JP2014020047A - Structure - Google Patents

Structure Download PDF

Info

Publication number
JP2014020047A
JP2014020047A JP2012157680A JP2012157680A JP2014020047A JP 2014020047 A JP2014020047 A JP 2014020047A JP 2012157680 A JP2012157680 A JP 2012157680A JP 2012157680 A JP2012157680 A JP 2012157680A JP 2014020047 A JP2014020047 A JP 2014020047A
Authority
JP
Japan
Prior art keywords
internal space
container
pressure
weak
interior material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012157680A
Other languages
Japanese (ja)
Other versions
JP5941363B2 (en
Inventor
Hibiki Ryuzaki
響 龍崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2012157680A priority Critical patent/JP5941363B2/en
Publication of JP2014020047A publication Critical patent/JP2014020047A/en
Application granted granted Critical
Publication of JP5941363B2 publication Critical patent/JP5941363B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a structure capable of restricting a pressure peak generated after breakage of a structurally weak portion by a simple configuration.SOLUTION: A structure 10 includes a structurally weak portion 3. When a combustible gas is mixed into an internal space S of the structure 10 and the combustible gas is burnt, the structurally weak portion 3 is opened, the internal space S and an outer space communicate with each other via the structurally weak portion 3, and a secondary pressure peak is generated in the internal space S after opening of the structurally weak portion 3. An interior material 2 to form the internal space S of the structure 10 is higher in acoustic absorption coefficient than a steel material and the density thereof is higher than 10 kg/m.

Description

本発明は構造体に関し、例えば可燃性ガスを燃焼させた際に構造弱部の開口以降に圧力ピークが発生する構造体に関する。   The present invention relates to a structure, for example, a structure in which a pressure peak occurs after opening of a weak structure when combustible gas is burned.

従来から、可燃性ガスによる爆発事故の被害を軽減するため、一般家屋や工場建屋などの構造体では様々な安全対策が施されている。例えば、一般家屋や工場建屋などでは、窓や扉、圧力開放弁などの脆弱部(構造弱部)が設けられており、可燃性ガスに引火して構造体内部の圧力が上昇すると上記脆弱部が破損等することで、構造体内部の急激な圧力上昇を抑制することができる。   Conventionally, various safety measures have been taken for structures such as ordinary houses and factory buildings in order to reduce the damage caused by an explosion caused by flammable gas. For example, in general houses and factory buildings, etc., weak parts (structural weak parts) such as windows, doors, and pressure release valves are provided. If the pressure inside the structure rises by igniting flammable gas, the above weak parts As a result of breakage or the like, a rapid pressure increase inside the structure can be suppressed.

ところで、上記するガス爆発による被害の大きさは、圧力上昇速度や最高到達圧力、圧力ピークの数と密接に関連するため、爆発事故の原因と被害状況を正しく理解するためには爆発時の圧力挙動を正確に把握する必要がある。そのため、当該分野においては、建築物などの構造体を模擬した脆弱部を有する様々な形状や大きさの定容容器を使用し、当該容器内で可燃性ガスを燃焼させて、構造体におけるガス爆発の現象を理解する実験や研究が行われている。   By the way, the magnitude of the damage caused by the above-mentioned gas explosion is closely related to the pressure increase rate, the maximum pressure reached, and the number of pressure peaks. It is necessary to grasp the behavior accurately. For this reason, in this field, the use of constant volume containers of various shapes and sizes having fragile parts simulating structures such as buildings, and burning combustible gas in the containers, the gas in the structure Experiments and research to understand the phenomenon of explosions are being conducted.

図5は、内容積が2.55m3であって脆弱部の開口部係数が9.2の鋼材で構成された立方体容器を用い、当該容器内に天然ガスと空気とを混合した混合気を一様に充満させ、立方体容器の中心部に配置した着火源で混合気を燃焼させたときの立方体容器内の圧力履歴を示したものである(非特許文献1)。 FIG. 5 shows a cubic container made of a steel material having an inner volume of 2.55 m 3 and an opening coefficient of fragile part of 9.2, and uniformly mixing a mixture of natural gas and air in the container. It shows the pressure history in the cubic container when it is filled and the air-fuel mixture is combusted with an ignition source arranged at the center of the cubic container (Non-patent Document 1).

図示するように、脆弱部を有する定容容器内で発生したガス燃焼による圧力挙動は、脆弱部が破壊される前の密閉状態における圧力上昇と、脆弱部が破壊された後の半開放状態における二次的な圧力上昇とに分類することができる。   As shown in the figure, the pressure behavior due to gas combustion generated in the constant volume container having the fragile portion is the pressure increase in the sealed state before the fragile portion is broken and the half open state after the fragile portion is broken. It can be classified as a secondary pressure rise.

密閉状態における圧力上昇では、容器内部に火炎伝播の妨げとなる障害物がほとんど存在しない場合、火炎伝播の加速効果を考慮することによって、比較的高い精度でその圧力上昇を見積もることができる。また、脆弱部が破壊された直後に発生する圧力ピークについても、その最高到達圧力(図中、P1)の有効な推算式が知られており、比較的高い精度でその圧力ピークを見積もることができる。   In the pressure rise in the sealed state, when there are almost no obstacles that hinder flame propagation in the container, the pressure rise can be estimated with relatively high accuracy by considering the acceleration effect of flame propagation. Also, for the pressure peak that occurs immediately after the fragile part is destroyed, an effective estimation formula for the maximum pressure reached (P1 in the figure) is known, and it is possible to estimate the pressure peak with relatively high accuracy. it can.

一方、脆弱部の破壊以降の圧力上昇では、容器外への気体の流出と燃焼による圧力上昇(体積膨張)とが競合して後者が勝る場合に発生する圧力上昇や、容器内の気体のHelmholtz振動による圧力の周期的な増減、混合気の燃焼過程において発生する圧力波が容器の音響モードと結合することによる圧力上昇(音響効果)など、様々な要因による圧力ピークが発生することが知られている。これらの圧力ピークは、僅かな条件の変化によって大きく変化し、発生の有無までも左右されると考えられているため、これらの圧力ピークを正確に予測することは極めて困難である。   On the other hand, in the pressure increase after the destruction of the fragile part, the pressure increase that occurs when the outflow of the gas to the outside of the container competes with the pressure increase (volume expansion) due to combustion, and the latter wins, or the gas Helmholtz It is known that pressure peaks occur due to various factors such as periodic pressure increase / decrease due to vibration and pressure increase (acoustic effect) due to the pressure wave generated in the combustion process of the gas mixture combined with the acoustic mode of the container. ing. These pressure peaks change greatly depending on slight changes in conditions, and it is considered that the occurrence or non-occurrence of the pressure peaks is also affected. Therefore, it is extremely difficult to accurately predict these pressure peaks.

脆弱部の破壊以降の圧力上昇は、上記するようにその予測が極めて困難であるものの、たとえば容器形状が立方体などの三次元的に対称性を有する場合や着火源が容器内の中心部に配置される場合等の限定的な状況下でのみ発生し、実際のガス爆発事故で発生する可能性が極めて低いことが指摘されており、これまでは、主として、密閉状態における圧力上昇や脆弱部が破壊された直後に発生する圧力ピークを抑制するための安全対策が研究されてきた。   Although it is extremely difficult to predict the pressure increase after the destruction of the fragile part as described above, for example, when the container shape has a three-dimensional symmetry such as a cube, or the ignition source is in the center of the container. It has been pointed out that it occurs only under limited circumstances such as when it is placed, and is extremely unlikely to occur in an actual gas explosion accident. Safety measures have been studied to suppress the pressure peak that occurs immediately after the destruction.

しかしながら、脆弱部の破壊以降に発生する圧力ピーク(P2)は、図5で示すように、脆弱部が破壊された直後に発生する圧力ピーク(P1)の数倍になることもあり、ガス爆発時のピーク圧力が被害の大きさを規定することを考えると、上記のような限定的な条件下であっても一旦ガス爆発が発生してしまうと、その被害の大きさは甚大なものとなってしまう。そのため、当該分野においては、この脆弱部の破壊以降に発生する圧力ピークを考慮した構造体の設計が極めて重要であると考えられる。   However, as shown in Fig. 5, the pressure peak (P2) that occurs after the destruction of the fragile part may be several times the pressure peak (P1) that occurs immediately after the fragile part is destroyed. Considering that the peak pressure at the time defines the magnitude of the damage, once the gas explosion occurs even under the above limited conditions, the magnitude of the damage is enormous. turn into. Therefore, in this field, it is considered extremely important to design a structure that takes into account the pressure peak that occurs after the destruction of the fragile portion.

このような問題に対し、非特許文献1には、脆弱部の破壊以降に発生する圧力ピークが音響効果によって発生する圧力ピークと考え、音響波を吸収する素材であるグラスウールを容器内壁に貼り付けることによって、脆弱部の破壊以降に発生する圧力ピークを抑制する方法が開示されている。   For such a problem, Non-Patent Document 1 considers that the pressure peak generated after the destruction of the fragile portion is the pressure peak generated by the acoustic effect, and affixes glass wool, which is a material that absorbs acoustic waves, to the inner wall of the container Thus, a method for suppressing a pressure peak generated after the destruction of the fragile portion is disclosed.

Cooper M.G., et. al., “On the Mechanisms of Pressure Generation in Vented Explosions,” Combustion and Flame, Vol.65, 1986Cooper M.G., et. Al., “On the Mechanisms of Pressure Generation in Vented Explosions,” Combustion and Flame, Vol.65, 1986

図6で示すように、非特許文献1に開示されている方法によれば、立方体容器の内壁にグラスウールを貼り付けて音響波を吸収することによって、容器内に天然ガスと空気とを混合した混合気を一様に充満させ、立方体容器の中心部に配置した着火源で混合気を燃焼させた場合であっても、図5で示した脆弱部の破壊以降の圧力上昇や圧力ピークを抑制することができる。   As shown in FIG. 6, according to the method disclosed in Non-Patent Document 1, natural gas and air are mixed in the container by adhering glass wool to the inner wall of the cubic container and absorbing acoustic waves. Even when the air-fuel mixture is uniformly filled and the air-fuel mixture is burned with an ignition source arranged at the center of the cubic container, the pressure increase and pressure peak after the destruction of the fragile portion shown in FIG. Can be suppressed.

しかしながら、非特許文献1に開示されている方法においては、吸音率の極めて高い綿状のグラスウールを容器内壁に貼り付けており、実際の一般家屋や工場建屋などの構造体ではそのようにグラスウールを直接内壁に貼り付ける状況は考え難い。実際の建築物などの構造体では、グラスウールよりも硬質で吸音率の低い平面状や曲面状の内装材(例えば石膏ボードや難燃合板、ラワン材)を貼り付けているのが通常であるものの、そのような内装材を使用した際に脆弱部の破壊以降の圧力上昇が抑制されるか否かについては一切言及されていないのが現状である。   However, in the method disclosed in Non-Patent Document 1, cotton-like glass wool having an extremely high sound absorption coefficient is attached to the inner wall of the container, and in a structure such as an actual general house or factory building, glass wool is used as such. It is difficult to think of the situation where it is applied directly to the inner wall. In actual structures such as buildings, flat or curved interior materials (such as gypsum board, flame-retardant plywood, and lauan materials) that are harder than glass wool and have a low sound absorption coefficient are usually pasted. The present situation is that no mention is made as to whether or not the pressure increase after the destruction of the fragile portion is suppressed when such an interior material is used.

本発明は、上記の事情に鑑みてなされたものであり、簡単な構成でもって脆弱部の破壊以降に発生する圧力ピークを抑制することのできる構造体を提供することを課題とする。   This invention is made | formed in view of said situation, and makes it a subject to provide the structure which can suppress the pressure peak generate | occur | produced after destruction of a weak part with a simple structure.

上記の課題を解決すべく、本発明者等は多くの実験と研究を行うことにより、構造弱部(脆弱部)を有する構造体であって、その構造弱部の破壊以降にその内部空間に圧力ピークが発生する構造体の内装材として、一般家屋や工場建屋などの構造体で適用される程度の吸音率を有する内装材を使用した場合であっても、構造弱部の破壊以降にその内部空間に発生する前記圧力ピークを抑制し得ることを知見した。本発明は、本発明者らが得た上記の知見に基づいている。   In order to solve the above-mentioned problems, the present inventors have conducted a lot of experiments and research to obtain a structural body having a structural weak part (fragile part). Even when an interior material having a sound absorption coefficient of a level applicable to a structure such as a general house or a factory building is used as an interior material for a structure where a pressure peak occurs, the interior after the destruction of the weak structure It has been found that the pressure peak generated in the internal space can be suppressed. The present invention is based on the above findings obtained by the present inventors.

すなわち、本発明は、構造弱部を有する構造体であって、その内部空間に可燃性ガスを混入して該可燃性ガスを燃焼させた際に前記構造弱部の少なくとも一部が開口して前記内部空間と該内部空間の外側の外部空間とが前記構造弱部の少なくとも一部を介して連通すると共に、前記構造弱部の開口以降に前記内部空間に圧力ピークが発生する構造体において、前記構造体の内部空間を形成する内装材は、吸音率が鋼材よりも高く、密度が10kg/mよりも高いことを特徴とする。 That is, the present invention is a structure having a structural weak part, and when the combustible gas is mixed in the internal space and combusted, at least a part of the structural weak part is opened. In the structure in which the internal space and the external space outside the internal space communicate with each other through at least a part of the structural weak part, and a pressure peak is generated in the internal space after the opening of the structural weak part. The interior material forming the internal space of the structure is characterized in that the sound absorption coefficient is higher than that of steel and the density is higher than 10 kg / m 3 .

ここで、吸音率とは、ある材料がある周波数の音に対して音のエネルギーを吸収する効率である。   Here, the sound absorption coefficient is the efficiency of absorbing sound energy with respect to a certain frequency sound.

また、構造弱部の開口以降にその内部空間に圧力ピークが発生する構造体とは、たとえば球形状もしくは正多面体形状などの三次元的に対称性を有する内部空間を有し、その内部空間の中心部に着火源が配置されている構造体である。   In addition, a structure in which a pressure peak occurs in the internal space after the opening of the weak structure has an internal space having a three-dimensional symmetry such as a spherical shape or a regular polyhedron shape. It is a structure in which an ignition source is arranged at the center.

また、前記内装材は、たとえば木材、石材、繊維材、合成樹脂材からなる群から選択される少なくともいずれか一つを含む素材で形成することができ、たとえば木材としてはラワン材を挙げることができ、石材としては石膏ボードを挙げることができ、繊維材としてはポリプロピレンを挙げることができる。また、前記内装材の表面は塩化ビニルからなる合成樹脂材で被覆することができる。   Further, the interior material can be formed of a material including at least one selected from the group consisting of wood, stone, fiber, and synthetic resin, for example, a lauan material as the wood. The stone material can include a gypsum board, and the fiber material can include polypropylene. The surface of the interior material can be covered with a synthetic resin material made of vinyl chloride.

本発明者等の実験では、構造体の一部に他の部分と比較して強度の低い構造弱部が形成されており、内部空間に可燃性ガスを混入してその可燃性ガスを燃焼させた際に構造弱部の少なくとも一部が開口して内部空間と外部空間とが前記構造弱部を介して連通することによって、構造弱部が破壊される前の密閉状態における圧力ピークを抑制することができると共に、内部空間を形成する内装材の吸音率を鋼材よりも高くし、且つ密度を10kg/mよりも高くすることによって、内装材の密度を高めて硬度を維持しながら、内部空間で発生する音響波を効果的に吸収することができるため、構造弱部の破壊以降に発生する圧力ピークを効果的に抑制することが可能となる。 In the experiments by the present inventors, a weak structural portion having a lower strength than other portions is formed in a part of the structure, and the combustible gas is mixed in the internal space to burn the combustible gas. When the structural weak part is opened, the internal space and the external space communicate with each other via the structural weak part, thereby suppressing the pressure peak in the sealed state before the structural weak part is destroyed. In addition, the interior material that forms the interior space has a higher sound absorption coefficient than steel and a density higher than 10 kg / m 3 , while increasing the density of the interior material and maintaining the hardness, Since the acoustic wave generated in the space can be effectively absorbed, the pressure peak generated after the destruction of the weak structural portion can be effectively suppressed.

本発明によれば、例えば一般の構造体で適用される程度の吸音率を有する内装材を使用し、簡単な構成でもって構造弱部の破壊以降に発生する圧力ピークを抑制することができる。そのため、内装材の硬度を維持しながら、例えば都市ガス等の可燃性ガスによる爆発事故の被害を効果的に軽減することが可能となる。   According to the present invention, for example, an interior material having a sound absorption coefficient of a level applicable to a general structure can be used, and a pressure peak generated after destruction of a weak structure can be suppressed with a simple configuration. For this reason, it is possible to effectively reduce the damage of the explosion accident caused by the combustible gas such as city gas while maintaining the hardness of the interior material.

本発明による構造体の一実施の形態を示す正面図。The front view which shows one Embodiment of the structure by this invention. 実験で使用した定容容器を示す図。The figure which shows the constant volume container used in experiment. 実施例と比較例の定容容器内の圧力計測の結果を示す図。The figure which shows the result of the pressure measurement in the constant volume container of an Example and a comparative example. 実施例と比較例の定容容器内の各時間における燃焼状態を撮影した結果を示す図。The figure which shows the result of having image | photographed the combustion state in each time in the constant volume container of an Example and a comparative example. 鋼材で構成された立方体容器で可燃性ガスを燃焼させたときの容器内の圧力履歴を示す図。The figure which shows the pressure history in a container when combustible gas is burned with the cubic container comprised with steel materials. 鋼材で構成された立方体容器の内壁にグラスウールを貼り付けて可燃性ガスを燃焼させたときの容器内の圧力履歴を示す図。The figure which shows the pressure log | history in a container when glass wool is affixed on the inner wall of the cube container comprised with steel materials, and combustible gas is burned.

以下、図面を参照しながら本発明を説明する。   The present invention will be described below with reference to the drawings.

図1は、本発明による構造体の一実施の形態を示す正面図である。なお、図示例では、構造体の内部空間が略立方体形状を有する場合について説明するが、前記内部空間は三次元的に対称性を有する形状を有していれば良く、例えば、球形状や正八面体形状などの正多面体形状などであってもよい。   FIG. 1 is a front view showing an embodiment of a structure according to the present invention. In the illustrated example, the case where the internal space of the structure has a substantially cubic shape will be described. However, the internal space only needs to have a three-dimensionally symmetric shape, for example, a spherical shape or a regular octave. It may be a regular polyhedron shape such as a polyhedron shape.

図示する構造体10は、立方体形状を有する内部空間Sを有し、その内部空間Sの中心部に着火源となり得る電灯1が配置されていている。なお、前記電灯1が配置される内部空間Sの中心部とは、後述するガス爆発の際に音響効果に起因する圧力ピークが発生し得る位置であって、必ずしも厳密に内部空間Sの中心であることには限定されない。   The illustrated structure 10 has an internal space S having a cubic shape, and an electric lamp 1 that can serve as an ignition source is disposed at the center of the internal space S. The central portion of the internal space S in which the electric lamp 1 is disposed is a position where a pressure peak due to an acoustic effect may occur during a gas explosion described later, and is strictly at the center of the internal space S. It is not limited to being.

前記内部空間Sを形成する内装材2は、前後面と左右面と上下面の六つの内装構成材2aから構成されており(図中、内部を視認できるように前面の内装構成材は省略している)、その内装構成材2aのうちの一つ(図中、右側)の略中央部には、他の部分と比較して強度の低い窓3(構造弱部や脆弱部ともいう。)が形成されている。なお、構造弱部となり得る窓3の位置は、内装材2の中央部の位置に設定することができる。   The interior material 2 forming the internal space S is composed of six interior component materials 2a of the front and rear surfaces, the left and right surfaces, and the upper and lower surfaces (in the figure, the interior component materials on the front surface are omitted so that the inside can be seen. The window 3 (also referred to as a structural weak part or a weak part) having a lower strength than the other part is provided at the substantially central part of one of the interior components 2a (right side in the figure). Is formed. Note that the position of the window 3 that can be a weak structural portion can be set to the position of the central portion of the interior material 2.

また、前記内装材2の吸音率は、鉄を主成分とする鋼材よりも高く、その密度は、ガラス繊維から成る綿状素材である一般のグラスウールよりも高い。ここで、前記内装材2は、グラスウールよりも密度が高いため、一般にグラスウールよりも硬度が高いと考えられる。   The interior material 2 has a sound absorption coefficient higher than that of a steel material mainly composed of iron, and its density is higher than that of general glass wool, which is a cotton-like material made of glass fibers. Here, since the interior material 2 has a higher density than glass wool, it is generally considered that the interior material 2 has higher hardness than glass wool.

ここで、グラスウールは、一般家屋の吸音材として使用される場合には密度が10〜32kg/m程度であり、一般に密度が10kg/mである場合が、密度が32kg/mである場合よりも相対的に吸音率が高く、図示例においては、前記内装材2の密度を10kg/mよりも高くしている。 Here, glass wool, when used as a sound absorbing material of the general house is the density of 10~32kg / m 3 approximately, if generally density of 10 kg / m 3 is the density is 32 kg / m 3 The sound absorption rate is relatively higher than in the case, and in the illustrated example, the density of the interior material 2 is higher than 10 kg / m 3 .

このような内装材2の形成素材としては、たとえば、ラワン材や難燃合板などからなる木材、石膏ボードやコンクリート、花崗岩、安山岩、大理石などからなる石材、ポリプロピレンやナイロンなどからなる繊維材、塩化ビニルや合成ゴムなどからなる合成樹脂材などが挙げられる。   Examples of the forming material of the interior material 2 include wood made of lauan material and flame retardant plywood, gypsum board and concrete, stone material made of granite, andesite, marble, etc., fiber material made of polypropylene and nylon, and chloride. Examples include synthetic resin materials made of vinyl, synthetic rubber, and the like.

上記する構造体10の内部空間Sに可燃性ガス(例えば都市ガス)が充満した状態で、何らかの理由で電灯1から火花が発生し、内部空間Sの可燃性ガスが引火して燃焼すると(ガス爆発の発生)、内部空間Sの密閉性が保持されている限り、可燃性ガスの燃焼に伴って内部空間Sの圧力が上昇し、所定の圧力に到達した時点で窓3が破損するため、内部空間Sと内装材2の外部の外部空間とが前記窓3を介して連通し、内部空間Sの圧力上昇が抑制される。   When the internal space S of the structure 10 is filled with a combustible gas (for example, city gas), a spark is generated from the electric light 1 for some reason, and the combustible gas in the internal space S is ignited and burned (gas As long as the internal space S is sealed, the pressure in the internal space S increases with the combustion of the combustible gas, and the window 3 is damaged when the predetermined pressure is reached. The internal space S and the external space outside the interior material 2 communicate with each other through the window 3, and the pressure increase in the internal space S is suppressed.

また、上記するように、内部空間Sが三次元的に対称性を有する形状を有している場合や着火源となり得る電灯1が内部空間Sの中心部に配置される場合には、窓3が破損した以降に再び音響効果などに起因する圧力ピークが発生する可能性があるものの、内装材2が鋼材よりも吸音率が高い素材で構成されており、可燃性ガスの燃焼時に発生する音響波が内装材2に吸収されるため、音響効果などに起因する窓3の破損以降に発生する圧力ピークが抑制される。なお、音響効果とは、内部空間Sを伝播しながら反射を繰り返す音響波が燃焼によって発生した圧力波火炎と相互作用(共鳴)する効果である。   Further, as described above, when the internal space S has a three-dimensionally symmetric shape, or when the lamp 1 that can serve as an ignition source is disposed at the center of the internal space S, the window Although the pressure peak due to the acoustic effect may occur again after the 3 is damaged, the interior material 2 is made of a material having a higher sound absorption rate than the steel material, and is generated when the combustible gas is burned. Since the acoustic wave is absorbed by the interior material 2, the pressure peak generated after the window 3 is damaged due to the acoustic effect or the like is suppressed. The acoustic effect is an effect in which an acoustic wave that repeats reflection while propagating through the internal space S interacts (resonates) with a pressure wave flame generated by combustion.

ここで、内装材2は、上記するようにグラスウールよりも硬度の高い素材で構成されているため、当該構造体10を一般家屋や工場建屋などとして使用することが可能である。   Here, since the interior material 2 is made of a material having a hardness higher than that of glass wool as described above, the structure 10 can be used as a general house or a factory building.

[試験用容器による都市ガス燃焼時の圧力ピークに関する実験とその結果]
本発明者等は、内装材の種類を変更した2種類の試験用容器(実施例と比較例)を作製し、各容器について容器内で都市ガスを燃焼させた際の容器内部の圧力計測と燃焼状態観察を実施した。
[Experiment and result on pressure peak in city gas combustion by test vessel]
The present inventors made two types of test containers (examples and comparative examples) with different types of interior materials, and measured the pressure inside the container when city gas was burned in the container for each container. The combustion state was observed.

なお、容器内部の圧力計測方法は、立方体形状を呈する容器の所定の側面の中央部に圧力センサの取り付け口を形成し、圧力センサM102B06(PCB社製)をその取り付け口に配置して容器内部の圧力を計測した。ここで、圧力センサM102B06の計測データは、データロガーGR-7500(Keyence社製)を用いてサンプリング速度104回/秒で収集した。 The method for measuring the pressure inside the container is to form a pressure sensor mounting port at the center of a predetermined side of the cubic shaped container, and place the pressure sensor M102B06 (PCB) on the mounting port. The pressure of was measured. Here, the measurement data of the pressure sensor M102B06 were collected at a sampling rate of 10 4 times / sec using a data logger GR-7500 (Keyence Corporation).

また、容器内部の燃焼状態観察方法は、容器外部に高速度カメラFASTCAM SA3(Photron社製)を配置し、容器側面に設けた透明なアクリル板を介して容器内部を撮影した。ここで、高速度カメラFASTCAM SA3の撮影速度は2000FPSであった。   As a method for observing the combustion state inside the container, a high-speed camera FASTCAM SA3 (manufactured by Photron) was placed outside the container, and the inside of the container was photographed through a transparent acrylic plate provided on the side of the container. Here, the shooting speed of the high-speed camera FASTCAM SA3 was 2000 FPS.

[実施例]
図2で示すように、内寸が600×600×600mm、内容積が216Lである圧延鋼材(SS400)からなる定容容器を使用し、その内壁面の底面にポリポロピレン製の繊維材(絨毯)を貼り付け、その側面と上面にラワン材を貼り付け、ラワン材の内側表面に塩化ビニル製の壁紙を貼り付けた。なお、容器側面のうちの正面側の面は、外部から燃焼状態を観察するために透明なアクリル板とした。また、ラワン材を貼り付けた容器側面のうちの一面の中央部には、直径が200mmの開口(開口部係数K=A/V2/3=11.5、Aは開口面積、Vは容器体積)を形成し、その開口を覆うようにアルミ箔を貼り付けて構造弱部(脆弱部)とした。
[Example]
As shown in Fig. 2, a fixed volume container made of rolled steel (SS400) with an internal size of 600 x 600 x 600 mm and an internal volume of 216 L is used, and a fiber material (carpet) made of polypropylene on the bottom of the inner wall surface. A lauan material was affixed to the side and upper surface of the material, and a vinyl chloride wallpaper was affixed to the inner surface of the lauan material. In addition, the surface of the front side among the container side surfaces was a transparent acrylic plate in order to observe the combustion state from the outside. In addition, an opening with a diameter of 200 mm is provided at the center of one of the side surfaces of the container to which the lauan material is attached (opening coefficient K = A / V 2/3 = 11.5, A is the opening area, V is the container volume) And an aluminum foil was applied to cover the opening to form a weak structure (fragile part).

そして、メタンと空気からなる可燃混合気(メタン9.3vol%)を定容容器内に充填し、定容容器の中心部に配置したスパークプラグで前記混合気に着火して混合気を燃焼させた。   A flammable mixture (methane 9.3 vol%) consisting of methane and air was filled in a constant volume container, and the mixture was ignited by a spark plug disposed in the center of the constant volume container to burn the mixture. .

[比較例]
内寸が600×600×600mm、内容積が216Lである圧延鋼材(SS400)からなる定容容器を使用し、その内壁面には内装材を貼り付けなかった。なお、容器側面のうちの正面側の面は、外部から燃焼状態を観察するために透明なアクリル板とした。また、容器側面のうちの一面の中央部には直径が200mmの開口を形成し、その開口を覆うようにアルミ箔を貼り付けて構造弱部(脆弱部)とした。
[Comparative example]
A constant volume container made of rolled steel (SS400) with an inner dimension of 600 × 600 × 600 mm and an inner volume of 216 L was used, and no interior material was attached to the inner wall surface. In addition, the surface of the front side among the container side surfaces was a transparent acrylic plate in order to observe the combustion state from the outside. In addition, an opening having a diameter of 200 mm was formed at the center of one of the side surfaces of the container, and an aluminum foil was attached to cover the opening to form a weak structure (fragile part).

そして、メタンと空気からなる可燃混合気(メタン9.3vol%)を定容容器内に充填し、定容容器の中心部に配置したスパークプラグで前記混合気に着火して混合気を燃焼させた。   A flammable mixture (methane 9.3 vol%) consisting of methane and air was filled in a constant volume container, and the mixture was ignited by a spark plug disposed in the center of the constant volume container to burn the mixture. .

[試験用容器による都市ガス燃焼時の圧力計測と燃焼状態観察の結果]
図3は、実施例と比較例の定容容器内の圧力計測の結果を示す図であり、図4は、実施例と比較例の定容容器内の各時間における燃焼状態を撮影した結果を示す図である。
[Results of pressure measurement and combustion state observation during city gas combustion in a test vessel]
FIG. 3 is a diagram showing the results of pressure measurement in the constant volume containers of the example and the comparative example, and FIG. 4 shows the results of photographing the combustion state at each time in the constant volume containers of the example and the comparative example. FIG.

図3で示すように、比較例の試験用容器では、容器内で混合気が燃焼すると、約20msecで容器内の圧力が上昇し始め、約70msecで容器内の圧力が約15kPaに到達した(一次圧力ピーク)。ここで、容器側面の開口に貼り付けたアルミ箔が破損し、容器内の圧力が急減に減少し、約80msecで容器内の圧力が5kPa以下となった。その後、約150msecから再び容器内の圧力が上昇し始め、約170msecで容器内の圧力が約170kPaに到達し(二次圧力ピーク)、約170msec以降では容器内の圧力が急激に減少した。   As shown in FIG. 3, in the test container of the comparative example, when the air-fuel mixture burns in the container, the pressure in the container starts to increase in about 20 msec, and the pressure in the container reaches about 15 kPa in about 70 msec ( Primary pressure peak). Here, the aluminum foil affixed to the opening on the side of the container was damaged, and the pressure in the container decreased rapidly, and the pressure in the container became 5 kPa or less at about 80 msec. Thereafter, the pressure in the container started to increase again from about 150 msec, the pressure in the container reached about 170 kPa at about 170 msec (secondary pressure peak), and the pressure in the container rapidly decreased after about 170 msec.

すなわち、比較例の試験用容器(構造弱部の開口部係数が11.5)では、約150msecから220msecの間で振動成分を含む強い圧力ピーク(二次圧力ピーク)が確認され、この二次圧力ピークが、図5に基づき説明した立方体容器(構造弱部の開口部係数が9.2)の音響効果による圧力ピークと推察された。   That is, in the test container of the comparative example (the opening coefficient of the weak structure portion is 11.5), a strong pressure peak (secondary pressure peak) including a vibration component was confirmed between about 150 msec and 220 msec, and this secondary pressure peak However, it was inferred that this was a pressure peak due to the acoustic effect of the cubic container described with reference to FIG. 5 (the opening coefficient of the weak structure portion was 9.2).

また、比較例の試験用容器では、図4で示すように、約170msec付近で火炎が急激に成長することが確認された。   Moreover, in the test container of the comparative example, as shown in FIG. 4, it was confirmed that the flame grew rapidly in the vicinity of about 170 msec.

一方で、実施例の試験用容器では、図3で示すように、容器内で混合気が燃焼すると、約20msecで容器内の圧力が上昇し始め、約70msecで容器内の圧力が約15kPaに到達し(一次圧力ピーク)、ここで容器側面の開口に貼り付けたアルミ箔が破損して、容器内の圧力が急減に減少したものの、約80msec以降は圧力ピークが計測されなかった。すなわち、実施例の試験用容器(構造弱部の開口部係数が11.5)では、比較例の約170msecで確認された構造弱部の破損以降に発生する圧力ピーク(二次圧力ピーク)が確認されなかった。   On the other hand, in the test container of the example, as shown in FIG. 3, when the air-fuel mixture burns in the container, the pressure in the container starts to increase in about 20 msec, and the pressure in the container reaches about 15 kPa in about 70 msec. It reached (primary pressure peak), and the aluminum foil attached to the opening on the side of the container was damaged, and the pressure in the container decreased rapidly, but no pressure peak was measured after about 80 msec. That is, in the test container of the example (the opening coefficient of the weak structure portion is 11.5), the pressure peak (secondary pressure peak) generated after the failure of the weak structure portion confirmed at about 170 msec in the comparative example was confirmed. There wasn't.

また、実施例の試験用容器では、図4で示すように、約140msec以降で緩やかに火炎球が成長を続け、火炎が内壁面に到達した場所から内装材に着火することが確認され、比較例で確認された約170msec付近での火炎の急激な成長は確認されなかった。   Further, in the test container of the example, as shown in FIG. 4, it was confirmed that the flame ball continued to grow gradually after about 140 msec, and the interior material was ignited from the place where the flame reached the inner wall surface. The rapid growth of the flame around 170 msec confirmed in the example was not confirmed.

なお、本発明者等は、実施例や比較例の試験用容器での上記結果が再現性があることを確認している。   In addition, the present inventors have confirmed that the above results in the test containers of Examples and Comparative Examples are reproducible.

この実験結果より、鋼材で構成された立方体容器の内壁に、吸音率が鋼材より高く且つガラスウールよりも低いラワン材やポリポロピレン製絨毯を配置するという簡単な構成によって、ガス爆発時に構造弱部の破損以降に発生し得る圧力ピークを確実に抑制し得ることが実証された。   From the results of this experiment, a simple structure of placing a Lauan or Polypropylene carpet, which has a higher sound absorption rate than steel and lower than glass wool, on the inner wall of a cubic container made of steel makes it possible to prevent structural weak parts during gas explosions. It has been demonstrated that pressure peaks that can occur after failure can be reliably suppressed.

1…電灯(着火源)
2…内装材
2a…内装構成材
3…窓(構造弱部)
10…構造体
S…内部空間
1 ... Electric light (ignition source)
2 ... Interior material 2a ... Interior component 3 ... Window (structure weak part)
10 ... Structure S ... Internal space

Claims (6)

