JP2014019676A - Method for manufacturing aromatic carboxylic acid - Google Patents

Method for manufacturing aromatic carboxylic acid Download PDF

Info

Publication number
JP2014019676A
JP2014019676A JP2012161445A JP2012161445A JP2014019676A JP 2014019676 A JP2014019676 A JP 2014019676A JP 2012161445 A JP2012161445 A JP 2012161445A JP 2012161445 A JP2012161445 A JP 2012161445A JP 2014019676 A JP2014019676 A JP 2014019676A
Authority
JP
Japan
Prior art keywords
catalyst
concentration
acid
tank
recovered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012161445A
Other languages
Japanese (ja)
Inventor
Takeshi Nakamura
中村  剛
Fumiya Arima
文哉 在間
Hideaki Fujita
英明 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2012161445A priority Critical patent/JP2014019676A/en
Publication of JP2014019676A publication Critical patent/JP2014019676A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing an aromatic carboxylic acid except a terephthalic acid, having a catalyst collection process using a pyridine ring containing chelating resin and capable of immediately simply analyzing concentration variation of a collected catalyst solution and stabilizing a liquid phase oxidation reaction by reducing variation in concentration of a catalyst component and water in a catalyst preparation tank for returning the collected catalyst solution to obtain an aromatic carboxylic acid having stable quality.SOLUTION: A method for manufacturing an aromatic carboxylic acid includes analyzing each concentration of a cobalt ion, water, a manganese ion and a bromide ion in the collected catalyst solution by an infrared analyzer and a full automatic titration device online-connected to a predetermined place in the periphery of a collected catalyst solution tank.

Description

本発明は、低級脂肪族カルボン酸を含む溶媒中、重金属化合物及び臭素化合物からなる触媒の存在下、分子状酸素含有ガスを用いてアルキル基含有芳香族炭化水素を液相酸化して、テレフタル酸を除く芳香族カルボン酸を製造する方法において、液相酸化反応系における触媒成分の変動を低減し、安定な品質の芳香族カルボン酸を得る方法に関する。   The present invention relates to terephthalic acid by liquid phase oxidation of an alkyl group-containing aromatic hydrocarbon using a molecular oxygen-containing gas in the presence of a catalyst comprising a heavy metal compound and a bromine compound in a solvent containing a lower aliphatic carboxylic acid. The present invention relates to a method for producing an aromatic carboxylic acid having a stable quality by reducing fluctuations in catalyst components in a liquid phase oxidation reaction system.

芳香族カルボン酸は、アルキル基含有芳香族炭化水素の液相酸化反応により製造され、通常、酢酸溶媒の存在下、コバルト、マンガン等の重金属化合物、又はさらに臭素化合物、アセトアルデヒド等の促進剤を加えた触媒が用いられる。
かかる液相酸化反応により得られる芳香族カルボン酸を含有する酸化反応スラリーは、通常、晶析操作により、低圧、低温のスラリーとし、常圧に近い圧力の状態で固液分離操作を行い、芳香族カルボン酸の結晶が分離される。
Aromatic carboxylic acids are produced by the liquid phase oxidation reaction of alkyl group-containing aromatic hydrocarbons. Usually, in the presence of acetic acid solvent, heavy metal compounds such as cobalt and manganese, or further promoters such as bromine compounds and acetaldehyde are added. Catalyst is used.
An oxidation reaction slurry containing an aromatic carboxylic acid obtained by such a liquid phase oxidation reaction is usually made into a low-pressure, low-temperature slurry by a crystallization operation and subjected to a solid-liquid separation operation at a pressure close to normal pressure. Group carboxylic acid crystals are isolated.

一方、固液分離して得られた酸化反応母液には、触媒由来の重金属イオン及び臭化物イオンなどの有用な触媒成分が含まれており、工業的に実施する場合、これらの触媒成分を循環使用することにより、製造コストを下げることが必要になる。
触媒成分の最も簡便な循環方法は、前記酸化反応母液をそのまま反応系に戻して再使用することであり、広く商業規模の芳香族カルボン酸製造プロセスにおいて行われている。
しかし、該酸化反応母液中には、液相酸化反応で副生する様々な有機不純物や装置の腐食に由来する無機不純物などが混在しており、該酸化反応母液をそのまま反応系に再使用すると、反応系におけるこれらの不純物の濃度が次第に高まり、一定濃度を超えると液相酸化反応に悪影響を与える。
On the other hand, the oxidation reaction mother liquor obtained by solid-liquid separation contains useful catalyst components such as heavy metal ions and bromide ions derived from the catalyst. When industrially implemented, these catalyst components are recycled. By doing so, it is necessary to reduce the manufacturing cost.
The simplest circulation method of the catalyst component is to return the oxidation reaction mother liquor as it is to the reaction system and reuse it, which is widely performed in a commercial scale aromatic carboxylic acid production process.
However, in the oxidation reaction mother liquor, various organic impurities by-produced in the liquid phase oxidation reaction and inorganic impurities derived from corrosion of the apparatus are mixed, and when the oxidation reaction mother liquor is reused in the reaction system as it is. The concentration of these impurities in the reaction system gradually increases, and if it exceeds a certain concentration, the liquid phase oxidation reaction is adversely affected.

このため酸化反応母液の一部をパージ母液として系外に排出する必要がある。このパージ母液には液相酸化反応に使用された溶媒や触媒成分、副生物などが含まれており、溶媒は蒸留により回収されるが、触媒成分の回収にはピリジン環含有キレート樹脂を用いる方法が知られている(例えば、特許文献1参照)。   Therefore, a part of the oxidation reaction mother liquor needs to be discharged out of the system as a purge mother liquor. This purge mother liquor contains the solvent, catalyst component, by-product, etc. used in the liquid phase oxidation reaction, and the solvent is recovered by distillation, but the catalyst component is recovered by using a pyridine ring-containing chelate resin Is known (see, for example, Patent Document 1).

特許文献1では、触媒由来の重金属イオン及び臭化物イオンをピリジン環含有キレート樹脂に連続的に吸着させ、しかる後に水分濃度20質量%以上の含水酢酸を用いて、吸着した重金属イオン及び臭化物イオンを溶離させて回収触媒液が得られる。該プロセスは、吸着−溶離工程を繰り返すバッチプロセスであり、複数のピリジン環含有キレート樹脂を切り替えながら触媒成分の回収が行われる。   In Patent Document 1, heavy metal ions and bromide ions derived from a catalyst are continuously adsorbed on a pyridine ring-containing chelate resin, and then the adsorbed heavy metal ions and bromide ions are eluted using hydrous acetic acid having a water concentration of 20% by mass or more. To obtain a recovered catalyst solution. This process is a batch process in which the adsorption and elution steps are repeated, and the catalyst component is recovered while switching a plurality of pyridine ring-containing chelate resins.

この回収触媒液は、いったんピリジン環含有キレート樹脂に吸着した触媒成分が溶離して該キレート樹脂より溶出するために、吸着工程−溶離工程のサイクルの中で濃度変動を起こす。これはイオン交換樹脂や合成吸着材に吸着した成分が、溶出時に濃度のピークを持った溶出パターンを示すことと同様の現象である。   Since the catalyst component once adsorbed to the pyridine ring-containing chelate resin elutes and elutes from the chelate resin, the concentration of the recovered catalyst solution fluctuates during the cycle of the adsorption step and the elution step. This is the same phenomenon as the component adsorbed on the ion exchange resin or the synthetic adsorbent shows an elution pattern having a concentration peak at the time of elution.

このように濃度変動している回収触媒液を液相酸化反応系、より具体的には触媒調合槽に直接戻すと、例え回収触媒液を連続的に一定流量で送液したとしてもその中に含まれる触媒成分の量は変動しているため、触媒調合槽中の触媒濃度が変動することになる。   When the recovered catalyst solution whose concentration has been varied in this manner is returned directly to the liquid phase oxidation reaction system, more specifically, to the catalyst preparation tank, even if the recovered catalyst solution is continuously fed at a constant flow rate, Since the amount of the catalyst component contained varies, the catalyst concentration in the catalyst preparation tank varies.

液相酸化反応における触媒濃度の変動は、反応活性に影響を与え、生成する芳香族カルボン酸結晶の品質を不安定にすることが知られており、酸化反応槽中の水濃度とその抜き出し量にリンクされた相当量の酢酸を新たに酸化反応槽に供給する方法が提案されているが、触媒濃度をフィードフォワード制御して調整しており、複雑な制御系統を必要とするものである(例えば、特許文献2参照)。   Changes in the catalyst concentration in the liquid phase oxidation reaction are known to affect the reaction activity and destabilize the quality of the aromatic carboxylic acid crystals that are produced. A new method for supplying a considerable amount of acetic acid linked to the catalyst to the oxidation reaction tank has been proposed, but the catalyst concentration is adjusted by feedforward control, which requires a complicated control system ( For example, see Patent Document 2).

特許文献3では、パラキシレンを酢酸溶媒中、マンガン、コバルト、臭素を含む触媒の存在下、分子状酸素と反応させてテレフタル酸を製造する方法において、原料液調整槽と反応器の間にオンラインの自動滴定装置によるマンガンイオンの自動分析を行い、触媒液の補充の制御を行い、マンガンイオン濃度の変動係数を抑えている。しかし、特許文献3ではマンガンイオン濃度しか分析しておらず、コバルトイオン、マンガンイオン、臭化物イオンの比がずれた場合は、適正な濃度に制御できるのはマンガンイオンのみという欠点を有している。   In Patent Document 3, in a method for producing terephthalic acid by reacting para-xylene with molecular oxygen in the presence of a catalyst containing manganese, cobalt, and bromine in an acetic acid solvent, an on-line system is provided between the raw material liquid adjusting tank and the reactor. The automatic analysis of manganese ions by the automatic titrator of No. 1 is performed, the replenishment of the catalyst solution is controlled, and the coefficient of variation of the manganese ion concentration is suppressed. However, in Patent Document 3, only the manganese ion concentration is analyzed, and when the ratio of cobalt ion, manganese ion, and bromide ion is deviated, there is a defect that only the manganese ion can be controlled to an appropriate concentration. .

特許文献4では、コバルト、マンガンおよび臭素から成る触媒の存在下の酢酸溶媒中でジアルキル芳香族炭化水素を分子状酸素含有ガスで液相酸化して芳香族ジカルボン酸を製造する方法において、循環される母液中のコバルト、マンガンおよび臭素の触媒濃度が変動し、さらに酸化反応によって水が生成するので酸化反応後の処理工程において水分濃度変動も生じる。これらの触媒濃度および反応阻害物質としての水分濃度の変動が反応溶媒調整に絡み、酸化反応に与える影響因子を複雑化し、酸化反応を不安定化させる要因となっている事を開示している。そして、酸化反応を変動させる要因の一つである触媒濃度変動を予め蛍光X線分析によるオンライン分析計で測定し、濃度に応じて、必要量を補充する方法が開示されている。蛍光X線による分析で一度にコバルト、マンガン、臭素の分析を行う事ができ、瞬時に分析結果を得られるという利点を有している。しかし、装置が比較的高価で、装置によってはX線作業主任者を選任しなければならないという欠点を有している。   Patent Document 4 discloses a method for producing an aromatic dicarboxylic acid by liquid phase oxidation of a dialkyl aromatic hydrocarbon with a molecular oxygen-containing gas in an acetic acid solvent in the presence of a catalyst comprising cobalt, manganese and bromine. The catalyst concentration of cobalt, manganese and bromine in the mother liquor varies, and water is generated by the oxidation reaction, so that the moisture concentration also varies in the treatment step after the oxidation reaction. It is disclosed that fluctuations in the catalyst concentration and the water concentration as a reaction inhibitor are involved in the adjustment of the reaction solvent, complicate influencing factors on the oxidation reaction, and destabilize the oxidation reaction. And the method of measuring the catalyst density | concentration fluctuation | variation which is one of the factors which fluctuate | oxidize an oxidation reaction previously with the online analyzer by a fluorescent X ray analysis, and replenishing a required quantity according to a density | concentration is disclosed. Cobalt, manganese, and bromine can be analyzed at once by fluorescent X-ray analysis, and the analysis result can be obtained instantly. However, the apparatus is relatively expensive, and there is a disadvantage in that an X-ray working chief must be appointed depending on the apparatus.

特許文献5では、金属カルボニル、ヨウ化メチル、酢酸メチル、酢酸、水などを含有する液体反応組成物中でメタノールを一酸化炭素でカルボニル化して、酢酸を製造する方法において、触媒のロジウム、イリジウム、ルテニウムの金属カルボニルが、溶液中で活性の異なる金属カルボニルとして数種の触媒活性種として平衡組成で存在している。活性の異なる該活性種をオンライン接続された赤外スペクトロスコピーで濃度の比を測定し、一酸化炭素供給速度、ヨウ化リチウム添加により、濃度比を最適化しうる事を開示している。
しかし、測定対象の金属カルボニルは、赤外分光分析に対して感受性が高いため、金属カルボニルの定量には適しているが、普遍的にその他触媒種への適用は困難であるため、赤外分光分析による触媒濃度測定への適用は限定的である。
In Patent Document 5, in a method for producing acetic acid by carbonylating methanol with carbon monoxide in a liquid reaction composition containing metal carbonyl, methyl iodide, methyl acetate, acetic acid, water, etc., catalyst rhodium, iridium Ruthenium metal carbonyls exist in equilibrium composition as several catalytically active species as metal carbonyls with different activities in solution. It is disclosed that concentration ratios can be optimized by measuring the ratio of concentrations by infrared spectroscopy in which the active species having different activities are connected on-line, and adding carbon monoxide and adding lithium iodide.
However, the metal carbonyl to be measured is suitable for the determination of metal carbonyl because it is highly sensitive to infrared spectroscopic analysis, but it is difficult to apply to other catalytic species universally, so infrared spectroscopy Application to analysis of catalyst concentration by analysis is limited.

通常の有機物における分子振動に基づく赤外分析とは異なり、特許文献6においては、分子振動に基づく吸収の無い、HCl、HまたはNHOH等の無機電解質混合物の濃度を計測している例が見られる。 Unlike infrared analysis based on molecular vibration in ordinary organic substances, Patent Document 6 measures the concentration of an inorganic electrolyte mixture such as HCl, H 2 O 2 or NH 4 OH that does not absorb based on molecular vibration. An example is seen.

国際公開2008/075572号International Publication No. 2008/075752 特開2007−70254号公報JP 2007-70254 A 特開平5−229988号公報Japanese Patent Laid-Open No. 5-229988 特許第4821220号Patent No. 4812220 特表2009−530358号Special table 2009-530358 特許3290982号Japanese Patent No. 3290982

ピリジン環含有キレート樹脂を用いる触媒回収プロセスを有するテレフタル酸を除く芳香族カルボン酸の製造方法において、上記段落0005記載のように触媒の吸着−溶離工程のサイクルの中で濃度変動が起きて、その結果、回収触媒液の触媒濃度変動及び水分の変動により、酸化反応が変動し、さらに酸化反応が変動することにより得られる芳香族カルボン酸の品質に影響を与えることが発生していた。
本発明の課題は、効率良く回収触媒液の濃度変動を即時に分析し、該回収触媒液を戻す触媒調合槽における触媒成分の濃度および水分の変動を小さくすることにより、液相酸化反応を安定化させ、品質の安定した芳香族カルボン酸を得る簡易な方法を提供することである。
In the method for producing an aromatic carboxylic acid excluding terephthalic acid having a catalyst recovery process using a pyridine ring-containing chelate resin, the concentration fluctuation occurs in the cycle of the adsorption-elution step of the catalyst as described in the above paragraph 0005. As a result, the oxidation reaction fluctuates due to fluctuations in the catalyst concentration and moisture in the recovered catalyst solution, and further, the oxidation reaction fluctuates, affecting the quality of the aromatic carboxylic acid obtained.
The object of the present invention is to stabilize the liquid phase oxidation reaction by analyzing the concentration fluctuation of the recovered catalyst solution immediately and efficiently, and reducing the fluctuation of the concentration and moisture of the catalyst component in the catalyst preparation tank to which the recovered catalyst solution is returned. And providing a simple method for obtaining an aromatic carboxylic acid having a stable quality.

本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、本プロセス中の特定の箇所に設置することにより、
(I)特許文献6に記載された半導体処理用の過酸化水素水溶液中のアルカリ、酸の濃度計測向け分析法として知られていた赤外分析が、テレフタル酸を除く芳香族カルボン酸製造の触媒回収プロセスにおける回収触媒液中のコバルトイオン濃度および水分濃度測定に適用可能であることを見出し、
(II)オンライン接続された全自動滴定装置で、マンガンイオン濃度および臭化物イオン濃度を測定することにより、
各濃度が即時に分析可能となり、触媒および水分管理が容易となり、触媒調合槽において、必要に応じて触媒を追加することにより、該キレート樹脂塔から溶出した時点での触媒成分の濃度変動を緩和し、触媒調合槽出口における濃度変動を小さく抑えことができ、液相酸化反応系の触媒濃度が安定し、高品質の芳香族カルボン酸を容易に得ることができることを見出し、本発明に到達した。即ち本発明は、以下の芳香族カルボン酸の製造方法を提供する。
(1)
水分1〜15質量%の含水酢酸溶媒中、重金属化合物及び臭素化合物を含む触媒の存在下、分子状酸素含有ガスを用いてアルキル基含有芳香族炭化水素を液相酸化し、テレフタル酸を除く芳香族カルボン酸を製造する方法において、液相酸化して得られた酸化反応スラリーを冷却して芳香族カルボン酸結晶と酸化反応母液とに分離し、酸化反応母液の25〜95%をリサイクル母液として液相酸化反応系に循環使用し、残りの酸化反応母液をパージ母液として系外にパージして該パージ母液から触媒成分を回収する際に、
(I)パージ母液をピリジン環含有キレート樹脂と接触させて触媒に由来する重金属イオン及び臭化物イオンを吸着する吸着工程と、
(II)工程(I)により触媒成分を吸着したピリジン環含有キレート樹脂に含水酢酸又は水を接触させて該重金属イオン及び臭化物イオンを溶離して回収触媒液(A)を得る溶離工程を、回分式により切り替え、
(III)回収触媒液(A)を回収触媒液槽で1.5〜6時間滞留させて、該回収触媒液槽からの回収触媒液(B)を、触媒調合槽でリサイクル母液と混合し、液相酸化反応系に循環する工程を有し、
下記(i)または(ii)の箇所にオンライン接続された赤外分析計および全自動滴定装置で、回収触媒液 (B)のコバルトイオン濃度および水分濃度、マンガンイオンおよび臭化物イオン濃度を、それぞれ測定することを特徴とする芳香族カルボン酸の製造方法。

(i)回収触媒槽の下部につながれた配管から抜き出し、また触媒回収槽に戻される閉じた配管の一部
(ii)回収触媒槽から触媒調合槽につながれた配管の一部

(2)
工程(II)からの回収触媒液(A)と、リサイクル母液の一部または全部を回収触媒液槽で予め混合し、混合して得られた触媒混合液(C)を1.5〜6時間滞留させながら、触媒混合液(C)のコバルトイオンの濃度を回収触媒液槽にオンライン接続された赤外分析計で濃度を分析し、マンガンイオン及び臭化物イオン濃度をオンライン接続された全自動滴定装置で濃度を分析し、触媒調合槽に導入する(1)に記載の芳香族カルボン酸の製造方法。
(3)
コバルトイオン、マンガンイオン及び臭化物イオンの濃度既知の触媒回収液(B)または触媒混合液(C)にコバルトイオン及び、またはマンガンイオン及び、または臭化物イオンを含む触媒液を触媒調合槽に、濃度に応じて補充する工程を含む(1)または(2)に記載の芳香族カルボン酸の製造方法
(4)
工程(III)からの回収触媒液(B)を触媒調合槽に戻した際の、触媒調合槽出口でのコバルトイオン、マンガンイオン及び臭化物イオン各濃度の変動係数が全て5%以下である(1)〜(3)のいずれかに記載の芳香族カルボン酸の製造方法。
(5)
芳香族カルボン酸が、安息香酸、フタル酸、イソフタル酸、メタトルイル酸、トリメシン酸、3,5−ジメチル安息香酸、トリメリット酸、ピロメリット酸、1,5−ナフタレンジカルボン酸および2,6−ナフタレンジカルボン酸から選ばれる少なくとも一種である(1)〜(4)のいずれかに記載の芳香族カルボン酸の製造方法。
(6)
芳香族カルボン酸が、イソフタル酸又は2,6−ナフタレンジカルボン酸である(1)〜(4)のいずれかに記載の芳香族カルボン酸の製造方法。
As a result of intensive studies to achieve the above-mentioned object, the present inventors have installed it at a specific location in the process,
(I) Infrared analysis known as an analytical method for measuring the concentration of alkali and acid in an aqueous hydrogen peroxide solution for semiconductor processing described in Patent Document 6 is a catalyst for producing aromatic carboxylic acids excluding terephthalic acid Found to be applicable to the measurement of cobalt ion concentration and water concentration in the recovered catalyst solution in the recovery process,
(II) By measuring the manganese ion concentration and bromide ion concentration with a fully automatic titrator connected online,
Each concentration can be analyzed immediately, catalyst and moisture management becomes easy, and by adding a catalyst as necessary in the catalyst preparation tank, fluctuations in the concentration of catalyst components at the time of elution from the chelate resin tower can be mitigated. And found that the concentration fluctuation at the outlet of the catalyst preparation tank can be kept small, the catalyst concentration in the liquid phase oxidation reaction system is stable, and high-quality aromatic carboxylic acid can be easily obtained, and the present invention has been achieved. . That is, the present invention provides the following method for producing an aromatic carboxylic acid.
(1)
Fragrance excluding terephthalic acid by liquid-phase oxidation of an alkyl group-containing aromatic hydrocarbon using a molecular oxygen-containing gas in the presence of a catalyst containing a heavy metal compound and a bromine compound in a hydrous acetic acid solvent having a moisture content of 1 to 15% by mass. In the method for producing an aromatic carboxylic acid, an oxidation reaction slurry obtained by liquid phase oxidation is cooled and separated into an aromatic carboxylic acid crystal and an oxidation reaction mother liquor, and 25 to 95% of the oxidation reaction mother liquor is used as a recycle mother liquor. When the catalyst component is recovered from the purge mother liquor by purging the remaining oxidation reaction mother liquor out of the system as a purge mother liquor through circulation in the liquid phase oxidation reaction system,
(I) an adsorption step of contacting the purge mother liquor with a pyridine ring-containing chelate resin to adsorb heavy metal ions and bromide ions derived from the catalyst;
(II) An elution step in which a recovered catalyst solution (A) is obtained by bringing the hydrated acetic acid or water into contact with the pyridine ring-containing chelate resin adsorbing the catalyst component in step (I) to elute the heavy metal ions and bromide ions. Switch by formula,
(III) The recovered catalyst solution (A) is retained in the recovered catalyst solution tank for 1.5 to 6 hours, and the recovered catalyst solution (B) from the recovered catalyst solution tank is mixed with the recycle mother liquor in the catalyst preparation tank, Having a step of circulating to the liquid phase oxidation reaction system,
Measure the cobalt ion concentration and water concentration, manganese ion and bromide ion concentration of the recovered catalyst solution (B) with an infrared analyzer and a fully automatic titrator connected online at the following (i) or (ii) A process for producing an aromatic carboxylic acid characterized by comprising:

(i) A part of the closed pipe that is pulled out from the pipe connected to the lower part of the recovered catalyst tank and returned to the catalyst recovery tank
(ii) Part of piping connected from the recovered catalyst tank to the catalyst preparation tank

(2)
The recovered catalyst solution (A) from step (II) and a part or all of the recycled mother liquor are previously mixed in the recovered catalyst solution tank, and the catalyst mixture solution (C) obtained by mixing is mixed for 1.5 to 6 hours. Fully automatic titrator with on-line connection of manganese ion and bromide ion concentration by analyzing the concentration of cobalt ion in the catalyst mixture (C) with an infrared analyzer connected online to the catalyst solution tank The method for producing an aromatic carboxylic acid according to (1), wherein the concentration is analyzed by and introduced into the catalyst preparation tank.
(3)
Concentration of cobalt ion, manganese ion and bromide ion A catalyst solution containing cobalt ion or manganese ion and / or bromide ion in a known catalyst recovery solution (B) or catalyst mixture (C) The method for producing aromatic carboxylic acid according to (1) or (2), comprising a step of replenishing accordingly (4)
When the recovered catalyst solution (B) from step (III) is returned to the catalyst preparation tank, the coefficient of variation of each concentration of cobalt ion, manganese ion and bromide ion at the catalyst preparation tank outlet is 5% or less (1 )-(3) The manufacturing method of aromatic carboxylic acid in any one of.
(5)
Aromatic carboxylic acids are benzoic acid, phthalic acid, isophthalic acid, metatoluic acid, trimesic acid, 3,5-dimethylbenzoic acid, trimellitic acid, pyromellitic acid, 1,5-naphthalenedicarboxylic acid and 2,6-naphthalene The method for producing an aromatic carboxylic acid according to any one of (1) to (4), which is at least one selected from dicarboxylic acids.
(6)
The method for producing an aromatic carboxylic acid according to any one of (1) to (4), wherein the aromatic carboxylic acid is isophthalic acid or 2,6-naphthalenedicarboxylic acid.

本発明においては、ピリジン環含有キレート樹脂塔から溶出した回収触媒液を受け入れる回収触媒液槽を設け、該回収触媒液槽に一定量の回収触媒液を貯め、滞留した回収触媒液を連続的に触媒調合槽に戻す際に、回収触媒液槽での滞留時間を十分に取り、さらに回収触媒槽における触媒濃度及び水分濃度を予め計測しておく事により、該キレート樹脂塔から溶出した時点でのバッチプロセスによる触媒成分の濃度変動を緩和し、触媒調合槽出口における濃度変動を小さく抑え、液相酸化反応に影響を及ぼさないようにすることができ、簡易な方法で安定した品質の芳香族カルボン酸を得ることができる。
従って、本発明によれば、保守・管理に手間のかかる分析装置を用いずに、簡便な操作で、安定した品質のテレフタル酸を除く芳香族カルボン酸を、効率良く製造することができる。
In the present invention, a recovered catalyst liquid tank is provided for receiving the recovered catalyst liquid eluted from the pyridine ring-containing chelate resin tower, a certain amount of recovered catalyst liquid is stored in the recovered catalyst liquid tank, and the retained recovered catalyst liquid is continuously added. When returning to the catalyst preparation tank, sufficient residence time in the recovered catalyst tank is taken, and by further measuring the catalyst concentration and moisture concentration in the recovered catalyst tank in advance, The concentration variation of the catalyst component due to the batch process is mitigated, the concentration variation at the catalyst preparation tank outlet is kept small, and it does not affect the liquid phase oxidation reaction. An acid can be obtained.
Therefore, according to the present invention, it is possible to efficiently produce an aromatic carboxylic acid excluding terephthalic acid having a stable quality by a simple operation without using an analyzer that requires labor and maintenance.

本発明は、低級脂肪族カルボン酸を含む溶媒中、重金属化合物及び臭素化合物からなる触媒の存在下、分子状酸素含有ガスを用いてアルキル基含有芳香族炭化水素を液相酸化してテレフタル酸を除く芳香族カルボン酸を製造する方法に関するものである。
該アルキル基含有芳香族炭化水素は、少なくとも一つのアルキル基が芳香環に置換した化合物であればよく、芳香族性環は、芳香族性炭化水素環、芳香族性複素環のいずれであっても良い。アルキル基としてはメチル基、エチル基、イソプロピル基及びヒドロキシメチル基等が挙げられるが、メチル基好ましい。又、アルキル基以外にホルミル基を用いることもできる。
アルキル基含有芳香族炭化水素の具体的な例としては、トルエン、オルソキシレン、メタキシレン、1,3,5−トリメチルベンゼン、1,2,4−トリメチルベンゼン、1,2,4,5−テトラメチルベンゼン、2,4−ジメチルベンズアルデヒド、3,4−ジメチルベンズアルデヒド、2,4,5−トリメチルベンズアルデヒド、1,5−ジメチルナフタレン、2,6−ジメチルナフタレン等を挙げることができる。
In the present invention, terephthalic acid is obtained by liquid phase oxidation of an alkyl group-containing aromatic hydrocarbon using a molecular oxygen-containing gas in the presence of a catalyst comprising a heavy metal compound and a bromine compound in a solvent containing a lower aliphatic carboxylic acid. The present invention relates to a method for producing an aromatic carboxylic acid.
The alkyl group-containing aromatic hydrocarbon may be a compound in which at least one alkyl group is substituted with an aromatic ring, and the aromatic ring is either an aromatic hydrocarbon ring or an aromatic heterocyclic ring. Also good. Examples of the alkyl group include a methyl group, an ethyl group, an isopropyl group, and a hydroxymethyl group, and a methyl group is preferable. In addition to the alkyl group, a formyl group can also be used.
Specific examples of the alkyl group-containing aromatic hydrocarbon include toluene, orthoxylene, metaxylene, 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene, 1,2,4,5-tetra Examples thereof include methylbenzene, 2,4-dimethylbenzaldehyde, 3,4-dimethylbenzaldehyde, 2,4,5-trimethylbenzaldehyde, 1,5-dimethylnaphthalene, 2,6-dimethylnaphthalene and the like.

該アルキル基含有芳香族炭化水素を液相酸化して得られる芳香族カルボン酸の具体的な例としては、安息香酸、フタル酸、イソフタル酸、メタトルイル酸、トリメシン酸、3,5−ジメチル安息香酸、トリメリット酸、ピロメリット酸、1,5−ナフタレンジカルボン酸、2,6−ナフタレンジカルボン酸等を挙げることができる。特にイソフタル酸及び2,6−ナフタレンジカルボン酸が好ましい。   Specific examples of the aromatic carboxylic acid obtained by liquid phase oxidation of the alkyl group-containing aromatic hydrocarbon include benzoic acid, phthalic acid, isophthalic acid, metatoluic acid, trimesic acid, and 3,5-dimethylbenzoic acid. , Trimellitic acid, pyromellitic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and the like. Isophthalic acid and 2,6-naphthalenedicarboxylic acid are particularly preferable.

液相酸化に溶媒に用いられる低級脂肪族カルボン酸を含む溶媒としては水分1〜15質量%の含水酢酸が好ましく、水分3〜13質量%の含水酢酸がより好ましい。
液相酸化反応において、重金属化合物及び臭素化合物が触媒として用いられる。重金属化合物にはコバルト化合物及びマンガン化合物の少なくとも一種が含まれ、必要に応じて更にニッケル化合物、セリウム化合物、ジルコニウム化合物などが含まれる。これらのコバルト化合物、マンガン化合物及びその他の重金属化合物としては、各々その有機酸塩、水酸化物、ハロゲン化物、炭酸塩などが例示されるが、特に酢酸塩及び臭化物が好適に用いられる。
As a solvent containing a lower aliphatic carboxylic acid used as a solvent for liquid phase oxidation, water-containing acetic acid having a water content of 1 to 15% by mass is preferable, and water-containing acetic acid having a water content of 3 to 13% by mass is more preferable.
In the liquid phase oxidation reaction, a heavy metal compound and a bromine compound are used as catalysts. The heavy metal compound includes at least one of a cobalt compound and a manganese compound, and further includes a nickel compound, a cerium compound, a zirconium compound, and the like as necessary. Examples of these cobalt compounds, manganese compounds and other heavy metal compounds include organic acid salts, hydroxides, halides, carbonates, etc., and acetates and bromides are particularly preferably used.

液相酸化触媒の臭素化合物としては、反応系で溶解し、臭化物イオンを発生するものであればいかなるものでもよく、臭化水素、臭化ナトリウム、臭化コバルトなどの無機臭素化合物、及びブロモ酢酸、テトラブロムエタンなどの有機臭素化合物が例示され、特に臭化水素(臭化水素酸を含む)、臭化コバルトまたは臭化マンガンが好適に用いられる。   The bromine compound for the liquid phase oxidation catalyst may be any bromine compound that dissolves in the reaction system and generates bromide ions, such as inorganic bromine compounds such as hydrogen bromide, sodium bromide, cobalt bromide, and bromoacetic acid. An organic bromine compound such as tetrabromoethane is exemplified, and hydrogen bromide (including hydrobromic acid), cobalt bromide or manganese bromide is particularly preferably used.

触媒調合槽は、溶媒である低級脂肪族カルボン酸、液相酸化原料であるアルキル基含有芳香族炭化水素、触媒である重金属化合物及び臭素化合物を混合する槽であり、触媒調合槽内における内液の均一化を図るために、内液を混合する攪拌機を備えていることが好ましい。ここで均一に調合された混合液(フィードミックスと呼ぶ)は連続的に液相酸化反応器に送液され、酸化剤として用いられる分子状酸素含有ガスと接触することにより液相酸化反応が行われる。
この触媒調合槽に供給される溶媒及び触媒としてリサイクル母液を使用することが好ましい。そしてマテリアルバランス上不足する溶媒や触媒は新規供給分として補給される。
The catalyst preparation tank is a tank for mixing a lower aliphatic carboxylic acid as a solvent, an alkyl group-containing aromatic hydrocarbon as a liquid phase oxidation raw material, a heavy metal compound and a bromine compound as a catalyst, and an internal liquid in the catalyst preparation tank. It is preferable to provide a stirrer that mixes the internal liquid in order to achieve uniformization. Here, the uniformly mixed liquid (referred to as a feed mix) is continuously sent to the liquid phase oxidation reactor, and the liquid phase oxidation reaction is carried out by contact with the molecular oxygen-containing gas used as the oxidizing agent. Is called.
It is preferable to use a recycled mother liquor as the solvent and catalyst supplied to the catalyst preparation tank. Solvents and catalysts that are insufficient in terms of material balance are replenished as new supplies.

液相酸化の温度は160〜230℃、好ましくは180〜210℃の範囲である。反応温度を160℃以上とすることにより反応中間体が多量に生成スラリー中に残存することがなく、230℃以下とすることにより溶媒である低級脂肪族カルボン酸の燃焼損失が小さくなる。
液相酸化における酸化反応器の圧力は、反応温度において反応系が液相を保持できる圧力であれば良く、通常0.8〜3.2MPaG、好ましくは1.0〜1.9MPaGである。
液相酸化において酸化剤として用いられる分子状酸素含有ガスとしては、空気、不活性ガス希釈された酸素、または酸素富化空気等が挙げられるが、設備面及びコスト面から通常は空気の使用が好ましい。
The temperature of the liquid phase oxidation is 160 to 230 ° C, preferably 180 to 210 ° C. By setting the reaction temperature to 160 ° C. or higher, a large amount of the reaction intermediate does not remain in the produced slurry, and by setting it to 230 ° C. or lower, the combustion loss of the lower aliphatic carboxylic acid as the solvent is reduced.
The pressure of the oxidation reactor in the liquid phase oxidation is not particularly limited as long as the reaction system can maintain the liquid phase at the reaction temperature, and is usually 0.8 to 3.2 MPaG, preferably 1.0 to 1.9 MPaG.
Examples of the molecular oxygen-containing gas used as an oxidant in liquid phase oxidation include air, oxygen diluted with an inert gas, or oxygen-enriched air. However, in terms of equipment and cost, air is usually used. preferable.

酸化反応器で生成した粗芳香族カルボン酸結晶を含む酸化反応スラリーは、好ましくは直列に連結された次の酸化反応器へ送られて、更に酸素含有ガスによって仕上げの後酸化反応を経た後、必要に応じて直列に連結された2段以上の晶析槽を経由して落圧、冷却されて連続的多段階晶析が行われ、次の固液分離工程へ送られる。晶析槽の段数は2〜3段とすることが好ましい。   The oxidation reaction slurry containing the crude aromatic carboxylic acid crystals produced in the oxidation reactor is preferably sent to the next oxidation reactor connected in series, and after finishing with an oxygen-containing gas, and after undergoing an oxidation reaction, If necessary, the pressure is lowered and cooled through two or more crystallization tanks connected in series, and continuous multi-stage crystallization is performed, and the resultant is sent to the next solid-liquid separation step. The number of stages of the crystallization tank is preferably 2 to 3 stages.

例えば商業規模の装置によりイソフタル酸を製造する場合、含水酢酸中でメタキシレンを酢酸コバルト、酢酸マンガン、臭化水素酸の存在下、空気により反応温度200℃、反応圧力1.6MPaで液相酸化して粗イソフタル酸スラリー(イソフタル酸濃度33質量%、分散媒である含水酢酸の水分濃度14質量%)を得、直列に連結された晶析槽へ導いて順次落圧、冷却した後、固液分離工程に送られる。   For example, when isophthalic acid is produced by a commercial scale apparatus, liquid phase oxidation of metaxylene in hydrous acetic acid in the presence of cobalt acetate, manganese acetate and hydrobromic acid at a reaction temperature of 200 ° C. and a reaction pressure of 1.6 MPa. Thus, a crude isophthalic acid slurry (isophthalic acid concentration 33% by mass, water concentration of hydrous acetic acid as dispersion medium 14% by mass) was obtained, led to a crystallization tank connected in series, and gradually dropped and cooled. It is sent to the liquid separation process.

酸化反応スラリーを冷却して芳香族カルボン酸結晶を分離する固液分離工程では、酸化反応で生成した粗芳香族カルボン酸スラリーが固液分離機によって粗芳香族カルボン酸結晶と酸化反応母液に分離される。この固液分離は通常大気圧下で行われるが、加圧下であっても構わない。分離温度に特段の制約はないが、通常は大気圧下における溶媒の沸点より低い温度、例えば50〜115℃の範囲で行われる。加圧下においては分離温度の上限は150℃となる。固液分離機の形式としては遠心分離機、遠心濾過機、真空濾過機などを挙げることができる。   In the solid-liquid separation process in which the oxidation reaction slurry is cooled to separate the aromatic carboxylic acid crystals, the crude aromatic carboxylic acid slurry generated by the oxidation reaction is separated into the crude aromatic carboxylic acid crystals and the oxidation reaction mother liquor by a solid-liquid separator. Is done. This solid-liquid separation is usually performed under atmospheric pressure, but may be under pressure. Although there is no special restriction | limiting in separation temperature, Usually, it is performed in the temperature lower than the boiling point of the solvent under atmospheric pressure, for example, the range of 50-115 degreeC. Under pressure, the upper limit of the separation temperature is 150 ° C. Examples of the solid-liquid separator include a centrifuge, a centrifugal filter, and a vacuum filter.

粗芳香族カルボン酸結晶を分離した後の酸化反応母液には、触媒由来の重金属イオン及び臭化物イオンなどの有用な触媒成分が含まれており、酸化反応母液の25〜95%、好ましくは30〜90%がリサイクル母液として液相酸化反応系へ循環使用されるが、残りの酸化反応母液(パージ母液)は、液相酸化反応に影響を与える反応副生物や装置由来の腐食金属の濃縮を避けるために系外に排出される。該パージ母液には溶媒である酢酸が含まれているので、通常は酢酸を回収する工程に送られる。
しかし、この該パージ母液中には有用な触媒成分も含まれており、本発明では工程(I)で、ピリジン環含有キレート樹脂と接触させ、触媒に由来する重金属イオン及び臭化物イオンを吸着し、触媒成分の回収を行う。
The oxidation reaction mother liquor after separating the crude aromatic carboxylic acid crystals contains useful catalyst components such as catalyst-derived heavy metal ions and bromide ions, and is 25 to 95%, preferably 30 to 30% of the oxidation reaction mother liquor. 90% is recycled to the liquid phase oxidation reaction system as a recycled mother liquor, but the remaining oxidation reaction mother liquor (purge mother liquor) avoids the concentration of reaction by-products that affect the liquid phase oxidation reaction and corrosion metals from the equipment. Therefore, it is discharged out of the system. Since the purge mother liquor contains acetic acid as a solvent, it is usually sent to a step of recovering acetic acid.
However, the purge mother liquor also contains a useful catalyst component, and in the present invention, in step (I), it is brought into contact with a pyridine ring-containing chelate resin to adsorb heavy metal ions and bromide ions derived from the catalyst, The catalyst component is recovered.

ここで、本発明で使用するピリジン環含有キレート樹脂とは、4−ビニルピリジンとジビニルベンゼンを主たる原料として重合して得られる、ピリジン環を有する陰イオン交換型のキレート樹脂のことである。また、キレート樹脂は、一般的に、金属イオンに配位して錯体を形成する配位子を持ち、水に不溶性の高分子基体であり、特定の金属イオンを選択的に吸着分離する機能を有するものであり、特にピリジン環を含有することで、重金属イオンを効率良く吸着するという利点を有する。このようなピリジン環含有キレート樹脂は市販されているものを使用してもよく、市販品としては、例えば「REILLEX(登録商標)425Polymer」(商品名、Vertellus社製)、「スミキレート(登録商標)CR−2」(商品名、住友ケムテックス株式会社製)等が挙げられる。   Here, the pyridine ring-containing chelate resin used in the present invention is an anion exchange type chelate resin having a pyridine ring, which is obtained by polymerization using 4-vinylpyridine and divinylbenzene as main raw materials. Chelate resins generally have a ligand that coordinates to metal ions to form a complex, are insoluble in water, and have a function of selectively adsorbing and separating specific metal ions. In particular, the inclusion of a pyridine ring has the advantage of efficiently adsorbing heavy metal ions. Such a pyridine ring-containing chelate resin may be a commercially available product. Examples of commercially available products include “REILLEX (registered trademark) 425 Polymer” (trade name, manufactured by Vertellus), “Sumichelate (registered trademark)”. CR-2 "(trade name, manufactured by Sumitomo Chemtex Co., Ltd.) and the like.

このキレート樹脂を用いる方法は、主に吸着工程と溶離工程からなる。吸着工程はパージ母液をピリジン環含有キレート樹脂に接触させて触媒由来のコバルトイオン、マンガンイオンなどの重金属イオン及び臭化物イオンを吸着させる工程であり、溶離工程は該キレート樹脂に吸着した触媒成分を含水酢酸又は水を用いて溶離させる工程である。この吸着工程と溶離工程を繰り返すことにより、パージ母液中の触媒成分を回収することができる。
吸着工程と溶離工程における液と樹脂の接触は、液とキレート樹脂を同時に容器中に入れて吸着操作と溶離操作を行うバッチ方式、もしくは該キレート樹脂を塔に充填して液を供給する連続流通方式で行なわれる。ただし、系外にパージされるパージ母液は液相酸化反応工程から連続的に排出されるので、パージ母液と該キレート樹脂との接触は連続流通方式であることが好ましい。
This method using a chelate resin mainly comprises an adsorption step and an elution step. The adsorption step is a step in which the purge mother liquor is brought into contact with a pyridine ring-containing chelate resin to adsorb heavy metal ions such as cobalt ions and manganese ions and bromide ions, and the elution step contains the catalyst components adsorbed on the chelate resin. Elution with acetic acid or water. By repeating this adsorption step and elution step, the catalyst component in the purge mother liquor can be recovered.
The contact between the liquid and the resin in the adsorption process and the elution process is a batch system in which the liquid and the chelate resin are placed in a container at the same time to perform the adsorption operation and the elution operation, or continuous circulation in which the chelate resin is packed in the tower and the liquid is supplied. Done in a manner. However, since the purge mother liquor purged out of the system is continuously discharged from the liquid phase oxidation reaction step, the contact between the purge mother liquor and the chelate resin is preferably a continuous flow system.

連続流通方式は、複数のピリジン環含有キレート樹脂塔を用い、吸着工程と溶離工程を切り替えながら触媒成分を回収する方法であり、例えば2塔(仮にA塔とB塔と呼ぶ)の場合は、A塔が吸着工程の時はB塔が溶離工程であり、A塔に触媒成分が十分に吸着されたら(吸着容量を超えて破過する前に)塔を切り替えてA塔が溶離工程、B塔が吸着工程となる。
ピリジン環含有キレート樹脂は吸着成分の溶離が比較的簡単であり、吸着と溶離に要する時間の関係は(1)式のようになる。

吸着工程時間≧溶離工程時間 (1)

よってパージ母液の吸着処理はA塔、B塔を切り替えながら連続的に行うことができる。
吸着時のパージ母液の供給速度は、空間速度(SV)で1.0〜10.0[1/hr]が好ましい。吸着工程時間は、ピリジン環含有キレート樹脂が破過する前であれば良く、1.0〜6.0[hr]が好ましい。また、溶離時の溶離液の供給速度は、空間速度(SV)で1.0〜10.0[1/hr]が好ましく、溶離工程時間は(1)式を満たしつつ、0.5〜6.0[hr]が好ましい。
The continuous flow system is a method of using a plurality of pyridine ring-containing chelate resin towers and recovering catalyst components while switching between the adsorption process and the elution process. For example, in the case of 2 towers (referred to as A tower and B tower), When Tower A is in the adsorption step, Tower B is in the elution step, and when the catalyst component is sufficiently adsorbed in Tower A (before the breakthrough exceeds the adsorption capacity), the Tower A is switched and the Tower A is eluted. The tower becomes the adsorption process.
The elution of the adsorbing component is relatively simple with the pyridine ring-containing chelate resin, and the relationship between the adsorption and the time required for the elution is expressed by equation (1).

Adsorption process time ≥ Elution process time (1)

Therefore, the adsorption treatment of the purge mother liquid can be performed continuously while switching between the A tower and the B tower.
The supply rate of the purge mother liquid at the time of adsorption is preferably 1.0 to 10.0 [1 / hr] in space velocity (SV). The adsorption process time may be before the pyridine ring-containing chelate resin breaks through, and is preferably 1.0 to 6.0 [hr]. In addition, the supply rate of the eluent during elution is preferably 1.0 to 10.0 [1 / hr] in space velocity (SV), and the elution step time satisfies 0.5 to 6 while satisfying the formula (1). 0.0 [hr] is preferable.

ピリジン環含有キレート樹脂とパージ母液を接触させてパージ母液中に含まれる触媒成分(コバルトイオン、マンガンイオン、臭化物イオンなど)を該キレート樹脂に吸着させる際に、パージ母液のブロム比(パージ母液中の臭化物イオンの物質量/パージ母液中のコバルトイオンとマンガンイオンの合計物質量)を調整することが好ましい。これはブロム比が高い方が、コバルトイオンとマンガンイオンの吸着率が高く、且つ反応副生物であるカルボン酸類の吸着率が低下する傾向にあるためである。このブロム比としては、0.7〜3.5が好ましく、0.9〜3.0がさらに好ましい。特に吸着工程でパージ母液のブロム比を高くしておくことで、反応副生物であるカルボン酸類とコバルトイオン、マンガンイオン及び臭化物イオンからなる触媒成分との分離を効率良く行なうことができる。ブロム比の調整方法としては、パージ母液に、例えば臭化水素酸等の、前記臭素化合物の水溶液をブロム源として添加する方法を挙げることができる。   When the catalyst component (cobalt ion, manganese ion, bromide ion, etc.) contained in the purge mother liquor is brought into contact with the pyridine ring-containing chelate resin and the purge mother liquor, the bromine ratio of the purge mother liquor (in the purge mother liquor) It is preferable to adjust the amount of bromide ions of the total amount of cobalt ions and manganese ions in the purge mother liquor). This is because the higher the bromide ratio, the higher the adsorption rate of cobalt ions and manganese ions, and the lower the adsorption rate of carboxylic acids as reaction by-products. The bromine ratio is preferably 0.7 to 3.5, more preferably 0.9 to 3.0. In particular, by increasing the bromine ratio of the purge mother liquor in the adsorption step, it is possible to efficiently separate the carboxylic acids as reaction by-products from the catalyst components composed of cobalt ions, manganese ions, and bromide ions. Examples of the method for adjusting the bromide ratio include a method in which an aqueous solution of the bromine compound such as hydrobromic acid is added as a bromide source to the purge mother liquor.

キレート樹脂を用いる触媒回収方法の溶離工程では、溶離液を供給しているキレート樹脂塔からの流出液を回収することになるが、流出液中に常に樹脂から溶出する触媒成分があるわけではなく、触媒成分が含まれる部分のみを回収触媒液として回収触媒液槽に送るようにする必要がある。これは水分濃度の高い溶離液由来の水分をできるだけ回収せず、水分を酸化反応系に持ち込まないためである。また、樹脂からの触媒成分の溶出はピークを持ったパターンを持ち、溶出中の触媒成分濃度は刻々と変動しており、有効な触媒成分を回収することが重要である。   In the elution step of the catalyst recovery method using a chelate resin, the effluent from the chelate resin tower supplying the eluent is recovered, but the effluent does not always have a catalyst component that elutes from the resin. It is necessary to send only the portion containing the catalyst component to the recovered catalyst solution tank as the recovered catalyst solution. This is because water derived from the eluent having a high water concentration is not collected as much as possible, and water is not brought into the oxidation reaction system. Moreover, the elution of the catalyst component from the resin has a pattern with a peak, and the concentration of the catalyst component during the elution is constantly changing, and it is important to recover an effective catalyst component.

本発明において、工程(I)が吸着工程に相当し、酸化反応母液の残りをピリジン環含有キレート樹脂と接触させ、触媒に由来する重金属イオン及び臭化物イオンを吸着する。また、工程(II)が前記の溶離工程に相当し、溶離液として含水酢酸又は水を使用する。
また、このようなキレート樹脂塔を用いる触媒回収方法では、吸着工程の後、副生カルボン酸を回収する回収工程が設けることが好ましい。
即ち、前記吸着工程を経た後のピリジン環含有キレート樹脂に水分濃度1〜15質量%、好ましくは水分濃度1〜14質量%、より好ましくは水分濃度1〜9質量%の含水酢酸を接触させて副生カルボン酸混合物を選択的に溶離する回収工程を経た後、含水酢酸又は水を接触させて触媒由来の重金属イオン及び臭化物イオンを回収する溶離工程を経るようにすることが好ましい。工程(II)の溶離工程の前に回収工程を有することにより、ピリジン環含有キレート樹脂に他の有機不純物や金属不純物が殆ど吸着していないため、溶離液として水分濃度20質量%以上の含水酢酸、好ましくは水分濃度20〜70質量%、より好ましくは水分濃度25〜50質量%の含水酢酸をピリジン環含有キレート樹脂に接触させることによって、そのまま液相酸化反応に再使用可能な重金属イオン及び臭化物イオンなどを含有する含水酢酸、即ち「回収触媒液(A)」が得られる。
In the present invention, step (I) corresponds to an adsorption step, and the remainder of the oxidation reaction mother liquor is brought into contact with a pyridine ring-containing chelate resin to adsorb heavy metal ions and bromide ions derived from the catalyst. Step (II) corresponds to the elution step described above, and hydrous acetic acid or water is used as the eluent.
Moreover, in the catalyst recovery method using such a chelate resin tower, it is preferable to provide a recovery step of recovering byproduct carboxylic acid after the adsorption step.
That is, hydrated acetic acid having a water concentration of 1 to 15% by weight, preferably 1 to 14% by weight, more preferably 1 to 9% by weight, is brought into contact with the pyridine ring-containing chelate resin after the adsorption step. It is preferable that after a recovery step of selectively eluting the by-product carboxylic acid mixture, an elution step of recovering heavy metal ions and bromide ions derived from the catalyst by contacting with hydrous acetic acid or water is preferable. By having a recovery step before the elution step of step (II), other organic impurities and metal impurities are hardly adsorbed on the pyridine ring-containing chelate resin, so hydrous acetic acid having a water concentration of 20% by mass or more as an eluent. The heavy metal ions and bromides that can be reused in the liquid phase oxidation reaction by contacting hydrous acetic acid having a water concentration of 20 to 70% by mass, more preferably 25 to 50% by mass with a pyridine ring-containing chelate resin. Hydrous acetic acid containing ions or the like, that is, “recovered catalyst solution (A)” is obtained.

また、上記溶離工程を経たピリジン環含有キレート樹脂に、触媒成分の吸着効率の観点から、置換工程を設け、水分濃度1〜15質量%、好ましくは水分濃度1〜14質量%、より好ましくは水分濃度1〜9質量%の含水酢酸を置換液として接触させ、ピリジン環含有キレート樹脂を再生することが好ましい。こうして再生されるピリジン環含有キレート樹脂が吸着工程に再使用できる。
このような置換工程により、キレート樹脂の周りに存在する含水酢酸の水分濃度を置換液の水分濃度まで下げて、次の吸着工程にて重金属イオン及び臭化物イオンが速やかに吸着される状態になる。一方、該置換工程を設けない場合、溶離工程の直後は該キレート樹脂層の周りが高い水分濃度の含水酢酸で覆われているため、吸着工程における母液との接触初期において、触媒成分の吸着効率が悪くなり、触媒成分の回収率が低下し、経済的に不利となる。
さらにピリジン環含有キレート樹脂に重金属イオン及び臭化物イオンを吸着し易くするため、置換液としては水分濃度が1〜15質量%であり且つ臭化物イオンを1〜1000質量ppm含む含水酢酸を用いることがより好ましい。
なお、吸着工程で得られる母液残液、回収工程で得られる回収液及び上記の置換工程で使用した置換液から水を留去する際に蒸留塔のボトムから得られる回収酢酸(水分濃度4〜12質量%、臭化物イオン濃度1〜50質量ppm)を、置換液として用いることもできる。
Moreover, from the viewpoint of the adsorption efficiency of the catalyst component, the pyridine ring-containing chelate resin that has undergone the elution step is provided with a substitution step, and has a moisture concentration of 1 to 15% by mass, preferably a moisture concentration of 1 to 14% by mass, more preferably moisture. It is preferable to regenerate the pyridine ring-containing chelate resin by contacting hydrous acetic acid having a concentration of 1 to 9% by mass as a replacement liquid. The regenerated pyridine ring-containing chelate resin can be reused in the adsorption step.
By such a substitution step, the water concentration of the hydrous acetic acid present around the chelate resin is lowered to the moisture concentration of the substitution solution, and the heavy metal ions and bromide ions are quickly adsorbed in the next adsorption step. On the other hand, when the replacement step is not provided, immediately after the elution step, the periphery of the chelate resin layer is covered with hydrous acetic acid having a high water concentration, so that the adsorption efficiency of the catalyst component at the initial contact with the mother liquor in the adsorption step Becomes worse, the recovery rate of the catalyst component is lowered, which is economically disadvantageous.
Furthermore, in order to make it easy to adsorb heavy metal ions and bromide ions to the pyridine ring-containing chelate resin, it is more preferable to use hydrous acetic acid having a water concentration of 1 to 15% by mass and containing bromide ions of 1 to 1000 mass ppm as the replacement liquid. preferable.
In addition, the recovered acetic acid (moisture concentration of 4 to 4) obtained from the bottom of the distillation tower when water is distilled off from the mother liquor residual liquid obtained in the adsorption process, the recovered liquid obtained in the recovery process, and the replacement liquid used in the above replacement process. 12 mass%, bromide ion concentration 1-50 mass ppm) can also be used as a replacement liquid.

本発明は工程(III)で、触媒成分の濃度変動を小さくするため、該樹脂塔から流出する回収触媒液(A)を回収触媒液槽に一旦貯め、一定の滞留時間を保った後に触媒調合槽を経て液相酸化反応系に戻すものである。
回収触媒液槽の有効容積をV[m]、回収触媒液(A)の流量をQ[m/hr]とすると、回収触媒液槽における滞留時間T[hr]は(2)式のように定義される。

滞留時間:T=V/Q (2)

本発明での回収触媒液槽における回収触媒液の滞留時間は1.5〜6時間であり、好ましくは1.5〜4時間である。滞留時間を1.5時間以上とすることにより触媒成分の濃度変動を緩和し、触媒調合槽出口における濃度変動を小さく抑えことができる。
In the step (III) of the present invention, in order to reduce the concentration fluctuation of the catalyst component, the recovered catalyst liquid (A) flowing out from the resin tower is temporarily stored in the recovered catalyst liquid tank, and after maintaining a certain residence time, the catalyst preparation is performed. It returns to the liquid phase oxidation reaction system through the tank.
When the effective volume of the recovered catalyst solution tank is V [m 3 ] and the flow rate of the recovered catalyst solution (A) is Q [m 3 / hr], the residence time T [hr] in the recovered catalyst solution tank is expressed by the equation (2). Is defined as

Residence time: T = V / Q (2)

The residence time of the recovered catalyst solution in the recovered catalyst solution tank in the present invention is 1.5 to 6 hours, preferably 1.5 to 4 hours. By setting the residence time to 1.5 hours or more, the concentration fluctuation of the catalyst component can be reduced, and the concentration fluctuation at the catalyst preparation tank outlet can be suppressed to a small level.

溶離工程における該キレート樹脂塔からの流出液は、触媒成分が溶出している時は回収触媒液槽に送液されるが、前記の回収工程や置換工程などで触媒成分が溶出していない時の流出液は別に設置したパージ液槽に送液され、必要に応じて溶媒や副生カルボン酸の回収が行われる。また、触媒成分が溶出している時もその濃度は変動しているので本発明により回収触媒液槽を設置して一定の滞留時間とすることにより濃度変動を緩和する。
回収触媒液槽から液相酸化の触媒調合槽に送液される回収触媒液(B)は、液相酸化における触媒成分を安定化させるために一定量で連続的に液相酸化系に供給することが必要である。滞留時間を長くするには回収触媒液槽の有効容積を大きくする必要があり、これは設備投資額の増大につながるために限界がある。回収触媒液(B)の濃度変動を小さくするためには、ある程度の滞留時間を取ることが必要であり、これらのことを勘案すると、回収触媒液槽の滞留時間は1.5〜6時間の範囲が好ましい。
The effluent from the chelate resin tower in the elution step is sent to the recovered catalyst solution tank when the catalyst component is eluted, but when the catalyst component is not eluted in the recovery step or the replacement step. The effluent is sent to a separately installed purge solution tank, and the solvent and by-product carboxylic acid are recovered as necessary. Further, since the concentration of the catalyst component is also eluted, the concentration variation is mitigated by installing a recovered catalyst solution tank and setting a certain residence time according to the present invention.
The recovered catalyst solution (B) sent from the recovered catalyst solution tank to the catalyst preparation tank for liquid phase oxidation is continuously supplied in a constant amount to the liquid phase oxidation system in order to stabilize the catalyst components in the liquid phase oxidation. It is necessary. In order to lengthen the residence time, it is necessary to increase the effective volume of the recovered catalyst liquid tank, which is limited because it leads to an increase in the amount of capital investment. In order to reduce the concentration fluctuation of the recovered catalyst liquid (B), it is necessary to take a certain residence time. Taking these into consideration, the residence time of the recovered catalyst liquid tank is 1.5 to 6 hours. A range is preferred.

溶離工程において該キレート樹脂塔より流出する回収触媒液(A)は、回収触媒液槽に送液され、所定の滞留時間を経てから濃度変動を抑えた回収触媒液(B)として液相酸化の触媒調合槽にリサイクルされる。滞留時間の調節は回収触媒液槽の液面の上げ下げにて行う。回収触媒液槽内における触媒組成の均一化を図るために、内液を混合する攪拌機を備えていることが好ましい。   The recovered catalyst solution (A) flowing out from the chelate resin tower in the elution step is sent to the recovered catalyst solution tank, and after a predetermined residence time, the recovered catalyst solution (B) with reduced concentration fluctuations is subjected to liquid phase oxidation. Recycled to catalyst preparation tank. The residence time is adjusted by raising and lowering the liquid level of the recovered catalyst tank. In order to make the catalyst composition uniform in the recovered catalyst liquid tank, it is preferable to have a stirrer that mixes the internal liquid.

回収触媒液(B)は通常は触媒調合槽に直接リサイクルされるが、リサイクル母液と予め混合して触媒調合槽にリサイクルすることも可能である。リサイクル母液と予め混合するとは、リサイクル母液が循環している配管に回収触媒液(B)を添加することであり、そのまま添加しても良いし、スタティックミキサー等の混合器を用いることも行われる。回収触媒液(B)をリサイクル母液と混合することにより触媒成分の濃度変動の振れ幅が小さくなり、触媒調合槽に戻した時の戻し口近傍での濃度変動を抑えることができる。   The recovered catalyst solution (B) is usually recycled directly to the catalyst preparation tank, but it can also be mixed with the recycle mother liquor in advance and recycled to the catalyst preparation tank. Premixing with the recycled mother liquor means adding the recovered catalyst solution (B) to the pipe through which the recycled mother liquor is circulated, which may be added as it is or using a mixer such as a static mixer. . By mixing the recovered catalyst solution (B) with the recycle mother liquor, the fluctuation range of the concentration fluctuation of the catalyst component is reduced, and the concentration fluctuation in the vicinity of the return port when returned to the catalyst preparation tank can be suppressed.

従来、赤外分光法による分析は、分子振動由来の吸収スペクトルを観測する方法であり、すなわち、有機物分子の官能基分析に有効な分析法であり、分子の吸収スペクトルの無い無機イオンには適用できない分析法と考えられていた。しかし、無機イオンが水溶液系では水和したクラスターとして存在しており、配位している水分子は自由な水と比較し、わずかに振動パターンが異なり、吸収スペクトルに変化が見られる。このわずかな吸収スペクトルの違いを読み取り、無機イオン濃度と水分濃度を同時に計測する赤外分析計が現在市販されており、該赤外分析計は、マンガンイオンが混在している様な芳香族カルボン酸製造の触媒回収プロセスにおける回収触媒液系においても、コバルトイオンを分析する事が可能である。よって、コバルトイオンおよび水分の濃度分析には、同時に計測可能で、さらに他の共存イオンの干渉を受けにくい赤外分光法による分析が好ましく用いられる。
また、水分濃度に関しては、触媒調合槽出口における水分濃度が15質量%以下であることが好ましい。
Conventionally, analysis by infrared spectroscopy is a method for observing absorption spectra derived from molecular vibrations, that is, an effective analysis method for functional groups of organic molecules, and is applicable to inorganic ions without molecular absorption spectra. It was considered an analytical method that could not be done. However, inorganic ions exist as hydrated clusters in aqueous solutions, and the coordinated water molecules have a slightly different vibration pattern and change in the absorption spectrum compared to free water. An infrared analyzer that reads the slight difference in the absorption spectrum and simultaneously measures the inorganic ion concentration and the water concentration is commercially available. The infrared analyzer is an aromatic carboxylate that contains manganese ions. Cobalt ions can also be analyzed in the recovered catalyst solution system in the acid recovery catalyst recovery process. Therefore, for the analysis of cobalt ion and moisture concentration, analysis by infrared spectroscopy that can be simultaneously measured and is less susceptible to interference with other coexisting ions is preferably used.
Regarding the water concentration, the water concentration at the catalyst preparation tank outlet is preferably 15% by mass or less.

本発明でのマンガンイオンおよび臭化物イオンの分析は、オンライン接続された自動滴定装置により、分析することができる。マンガンイオンの滴定法としては、公知の方法を適用すればよく、コバルトイオンの影響を比較的受けにくいホルムアルドキシム吸光光度法で行うのが好ましい。臭化物イオンの滴定は公知の方法で行う事ができ、硝酸銀による電位差滴定で分析するのが好ましい。   The analysis of manganese ions and bromide ions in the present invention can be performed by an on-line automatic titrator. As a titration method for manganese ions, a known method may be applied, and it is preferably performed by a formaldoxime absorptiometric method that is relatively insensitive to cobalt ions. Titration of bromide ions can be performed by a known method, and it is preferable to analyze by potentiometric titration with silver nitrate.

該赤外分析計と自動滴定装置は、回収触媒槽の下部につながれた配管から抜き出し、また触媒回収槽に戻される閉じた配管の一部に、オンライン接続されるのが好ましい。また、回収触媒槽から触媒調合槽につながれた配管の一部に接続される可能性もある。しかし、この場合は、回収触媒槽で所定の滞留時間を経たのち、触媒調合槽に送液するときにオンライン接続された赤外分析計及び自動滴定装置で分析すれば良い。
その一方で触媒調合槽へは、晶析後固液分離したリサイクル母液が直接注入されており、該リサイクル母液は有機不純物が高濃度に溶解し、温度低下により、有機不純物が析出したスラリー溶液状となっているので、触媒調合槽の下部につながれた配管から抜き出し、また触媒調合槽に戻される閉じた配管の一部、もしくは、触媒調合槽から反応器につながれた配管の一部に、赤外分析計及び自動滴定装置がオンライン接続されると、分析セル中で有機不純物の結晶が析出し、分析装置の保守・管理の点から好ましくない。
The infrared analyzer and the automatic titration apparatus are preferably connected on-line to a part of a closed pipe drawn out from a pipe connected to the lower part of the recovery catalyst tank and returned to the catalyst recovery tank. Further, there is a possibility of being connected to a part of the pipe connected from the recovered catalyst tank to the catalyst preparation tank. However, in this case, after passing through a predetermined residence time in the recovered catalyst tank, it may be analyzed with an infrared analyzer and an automatic titrator connected online when the liquid is fed to the catalyst preparation tank.
On the other hand, a recycled mother liquor separated into solid and liquid after crystallization is directly injected into the catalyst preparation tank, and the recycled mother liquor dissolves organic impurities at a high concentration, and a slurry solution in which organic impurities are precipitated due to a decrease in temperature. Therefore, the red pipe is pulled out from the pipe connected to the lower part of the catalyst preparation tank and part of the closed pipe returned to the catalyst preparation tank or the part of the pipe connected to the reactor from the catalyst preparation tank. When the external analyzer and the automatic titration apparatus are connected online, crystals of organic impurities are precipitated in the analysis cell, which is not preferable from the viewpoint of maintenance and management of the analysis apparatus.

触媒回収槽で1.5〜6時間滞留させ、濃度を分析した触媒回収液は、触媒調整槽に戻され、固液分離後の酸化反応母液の25〜95%の直接回収されたリサイクル母液と触媒調合槽で混合される。触媒調整槽で必要に応じて、触媒の補充を行えばよい。補充する必要が無い時は、触媒の補充は行わなくてもよい。   The catalyst recovery liquid which has been retained in the catalyst recovery tank for 1.5 to 6 hours and analyzed for concentration is returned to the catalyst adjustment tank, and 25 to 95% of the recycled mother liquor directly recovered from the oxidation reaction mother liquid after solid-liquid separation It is mixed in the catalyst preparation tank. What is necessary is just to replenish a catalyst as needed in a catalyst adjustment tank. When it is not necessary to replenish, it is not necessary to replenish the catalyst.

回収触媒液の濃度変動に起因する液相酸化反応の状態変動を抑えるためには、濃度変動幅を管理することが必要となる。管理点としては回収触媒液槽や触媒調合槽が好適である。液相酸化反応に直接影響が出やすいという点では触媒調合槽が重要である。ここで実際に管理する触媒成分は重金属イオン及び/または臭化物イオンであり、具体的にはコバルトイオン濃度、マンガンイオン濃度、臭化物イオン濃度を対象として、それらの濃度変動の変動係数で管理することになる。
ここで、変動係数は(3)式のように定義される。

変動係数=(標準偏差/平均値)×100[%] (3)

コバルトイオン濃度、マンガンイオン濃度、臭化物イオン濃度の測定は、回収触媒液槽又は触媒調合槽において通常3回/日以上行い、測定数が15点以上で変動係数を管理することが好ましい。
触媒調合槽出口におけるコバルトイオン、マンガンイオン、臭化物イオンの各濃度の変動係数は全て5.0%以下であることが好ましく、より好ましくは3.0%以下である。
In order to suppress the state fluctuation of the liquid phase oxidation reaction caused by the concentration fluctuation of the recovered catalyst liquid, it is necessary to manage the concentration fluctuation width. As a management point, a recovered catalyst solution tank or a catalyst preparation tank is suitable. A catalyst preparation tank is important in that it directly affects the liquid phase oxidation reaction. The catalyst components actually managed here are heavy metal ions and / or bromide ions. Specifically, for the cobalt ion concentration, manganese ion concentration, and bromide ion concentration, the catalyst components are managed by the variation coefficient of their concentration fluctuations. Become.
Here, the coefficient of variation is defined as in equation (3).

Coefficient of variation = (standard deviation / average value) x 100 [%] (3)

The cobalt ion concentration, manganese ion concentration, and bromide ion concentration are preferably measured 3 times / day or more in the recovered catalyst solution tank or catalyst preparation tank, and the coefficient of variation is preferably managed with 15 or more measurements.
The coefficient of variation of each concentration of cobalt ion, manganese ion, and bromide ion at the catalyst preparation tank outlet is preferably 5.0% or less, and more preferably 3.0% or less.

以下、実施例等により本発明を更に詳細に説明するが、本発明はこれらの例により何ら限定されるものではない。また、以下に実施例で用いた分析法について説明する。   EXAMPLES Hereinafter, although an Example etc. demonstrate this invention further in detail, this invention is not limited at all by these examples. The analysis methods used in the examples are described below.

なお、以下の実施例において、ピリジン環含有キレート樹脂の前処理、回収触媒槽にオンライン接続された赤外分析と自動滴定装置による触媒イオン濃度の測定、および回収触媒槽以外の触媒イオン濃度測定を次のように行った。   In the following examples, pretreatment of pyridine ring-containing chelate resin, measurement of catalyst ion concentration by infrared analysis and automatic titration device connected online to the recovery catalyst tank, and measurement of catalyst ion concentration other than the recovery catalyst tank It went as follows.

<ピリジン環含有キレート樹脂の前処理>
ピリジン環含有キレート樹脂〔「REILLEX(登録商標)425Polymer」:商品名、Vertellus社製〕にHBr含有量が1.2質量%である臭化水素酸水溶液を通液させて該キレート樹脂を水溶媒(Br形)とし、次いで含水率が7.0質量%である酢酸溶媒を通液させて該キレート樹脂を酢酸溶媒(Br形)とした。
<Pretreatment of pyridine ring-containing chelate resin>
An aqueous solution of hydrobromic acid having a HBr content of 1.2% by mass is passed through a pyridine ring-containing chelate resin ["REILLEX (registered trademark) 425 Polymer": trade name, manufactured by Vertellus] to pass the chelate resin in an aqueous solvent. (Br - form), and then the water content is passed through the acetic acid solvent is 7.0% by weight the chelate resin acetic acid solvent - was (Br shape).

<オンライン接続赤外分析および自動滴定装置による測定>
回収触媒槽の下部につながれた配管からポンプを介して触媒回収槽に戻される閉じた配管の一部に、赤外分析計及び自動滴定装置をオンライン接続し、触媒回収槽内の触媒濃度を計測した。赤外分光計は、クラボウ社製 Waterlyzer 耐圧防爆型液体成分濃度計RD−701B型を使用して、コバルトイオンおよび水分濃度を計測した。自動滴定装置は、平沼産業株式会社製 RTR−700−76プロセスタイトレータを使用して、マンガンイオンと臭化物イオン濃度を計測した。
<Measurement by online connection infrared analysis and automatic titrator>
An infrared analyzer and an automatic titrator are connected online to a part of the closed pipe that is returned to the catalyst recovery tank via a pump from the pipe connected to the lower part of the recovery catalyst tank, and the concentration of the catalyst in the catalyst recovery tank is measured. did. The infrared spectrometer used a Waterlyzer explosion-proof liquid component concentration meter RD-701B, manufactured by Kurabo Industries, to measure cobalt ions and water concentration. The automatic titration apparatus measured the manganese ion and bromide ion concentration using RTR-700-76 process titrator manufactured by Hiranuma Sangyo Co., Ltd.

<重金属イオンの濃度の測定>
手動でサンプリングして分析する際に、以下の仕様の原子吸光分析装置を用いて、重金属イオンの濃度を測定した。
機種:偏光ゼーマン原子吸光光度計Z−2300(株式会社日立ハイテクノロジーズ製)
波長:コバルトイオン240.7nm、マンガンイオン279.6nm
フレーム:アセチレン−空気
測定方法:100mlガラス製容器にサンプルを電子天秤にて質量を計り適量入れ、精密分析用20質量%塩酸(定沸点、無鉄塩酸)約2ml及び純水を加えて測定対象の重金属イオンが約1ppmの濃度になるように電子天秤にて希釈サンプルの質量を計って希釈する。0ppm、1ppm、2ppmの標準サンプルにより検量線を作成し、希釈サンプルの濃度を測定する。希釈サンプルの濃度に希釈倍率を掛けて重金属イオンの濃度を求める。
<Measurement of heavy metal ion concentration>
When analyzing manually sampled, the concentration of heavy metal ions was measured using an atomic absorption spectrometer with the following specifications.
Model: Polarized Zeeman atomic absorption photometer Z-2300 (manufactured by Hitachi High-Technologies Corporation)
Wavelength: Cobalt ion 240.7nm, Manganese ion 279.6nm
Frame: Acetylene-air Measuring method: Weigh the sample in a 100 ml glass container with an electronic balance, put an appropriate amount, add about 2 ml of 20 mass% hydrochloric acid (constant boiling point, iron-free hydrochloric acid) for precision analysis, and add pure water to measure The diluted sample is weighed and diluted with an electronic balance so that the concentration of heavy metal ions is about 1 ppm. A calibration curve is prepared using standard samples of 0 ppm, 1 ppm, and 2 ppm, and the concentration of the diluted sample is measured. Multiply the concentration of the diluted sample by the dilution factor to determine the concentration of heavy metal ions.

<臭化物イオンの濃度の測定>
手動でサンプリングして分析する際に、臭化物イオンの濃度は、以下の条件で測定した。
滴定装置:電位差自動滴定装置 AT−510(京都電子工業株式会社製)
滴定液:1/250規定硝酸銀水溶液
検出電極:複合ガラス電極 C−172
銀電極 M−214
温度補償電極 T−111
測定方法:200mlビーカーにテフロン(登録商標)製攪拌子を入れ、サンプルを適量入れる(天秤にてサンプル重量を計る)。純水を加えてビーカー内の液量を約150mlとし、更に60質量%の硝酸を約2ml加える。上記自動滴定装置にて沈殿滴定を行い、臭化物イオン濃度を求める。
<Measurement of bromide ion concentration>
When analyzing manually sampled, the bromide ion concentration was measured under the following conditions.
Titrator: automatic potentiometric titrator AT-510 (manufactured by Kyoto Electronics Industry Co., Ltd.)
Titration solution: 1/250 normal silver nitrate aqueous solution Detection electrode: Composite glass electrode C-172
Silver electrode M-214
Temperature compensation electrode T-111
Measuring method: Put a Teflon (registered trademark) stirrer in a 200 ml beaker and put an appropriate amount of sample (weigh the sample with a balance). Pure water is added to make the liquid in the beaker about 150 ml, and about 2 ml of 60% by mass nitric acid is added. Precipitation titration is performed with the above automatic titrator to determine bromide ion concentration.

<水分の測定>
手動でサンプリングして分析する際に、三菱化学株式会社製微量水分測定装置CA−100型を用いて、カールフィッシャー法により、水分の測定を行った。
<Measurement of moisture>
When manually sampling and analyzing, moisture was measured by the Karl Fischer method using a trace moisture measuring device CA-100 manufactured by Mitsubishi Chemical Corporation.

<実施例1>
水分濃度9質量%の含水酢酸中で、m−キシレンをコバルトイオン650ppm、マンガンイオン420ppm及び臭化物イオン700ppmの存在下、空気により連続2段で液相酸化(反応温度200℃、反応圧力1.6MPaG)させることにより、粗イソフタル酸スラリー(イソフタル酸濃度33質量%、分散媒である含水酢酸の水分濃度14質量%)を得、直列に連結された2段の晶析槽へ導いて順次落圧して大気圧下の粗イソフタル酸スラリーとした。このスラリーを固液分離し、粗イソフタル酸ケーキと酸化反応母液を得た。また、触媒回収プロセスおよび回収触媒液(B)を用いる次回の液相酸化を行うのに十分な量の酸化反応母液を準備した。該酸化反応母液の触媒組成を表−1に示す。
<Example 1>
Liquid phase oxidation (reaction temperature 200 ° C., reaction pressure 1.6 MPaG) in air continuously in two stages with air in the presence of cobalt ion 650 ppm, manganese ion 420 ppm and bromide ion 700 ppm in hydrous acetic acid with a water concentration of 9% by mass. ) To obtain a crude isophthalic acid slurry (isophthalic acid concentration of 33% by mass, water concentration of hydrous acetic acid as dispersion medium of 14% by mass), which is led to a series of two crystallization tanks connected in series and gradually reduced in pressure. Thus, a crude isophthalic acid slurry under atmospheric pressure was obtained. This slurry was subjected to solid-liquid separation to obtain a crude isophthalic acid cake and an oxidation reaction mother liquor. In addition, a sufficient amount of an oxidation reaction mother liquor was prepared for the next liquid phase oxidation using the catalyst recovery process and the recovered catalyst liquid (B). The catalyst composition of the oxidation reaction mother liquor is shown in Table-1.

Figure 2014019676
Figure 2014019676

酸化反応母液の70%をリサイクル母液として反応系へ循環し、リサイクルしない30%のパージ母液を、セラミックフィルターを用いてクロスフロー濾過し、イソフタル酸を主成分とする微細結晶を除去して濾過液を得た。触媒回収工程における触媒成分の回収率を向上させるため、該濾過液に臭化水素酸水溶液を添加した。この臭素添加パージ母液の触媒成分の組成を表−2に示す。     70% of the oxidation reaction mother liquor is recycled to the reaction system as a recycled mother liquor, and 30% purge mother liquor that is not recycled is cross-flow filtered using a ceramic filter to remove fine crystals containing isophthalic acid as the main component and the filtrate. Got. In order to improve the recovery rate of the catalyst component in the catalyst recovery step, an aqueous hydrobromic acid solution was added to the filtrate. Table 2 shows the composition of the catalyst component of this bromine-added purge mother liquor.

Figure 2014019676
Figure 2014019676

前記の前処理を行ったピリジン環含有キレート樹脂50[L]をガラス製二重管に充填したピリジン環含有キレート樹脂塔のジャケットに、80℃の熱水を循環させて、ピリジン環含有キレート樹脂を80℃に保温した。
上記の臭素添加パージ母液をピリジン環含有キレート樹脂塔の上部から下方へ流速125[L/hr]で120分間通液した[吸着工程]。
その後、水分濃度7.0質量%の含水酢酸を塔の上部から下方へ流速100[L/hr]で10分間通液した[回収工程]。
回収工程の後、水分濃度35.0質量%の含水酢酸を、塔の上部から下方へ流速90[L/hr]で100分間通液した[溶離工程]。
溶離工程が終了したら置換液(水分濃度7.0質量%の含水酢酸)を塔の上部から下方へ流速100[L/hr]で10分間通液した[置換工程]。
この吸着工程→回収工程→溶離工程→置換工程→(吸着工程)のサイクルを240分/1サイクルで繰り返した。
また、該キレート樹脂塔からの流出液は、溶離工程にて溶出する触媒成分を回収触媒液槽に回収する時間を110分、触媒成分の溶出がほとんどないために該キレート樹脂塔からの流出液をパージ液槽に送る時間を130分とした。
By circulating 80 ° C. hot water through the jacket of the pyridine ring-containing chelate resin tower in which the pretreated pyridine ring-containing chelate resin 50 [L] is packed in a glass double tube, the pyridine ring-containing chelate resin is obtained. Was kept at 80 ° C.
The bromine-added purge mother liquor was passed from the top of the pyridine ring-containing chelate resin tower downward for 120 minutes at a flow rate of 125 [L / hr] [adsorption step].
Thereafter, hydrous acetic acid having a water concentration of 7.0% by mass was passed from the top of the tower downward for 10 minutes at a flow rate of 100 [L / hr] [recovery step].
After the recovery step, hydrous acetic acid having a water concentration of 35.0% by mass was passed from the top of the tower downward for 100 minutes at a flow rate of 90 [L / hr] [elution step].
When the elution step was completed, a substitution solution (hydrous acetic acid having a water concentration of 7.0% by mass) was passed from the top of the column downward for 10 minutes at a flow rate of 100 [L / hr] [substitution step].
This cycle of adsorption process → recovery process → elution process → replacement process → (adsorption process) was repeated at 240 minutes / cycle.
In addition, the effluent from the chelate resin tower has an effluent from the chelate resin tower because the catalyst component eluting in the elution step is collected for 110 minutes in the recovery catalyst liquid tank, and there is almost no elution of the catalyst component. Was sent to the purge solution tank for 130 minutes.

溶離工程で得られた回収触媒液(A)を攪拌機付きの回収触媒液槽に送液した。送液される回収触媒液(A)の平均流量は90[L/hr]であり、回収触媒液槽の平均液面を50%(この時の平均有効容積180[L])とした。滞留時間は2[hr]となる。回収触媒液(A)の触媒成分の濃度変動幅を表−3に示す。触媒成分などの測定は2時間で48回行い、48点の濃度変動幅を示したものである。   The recovered catalyst solution (A) obtained in the elution step was sent to a recovered catalyst solution tank equipped with a stirrer. The average flow rate of the recovered catalyst solution (A) fed was 90 [L / hr], and the average liquid level of the recovered catalyst solution tank was 50% (average effective volume at this time 180 [L]). The residence time is 2 [hr]. Table 3 shows the concentration fluctuation range of the catalyst component of the recovered catalyst solution (A). The measurement of the catalyst component, etc. was performed 48 times in 2 hours, and the concentration fluctuation range of 48 points was shown.

Figure 2014019676
回収触媒液槽に2時間滞留させた後の回収触媒液(B)を予めリサイクル母液と共に混合して触媒調合槽へ送液し、液相酸化を行い、イソフタル酸を製造した。回収触媒液(B)の流量は回収触媒液(A)の平均流量と同じ90[L/hr]とした。この回収触媒液(B)を回収触媒槽にオンライン接続された赤外分光計と自動滴定装置により、触媒組成及び水分濃度を分析した。オンラインでの分析により、サンプリングを行わなくても速やかに分析結果が得られた。触媒組成の平均値を表−4に示す。触媒成分などの測定は触媒調合槽への送液を行っている間、2時間で48回行い、48点の濃度変動幅を示したものである。
Figure 2014019676
The recovered catalyst solution (B) that had been retained in the recovered catalyst solution tank for 2 hours was mixed with the recycle mother liquor in advance and sent to the catalyst preparation tank, and liquid phase oxidation was performed to produce isophthalic acid. The flow rate of the recovered catalyst solution (B) was 90 [L / hr], which is the same as the average flow rate of the recovered catalyst solution (A). The recovered catalyst solution (B) was analyzed for catalyst composition and water concentration using an infrared spectrometer and an automatic titrator connected online to the recovered catalyst tank. The analysis results were obtained promptly without online sampling. The average value of the catalyst composition is shown in Table-4. The measurement of the catalyst component and the like was performed 48 times in 2 hours while the solution was being fed to the catalyst preparation tank, and the concentration fluctuation range of 48 points was shown.

Figure 2014019676
Figure 2014019676

触媒調合槽出口での、リサイクル母液と混合された触媒混合液(C)はスラリー状であり、オンライン分析はできない。しかし、酸化反応直前の状態であるので、本願での触媒組成変動幅を確認するために手動にてサンプリングして分析を行った。
触媒調合槽出口で触媒混合液(C)を2時間で48回のサンプリングを行い、48点の濃度変動幅を分析した。サンプルは、コバルトイオン、マンガンイオンを、原子吸光分析装置を用いて分析を行い、臭化物イオンは硝酸銀による滴定で分析を行った。触媒組成および得られた粗イソフタル酸結晶の品質における標準偏差と変動係数を表−5に示す。なお、ここでいう品質とは、イソフタル酸をアルカリに溶解した溶液の波長340nmにおける吸光度(色相値、OD340と称す)と酸化反応中間体である3−カルボキシベンズアルデヒド(3−CBAと略す)含有量である。
The catalyst mixture (C) mixed with the recycled mother liquor at the catalyst preparation tank outlet is in the form of a slurry and cannot be analyzed online. However, since it was in the state immediately before the oxidation reaction, analysis was performed by manually sampling in order to confirm the fluctuation range of the catalyst composition in the present application.
The catalyst mixed solution (C) was sampled 48 times in 2 hours at the catalyst preparation tank outlet, and the concentration fluctuation range at 48 points was analyzed. Samples were analyzed for cobalt ions and manganese ions using an atomic absorption spectrometer, and bromide ions were analyzed by titration with silver nitrate. Table 5 shows the standard deviation and coefficient of variation of the catalyst composition and the quality of the resulting crude isophthalic acid crystals. The quality referred to here includes absorbance at a wavelength of 340 nm (hue value, referred to as OD 340 ) of a solution in which isophthalic acid is dissolved in an alkali, and 3-carboxybenzaldehyde (abbreviated as 3-CBA) as an oxidation reaction intermediate. Amount.

Figure 2014019676
Figure 2014019676

<実施例2>
回収触媒液槽の平均有効容積を360[L]とし、滞留時間を4[hr]とした以外は実施例1と同様に運転を行った。回収触媒槽の回収触媒液(B)の触媒組成変動幅を表−6に、触媒調合槽出口の触媒混合液(C)を2時間で48回サンプリングを行い、48点の濃度変動幅を分析した。コバルトイオン、マンガンイオンを、原子吸光分析装置を用いて分析を行い、臭化物イオンは硝酸銀による滴定で分析を行った。触媒組成および得られた粗イソフタル酸結晶の品質における標準偏差と変動係数を表−7に示す。液相酸化反応、特に後酸化反応の酸素消費量に大きな変動は見られなかった。粗イソフタル酸結晶の品質にも変動は見られなかった。
<Example 2>
The operation was performed in the same manner as in Example 1 except that the average effective volume of the recovered catalyst solution tank was 360 [L] and the residence time was 4 [hr]. Table-6 shows the catalyst composition fluctuation range of the recovered catalyst solution (B) in the recovered catalyst tank, and the catalyst mixture liquid (C) at the catalyst preparation tank outlet was sampled 48 times in 2 hours to analyze the concentration fluctuation range at 48 points. did. Cobalt ions and manganese ions were analyzed using an atomic absorption spectrometer, and bromide ions were analyzed by titration with silver nitrate. Table 7 shows the standard deviation and coefficient of variation of the catalyst composition and the quality of the resulting crude isophthalic acid crystals. There was no significant change in the oxygen consumption of the liquid phase oxidation reaction, especially the post-oxidation reaction. There was no change in the quality of the crude isophthalic acid crystals.

Figure 2014019676
Figure 2014019676

Figure 2014019676
Figure 2014019676

<比較例1>
回収触媒槽の回収触媒液(B)の分析をオンライン分析ではなく、従来通り、回収触媒液(B)を手動にてサンプリングし、原子吸光分析装置を用いて、重金属イオンの濃度を測定する以外は実施例1と同様に行った。
具体的には分析は以下のように行った。
サンプリングした回収触媒液(B)を、100mlガラス製容器に電子天秤にて重量を計り適量入れ、精密分析用20質量%塩酸(定沸点、無鉄塩酸)約2ml及び純水を加えて測定対象の重金属イオンが約1ppmの濃度になるように電子天秤にて希釈サンプル重量を計って希釈した。0ppm、1ppm、2ppmの標準サンプルにより検量線を作成し、希釈サンプルの濃度を測定した。希釈サンプルの濃度に希釈倍率を掛けてコバルトおよびマンガンイオンの濃度を求めた。
臭化物イオン濃度は200mlビーカーにテフロン(登録商標)製攪拌子を入れ、サンプルを適量入れ、純水を加えてビーカー内の液量を約150mlとし、更に60質量%の硝酸を約2ml加え、硝酸銀の自動滴定装置にて沈殿滴定を行い、臭化物イオン濃度を求めた。水分はカールフィッシャー法により、測定を行った。
回収触媒液(B)の触媒組成変動幅は実施例1と同様に測定できたが、手動での分析操作は煩雑で手間がかかった。
<Comparative Example 1>
The analysis of the recovered catalyst solution (B) in the recovered catalyst tank is not an on-line analysis. Instead, the recovered catalyst solution (B) is manually sampled and the concentration of heavy metal ions is measured using an atomic absorption spectrometer as usual. Was carried out in the same manner as in Example 1.
Specifically, the analysis was performed as follows.
The sampled recovered catalyst solution (B) is weighed in a 100 ml glass container with an electronic balance and put in an appropriate amount. About 2 ml of 20% by mass hydrochloric acid (constant boiling point, iron-free hydrochloric acid) for precision analysis and pure water are added to measure. The diluted sample was weighed and diluted with an electronic balance so that the concentration of heavy metal ions was about 1 ppm. A calibration curve was prepared using standard samples of 0 ppm, 1 ppm, and 2 ppm, and the concentration of the diluted sample was measured. The concentration of cobalt and manganese ions was determined by multiplying the concentration of the diluted sample by the dilution factor.
For the bromide ion concentration, place a Teflon (registered trademark) stirrer in a 200 ml beaker, add an appropriate amount of sample, add pure water to make the liquid in the beaker about 150 ml, add about 2 ml of 60% nitric acid, and add silver nitrate. Precipitation titration was performed using an automatic titration apparatus, and bromide ion concentration was determined. The moisture was measured by the Karl Fischer method.
Although the fluctuation range of the catalyst composition of the recovered catalyst solution (B) could be measured in the same manner as in Example 1, the manual analysis operation was complicated and time-consuming.

<比較例2>
回収触媒液槽の平均有効容積を90[L]とし、滞留時間を1[hr]とした以外は実施例1と同様に運転を行った。回収触媒槽の回収触媒液(B)の触媒組成変動幅を表−8に示した。
また確認のため、触媒調合槽出口の触媒混合液(C)を2時間で48回サンプリングを行い、48点の濃度変動幅を分析した結果を示した。コバルトイオン、マンガンイオンを、原子吸光分析装置を用いて分析を行い、臭化物イオンは硝酸銀による滴定で分析を行った。触媒組成および得られた粗イソフタル酸結晶の品質における標準偏差と変動係数を表−9に示す。液相酸化反応、特に後酸化反応の酸素消費量に変動が見られた。また、粗イソフタル酸結晶の品質が大きく変動した。
<Comparative example 2>
The operation was performed in the same manner as in Example 1 except that the average effective volume of the recovered catalyst solution tank was 90 [L] and the residence time was 1 [hr]. Table 8 shows the fluctuation range of the catalyst composition of the recovered catalyst solution (B) in the recovered catalyst tank.
In addition, for confirmation, the catalyst mixed solution (C) at the outlet of the catalyst preparation tank was sampled 48 times in 2 hours, and the results of analyzing the concentration fluctuation range at 48 points are shown. Cobalt ions and manganese ions were analyzed using an atomic absorption spectrometer, and bromide ions were analyzed by titration with silver nitrate. Table 9 shows the standard deviation and coefficient of variation of the catalyst composition and the quality of the resulting crude isophthalic acid crystals. Variations were observed in the oxygen consumption of the liquid phase oxidation reaction, especially the post-oxidation reaction. In addition, the quality of the crude isophthalic acid crystals varied greatly.

Figure 2014019676
Figure 2014019676

Figure 2014019676
Figure 2014019676

<実施例3>
水分濃度5質量%の含水酢酸中で、2,6−ジメチルナフタレンをコバルトイオン3000ppm、マンガンイオン1500ppm及び臭化物イオン5000ppmの存在下、空気により連続1段で液相酸化(反応温度200[℃]、反応圧力1.37[MPaG])させることにより、粗2,6−ナフタレンジカルボン酸スラリー(2,6−ナフタレンジカルボン酸濃度15質量%、分散媒である含水酢酸の水分濃度8質量%)を得、直列に連結された2段の晶析槽へ導いて順次落圧して大気圧下の粗2,6−ナフタレンジカルボン酸スラリーとした。このスラリーを固液分離し、粗2,6−ナフタレンジカルボン酸ケーキと酸化反応母液を得た。また、触媒回収プロセスおよび回収触媒液(B)を用いる次回の液相酸化を行うのに十分な量の酸化反応母液を準備した。該酸化反応母液の触媒組成を表−10に示す。
<Example 3>
In water-containing acetic acid having a water concentration of 5% by mass, liquid phase oxidation of 2,6-dimethylnaphthalene in the presence of 3000 ppm cobalt ions, 1500 ppm manganese ions and 5000 ppm bromide ions in a single step with air (reaction temperature 200 [° C.], The reaction pressure is 1.37 [MPaG]) to obtain a crude 2,6-naphthalenedicarboxylic acid slurry (concentration of 2,6-naphthalenedicarboxylic acid of 15% by mass, moisture concentration of hydrous acetic acid as a dispersion medium of 8% by mass). Then, it was led to a two-stage crystallization tank connected in series, and the pressure was reduced successively to obtain a crude 2,6-naphthalenedicarboxylic acid slurry under atmospheric pressure. This slurry was subjected to solid-liquid separation to obtain a crude 2,6-naphthalenedicarboxylic acid cake and an oxidation reaction mother liquor. In addition, a sufficient amount of an oxidation reaction mother liquor was prepared for the next liquid phase oxidation using the catalyst recovery process and the recovered catalyst liquid (B). The catalyst composition of the oxidation reaction mother liquor is shown in Table-10.

Figure 2014019676
Figure 2014019676

酸化反応母液の50%をリサイクル母液として反応系へ循環し、リサイクルしない50%のパージ母液を、セラミックフィルターを用いてクロスフロー濾過し、2,6−ナフタレンジカルボン酸を主成分とする微細結晶を除去して濾過液を得た。触媒回収工程における触媒成分の回収率を向上させるため、該濾過液に臭化水素酸水溶液を添加した。この臭素添加パージ母液の触媒成分の組成を表−11に示す。   50% of the oxidation reaction mother liquor is recycled to the reaction system as a recycled mother liquor, and 50% of the purge mother liquor that is not recycled is cross-flow filtered using a ceramic filter to produce fine crystals mainly composed of 2,6-naphthalenedicarboxylic acid. Removal gave a filtrate. In order to improve the recovery rate of the catalyst component in the catalyst recovery step, an aqueous hydrobromic acid solution was added to the filtrate. The composition of the catalyst component of this bromine added purge mother liquor is shown in Table-11.

Figure 2014019676
Figure 2014019676

前記の前処理を行ったピリジン環含有キレート樹脂150[L]をガラス製二重管に充填したピリジン環含有キレート樹脂塔のジャケットに、80℃の熱水を循環させて、ピリジン環含有キレート樹脂を80℃に保温した。
上記の臭素添加パージ母液をピリジン環含有キレート樹脂塔の上部から下方へ流速125[L/hr]で120分間通液した[吸着工程]。
その後、水分濃度7.0質量%の含水酢酸を塔の上部から下方へ流速100[L/hr]で10分間通液した[回収工程]。
回収工程の後、水分濃度35.0質量%の含水酢酸を、塔の上部から下方へ流速90[L/hr]で100分間通液した[溶離工程]。
溶離工程が終了したら置換液(水分濃度7.0質量%の含水酢酸)を塔の上部から下方へ流速100[L/hr]で10分間通液した[置換工程]。
この吸着工程→回収工程→溶離工程→置換工程→(吸着工程)のサイクルを240分/1サイクルで繰り返した。
また、該キレート樹脂塔からの流出液は、溶離工程にて溶出する触媒成分を回収触媒液槽に回収する時間を110分、触媒成分の溶出がほとんどないために該キレート樹脂塔からの流出液をパージ液槽に送る時間を130分とした。
By circulating 80 ° C. hot water through the jacket of the pyridine ring-containing chelate resin tower in which the pretreated pyridine ring-containing chelate resin 150 [L] is packed in a glass double tube, the pyridine ring-containing chelate resin is obtained. Was kept at 80 ° C.
The bromine-added purge mother liquor was passed from the top of the pyridine ring-containing chelate resin tower downward for 120 minutes at a flow rate of 125 [L / hr] [adsorption step].
Thereafter, hydrous acetic acid having a water concentration of 7.0% by mass was passed from the top of the tower downward for 10 minutes at a flow rate of 100 [L / hr] [recovery step].
After the recovery step, hydrous acetic acid having a water concentration of 35.0% by mass was passed from the top of the tower downward for 100 minutes at a flow rate of 90 [L / hr] [elution step].
When the elution step was completed, a substitution solution (hydrous acetic acid having a water concentration of 7.0% by mass) was passed from the top of the column downward for 10 minutes at a flow rate of 100 [L / hr] [substitution step].
This cycle of adsorption process → recovery process → elution process → replacement process → (adsorption process) was repeated at 240 minutes / cycle.
In addition, the effluent from the chelate resin tower has an effluent from the chelate resin tower because the catalyst component eluting in the elution step is collected for 110 minutes in the recovery catalyst liquid tank, and there is almost no elution of the catalyst component. Was sent to the purge solution tank for 130 minutes.

溶離工程で得られた回収触媒液(A)を攪拌機付きの回収触媒液槽に送液した。送液される回収触媒液(A)の平均流量は90[L/hr]であり、回収触媒液槽の平均液面を50%(この時の平均有効容積180[L])とした。滞留時間は2[hr]となる。回収触媒液(A)の触媒成分の濃度変動幅を表−12に示す。触媒成分などの測定は2時間で48回サンプリングを行い、48点の濃度変動幅を示したものである。   The recovered catalyst solution (A) obtained in the elution step was sent to a recovered catalyst solution tank equipped with a stirrer. The average flow rate of the recovered catalyst solution (A) fed was 90 [L / hr], and the average liquid level of the recovered catalyst solution tank was 50% (average effective volume at this time 180 [L]). The residence time is 2 [hr]. Table-12 shows the fluctuation range of the concentration of the catalyst component in the recovered catalyst solution (A). The measurement of the catalyst component, etc. is performed 48 times in 2 hours, and the concentration fluctuation range of 48 points is shown.

Figure 2014019676
回収触媒液槽に2時間滞留させた後の回収触媒液(B)を予めリサイクル母液と共に混合して触媒調合槽へ送液し、液相酸化を行い、2,6−ナフタレンジカルボン酸を製造した。回収触媒液(B)の流量は回収触媒液(A)の平均流量と同じ90[L/hr]とした。この回収触媒液(B) を回収触媒槽にオンライン接続された赤外分光計と自動滴定装置により、触媒組成及び水分濃度を分析した。触媒組成の平均値を表−13に示す。触媒成分などの測定は2時間で48回サンプリングを行い48点の濃度変動幅を示したものである。
Figure 2014019676
The recovered catalyst solution (B) that was retained in the recovered catalyst solution tank for 2 hours was mixed with the recycle mother liquor in advance and sent to the catalyst preparation tank, and liquid phase oxidation was performed to produce 2,6-naphthalenedicarboxylic acid. . The flow rate of the recovered catalyst solution (B) was 90 [L / hr], which is the same as the average flow rate of the recovered catalyst solution (A). The recovered catalyst solution (B) was analyzed for catalyst composition and water concentration using an infrared spectrometer and an automatic titrator connected online to the recovered catalyst tank. The average value of the catalyst composition is shown in Table-13. The measurement of the catalyst component and the like is performed by sampling 48 times in 2 hours and showing the concentration fluctuation range of 48 points.

Figure 2014019676
Figure 2014019676

触媒調合槽出口の触媒組成および得られた粗2,6−ナフタレンジカルボン酸結晶の品質における標準偏差と変動係数を表−13に示す。なお、ここでいう品質とは、2,6−ナフタレンジカルボン酸をアルカリに溶解した溶液の波長400nmにおける吸光度(色相値、OD400と称す)と酸化反応中間体であるホルミルナフトエ酸(FNAと略す)含有量である。 Table 13 shows the standard deviation and coefficient of variation of the catalyst composition at the catalyst preparation tank outlet and the quality of the obtained crude 2,6-naphthalenedicarboxylic acid crystals. The quality mentioned here means the absorbance (hue value, referred to as OD 400 ) at a wavelength of 400 nm of a solution of 2,6-naphthalenedicarboxylic acid dissolved in an alkali and formylnaphthoic acid (abbreviated as FNA) as an oxidation reaction intermediate. ) Content.

Figure 2014019676
Figure 2014019676

<実施例4>
回収触媒液槽の平均有効容積を360[L]とし、滞留時間を4[hr]とした外は実施例3と同様に運転を行った。回収触媒液(B)の触媒組成変動幅を表−15に、触媒調合槽出口の触媒組成および得られた粗2,6−ナフタレンジカルボン酸結晶の品質における標準偏差と変動係数を表−16に示す。液相酸化反応の酸素消費量に大きな変動は見られなかった。粗2,6−ナフタレンジカルボン酸結晶の品質にも変動は見られなかった。
<Example 4>
The operation was performed in the same manner as in Example 3 except that the average effective volume of the recovered catalyst solution tank was 360 [L] and the residence time was 4 [hr]. Table-15 shows the catalyst composition fluctuation range of the recovered catalyst solution (B), and Table-16 shows the standard deviation and coefficient of variation of the catalyst composition at the catalyst preparation tank outlet and the quality of the obtained crude 2,6-naphthalenedicarboxylic acid crystals. Show. There was no significant change in the oxygen consumption of the liquid phase oxidation reaction. There was no change in the quality of the crude 2,6-naphthalenedicarboxylic acid crystals.

Figure 2014019676
Figure 2014019676

Figure 2014019676
Figure 2014019676

<比較例3>
回収触媒液槽の平均有効容積を90[L]とし、滞留時間を1[hr]とした以外は実施例3と同様に運転を行った。回収触媒液(B)の触媒組成変動幅を表−17に、触媒調合槽出口の触媒組成および得られた粗2,6−ナフタレンジカルボン酸結晶の品質における標準偏差と変動係数を表−18に示す。液相酸化反応の酸素消費量に変動が見られた。また、粗2,6−ナフタレンジカルボン酸結晶の品質が大きく変動した。
<Comparative Example 3>
The operation was performed in the same manner as in Example 3 except that the average effective volume of the recovered catalyst solution tank was 90 [L] and the residence time was 1 [hr]. Table-17 shows the catalyst composition fluctuation range of the recovered catalyst solution (B), and Table-18 shows the standard deviation and coefficient of variation in the catalyst composition at the catalyst preparation tank outlet and the quality of the obtained crude 2,6-naphthalenedicarboxylic acid crystals. Show. Variations were observed in the oxygen consumption of the liquid phase oxidation reaction. In addition, the quality of the crude 2,6-naphthalenedicarboxylic acid crystal varied greatly.

Figure 2014019676
Figure 2014019676

Figure 2014019676
Figure 2014019676

以上のように、芳香族カルボン酸の製造装置において、本発明の方法により触媒成分を回収・リサイクルすることにより、粗イソフタル酸結晶における3−CBA含有量や、粗2,6−ナフタレンジカルボン酸結晶におけるFNA含有量などの品質に関連する物質や、色相値OD340やOD400の変動係数を簡易に抑えることができる。 As described above, in the apparatus for producing aromatic carboxylic acid, by recovering and recycling the catalyst component by the method of the present invention, the 3-CBA content in the crude isophthalic acid crystal and the crude 2,6-naphthalenedicarboxylic acid crystal It is possible to easily suppress substances related to quality, such as FNA content, and variation coefficients of hue values OD 340 and OD 400 .

本発明によれば、安定した品質の芳香族カルボン酸を、容易に、効率良く、工業的に有利に製造することができる。
According to the present invention, an aromatic carboxylic acid having a stable quality can be easily and efficiently produced industrially advantageously.

Claims (6)

水分1〜15質量%の含水酢酸溶媒中、重金属化合物及び臭素化合物を含む触媒の存在下、分子状酸素含有ガスを用いてアルキル基含有芳香族炭化水素を液相酸化し、テレフタル酸を除く芳香族カルボン酸を製造する方法において、液相酸化して得られた酸化反応スラリーを冷却して芳香族カルボン酸結晶と酸化反応母液とに分離し、酸化反応母液の
25〜95%をリサイクル母液として液相酸化反応系に循環使用し、残りの酸化反応母液をパージ母液として系外にパージして該パージ母液から触媒成分を回収する際に、
(I)パージ母液をピリジン環含有キレート樹脂と接触させて触媒に由来する重金属イオン及び臭化物イオンを吸着する吸着工程と、
(II)工程(I)により触媒成分を吸着したピリジン環含有キレート樹脂に含水酢酸又は水を接触させて該重金属イオン及び臭化物イオンを溶離して回収触媒液(A)を得る溶離工程を、回分式により切り替え、
(III)回収触媒液(A)を回収触媒液槽で1.5〜6時間滞留させて、該回収触媒液槽からの回収触媒液(B)を、触媒調合槽でリサイクル母液と混合し、液相酸化反応系に循環する工程を有し、
下記(i)または(ii)の箇所にオンライン接続された赤外分析計および全自動滴定装置で、回収触媒液 (B)のコバルトイオン濃度および水分濃度、マンガンイオンおよび臭化物イオン濃度を、それぞれ測定することを特徴とする芳香族カルボン酸の製造方法。
(i)回収触媒槽の下部につながれた配管から抜き出し、また触媒回収槽に戻される閉じた配管の一部
(ii)回収触媒槽から触媒調合槽につながれた配管の一部
Fragrance excluding terephthalic acid by liquid-phase oxidation of an alkyl group-containing aromatic hydrocarbon using a molecular oxygen-containing gas in the presence of a catalyst containing a heavy metal compound and a bromine compound in a hydrous acetic acid solvent having a moisture content of 1 to 15% by mass. In the method for producing an aromatic carboxylic acid, an oxidation reaction slurry obtained by liquid phase oxidation is cooled and separated into an aromatic carboxylic acid crystal and an oxidation reaction mother liquor, and 25 to 95% of the oxidation reaction mother liquor is used as a recycle mother liquor. When the catalyst component is recovered from the purge mother liquor by purging the remaining oxidation reaction mother liquor out of the system as a purge mother liquor through circulation in the liquid phase oxidation reaction system,
(I) an adsorption step of contacting the purge mother liquor with a pyridine ring-containing chelate resin to adsorb heavy metal ions and bromide ions derived from the catalyst;
(II) An elution step in which a recovered catalyst solution (A) is obtained by bringing the hydrated acetic acid or water into contact with the pyridine ring-containing chelate resin adsorbing the catalyst component in step (I) to elute the heavy metal ions and bromide ions. Switch by formula,
(III) The recovered catalyst solution (A) is retained in the recovered catalyst solution tank for 1.5 to 6 hours, and the recovered catalyst solution (B) from the recovered catalyst solution tank is mixed with the recycle mother liquor in the catalyst preparation tank, Having a step of circulating to the liquid phase oxidation reaction system,
Measure the cobalt ion concentration and water concentration, manganese ion and bromide ion concentration of the recovered catalyst solution (B) with an infrared analyzer and a fully automatic titrator connected online at the following (i) or (ii) A process for producing an aromatic carboxylic acid characterized by comprising:
(i) A part of the closed pipe that is pulled out from the pipe connected to the lower part of the recovered catalyst tank and returned to the catalyst recovery tank
(ii) Part of piping connected from the recovered catalyst tank to the catalyst preparation tank
工程(II)からの回収触媒液(A)と、リサイクル母液の一部または全部を回収触媒液槽で予め混合し、混合して得られた触媒混合液(C)を1.5〜6時間滞留させながら、触媒混合液(C)のコバルトイオンの濃度を回収触媒液槽にオンライン接続された赤外分析計で濃度を分析し、マンガンイオン及び臭化物イオン濃度をオンライン接続された全自動滴定装置で濃度を分析し、触媒調合槽に導入する請求項1に記載の芳香族カルボン酸の製造方法。   The recovered catalyst solution (A) from step (II) and a part or all of the recycled mother liquor are previously mixed in the recovered catalyst solution tank, and the catalyst mixture solution (C) obtained by mixing is mixed for 1.5 to 6 hours. Fully automatic titrator with on-line connection of manganese ion and bromide ion concentration by analyzing the concentration of cobalt ion in the catalyst mixture (C) with an infrared analyzer connected online to the catalyst solution tank The method for producing an aromatic carboxylic acid according to claim 1, wherein the concentration is analyzed and introduced into a catalyst preparation tank. コバルトイオン、マンガンイオン及び臭化物イオンの濃度既知の触媒回収液(B)または触媒混合液(C)にコバルトイオン及び、またはマンガンイオン及び、または臭化物イオンを含む触媒液を触媒調合槽に、濃度に応じて補充する工程を含む請求項1または2に記載の芳香族カルボン酸の製造方法   Concentration of cobalt ion, manganese ion and bromide ion A catalyst solution containing cobalt ion or manganese ion and / or bromide ion in a known catalyst recovery solution (B) or catalyst mixture (C) A method for producing an aromatic carboxylic acid according to claim 1 or 2, comprising a step of replenishing accordingly. 工程(III)からの回収触媒液(B)を触媒調合槽に戻した際の、触媒調合槽出口でのコバルトイオン、マンガンイオン及び臭化物イオン各濃度の変動係数が全て5%以下である請求項1〜3のいずれかに記載の芳香族カルボン酸の製造方法。   The coefficient of variation of each concentration of cobalt ion, manganese ion and bromide ion at the catalyst preparation tank outlet when the recovered catalyst solution (B) from step (III) is returned to the catalyst preparation tank is 5% or less. The manufacturing method of aromatic carboxylic acid in any one of 1-3. 芳香族カルボン酸が、安息香酸、フタル酸、イソフタル酸、メタトルイル酸、トリメシン酸、3,5−ジメチル安息香酸、トリメリット酸、ピロメリット酸、1,5−ナフタレンジカルボン酸および2,6−ナフタレンジカルボン酸から選ばれる少なくとも一種である請求項1〜4のいずれかに記載の芳香族カルボン酸の製造方法。   Aromatic carboxylic acids are benzoic acid, phthalic acid, isophthalic acid, metatoluic acid, trimesic acid, 3,5-dimethylbenzoic acid, trimellitic acid, pyromellitic acid, 1,5-naphthalenedicarboxylic acid and 2,6-naphthalene It is at least 1 type chosen from dicarboxylic acid, The manufacturing method of aromatic carboxylic acid in any one of Claims 1-4. 芳香族カルボン酸が、イソフタル酸又は2,6−ナフタレンジカルボン酸である請求項1〜4のいずれかに記載の芳香族カルボン酸の製造方法。   The method for producing an aromatic carboxylic acid according to any one of claims 1 to 4, wherein the aromatic carboxylic acid is isophthalic acid or 2,6-naphthalenedicarboxylic acid.
JP2012161445A 2012-07-20 2012-07-20 Method for manufacturing aromatic carboxylic acid Pending JP2014019676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012161445A JP2014019676A (en) 2012-07-20 2012-07-20 Method for manufacturing aromatic carboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012161445A JP2014019676A (en) 2012-07-20 2012-07-20 Method for manufacturing aromatic carboxylic acid

Publications (1)

Publication Number Publication Date
JP2014019676A true JP2014019676A (en) 2014-02-03

Family

ID=50194974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012161445A Pending JP2014019676A (en) 2012-07-20 2012-07-20 Method for manufacturing aromatic carboxylic acid

Country Status (1)

Country Link
JP (1) JP2014019676A (en)

Similar Documents

Publication Publication Date Title
JP5205617B2 (en) Method for producing terephthalic acid
US8884054B2 (en) Process for oxidizing alkyl aromatic compounds
US9045407B2 (en) Mixtures used in oxidizing alkyl aromatic compounds
US20120004450A1 (en) Process for producing terephthalic acid
JP5206416B2 (en) Method for producing isophthalic acid
US8835678B2 (en) Solid terephthalic acid composition
WO2015047647A1 (en) Active ionic liquid mixtures for oxidizing alkylaromatic compounds
JP5642570B2 (en) Method for producing terephthalic acid
RU2573564C2 (en) Method for obtaining terephthalic acid
JP2014019676A (en) Method for manufacturing aromatic carboxylic acid
JP5685954B2 (en) Method for producing aromatic carboxylic acid
TW201326102A (en) Process for oxidizing an alkyl-aromatic compound
JP2014019677A (en) Method for manufacturing terephthalic acid
US20130172605A1 (en) Process for producing terephthalic acid
CN101980997B (en) Process for production of high-purity trimellitic acid
US9150484B2 (en) Process for producing terephthalic acid
JPH10287614A (en) Production of highly pure terephthalic acid
EP1501778B1 (en) Process for the production of carboxylic acids
US20130172609A1 (en) Process for oxidizing an alkyl-aromatic compound
JPS6236024B2 (en)
JPH0769975A (en) Production of high-purity terephthalic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160405