow is controlled by adjusting the method of throttling (hereinafter, with respect to the direction of the outlet 5 and the edge 9, the side where the outlet flow is biased in the fully closed state is referred to as one side, and the side opposite to the side where the outlet flow is biased) The side where the inlet / outlet port 14 of the valve portion 10 exists is called the other side.)

〔実施例の特徴〕
実施例の渦流発生装置1の特徴を説明する。
まず、口縁9は、上流側に後退して公転軌道面に沿わない後退部位16と、弁部10の公転軌道面に沿って略面一となっている非後退部位17とからなり、さらに、後退部位16は、全閉状態のときでも弁部10により下流側から覆われない全閉時露出部位18と、吸入空気の流れに平行な吸気流平行部19とからなる。そして、後退部位16の内、全閉時露出部位18は、非後退部位17の上流端17aよりも大きく上流側まで後退している。
[Features of Examples]
The features of the eddy current generator 1 of the embodiment will be described.
First, the mouth edge 9 is composed of a retreating portion 16 that is retreated upstream and does not follow the revolving raceway surface, and a non-retreating portion 17 that is substantially flush with the revolving raceway surface of the valve portion 10. The retracted portion 16 includes a fully closed exposure portion 18 that is not covered from the downstream side by the valve portion 10 even in the fully closed state, and an intake flow parallel portion 19 that is parallel to the flow of intake air. Of the retracted parts 16, the fully-closed exposed part 18 recedes farther upstream than the upstream end 17 a of the non-retracted part 17.

このため、ノズル4内は、後退部位16の上流端よりも下流側の大部分が一方側に開放され、ノズル4の吸入空気の流れに垂直な断面はコの字状を呈する。この結果、例えば全閉状態において弁部10の上流側では、吸気路3は、一方側を筒状空洞8の一方側内壁21により区画され、他方側および側方をノズル4により区画されている。   Therefore, most of the inside of the nozzle 4 on the downstream side of the upstream end of the receding portion 16 is opened to one side, and the cross section perpendicular to the intake air flow of the nozzle 4 has a U-shape. As a result, for example, in the fully closed state, on the upstream side of the valve portion 10, the intake passage 3 is partitioned on one side by the one side inner wall 21 of the cylindrical cavity 8 and on the other side and side by the nozzle 4. .

また、ノズル4の他方側の部分と筒状空洞8の他方側内壁22との間には弁部10を収容するための収容空間23が形成され、全開状態において、弁部10は完全に収容空間23に収容されて吸気路3に存在しなくなる。なお、収容空間23を形成する他方側内壁22の内、下流寄りの部分は、弁部10の公転軌道面に沿う軌道沿面24をなす。そして、軌道沿面24の下流縁と上流縁17aとにより、弁部10の出入り口14が形成されている。さらに、ノズル4の側方部分と筒状空洞8の側方内壁25との間にはサイドプレート12が回転するための回転隙間26が設けられている。   An accommodation space 23 for accommodating the valve portion 10 is formed between the other side portion of the nozzle 4 and the other inner wall 22 of the cylindrical cavity 8, and the valve portion 10 is completely accommodated in the fully opened state. It is accommodated in the space 23 and does not exist in the intake passage 3. In addition, the downstream portion of the other inner wall 22 that forms the accommodation space 23 forms a track surface 24 along the revolution track surface of the valve portion 10. And the entrance / exit 14 of the valve part 10 is formed of the downstream edge of the track surface 24 and the upstream edge 17a. Further, a rotation gap 26 for rotating the side plate 12 is provided between the side portion of the nozzle 4 and the side inner wall 25 of the cylindrical cavity 8.