構造弱部を有する構造体であって、その内部空間に可燃性ガスを混入して該可燃性ガスを燃焼させた際に前記構造弱部の少なくとも一部が開口して前記内部空間と該内部空間の外側の外部空間とが前記構造弱部の少なくとも一部を介して連通すると共に、前記構造弱部の開口以降に前記内部空間に圧力ピークが発生する構造体において、
前記構造体の内部空間を形成する内装材は、吸音率が鋼材よりも高く、密度が10kg/mよりも高いことを特徴とする構造体。
A structure having a weak structure portion, and when the combustible gas is mixed in the internal space and the combustible gas is burned, at least a part of the weak structure portion is opened to form the internal space and the internal space. In the structure in which an external space outside the space communicates through at least a part of the structural weak part, and a pressure peak occurs in the internal space after the opening of the structural weak part,
The interior material forming the internal space of the structure has a sound absorption coefficient higher than that of a steel material and a density higher than 10 kg / m 3 .
前記内部空間は立方体形状を有し、前記構造弱部は前記内装材を構成する六つの内装構成材のうちのいずれか一つに形成されていることを特徴とする請求項1に記載の構造体。   2. The structure according to claim 1, wherein the internal space has a cubic shape, and the structural weak portion is formed in any one of six interior components constituting the interior material. body. 前記構造弱部の開口部係数は9.2以上11.5以下であることを特徴とする請求項1または2に記載の構造体。   The structure according to claim 1 or 2, wherein an opening coefficient of the structural weak part is 9.2 or more and 11.5 or less. 前記内装材は、木材、石材、繊維材、合成樹脂材からなる群から選択される少なくともいずれか一つを含む素材で形成されていることを特徴とする請求項1から3のいずれかに記載の構造体。   The said interior material is formed with the raw material containing at least any one selected from the group which consists of a timber, a stone material, a fiber material, and a synthetic resin material, The any one of Claim 1 to 3 characterized by the above-mentioned. Structure. 前記木材はラワン材からなり、前記石材は石膏ボードからなり、前記繊維材はポリプロピレンからなることを特徴とする請求項4に記載の構造体。   The structure according to claim 4, wherein the wood is made of Lauan, the stone is made of gypsum board, and the fiber is made of polypropylene. 前記内装材の表面は塩化ビニルからなる合成樹脂材で被覆されている請求項4に記載の構造体。   The structure according to claim 4, wherein a surface of the interior material is covered with a synthetic resin material made of vinyl chloride.
JP2012157680A 2012-07-13 2012-07-13 Structure Expired - Fee Related JP5941363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012157680A JP5941363B2 (en) 2012-07-13 2012-07-13 Structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012157680A JP5941363B2 (en) 2012-07-13 2012-07-13 Structure

Publications (2)

Publication Number Publication Date
JP2014020047A true JP2014020047A (en) 2014-02-03
JP5941363B2 JP5941363B2 (en) 2016-06-29

Family

ID=50195274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012157680A Expired - Fee Related JP5941363B2 (en) 2012-07-13 2012-07-13 Structure

Country Status (1)

Country Link
JP (1) JP5941363B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07166735A (en) * 1993-12-14 1995-06-27 Idemitsu Kosan Co Ltd Laboratory
JP2001132132A (en) * 1999-11-05 2001-05-15 Yoshino Gypsum Co Ltd Perforated sound absorbing panel and method of manufacture
JP2004052268A (en) * 2002-07-17 2004-02-19 Taisei Corp Building

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07166735A (en) * 1993-12-14 1995-06-27 Idemitsu Kosan Co Ltd Laboratory
JP2001132132A (en) * 1999-11-05 2001-05-15 Yoshino Gypsum Co Ltd Perforated sound absorbing panel and method of manufacture
JP2004052268A (en) * 2002-07-17 2004-02-19 Taisei Corp Building

Also Published As

Publication number Publication date
JP5941363B2 (en) 2016-06-29

Similar Documents

Publication Publication Date Title
US20050242093A1 (en) Explosive effect mitigated containers and enclosing devices
Frangi et al. Fire performance of timber structures under natural fire conditions
KR101832256B1 (en) An integrated equipment for characteristic test of smoke and heat
CN203148910U (en) Fabric horizontal combustion text box
CN206220435U (en) Floating floor heat insulating and sound insulating pad
Zhang et al. Vented deflagration of a hydrogen-air mixture in a rectangular vessel with a hinged aluminum vent panel
JP5941363B2 (en) Structure
JP4503668B2 (en) Flame retardant and sound absorbing material
CN102796911B (en) Porous foam Fe-Ni metal explosion suppression material and application thereof
US20070220826A1 (en) Fire-resistant and heat-insulating door/wall structure
JP2008245508A (en) Fire-resistant treating material
Min et al. A study on fire performance evaluation of EIFS on anti-flaming finish by cone calorimeter test
JP5080354B2 (en) Fireproof material
CN213374911U (en) New energy automobile group battery triggers formula fire extinguisher testing arrangement
CN207976440U (en) A kind of building materials noninflammability laboratory structure
Fangrat Combustability of building products versus fire safety
CN105548457A (en) Testing method for fireproof performance of firewall sealant
Maloney et al. Impact of lithium battery vent gas ignition on cargo compartment fire protection
Yu et al. Experimental study on the explosion characteristics of methane-air mixtures initiated by RDX in a rectangular venting chamber
CN210851596U (en) Impact-resistant heat insulation plate
JP4716307B2 (en) Non-combustible corrugated cardboard and corrugated duct for building air conditioning ducts or building materials
CN110561861A (en) Impact-resistant heat-insulating plate and application thereof
JP3806733B2 (en) Non-combustible sandwich structure filled with phenol foam in honeycomb material cell
Polandov et al. On conditions enabling resonant combustion in gas explosion in non-enclosed volume
Buckland Explosions of gas layers in a room size chamber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160520

R150 Certificate of patent or registration of utility model

Ref document number: 5941363

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees