JP2014018908A - Surface treatment method for moving body of cylindrical type hydraulic device, and cylindrical type hydraulic device with the moving body subjected to the surface treatment - Google Patents

Surface treatment method for moving body of cylindrical type hydraulic device, and cylindrical type hydraulic device with the moving body subjected to the surface treatment Download PDF

Info

Publication number
JP2014018908A
JP2014018908A JP2012159238A JP2012159238A JP2014018908A JP 2014018908 A JP2014018908 A JP 2014018908A JP 2012159238 A JP2012159238 A JP 2012159238A JP 2012159238 A JP2012159238 A JP 2012159238A JP 2014018908 A JP2014018908 A JP 2014018908A
Authority
JP
Japan
Prior art keywords
polishing
moving body
sprayed coating
peripheral surface
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012159238A
Other languages
Japanese (ja)
Inventor
Kohei Inoue
光平 井上
Kengo Tanaka
健吾 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Precision Products Co Ltd
Original Assignee
Sumitomo Precision Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Precision Products Co Ltd filed Critical Sumitomo Precision Products Co Ltd
Priority to JP2012159238A priority Critical patent/JP2014018908A/en
Publication of JP2014018908A publication Critical patent/JP2014018908A/en
Pending legal-status Critical Current

Links

Landscapes

  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface treatment method for treating an outer circumferential surface of a moving body constituting a cylindrical type hydraulic device using spray coating of tungsten, the surface treatment method capable of expressing a sealing performance required, and to provide the cylindrical type hydraulic device with the moving body subjected to the surface treatment.SOLUTION: A surface treatment method sequentially includes: a film formation step of forming a sprayed coating surface D including tungsten by a spraying method on an outer circumferential surface coming into slide contact with at least a sealing member of a moving body 3a; a first polishing step of polishing the sprayed coating surface D by bringing a polishing tool T into abutment with the sprayed coating surface D of the moving body 3a, and also by applying a composite movement of an oscillating movement C for reciprocating the tool by a predetermined distance along a central axis direction of the moving body 3a, and a traverse movement B for reciprocating the tool over the entire area of the sprayed coating surface D similarly along the central axis direction of the moving body 3a, to the polishing tool T; and a second polishing step of polishing the sprayed coating surface D finishing the first polishing step by providing only the traverse movement B to the polishing tool T.

Description

本発明は、筒型油空圧機器における移動体の表面処理方法、及びこの表面処理が施された移動体を備える筒型油空圧機器に関する。   TECHNICAL FIELD The present invention relates to a surface treatment method for a moving body in a cylindrical hydraulic / pneumatic device, and a cylindrical hydraulic / pneumatic device including a moving body subjected to this surface treatment.

筒型油空圧機器として、従来から、内部空間を有する筒体と、この筒体の内部空間に嵌挿された移動体と、筒体と移動体との間に配設されたシール部材とを備えたものが知られており、このような筒型油空圧機器に係る一具体的な装置として、例えば、航空機用の脚装置を挙げることができる。この脚装置の一例を、図9及び図10に示す。尚、図9は、前記脚装置の主要な構成部分を示した正断面図であり、図10は、図9のE部を拡大して示す拡大図である。   Conventionally, as a cylindrical hydraulic / pneumatic device, a cylindrical body having an internal space, a moving body inserted into the internal space of the cylindrical body, and a seal member disposed between the cylindrical body and the moving body, As one specific device related to such a cylindrical hydraulic / pneumatic device, for example, an aircraft leg device can be cited. An example of this leg device is shown in FIGS. FIG. 9 is a front sectional view showing main components of the leg device, and FIG. 10 is an enlarged view showing an E portion of FIG.

図9及び図10に示すように、前記脚装置1は、内部空間を有する外筒2と、この外筒2の内部空間内に、軸方向に移動自在に嵌挿された内筒3と、この内筒3に固定され、当該内筒3とともに外筒2の内部空間内を移動する上側カム筒4と、外筒2の内周面に嵌合された下側カム筒5と、前記外筒2の内部空間内に充填された流体の漏洩を防止するためのシール部材6a,6bと、外筒2の内周面と内筒3の外周面との間に配設されて、前記シール部材6a,6bを保持する下側ベアリング7とを備えており、外筒2の上端部が航空機の機体に接続され、内筒3の下端部に車輪8が取り付けられる。また、前記内筒3は、内筒本体3aと、外筒2の内周面に直接接触する上側ベアリング3bから構成されている。尚、前記2つのシール部材6a,6bのうち一方のシール部材6aは前記内筒本体3aとの間に介装され、他方のシール部材6bは前記外筒2との間に介装されている。   As shown in FIGS. 9 and 10, the leg device 1 includes an outer cylinder 2 having an inner space, an inner cylinder 3 that is movably inserted in the inner space of the outer cylinder 2 in the axial direction, An upper cam cylinder 4 that is fixed to the inner cylinder 3 and moves together with the inner cylinder 3 in the inner space of the outer cylinder 2, a lower cam cylinder 5 that is fitted to the inner peripheral surface of the outer cylinder 2, and the outer cylinder The seal members 6a and 6b for preventing leakage of the fluid filled in the internal space of the tube 2 and the inner peripheral surface of the outer tube 2 and the outer peripheral surface of the inner tube 3, And a lower bearing 7 for holding the members 6a and 6b. The upper end of the outer cylinder 2 is connected to the aircraft body, and the wheel 8 is attached to the lower end of the inner cylinder 3. The inner cylinder 3 includes an inner cylinder body 3 a and an upper bearing 3 b that directly contacts the inner peripheral surface of the outer cylinder 2. Of the two sealing members 6a and 6b, one sealing member 6a is interposed between the inner cylinder body 3a and the other sealing member 6b is interposed between the outer cylinder 2 and the other sealing member 6a. .

この脚装置1では、内筒3及び上側カム筒4が外筒2の内部空間内を上方向に移動することで収縮し、内筒3及び上側カム筒4が外筒2の内部空間内を下方向に移動することで伸長するように構成されている。即ち、航空機が地上を走行している間は収縮し、航空機が離陸する際は伸長する。   In the leg device 1, the inner cylinder 3 and the upper cam cylinder 4 contract by moving upward in the inner space of the outer cylinder 2, and the inner cylinder 3 and the upper cam cylinder 4 move in the inner space of the outer cylinder 2. It is configured to extend by moving downward. That is, the aircraft contracts while the aircraft is traveling on the ground and expands when the aircraft takes off.

ところで、前記内筒本体3aは、前記上下方向への移動の際に、その外周面が前記シール部材6aに対して摺接するため、そのシール上の問題から、当該外周面は、耐摩耗性を有すること、及びその表面粗さが高精度であることが求められている。このため、従来では、一般的に、前記内筒本体3aの外周面をクロムめっき処理し、その後、めっき部を鏡面仕上げするといった方法が採られていた。   By the way, since the outer peripheral surface of the inner cylinder main body 3a is in sliding contact with the seal member 6a during the movement in the vertical direction, the outer peripheral surface has wear resistance due to a problem on the seal. It has been required to have high accuracy with respect to the surface roughness. For this reason, conventionally, a method has been generally employed in which the outer peripheral surface of the inner cylinder main body 3a is subjected to chrome plating, and then the plated portion is mirror-finished.

しかしながら、近時、クロムめっきについては、環境上の問題が指摘されるところとなり、そこで、特許第4307196号に開示されるように、処理対象面に、所謂溶射法によってタングステンを含む溶射皮膜を形成し、形成した溶射皮膜を鏡面仕上げするといった表面処理法が検討されている。   However, recently, regarding chrome plating, environmental problems have been pointed out. Therefore, as disclosed in Japanese Patent No. 4307196, a thermal spray coating containing tungsten is formed on the surface to be treated by a so-called thermal spraying method. However, surface treatment methods have been studied in which the formed sprayed coating is mirror-finished.

尚、タングステンを含む溶射皮膜としては、タングステンカーバイド(WC)や、タングステンカーバイドとクロムカーバイドとを混合したものが例示される。   Examples of the thermal spray coating containing tungsten include tungsten carbide (WC) and a mixture of tungsten carbide and chrome carbide.

特許4307196号公報Japanese Patent No. 4307196

以上のような背景から、本発明者等は、上記溶射皮膜による表面処理法を、前記内筒本体3aの外周面の表面処理に適用すべく、鋭意、検討を行なった。そして、まず、シール上の要請から、硬度が高い溶射皮膜表面の表面粗さを高精度に仕上げるべく、砥粒としてダイヤモンド粒子及び立方晶窒化ホウ素粒子のうち少なくとも一方を備えた砥石を用い、この砥石を、前記内筒本体3aを軸中心に回転させた状態で、その外周面に形成した溶射皮膜面に当接させるとともに、前記内筒本体3aの中心軸方向に沿って所定距離だけ往復動させる振動動作と、同じく中心軸方向に沿って溶射皮膜の全域を往復動させるトラバース動作との複合動作を前記砥石に与えて、前記溶射皮膜を研磨した。   From the background as described above, the inventors of the present invention diligently studied to apply the surface treatment method using the thermal spray coating to the surface treatment of the outer peripheral surface of the inner cylinder main body 3a. And first, in order to finish the surface roughness of the sprayed coating surface having high hardness with high accuracy, a grindstone provided with at least one of diamond particles and cubic boron nitride particles is used as an abrasive grain. The grindstone is brought into contact with the sprayed coating surface formed on the outer peripheral surface of the inner cylinder main body 3a rotated about the axis, and reciprocated by a predetermined distance along the central axis direction of the inner cylinder main body 3a. The sprayed coating was polished by applying to the grindstone a combined operation of a vibrating operation to be performed and a traverse operation in which the entire sprayed coating was reciprocated along the central axis direction.

このようにして、振動動作とトラバース動作との複合動作を砥石に与えることで、砥石の溶射皮膜表面に対する研磨作用を高めることができ、また、砥石の送り目が溶射皮膜面に転写されるのを防止することができることから、その表面粗さを、シール性能上要請される以上の高精度に仕上げることができる。   In this way, by giving the grindstone a combined operation of vibration operation and traverse operation, the grinding action of the grindstone on the surface of the sprayed coating can be enhanced, and the feed line of the grindstone is transferred to the surface of the sprayed coating. Therefore, the surface roughness can be finished with higher accuracy than required for sealing performance.

ところが、このようにして、溶射皮膜の表面粗さを、シール性能上要請される以上の高精度に仕上げても、前記内筒本体3aの伸縮を繰り返すと、外筒2の内部空間内に充填された流体が、内筒本体3aとシール部材6aとの摺接部から漏洩するという問題を生じたのである。   However, even when the surface roughness of the thermal spray coating is finished with a higher precision than required for sealing performance, if the inner cylinder body 3a is repeatedly expanded and contracted, the inner space of the outer cylinder 2 is filled. This causes a problem that the fluid that is leaked from the sliding contact portion between the inner cylinder main body 3a and the seal member 6a.

そこで、本発明者等はその原因を探求すべく更に検討を重ねた結果、前記内筒本体3aの伸縮を繰り返すことによって、シール部材の削り屑が当該内筒本体3aの外周面に付着し、付着した削り屑によりシール性が低下して、流体の漏洩が起こるとの知見を得るに至り、更に、シール部材の削り屑の付着は、研磨加工によって溶射皮膜上に形成された所謂クロスハッチパターン(砥粒によって形成される研磨加工痕)に原因しているとの知見を得るに至った。   Therefore, as a result of further investigations to investigate the cause of the present inventors, by repeatedly expanding and contracting the inner cylinder main body 3a, the shavings of the seal member adhere to the outer peripheral surface of the inner cylinder main body 3a, We have obtained the knowledge that the sealing performance deteriorates due to the attached shavings and the fluid leaks. Further, the sticking of shavings on the sealing member is a so-called cross hatch pattern formed on the thermal spray coating by polishing. It came to the knowledge that it was caused by (polishing mark formed by abrasive grains).

本発明は、以上の実情に鑑みなされたものであり、その目的は、筒型油空圧機器を構成する移動体の外周面をタングステンの溶射を用いて処理する表面処理方法であって、要求されるシール性能を発現させることが可能な表面処理方法、及びこの表面処理が施された移動体を備える筒型油空圧機器の提供にある。   The present invention has been made in view of the above circumstances, and an object thereof is a surface treatment method for treating the outer peripheral surface of a moving body constituting a cylindrical hydraulic / pneumatic device using thermal spraying of tungsten. The present invention provides a surface treatment method capable of exhibiting a sealing performance and a cylindrical hydraulic / pneumatic device including a moving body subjected to the surface treatment.

上記課題を解決するための本発明は、
内部空間を有する筒体と、該筒体の内部空間内に軸方向に移動自在に嵌挿される筒状又は棒状の移動体と、前記筒体の内周面と前記移動体の外周面との間に配設され、前記移動体の外周面と摺接して、前記筒体の内部空間内に充填された流体の漏洩を防止するシール部材とを備えた筒型油空圧機器における、前記移動体の外周面を表面処理する方法に係る。
The present invention for solving the above problems is as follows.
A cylindrical body having an internal space; a cylindrical or rod-shaped movable body that is movably inserted in the internal space of the cylindrical body; and an inner peripheral surface of the cylindrical body and an outer peripheral surface of the movable body The movement in a cylindrical hydraulic / pneumatic apparatus provided with a seal member disposed between and in sliding contact with the outer peripheral surface of the movable body to prevent leakage of a fluid filled in the internal space of the tubular body The present invention relates to a method for surface treatment of the outer peripheral surface of a body.

そして、この表面処理方法は、
前記移動体の、少なくとも前記シール部材と摺接する外周面に、溶射法によってタングステンを含む溶射皮膜を形成する皮膜形成工程と、
前記移動体を軸中心に回転させた状態で、砥粒としてダイヤモンド粒子及び立方晶窒化ホウ素粒子のうち少なくとも一方を備えた研磨工具の研磨作用面を前記移動体の溶射皮膜面に当接させるとともに、前記移動体の中心軸方向に沿って予め定めた距離だけ往復動させる振動動作と、同じく前記移動体の中心軸方向に沿って前記溶射皮膜の全域を往復動させるトラバース動作との複合動作を前記研磨工具に与えて、前記溶射皮膜面を研磨する第1研磨工程と、
前記移動体を軸中心に回転させた状態で前記研磨工具の研磨作用面を前記移動体の溶射皮膜面に当接させるとともに、前記トラバース動作のみを前記研磨工具に与えて、前記第1研磨工程の終了した前記溶射皮膜面を研磨する第2研磨工程とを含み、
前記皮膜形成工程と、第1研磨工程と、第2研磨工程とが順次実施される。
And this surface treatment method is
A coating forming step of forming a thermal spray coating containing tungsten by a thermal spraying method on at least an outer peripheral surface of the movable body that is in sliding contact with the seal member;
In a state where the movable body is rotated about the axis, a polishing working surface of a polishing tool provided with at least one of diamond particles and cubic boron nitride particles as abrasive grains is brought into contact with the sprayed coating surface of the movable body. A combined operation of a vibration operation that reciprocates a predetermined distance along the central axis direction of the moving body and a traverse operation that reciprocates the entire area of the sprayed coating along the central axis direction of the moving body. A first polishing step for applying to the polishing tool and polishing the sprayed coating surface;
The polishing surface of the polishing tool is brought into contact with the sprayed coating surface of the moving body while the moving body is rotated about the axis, and only the traverse operation is applied to the polishing tool, and the first polishing step A second polishing step of polishing the sprayed coating surface finished
The film forming step, the first polishing step, and the second polishing step are sequentially performed.

この表面処理方法では、上記のように、まず、前記皮膜形成工程において、前記移動体の、少なくともシール部材と摺接する外周面に、溶射法によってタングステンを含む溶射皮膜を形成する。形成する溶射皮膜の膜厚は、必要に応じて適宜設定されるが、一般的には、0.076〜0.3mmである。   In this surface treatment method, as described above, first, in the coating forming step, a sprayed coating containing tungsten is formed by a spraying method on at least the outer peripheral surface of the movable body that is in sliding contact with the seal member. The film thickness of the sprayed coating to be formed is appropriately set as necessary, but is generally 0.076 to 0.3 mm.

ついで、前記第1研磨工程において、前記移動体を軸中心に回転させた状態で、前記研磨工具の研磨作用面を移動体の溶射皮膜面に当接させるとともに、前記振動動作とトラバース動作との複合動作を前記研磨工具に与えて、溶射皮膜面を研磨する。このようにして、振動動作とトラバース動作との複合動作を研磨工具に与えることで、当該研磨工具の溶射皮膜表面に対する研磨作用を高めることができ、また、研磨工具の送り目が溶射皮膜面に転写されるのを防止することができる、即ち、溶射皮膜面に、トラバース動作に伴う研磨加工痕が生じるのを防止することができることから、その表面粗さをシール性能上要請される以上の高精度に仕上げることができる。   Next, in the first polishing step, with the moving body rotated about the axis, the polishing working surface of the polishing tool is brought into contact with the sprayed coating surface of the moving body, and the vibration operation and the traverse operation are performed. A composite operation is applied to the polishing tool to polish the sprayed coating surface. In this way, by providing the polishing tool with a combined operation of vibration operation and traverse operation, the polishing action of the polishing tool on the surface of the sprayed coating can be enhanced, and the feed line of the polishing tool is set on the surface of the sprayed coating. It is possible to prevent transfer, that is, it is possible to prevent the occurrence of polishing marks on the sprayed coating surface due to the traverse operation, so that the surface roughness is higher than required for sealing performance. It can be finished with precision.

尚、前記振動動作における移動距離は、前記トラバース動作における移動距離よりもごく短い、微小な距離である。   The moving distance in the vibration operation is a very small distance that is very shorter than the moving distance in the traverse operation.

次に、前記第1研磨工程によって、その表面粗さを高精度に仕上げた後の移動体の溶射皮膜面に対して、前記第2研磨工程を実施する。この第2研磨工程では、上述のように、砥石に対してトラバース動作のみを与える。   Next, the second polishing step is performed on the sprayed coating surface of the moving body after the surface roughness is finished with high accuracy by the first polishing step. In the second polishing step, as described above, only the traverse operation is given to the grindstone.

前記第1研磨工程では、研磨工具に対して振動動作を付与していることから、その研磨作用が高く、この結果、得られる表面粗さは高精度となるが、その反面、得られる被研磨面には、振動動作に伴ったクロスハッチパターン(砥粒によって形成される研磨加工痕)が形成される。このクロスハッチパターンは、上述した通り、移動体の軸方向への移動によって、シール部材の削り屑が当該移動体の外周面に付着し、付着した削り屑によってシール性が低下する原因となるものである。   In the first polishing step, since the vibration operation is imparted to the polishing tool, the polishing action is high. As a result, the surface roughness obtained is highly accurate, but on the other hand, the object to be polished is obtained. On the surface, a cross hatch pattern (polishing mark formed by abrasive grains) is formed along with the vibration operation. As described above, this cross-hatch pattern causes the shavings of the sealing member to adhere to the outer peripheral surface of the moving body due to the movement of the moving body in the axial direction, and causes the sealability to deteriorate due to the attached shavings. It is.

そこで、前記第1研磨工程によって、その表面粗さが高精度に仕上げられた後の移動体の溶射皮膜面を、第2研磨工程において、振動動作を伴わない、トラバース動作のみによって研磨加工することで、表面粗さを高精度に保ったまま、前記第1研磨工程で形成されたクロスハッチパターンを消し去ることができる。   Therefore, the sprayed coating surface of the moving body after the surface roughness is finished with high accuracy by the first polishing step is polished by only the traverse operation without the vibration operation in the second polishing step. Thus, the cross hatch pattern formed in the first polishing step can be erased while maintaining the surface roughness with high accuracy.

斯くして、前記第1研磨工程後に第2研磨工程を実施することで、移動体の溶射皮膜面を、その表面粗さを高精度に、しかも、クロスハッチパターンの無い研磨面に仕上げることができる。したがって、従来問題となった、クロスハッチパターンに起因する流体の漏洩が生じることは無い。   Thus, by performing the second polishing step after the first polishing step, it is possible to finish the sprayed coating surface of the moving body with a highly accurate surface roughness and a polished surface having no cross hatch pattern. it can. Therefore, there is no leakage of fluid due to the cross hatch pattern, which has been a problem in the past.

また、本発明は、内部空間を有する筒体と、
前記筒体の内部空間内に、該筒体の軸方向に移動自在に嵌挿された筒状又は棒状の移動体と、
前記筒体の内周面と前記移動体の外周面との間に配設され、前記移動体の外周面と摺接して、前記筒体の内部空間内に充填された流体の漏洩を防止するシール部材とを備えた筒型油空圧機器であって、
前記移動体は、前記表面処理方法によって、その少なくとも前記シール部材と摺接する外周面が処理された筒型油空圧機器に係る。
The present invention also includes a cylinder having an internal space,
A cylindrical or rod-like moving body that is inserted into the inner space of the cylindrical body so as to be movable in the axial direction of the cylindrical body,
It is disposed between the inner peripheral surface of the cylindrical body and the outer peripheral surface of the movable body and is in sliding contact with the outer peripheral surface of the movable body to prevent leakage of the fluid filled in the internal space of the cylindrical body. A cylindrical hydraulic / pneumatic device including a seal member,
The movable body relates to a cylindrical hydraulic / pneumatic device in which at least an outer peripheral surface in sliding contact with the seal member is processed by the surface treatment method.

この筒型油空圧機器によれば、移動体の、少なくとも前記シール部材と摺接する外周面に形成した溶射皮膜面を、その表面粗さを高精度に、しかも、クロスハッチパターンの無い研磨面に仕上げることができる。したがって、従来問題となった、クロスハッチパターンに起因した流体の漏洩が生じることが無い。   According to this cylindrical hydraulic / pneumatic apparatus, the sprayed coating surface formed on at least the outer peripheral surface that is in sliding contact with the sealing member of the moving body is polished with a high surface roughness and no cross-hatch pattern. Can be finished. Therefore, there is no fluid leakage caused by the cross hatch pattern, which has been a problem in the past.

尚、前記第2研磨工程においては、前記移動体を、その外周面の周速度が11m/min以上となるように回転させることが好ましい。このようにすれば、溶射皮膜面の表面粗さをより高精度に仕上げることができ、シール部材の削り屑が当該移動体の外周面に付着するのをより効果的に防止することができる。   In the second polishing step, it is preferable to rotate the movable body so that the peripheral speed of the outer peripheral surface is 11 m / min or more. In this way, the surface roughness of the sprayed coating surface can be finished with higher accuracy, and the shavings of the seal member can be more effectively prevented from adhering to the outer peripheral surface of the moving body.

以上詳述したように、本発明によれば、振動動作及びトラバース動作の複合動作を砥石に付与した第1研磨工程を実施した後、トラバース動作のみを砥石に付与した第2研磨工程を実施するようにしているので、移動体の溶射皮膜面を、その表面粗さを高精度に仕上げることができるとともに、クロスハッチパターンの無い研磨面とすることができる。したがって、従来問題となった、クロスハッチパターンに起因した流体の漏洩が生じることは無い。   As described in detail above, according to the present invention, after performing the first polishing step in which the combined operation of the vibration operation and the traverse operation is applied to the grindstone, the second polishing step in which only the traverse operation is applied to the grindstone is performed. As a result, the sprayed coating surface of the moving body can be finished with high surface roughness and a polished surface without a cross-hatch pattern. Therefore, there is no leakage of fluid due to the cross hatch pattern, which has been a problem in the past.

本発明の一実地形態に係る表面処理方法の手順を説明するための説明図である。It is explanatory drawing for demonstrating the procedure of the surface treatment method which concerns on one actual form of this invention. 本発明の一実地形態に係る表面処理方法の手順を説明するための説明図である。It is explanatory drawing for demonstrating the procedure of the surface treatment method which concerns on one actual form of this invention. 本発明の一実地形態に係る表面処理方法の手順を説明するための説明図である。It is explanatory drawing for demonstrating the procedure of the surface treatment method which concerns on one actual form of this invention. 実施例1,2及び比較例1,2に係る内筒本体の表面粗さを測定した結果を示す表である。It is a table | surface which shows the result of having measured the surface roughness of the inner cylinder main body which concerns on Examples 1, 2 and Comparative Examples 1,2. 実施例1に係る内筒本体の外周面(溶射皮膜表面)を写した写真である。2 is a photograph showing the outer peripheral surface (sprayed coating surface) of the inner cylinder main body according to Example 1; 実施例2に係る内筒本体の外周面(溶射皮膜表面)を写した写真である。6 is a photograph showing the outer peripheral surface (sprayed coating surface) of an inner cylinder main body according to Example 2. FIG. 比較例1に係る内筒本体の外周面(溶射皮膜表面)を写した写真である。4 is a photograph showing an outer peripheral surface (sprayed coating surface) of an inner cylinder main body according to Comparative Example 1. FIG. 比較例2に係る内筒本体の外周面(溶射皮膜表面)を写した写真である。6 is a photograph showing an outer peripheral surface (sprayed coating surface) of an inner cylinder main body according to Comparative Example 2. 従来の航空機用脚装置の主要な構成部分を示した正断面図である。It is the front sectional view which showed the main components of the conventional aircraft leg apparatus. 図9におけるE部を拡大した拡大図である。It is the enlarged view to which the E section in FIG. 9 was expanded.

以下、本発明の具体的な実施形態につき図面に基づいて説明する。   Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.

本実施形態に係る筒型油空圧機器は、上述した図9及び図10に示す航空機用の脚装置1であり、その内筒本体3aの外周面に表面処理を施すものとする。尚、脚装置1の具体的な構成は上述した通りであるので、その詳しい説明は省略する。   The cylindrical hydraulic / pneumatic device according to the present embodiment is the aircraft leg device 1 shown in FIGS. 9 and 10 described above, and surface treatment is performed on the outer peripheral surface of the inner cylinder main body 3a. In addition, since the specific structure of the leg apparatus 1 is as above-mentioned, the detailed description is abbreviate | omitted.

本実施形態に係る表面処理方法では、内筒本体3aの外周面に対して、溶射皮膜を形成する皮膜形成工程と、形成された溶射皮膜を研磨する第1研磨工程及び第2研磨工程からなる研磨工程を実施する。以下、各工程について説明する。   The surface treatment method according to the present embodiment includes a coating forming process for forming a sprayed coating on the outer peripheral surface of the inner cylinder main body 3a, and a first polishing process and a second polishing process for polishing the formed sprayed coating. A polishing step is performed. Hereinafter, each step will be described.

A.皮膜形成工程
皮膜形成工程では、前記内筒本体3aを軸中心に回転させた状態で、この内筒本体3aの外周面に、タングステンカーバイドの粉末を用いた高速フレーム溶射法によって溶射皮膜を形成させる。高速フレーム溶射法は、プロピレン、水素等と酸素を混合した高圧のガスを燃料として、粉末材料を溶射する方法であって、点火ガスが粉末材料を包み込むようにフレームを形成するため、粉末が均一に熱せられた状態で加速され、対象物の表面上に高品質な皮膜が形成される。尚、溶射法としては、この高速フレーム溶射法に限られるものではなく、他の溶射法によって溶射皮膜を形成させるようにしても良い。また、この皮膜形成工程で形成される溶射皮膜の厚さは、およそ0.076〜0.3mmである。
A. Film Forming Process In the film forming process, a sprayed film is formed on the outer peripheral surface of the inner cylinder body 3a by a high-speed flame spraying method using tungsten carbide powder in a state where the inner cylinder body 3a is rotated about the axis. . High-speed flame spraying is a method in which powder material is sprayed using high-pressure gas mixed with propylene, hydrogen, etc. and oxygen as fuel, and since the flame is formed so that the ignition gas wraps the powder material, the powder is uniform. The film is accelerated while being heated to form a high-quality film on the surface of the object. The spraying method is not limited to the high-speed flame spraying method, and a sprayed coating may be formed by another spraying method. The thickness of the sprayed coating formed in this coating forming process is approximately 0.076 to 0.3 mm.

B.研磨工程
次に、内筒本体3aの外周面に形成された溶射皮膜面に、図1に示した研磨装置10を用いて研磨加工を施す。
B. Polishing Step Next, the thermal spray coating surface formed on the outer peripheral surface of the inner cylinder body 3a is subjected to polishing using the polishing apparatus 10 shown in FIG.

[研磨装置]
図1に示した研磨装置10は、所謂円筒研削盤と呼ばれる装置と基本構成を同じくするものであり、加工対象物たる内筒本体3aを保持するチャック12が装着された主軸11と、前記チャック12と対向して設けられた芯押し台13と、研磨工具Tを支持する砥石台14とを備える。
[Polishing equipment]
A polishing apparatus 10 shown in FIG. 1 has the same basic configuration as an apparatus called a so-called cylindrical grinder, and includes a spindle 11 on which a chuck 12 for holding an inner cylinder body 3a as a workpiece is mounted, and the chuck 12 and a grinding wheel base 14 for supporting the polishing tool T.

前記主軸11は、主軸台(図示せず)によって回転自在に支持されており、芯押し台13は、前記チャック12に対して進退する方向に移動可能となっている。   The main shaft 11 is rotatably supported by a main shaft (not shown), and the core pushing table 13 is movable in a direction to advance and retreat with respect to the chuck 12.

前記砥石台14は、適宜送り装置(図示せず)により駆動されて、前記主軸11の軸線方向、及びこの軸線と直交する方向に移動可能となっており、更に、前記主軸11の軸線方向に沿って所定のストロークで往復動するトラバース動作(図2及び図3に示した矢示B方向の動作)が付与されるようになっている。尚、トラバース動作のストロークは、研磨対象物の研磨範囲に応じて設定可能であり、必要とされる研磨範囲をトレースできるストロークに設定される。   The grindstone table 14 is appropriately driven by a feeding device (not shown), and is movable in the axial direction of the main shaft 11 and in a direction perpendicular to the main axis 11, and further in the axial direction of the main shaft 11. A traverse operation that reciprocates along a predetermined stroke along the direction indicated by the arrow B in FIGS. 2 and 3 is applied. Note that the stroke of the traverse operation can be set according to the polishing range of the object to be polished, and is set to a stroke that can trace the required polishing range.

前記砥石台14に保持される研磨工具Tは、適宜振動付与装置(図示せず)によって、前記主軸11の軸線方向に沿った所定の微小距離(例えば、1〜5mmの範囲内で設定される距離)だけ往復動する振動動作(図1及び図2に示した矢示C方向の動作)が付与されるようになっている。   The polishing tool T held on the grinding wheel base 14 is set within a predetermined minute distance (for example, in the range of 1 to 5 mm) along the axial direction of the main shaft 11 by an appropriate vibration applying device (not shown). A vibration operation (operation in the direction indicated by arrow C shown in FIGS. 1 and 2) that reciprocates by a distance is provided.

また、前記研磨工具Tは、略直方体形状をした砥石であり、その研磨作用面Taに砥粒としてのダイヤモンド粒子が固着されたダイヤモンド砥石である。尚、砥粒としては、ダイヤモンド粒子に限られるものではなく、立方晶窒化ホウ素の粒子であっても良い。また、研磨工具Tは、上記砥石の形態ではなく、これに代えて、表面に前記砥粒が均一に塗布、固着されたフィルム状の形態のものでも良い。この場合、フィルムをロール状に形成して、順次フィルムを繰り出しながら、研磨対象物に砥粒固着面を当接させる。   The polishing tool T is a grindstone having a substantially rectangular parallelepiped shape, and is a diamond grindstone in which diamond particles as abrasive grains are fixed to the polishing surface Ta. The abrasive grains are not limited to diamond particles, but may be cubic boron nitride particles. Further, the polishing tool T is not in the form of the above-described grindstone, but instead may be in the form of a film in which the abrasive grains are uniformly applied and fixed on the surface. In this case, the film is formed in a roll shape, and the abrasive grain fixing surface is brought into contact with the object to be polished while the film is successively drawn out.

以上の構成を備えた研磨装置10を用い、内筒本体3aの外周面に形成された溶射皮膜面に対して、以下の第1研磨工程及び第2研磨工程を実施する。   The following 1st grinding | polishing process and 2nd grinding | polishing process are implemented with respect to the sprayed coating surface formed in the outer peripheral surface of the inner cylinder main body 3a using the grinding | polishing apparatus 10 provided with the above structure.

[第1研磨工程]
第1研磨工程では、まず、前記チャック12及び芯押し台13によって、内筒本体3aを、その軸線が主軸11の軸線と同軸となるように保持した後、主軸11をその軸線回りに回転させる。主軸11の回転速度は、適宜設定し得るが、前記内筒本体3aの外周面の周速度が、11m/min以上なるような回転速度に設定するのが好ましい。
[First polishing step]
In the first polishing step, first, the inner cylinder body 3a is held by the chuck 12 and the core push stand 13 so that the axis thereof is coaxial with the axis of the main shaft 11, and then the main shaft 11 is rotated around the axis. . The rotational speed of the main shaft 11 can be set as appropriate, but it is preferable to set the rotational speed so that the peripheral speed of the outer peripheral surface of the inner cylinder main body 3a is 11 m / min or more.

次に、図1に示すように、砥石台14を内筒本体3aに向けて矢示A方向に移動させて、研磨工具Tの研磨作用面Taを前記内筒本体3aの溶射皮膜面(図1において、一点鎖線のハッチングで示す領域)に当接させた後、研磨工具Tに前記振動動作を与えて、内筒本体3aの中心軸方向と平行な方向に当該研磨工具Tを振動させる。   Next, as shown in FIG. 1, the grindstone base 14 is moved in the direction indicated by the arrow A toward the inner cylinder main body 3a, and the polishing action surface Ta of the polishing tool T is changed to the thermal spray coating surface of the inner cylinder main body 3a (see FIG. 1, the abutting operation is performed on the polishing tool T, and the polishing tool T is vibrated in a direction parallel to the central axis direction of the inner cylinder main body 3a.

ついで、図2に示すように、砥石台14を矢示B方向に往復動させて、前記研磨工具Tにトラバース動作を付与する。これにより、研磨工具Tは、前記振動動作とトラバース動作とが複合された複合動作が付与され、この複合動作によって、内筒本体3aの溶射皮膜面Dを研磨する。   Next, as shown in FIG. 2, the grinding wheel base 14 is reciprocated in the direction indicated by the arrow B, and a traverse operation is imparted to the polishing tool T. Thereby, the polishing tool T is given a composite operation in which the vibration operation and the traverse operation are combined, and the thermal spray coating surface D of the inner cylinder main body 3a is polished by the composite operation.

このようにして、振動動作とトラバース動作との複合動作を研磨工具Tに与えることで、当該研磨工具Tの溶射皮膜表面Dに対する研磨作用を高めることができ、また、研磨工具Tの送り目が溶射皮膜面Dに転写されるのを防止することができる、即ち、溶射皮膜面Dに、トラバース動作に伴う研磨加工痕が生じるのを防止することができることから、その表面粗さをシール性能上要請される以上の高精度に仕上げることができる。   In this way, by giving the polishing tool T a combined operation of the vibration operation and the traverse operation, the polishing action of the polishing tool T on the sprayed coating surface D can be enhanced, and the feed line of the polishing tool T can be improved. It is possible to prevent transfer to the thermal spray coating surface D, that is, it is possible to prevent the polishing coating traces from being generated on the thermal spray coating surface D due to the traverse operation. It is possible to finish with higher accuracy than required.

そして、第1研磨工程では、前記溶射皮膜面Dが、所定の表面粗さに仕上げられる回数だけ、前記トラバース動作を実行して、その処理を終了する。尚、前記振動動作の動作サイクルは、150〜1000回/minの範囲で適宜設定され、トラバース動作の動作サイクルも、1〜3回/minの範囲で適宜設定される。   In the first polishing step, the traverse operation is executed as many times as the thermal spray coating surface D is finished to a predetermined surface roughness, and the process is terminated. The operation cycle of the vibration operation is appropriately set in the range of 150 to 1000 times / min, and the operation cycle of the traverse operation is also appropriately set in the range of 1 to 3 times / min.

[第2研磨工程]
第2研磨工程では、前記第1研磨工程終了後、図3に示すように、研磨工具Tに前記振動動作を与えるのを止め、当該研磨工具Tを振動させていない状態で内筒本体3aの溶射皮膜面Dに当接させたまま当該研磨工具Tに前記トラバース動作を付与する。
[Second polishing step]
In the second polishing step, after the first polishing step is finished, as shown in FIG. 3, the vibration operation is stopped from being applied to the polishing tool T and the inner cylinder body 3a is not vibrated. The traverse operation is applied to the polishing tool T while being in contact with the thermal spray coating surface D.

尚、第2研磨工程におけるトラバース動作の動作サイクルは、第1研磨工程と同じでも、異なる動作サイクルでも良く、1〜3回/minの範囲で適宜設定される。   In addition, the operation cycle of the traverse operation in the second polishing step may be the same as or different from the first polishing step, and is appropriately set in the range of 1 to 3 times / min.

第1研磨工程後の前記溶射皮膜面Dには、前記振動動作に起因したクロスハッチパターンが形成されるが、第2研磨工程において、トラバース動作のみを研磨工具Tに付与した研磨加工により、第1研磨工程で得られた高精度な表面粗さを保ったまま、当該第1研磨工程で形成されたクロスハッチパターンを消失させることができる。   A cross-hatch pattern resulting from the vibration operation is formed on the sprayed coating surface D after the first polishing step, but in the second polishing step, a polishing process in which only the traverse operation is applied to the polishing tool T is performed. The cross hatch pattern formed in the first polishing step can be eliminated while maintaining the highly accurate surface roughness obtained in the one polishing step.

そして、第2研磨工程では、前記溶射皮膜面Dに形成されたクロスハッチパターンが消失される回数だけ、前記トラバース動作を実行して、その処理を終了する。   In the second polishing step, the traverse operation is executed as many times as the cross hatch pattern formed on the sprayed coating surface D disappears, and the process ends.

C.まとめ
以上のように、本実施形態に係る表面処理方法では、溶射皮膜を形成した内筒本体3aの当該溶射皮膜面Dに対し、振動動作とトラバース動作が複合された複合動作を研磨工具Tに付与して研磨する第1研磨工程、及びトラバース動作のみを研磨工具Tに付与して研磨する第2研磨工程を順次実施するようにしているので、内筒本体3aの溶射皮膜面Dを、その表面粗さを高精度に、しかも、クロスハッチパターンの無い研磨面に仕上げることができる。
C. Summary As described above, in the surface treatment method according to the present embodiment, the polishing tool T has a combined operation in which the vibration operation and the traverse operation are combined with respect to the sprayed coating surface D of the inner cylinder main body 3a on which the sprayed coating is formed. Since the first polishing step of applying and polishing, and the second polishing step of applying only the traverse operation to the polishing tool T and performing the polishing are sequentially performed, the sprayed coating surface D of the inner cylinder main body 3 a The surface roughness can be finished with high accuracy and a polished surface having no cross hatch pattern.

したがって、本実施形態に係る表面処理方法によって処理した前記内筒本体3aは、これを前記脚装置1の部品として用いても、従来問題となった、クロスハッチパターンに起因する流体の漏洩が生じることは無い。   Therefore, even if the inner cylinder main body 3a processed by the surface treatment method according to the present embodiment is used as a part of the leg device 1, fluid leakage due to the cross hatch pattern, which has been a problem in the past, occurs. There is nothing.

尚、言うまでも無いことであるが、本実施形態において、上述した第1研磨工程に先立って、粗研磨加工を実施するようにしても何ら問題は無い。   Needless to say, in the present embodiment, there is no problem even if rough polishing is performed prior to the first polishing step described above.

実施例1及び2、並びに比較例1及び2に係る各内筒本体3aを作成し、その表面粗さ及び研磨加工痕について評価するとともに、作動試験を行って、内部流体の漏洩状況を観察した。その結果を図4〜図8に示す。   Each inner cylinder main body 3a according to Examples 1 and 2 and Comparative Examples 1 and 2 was created, and the surface roughness and polishing traces were evaluated, and an operation test was performed to observe the leakage state of the internal fluid. . The results are shown in FIGS.

尚、実施例1,2及び比較例1,2とも、溶射膜形成工程において、皮膜が0.1mm程度のタングステンカーバイドの溶射皮膜を形成した。また、作動試験は、得られた内筒本体3aを脚装置1として組付け、内部に流体を900psi(初期封入圧)で封入し、内筒本体3aの伸縮ストローク量を、全伸長の状態から7.5〜8.0インチとして、100回程度伸縮させた後、全伸長させた状態で一晩保持して、前記流体の漏洩状況を観察した。また、実施例1,2及び比較例1,2における研磨条件は、以下の通りとした。   In Examples 1 and 2 and Comparative Examples 1 and 2, a thermal spray coating of tungsten carbide having a coating thickness of about 0.1 mm was formed in the spray coating formation step. In addition, the operation test was performed by assembling the obtained inner cylinder body 3a as the leg device 1, enclosing the fluid at 900 psi (initial enclosure pressure), and adjusting the expansion / contraction stroke amount of the inner cylinder body 3a from the fully extended state. It was stretched about 100 to 7.5 inches and then held overnight in a fully stretched state, and the leakage state of the fluid was observed. The polishing conditions in Examples 1 and 2 and Comparative Examples 1 and 2 were as follows.

[実施例1]
内筒本体3aの外周面の周速度が18.3m/minとなるように、当該内筒本体3aを回転させて、前記第1研磨工程及び第2研磨工程を実施した。第1研磨工程では、♯1000(平均砥粒径が14〜22μm)のダイヤモンド砥石を用い、その振動動作のストロークを2.5mmとし、その動作サイクルを600回/minとした。また、トラバース動作の動作サイクルを2回/minとした。第2研磨工程では、♯2000(平均砥粒径が5〜10μm)のダイヤモンド砥石を用い、トラバース動作の動作サイクルを2回/minとした。
[Example 1]
The inner cylinder body 3a was rotated so that the peripheral speed of the outer peripheral surface of the inner cylinder body 3a was 18.3 m / min, and the first polishing process and the second polishing process were performed. In the first polishing step, a diamond grindstone of # 1000 (average abrasive grain size: 14 to 22 μm) was used, the stroke of the vibration operation was 2.5 mm, and the operation cycle was 600 times / min. Further, the operation cycle of the traverse operation was set to 2 times / min. In the second polishing step, a diamond grindstone with # 2000 (average abrasive grain size of 5 to 10 μm) was used, and the operation cycle of the traverse operation was set to 2 times / min.

[実施例2]
内筒本体3aの外周面の周速度が30.4m/minとなるように、当該内筒本体3aを回転させて、前記第1研磨工程及び第2研磨工程を実施した。第1研磨工程では、♯1000(平均砥粒径が14〜22μm)のダイヤモンド砥石を用い、その振動動作のストロークを2.5mmとし、その動作サイクルを600回/minとした。また、トラバース動作の動作サイクルを2回/minとした。第2研磨工程では、♯2000(平均砥粒径が5〜10μm)のダイヤモンド砥石を用い、トラバース動作の動作サイクルを2回/minとした。
[Example 2]
The inner cylinder body 3a was rotated so that the peripheral speed of the outer peripheral surface of the inner cylinder body 3a was 30.4 m / min, and the first polishing process and the second polishing process were performed. In the first polishing step, a diamond grindstone of # 1000 (average abrasive grain size: 14 to 22 μm) was used, the stroke of the vibration operation was 2.5 mm, and the operation cycle was 600 times / min. Further, the operation cycle of the traverse operation was set to 2 times / min. In the second polishing step, a diamond grindstone with # 2000 (average abrasive grain size of 5 to 10 μm) was used, and the operation cycle of the traverse operation was set to 2 times / min.

[比較例1]
内筒本体3aの外周面の周速度が18.3m/minとなるように、当該内筒本体3aを回転させて、前記第1研磨工程のみを実施した。第1研磨工程では、♯1000(平均砥粒径が14〜22μm)のダイヤモンド砥石を用い、その振動動作のストロークを2.5mmとし、その動作サイクルを600回/minとした。また、トラバース動作の動作サイクルを2回/minとした。
[Comparative Example 1]
Only the first polishing step was performed by rotating the inner cylinder main body 3a so that the peripheral speed of the outer peripheral surface of the inner cylinder main body 3a was 18.3 m / min. In the first polishing step, a diamond grindstone of # 1000 (average abrasive grain size: 14 to 22 μm) was used, the stroke of the vibration operation was 2.5 mm, and the operation cycle was 600 times / min. Further, the operation cycle of the traverse operation was set to 2 times / min.

[比較例2]
内筒本体3aの外周面の周速度が18.3m/minとなるように、当該内筒本体3aを回転させて、前記第1研磨工程を2回実施した。1回目の加工では、♯1000(平均砥粒径が14〜22μm)のダイヤモンド砥石を用い、その振動動作のストロークを2.5mmとし、その動作サイクルを600回/minとし、トラバース動作の動作サイクルを2回/minとした。2回目の加工では、♯2000(平均砥粒径が5〜10μm)のダイヤモンド砥石を用い、その振動動作のストロークを2.5mmとし、その動作サイクルを600回/minとし、トラバース動作の動作サイクルを2回/minとした。
[Comparative Example 2]
The inner cylinder body 3a was rotated so that the peripheral speed of the outer peripheral surface of the inner cylinder body 3a was 18.3 m / min, and the first polishing step was performed twice. In the first machining, a diamond grindstone of # 1000 (average abrasive grain size of 14 to 22 μm) is used, the stroke of the vibration operation is 2.5 mm, the operation cycle is 600 times / min, and the operation cycle of the traverse operation Was set to 2 times / min. In the second processing, a diamond grindstone of # 2000 (average abrasive grain size is 5 to 10 μm) is used, the stroke of the vibration operation is 2.5 mm, the operation cycle is 600 times / min, and the operation cycle of the traverse operation Was set to 2 times / min.

[評価]
図4は、実施例1,2及び比較例1,2に係る内筒本体3aの溶射皮膜面Dの表面粗さの測定結果をまとめた表であり、表中のRaは算術平均粗さ、Rpは粗さ曲線の最大山高さ、Rzは最大高さ粗さを示す(Ra、Rp、RzのいずれもJIS B 0601に準拠)。また、図5〜図8は、上記作動試験後の内筒本体3aの外周面を写した写真であり、図5は実施例1、図6は実施例2、図7は比較例1、図8は比較例2における内筒本体3aの外周面を写した写真である。
[Evaluation]
FIG. 4 is a table summarizing the measurement results of the surface roughness of the thermal spray coating surface D of the inner cylinder main body 3a according to Examples 1 and 2 and Comparative Examples 1 and 2, and Ra in the table is arithmetic average roughness, Rp represents the maximum peak height of the roughness curve, and Rz represents the maximum height roughness (all of Ra, Rp, and Rz conform to JIS B 0601). 5 to 8 are photographs showing the outer peripheral surface of the inner cylinder main body 3a after the operation test. FIG. 5 shows Example 1, FIG. 6 shows Example 2, FIG. 7 shows Comparative Example 1, and FIG. 8 is a photograph showing the outer peripheral surface of the inner cylinder main body 3a in Comparative Example 2.

まず、図4に示すように、第1研磨工程を1回のみ実施した比較例1では、研磨工程を2回実施した実施例1、実施例2及び比較例2に比べて、Ra,Rp,Rzのいずれの値についても悪くなっている。このことから、当然のことならが、研磨工程を長く実施した方が、表面粗さを高精度に仕上げられることが分かる。   First, as shown in FIG. 4, in Comparative Example 1 in which the first polishing process was performed only once, Ra, Rp, and Comparative Example 2 were compared with Examples 1, 2 and 2 in which the polishing process was performed twice. It is worse for any value of Rz. From this, it can be understood that the surface roughness can be finished with higher accuracy if the polishing process is performed for a longer time.

また、実施例1及び実施例2と比較例2とを対比すると、砥石に振動動作を付与した研磨工程を2度実施した比較例2の方が、Ra,Rp,Rzのいずれの値についても小さくなっており、このことから、砥石に振動動作を付与した研磨を行なうことで、表面粗さを高精度に仕上げられることが分かる。一方、実施例1及び実施例2と比較例2とでは、比較例1に比して、Ra,Rp,Rzのいずれの値についても大きな差は無く、砥石に振動動作を付与した研磨工程を2度実施する比較例2に比して、第1研磨工程及び第2研磨工程を実施する実施例1及び実施例2においても、十分に、表面粗さを高精度に仕上げられることが分かる。   Further, when Example 1 and Example 2 are compared with Comparative Example 2, Comparative Example 2 in which the polishing process in which the vibration operation is applied to the grindstone is performed twice is any value of Ra, Rp, and Rz. From this fact, it can be seen that the surface roughness can be finished with high accuracy by performing polishing with a vibration operation applied to the grindstone. On the other hand, in Example 1, Example 2, and Comparative Example 2, compared with Comparative Example 1, there is no great difference in any of Ra, Rp, and Rz, and a polishing process in which a vibration operation is applied to the grindstone is performed. It can be seen that the surface roughness can be sufficiently finished with high precision also in Example 1 and Example 2 in which the first polishing process and the second polishing process are performed as compared with Comparative Example 2 performed twice.

また、実施例1と実施例2とを対比すると、実施例2の方が、Ra,Rp,Rzのいずれの値についても小さくなっており、このことから、内筒本体3aの回転速度を速くすることで、表面粗さを高精度に仕上げられることが分かる。   Further, when comparing the first embodiment with the second embodiment, the second embodiment has a smaller value for each of Ra, Rp, and Rz. From this, the rotational speed of the inner cylinder main body 3a is increased. It can be seen that the surface roughness can be finished with high accuracy.

以上の結果から、第1研磨工程及び第2研磨工程を実施することで、十分に、表面粗さを高精度に仕上げられることが分かる。   From the above results, it can be seen that the surface roughness can be sufficiently finished with high accuracy by performing the first polishing step and the second polishing step.

実施例1,2及び比較例1,2に係る内筒本体3aの溶射皮膜表面を観察すると、図5に示した実施例1、及び図6に示した実施例2では、いずれの溶射皮膜表面にもクロスハッチパターンは形成されていない。一方、図7に示した比較例1、及び図8に示した比較例2では、いずれの溶射皮膜表面にもクロスハッチパターンが形成されている。したがって、上述した如く、第1研磨工程によって形成されたクロスハッチパターンが、前記第2研磨工程を実施することによって、消失されることが分かる。   When the thermal spray coating surface of the inner cylinder main body 3a according to Examples 1 and 2 and Comparative Examples 1 and 2 is observed, any one of the thermal spray coating surfaces in Example 1 shown in FIG. 5 and Example 2 shown in FIG. However, no cross hatch pattern is formed. On the other hand, in Comparative Example 1 shown in FIG. 7 and Comparative Example 2 shown in FIG. 8, a cross hatch pattern is formed on the surface of each thermal spray coating. Therefore, as described above, it can be seen that the cross hatch pattern formed by the first polishing process disappears by performing the second polishing process.

そして、図7及び図8から分かるように、比較例1及び2では、いずれの場合も、シール部材6aの削り屑が島状に多量に付着しており、溶射皮膜表面に形成されたクロスハッチパターンによって、シール部材6aが大きく削り取られることが分かる。そして、この場合、いずれについても、シール部材6aによるシール部からの流体の漏洩が確認された。   As can be seen from FIGS. 7 and 8, in both cases of Comparative Examples 1 and 2, a large amount of shavings of the seal member 6a adheres in an island shape and is formed on the surface of the sprayed coating. It can be seen that the seal member 6a is greatly scraped off by the pattern. In this case, fluid leakage from the seal portion by the seal member 6a was confirmed in any case.

一方、図5及び図6から分かるように、実施例1では、シール部材6aの削り屑が島状に少量に付着しているが、実施例2では、シール部材6aの削り屑は全く付着しておらず、溶射皮膜表面にクロスハッチパターンが形成されていない場合には、シール部材6aが削り取られ難いことが分かる。そして、実施例1及び2については、いずれも、充填した流体の前記シール部からの漏洩は確認されなかった。   On the other hand, as can be seen from FIGS. 5 and 6, in the first embodiment, the shavings of the seal member 6 a are attached in a small amount like islands, but in the second embodiment, the shavings of the sealing member 6 a are not attached at all. However, when the cross hatch pattern is not formed on the surface of the sprayed coating, it is understood that the seal member 6a is difficult to be scraped off. And about Example 1 and 2, the leakage from the said seal part of the fluid which filled was not confirmed.

以上の結果から、溶射皮膜を形成した内筒本体3aの当該溶射皮膜面Dに対し、振動動作とトラバース動作が複合された複合動作を研磨工具Tに付与して研磨する第1研磨工程、及びトラバース動作のみを研磨工具Tに付与して研磨する第2研磨工程を順次実施することで、上述のように、内筒本体3aの溶射皮膜面Dを、その表面粗さを高精度に、しかも、クロスハッチパターンの無い研磨面に仕上げることができ、このように表面処理した内筒本体3aは、これを脚装置1の部品として用いても、従来問題となった流体の漏洩を生じることが無いことが分かる。   From the above results, the first polishing step of polishing the thermal spray coating surface D of the inner cylinder main body 3a on which the thermal spray coating is formed by applying a composite operation in which the vibration operation and the traverse operation are combined to the polishing tool T, and polishing, By sequentially performing the second polishing step in which only the traverse operation is applied to the polishing tool T for polishing, as described above, the thermal spray coating surface D of the inner cylinder main body 3a has a highly accurate surface roughness. A polished surface having no cross hatch pattern can be finished, and the inner cylinder body 3a subjected to the surface treatment in this manner may cause a fluid leakage which has been a problem in the past even if it is used as a component of the leg device 1. I understand that there is no.

1 航空機用脚装置
2 外筒
3 内筒
3a 内筒本体
3b 上側ベアリング
6a,6b シール部材
7 下側ベアリング
10 研磨装置
11 主軸
12 チャック
13 芯押し台
14 砥石台
T 研磨工具
DESCRIPTION OF SYMBOLS 1 Aircraft leg apparatus 2 Outer cylinder 3 Inner cylinder 3a Inner cylinder main body 3b Upper bearing 6a, 6b Seal member 7 Lower bearing 10 Polishing apparatus 11 Spindle 12 Chuck 13 Core support 14 Grinding wheel base T Polishing tool

Claims (4)

内部空間を有する筒体と、該筒体の内部空間内に軸方向に移動自在に嵌挿される筒状又は棒状の移動体と、前記筒体の内周面と前記移動体の外周面との間に配設され、前記移動体の外周面と摺接して、前記筒体の内部空間内に充填された流体の漏洩を防止するシール部材とを備えた筒型油空圧機器における、前記移動体の外周面を表面処理する方法であって、
前記移動体の、少なくとも前記シール部材と摺接する外周面に、溶射法によってタングステンを含む溶射皮膜を形成する皮膜形成工程と、
前記移動体を軸中心に回転させた状態で、砥粒としてダイヤモンド粒子及び立方晶窒化ホウ素粒子のうち少なくとも一方を備えた研磨工具の研磨作用面を前記移動体の溶射皮膜面に当接させるとともに、前記移動体の中心軸方向に沿って予め定めた距離だけ往復動させる振動動作と、同じく前記移動体の中心軸方向に沿って前記溶射皮膜の全域を往復動させるトラバース動作との複合動作を前記研磨工具に与えて、前記溶射皮膜面を研磨する第1研磨工程と、
前記移動体を軸中心に回転させた状態で前記研磨工具の研磨作用面を前記移動体の溶射皮膜面に当接させるとともに、前記トラバース動作のみを前記研磨工具に与えて、前記第1研磨工程の終了した前記溶射皮膜面を研磨する第2研磨工程とを順次実施するようにしたことを特徴とする移動体の表面処理方法。
A cylindrical body having an internal space; a cylindrical or rod-shaped movable body that is movably inserted in the internal space of the cylindrical body; and an inner peripheral surface of the cylindrical body and an outer peripheral surface of the movable body The movement in a cylindrical hydraulic / pneumatic apparatus provided with a seal member disposed between and in sliding contact with the outer peripheral surface of the movable body to prevent leakage of a fluid filled in the internal space of the tubular body A method for surface treatment of the outer peripheral surface of a body,
A coating forming step of forming a thermal spray coating containing tungsten by a thermal spraying method on at least an outer peripheral surface of the movable body that is in sliding contact with the seal member;
In a state where the movable body is rotated about the axis, a polishing working surface of a polishing tool provided with at least one of diamond particles and cubic boron nitride particles as abrasive grains is brought into contact with the sprayed coating surface of the movable body. A combined operation of a vibration operation that reciprocates a predetermined distance along the central axis direction of the moving body and a traverse operation that reciprocates the entire area of the sprayed coating along the central axis direction of the moving body. A first polishing step for applying to the polishing tool and polishing the sprayed coating surface;
The polishing surface of the polishing tool is brought into contact with the sprayed coating surface of the moving body while the moving body is rotated about the axis, and only the traverse operation is applied to the polishing tool, and the first polishing step And a second polishing step of polishing the sprayed coating surface on which the thermal spraying is completed.
前記第2研磨工程において、前記移動体を、その外周面の周速度が11m/min以上となるように回転させることを特徴とする請求項1記載の移動体の表面処理方法。   2. The surface treatment method for a moving body according to claim 1, wherein, in the second polishing step, the moving body is rotated so that a peripheral speed of an outer peripheral surface thereof is 11 m / min or more. 内部空間を有する筒体と、
前記筒体の内部空間内に、該筒体の軸方向に移動自在に嵌挿された筒状又は棒状の移動体と、
前記筒体の内周面と前記移動体の外周面との間に配設され、前記移動体の外周面と摺接して、前記筒体の内部空間内に充填された流体の漏洩を防止するシール部材とを備え、
前記移動体は、
少なくとも前記シール部材と摺接する外周面に、溶射法によってタングステンを含む溶射皮膜を形成する皮膜形成工程と、
前記移動体を軸中心に回転させた状態で、砥粒としてダイヤモンド粒子及び立方晶窒化ホウ素粒子のうち少なくとも一方を備えた研磨工具の研磨作用面を前記移動体の溶射皮膜面に当接させるとともに、前記移動体の中心軸方向に沿って予め定めた距離だけ往復動させる振動動作と、同じく前記移動体の中心軸方向に沿って前記溶射皮膜の全域を往復動させるトラバース動作との複合動作を前記研磨工具に与えて、前記溶射皮膜面を研磨する第1研磨工程と、
前記移動体を軸中心に回転させた状態で前記研磨工具の研磨作用面を前記移動体の溶射皮膜面に当接させるとともに、前記トラバース動作のみを前記研磨工具に与えて、前記第1研磨工程の終了した溶射皮膜面を研磨する第2研磨工程とを順次実施することにより、その外周面が表面処理されていることを特徴とする筒型油空圧機器。
A cylinder having an internal space;
A cylindrical or rod-like moving body that is inserted into the inner space of the cylindrical body so as to be movable in the axial direction of the cylindrical body,
It is disposed between the inner peripheral surface of the cylindrical body and the outer peripheral surface of the movable body and is in sliding contact with the outer peripheral surface of the movable body to prevent leakage of the fluid filled in the internal space of the cylindrical body. A sealing member,
The moving body is
A film forming step of forming a sprayed coating containing tungsten by a thermal spraying method on at least an outer peripheral surface that is in sliding contact with the seal member;
In a state where the movable body is rotated about the axis, a polishing working surface of a polishing tool provided with at least one of diamond particles and cubic boron nitride particles as abrasive grains is brought into contact with the sprayed coating surface of the movable body. A combined operation of a vibration operation that reciprocates a predetermined distance along the central axis direction of the moving body and a traverse operation that reciprocates the entire area of the sprayed coating along the central axis direction of the moving body. A first polishing step for applying to the polishing tool and polishing the sprayed coating surface;
The polishing surface of the polishing tool is brought into contact with the sprayed coating surface of the moving body while the moving body is rotated about the axis, and only the traverse operation is applied to the polishing tool, and the first polishing step A cylindrical hydraulic / pneumatic apparatus characterized in that the outer peripheral surface is surface-treated by sequentially performing a second polishing step of polishing the sprayed coating surface after completion of the step.
前記移動体は、前記第2研磨工程における前記移動体外周面の周速度が11m/min以上となるように回転され、その外周面が表面処理されていることを特徴とする請求項3記載の筒型油空圧機器。   The said mobile body is rotated so that the peripheral speed of the said mobile body outer peripheral surface in the said 2nd grinding | polishing process may be 11 m / min or more, The outer peripheral surface is surface-treated. Cylindrical hydraulic / pneumatic equipment.
JP2012159238A 2012-07-18 2012-07-18 Surface treatment method for moving body of cylindrical type hydraulic device, and cylindrical type hydraulic device with the moving body subjected to the surface treatment Pending JP2014018908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012159238A JP2014018908A (en) 2012-07-18 2012-07-18 Surface treatment method for moving body of cylindrical type hydraulic device, and cylindrical type hydraulic device with the moving body subjected to the surface treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012159238A JP2014018908A (en) 2012-07-18 2012-07-18 Surface treatment method for moving body of cylindrical type hydraulic device, and cylindrical type hydraulic device with the moving body subjected to the surface treatment

Publications (1)

Publication Number Publication Date
JP2014018908A true JP2014018908A (en) 2014-02-03

Family

ID=50194381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012159238A Pending JP2014018908A (en) 2012-07-18 2012-07-18 Surface treatment method for moving body of cylindrical type hydraulic device, and cylindrical type hydraulic device with the moving body subjected to the surface treatment

Country Status (1)

Country Link
JP (1) JP2014018908A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108081040A (en) * 2016-11-19 2018-05-29 天津欧津汇溢市场调查有限公司 A kind of technological service steel pipe polishing machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108081040A (en) * 2016-11-19 2018-05-29 天津欧津汇溢市场调查有限公司 A kind of technological service steel pipe polishing machine

Similar Documents

Publication Publication Date Title
CN100566939C (en) Be used to polish Hydrodynamic radial flux tool with grinding optical and semiconductor surface
RU2680790C2 (en) Method and device for grinding large crankshafts
US10906138B2 (en) Mold surface repairing process
US20090170411A1 (en) Micropolishing assembly for micropolishing piston rings
JPH11254279A (en) Device and method for finish polishing inner surface of metallic pipe
CN107150264A (en) Sphere precision machining method after ceramic coated
TW200702106A (en) Method for the material-removing machining of a semiconductor wafer
JP2014018908A (en) Surface treatment method for moving body of cylindrical type hydraulic device, and cylindrical type hydraulic device with the moving body subjected to the surface treatment
JPH08192344A (en) Finishing device for inner surface of cylinder and finishing method for inner surface of cylinder
US10259146B2 (en) Producing method for cylinder block
JP2004090178A (en) Honing method and machining device
JP2017148899A (en) Shot blast device and shot blast method thereby
CN115026729B (en) Machining method for round finishing honing head
CN102494185A (en) Surface treatment processing technology of hydraulic valve rod
Lee et al. Airbag tool polishing for aspherical glass lens molds
JP6647664B1 (en) Burnishing apparatus and burnishing method
WO2012025072A3 (en) Method for producing honed surfaces
US1111482A (en) Apparatus for finishing or polishing cylindrical surfaces.
JP2010208004A (en) Honing method and device
JPS591161A (en) Lapping stool and lapping method
JP2007015083A (en) Device and method for machining fine recessed part
JP2011235409A (en) Machining method for sliding surface and cast iron material
CN114932463B (en) Intermittent cylindrical surface grinding method
KR101961183B1 (en) Pretreatment method of metal mold
JP2013129045A (en) High frequency vibration inner surface grinding machine