ここで、渦流発生装置1では、樹脂の膨張収縮に伴う変形を考慮して種々の隙間が設けられている。すなわち、弁部10と口縁9との間には隙間28が設けられている。また、回転隙間26では、サイドプレート12とノズル4の側方部分との間、および、サイドプレート12と側方内壁25との間にそれぞれ隙間29、30が設けられ、収容空間23では、弁部10と軌道沿面24との間に隙間31が設けられている。   Here, in the eddy current generating device 1, various gaps are provided in consideration of deformation accompanying expansion and contraction of the resin. That is, a gap 28 is provided between the valve portion 10 and the mouth edge 9. Further, in the rotation gap 26, gaps 29 and 30 are provided between the side plate 12 and the side portion of the nozzle 4 and between the side plate 12 and the side inner wall 25, respectively. A gap 31 is provided between the portion 10 and the track surface 24.

以上により、全閉状態では、吹出し流が吹出し口5の一方側に絞られて偏り、燃焼室にタンブル流が発生する。また、隙間28から漏れた空気は、例えば、隙間29を通って、再度、ノズル4内に戻ったり、収容空間23に進入したりする。また、収容空間23に進入した空気は、隙間31から弁部10の下流側に流れ込み、吹出し流に合流する。   As described above, in the fully closed state, the blowout flow is narrowed and biased to one side of the blowout port 5, and a tumble flow is generated in the combustion chamber. Further, the air leaking from the gap 28 passes through the gap 29 and returns again into the nozzle 4 or enters the accommodation space 23. Further, the air that has entered the housing space 23 flows from the gap 31 to the downstream side of the valve unit 10 and joins the blowout flow.

〔実施例の効果〕
実施例の渦流発生装置1によれば、ノズル4の吹出し口5の口縁9には、全閉状態のときでも弁部10により下流側から覆われない全閉時露出部位18が存在し、さらに、全閉時露出部位18は、上流側に後退して弁部10の公転軌道面に沿わない後退部位16の一部をなす。
これにより、従来の渦流発生装置100で発生していた一方側漏れ流(図8(a)参照。)の発生を阻止することができる。このため、一方側漏れ流が吹出し流を撹乱する状態を解消することができるので、ノズル4からの吹出し流の撹乱を抑制してタンブル流を安定させることができる。
[Effects of Examples]
According to the eddy current generating apparatus 1 of the embodiment, the opening 9 of the outlet 4 of the nozzle 4 has the fully closed exposure portion 18 that is not covered from the downstream side by the valve portion 10 even in the fully closed state. Further, the fully-closed exposed portion 18 forms a part of the retracted portion 16 that is retracted upstream and does not follow the revolving raceway surface of the valve portion 10.
Thereby, generation | occurrence | production of the one side leak flow (refer Fig.8 (a)) which generate | occur | produced with the conventional eddy current generator 100 can be prevented. For this reason, since the state where the one-side leakage flow disturbs the blowing flow can be eliminated, the disturbance of the blowing flow from the nozzle 4 can be suppressed and the tumble flow can be stabilized.

また、後退部位16は、非後退部位17の上流端17aよりも大きく上流側まで後退している。
これにより、全閉状態と全開状態との間の任意の閉状態においても、一方側漏れ流の発生を阻止することができる。このため、全閉状態以外の閉状態においても、一方側漏れ流が吹出し流を撹乱する状態を解消することができる。
In addition, the retreating portion 16 is retreated to the upstream side more greatly than the upstream end 17a of the non-retreating portion 17.
Thereby, even in any closed state between the fully closed state and the fully open state, it is possible to prevent the occurrence of one-side leakage flow. For this reason, even in a closed state other than the fully closed state, it is possible to eliminate the state in which the one-side leakage flow disturbs the blowing flow.

〔変形例〕
渦流発生装置1の態様は、実施例に限定されず種々の変形例を考えることができる。
例えば、実施例の渦流発生装置1によれば、後退部位16は、全閉時露出部位18と吸気流平行部19とからなるものであったが、このような態様に限定されず、例えば、全閉時露出部位18に非後退部位17を含ませ、全閉時露出部位18を後退部位16と非後退部位17とにより構成してもよい。
また、実施例の渦流発生装置1は燃焼室にタンブル流を発生させるものであったが、燃焼室にスワール流を発生させてもよい。
[Modification]
The aspect of the eddy current generator 1 is not limited to the embodiment, and various modifications can be considered.
For example, according to the eddy current generating device 1 of the embodiment, the retreating part 16 is composed of the fully closed exposure part 18 and the intake air flow parallel part 19, but is not limited to such an aspect. The fully closed exposure part 18 may include the non-retreating part 17, and the fully closed exposure part 18 may be constituted by the retreating part 16 and the non-retreating part 17.
Moreover, although the eddy current generator 1 of the embodiment generates a tumble flow in the combustion chamber, a swirl flow may be generated in the combustion chamber.

1 渦流発生装置 2 弁体 3 吸気路 4 ノズル 5 吹出し口 8 筒状空洞 9 口縁 10 弁部 16 後退部位 DESCRIPTION OF SYMBOLS 1 Eddy current generator 2 Valve body 3 Intake path 4 Nozzle 5 Outlet 8 Cylindrical cavity 9 Edge 10 Valve part 16 Retraction part

Claims (2)

内燃機関の燃焼室に通じる吸気路(3)を構成する筒状空洞(8)に同軸的に収容され、この筒状空洞(8)に吸入空気を吹き出すノズル(4)と、
このノズル(4)の吹出し口(5)の口縁(9)を下流側から覆うように公転駆動される弁部(10)を有し、この弁部(10)を目標とする状態まで公転させて吸入空気の吹出し流を前記吹出し口(5)の一部周辺に絞って偏らせることで、前記燃焼室に渦流を発生させる弁体(2)とを備え、
前記吹出し口(5)の口縁(9)を前記弁部(10)の公転軌道面に沿って略面一となるように設け、前記弁部(10)を前記吹出し口(5)の口縁(9)に沿い下流側で公転させることで、前記吹出し口(5)を絞らない全開状態と前記吹出し口(5)を最も絞る全閉状態との間で、吹出し流の絞り方を調節して渦流を制御する渦流発生装置において、
前記吹出し口(5)の口縁(9)には、前記全閉状態のときでも前記弁部(10)により下流側から覆われない全閉時露出部位(18)が存在し、
さらに、全閉時露出部位(18)には、上流側に後退して前記公転軌道面に沿わない後退部位(16)が存在することを特徴とする渦流発生装置。
A nozzle (4) coaxially accommodated in a cylindrical cavity (8) constituting an intake passage (3) leading to the combustion chamber of the internal combustion engine, and for blowing intake air into the cylindrical cavity (8);
The nozzle (4) has a valve portion (10) driven to revolve so as to cover the mouth edge (9) of the outlet (5) from the downstream side, and the valve portion (10) is revolved to a target state. And a valve body (2) for generating a vortex flow in the combustion chamber by narrowing and biasing the blowout flow of the intake air around a part of the blowout port (5),
The rim (9) of the outlet (5) is provided so as to be substantially flush with the revolution track surface of the valve portion (10), and the valve portion (10) is the mouth of the outlet (5). By revolving along the edge (9) on the downstream side, the way of restricting the outlet flow is adjusted between the fully open state where the outlet (5) is not restricted and the fully closed state where the outlet (5) is most restricted. In the eddy current generator that controls the eddy current,
The mouth edge (9) of the outlet (5) has a fully closed exposure part (18) that is not covered from the downstream side by the valve part (10) even in the fully closed state,
Furthermore, the swirl generator is characterized in that the fully closed exposure part (18) has a receding part (16) that recedes upstream and does not follow the revolving raceway surface.
請求項1に記載の渦流発生装置において、
前記後退部位(16)は、前記吹出し口(5)の口縁(9)の内、前記弁部(10)の公転軌道面に沿って略面一となっている非後退部位(17)の上流端よりも上流側まで後退していることを特徴とする渦流発生装置。
In the eddy current generator according to claim 1,
The receding part (16) is a non-retreating part (17) that is substantially flush with the revolving raceway surface of the valve part (10) in the rim (9) of the outlet (5). An eddy current generator characterized by retreating to the upstream side from the upstream end.
JP2012160540A 2012-07-19 2012-07-19 Eddy current generator Expired - Fee Related JP5861586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012160540A JP5861586B2 (en) 2012-07-19 2012-07-19 Eddy current generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012160540A JP5861586B2 (en) 2012-07-19 2012-07-19 Eddy current generator

Publications (2)

Publication Number Publication Date
JP2014020302A true JP2014020302A (en) 2014-02-03
JP5861586B2 JP5861586B2 (en) 2016-02-16

Family

ID=50195491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012160540A Expired - Fee Related JP5861586B2 (en) 2012-07-19 2012-07-19 Eddy current generator

Country Status (1)

Country Link
JP (1) JP5861586B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107842404A (en) * 2016-08-17 2018-03-27 福特环球技术公司 For producing the air intake duct of high tumble flow and vortex
JP2020012437A (en) * 2018-07-19 2020-01-23 アイシン精機株式会社 Intake device of internal combustion engine and intake flow control valve

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008274785A (en) * 2007-04-26 2008-11-13 Denso Corp Valve unit
JP2010242618A (en) * 2009-04-06 2010-10-28 Denso Corp Air intake device for internal combustion engine
JP2011102575A (en) * 2009-11-12 2011-05-26 Denso Corp Intake device of internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008274785A (en) * 2007-04-26 2008-11-13 Denso Corp Valve unit
JP2010242618A (en) * 2009-04-06 2010-10-28 Denso Corp Air intake device for internal combustion engine
JP2011102575A (en) * 2009-11-12 2011-05-26 Denso Corp Intake device of internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107842404A (en) * 2016-08-17 2018-03-27 福特环球技术公司 For producing the air intake duct of high tumble flow and vortex
CN107842404B (en) * 2016-08-17 2021-07-23 福特环球技术公司 Air inlet for generating high tumble and swirl
JP2020012437A (en) * 2018-07-19 2020-01-23 アイシン精機株式会社 Intake device of internal combustion engine and intake flow control valve

Also Published As

Publication number Publication date
JP5861586B2 (en) 2016-02-16

Similar Documents

Publication Publication Date Title
JP2007309140A (en) Turbocharger
JP4893110B2 (en) Axial fluid device
JP5667651B2 (en) Mist separator
CN202991534U (en) Supersonic compressor
CN101932501A (en) Propulsion system
JP5861586B2 (en) Eddy current generator
JP2011525952A (en) Air injection into the turbomachine compressor flow path
JP6220876B2 (en) Constant volume combustion (CVC) chamber for an aero turbine engine including an intake / exhaust valve with a bulb plug
RU2565253C2 (en) Supersonic compressor rotor and supersonic compressor plant
JP5273090B2 (en) Intake noise reduction device for internal combustion engine
JP2007192129A (en) Turbocharger and turbine wheel
GB2531214A (en) Intake arrangement for combustion chamber
JP6227572B2 (en) Turbine
US20210246908A1 (en) Compressor housing, compressor including the compressor housing, and turbocharger including the compressor
CN109630210A (en) A kind of bite seal structure and the aero-engine with it
JP2012215129A (en) Turbocharger
JP4708300B2 (en) Turbocharger
JP2001020814A (en) Throttle body
CN103375195B (en) The method and apparatus reducing for turbine clearance flow
KR101900214B1 (en) Turbine and turbocharger
JP2007192180A (en) Turbine for turbocharger
JP2016053353A (en) Exhaust gas turbine of turbocharger
CN110145374A (en) Engine is prewhirled system
JP2018150843A (en) Turbine housing
JP6852504B2 (en) Turbine housing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151207

R151 Written notification of patent or utility model registration

Ref document number: 5861586

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees