JP2014017945A - Consumer voltage stabilization system in low voltage system of power distribution system - Google Patents

Consumer voltage stabilization system in low voltage system of power distribution system Download PDF

Info

Publication number
JP2014017945A
JP2014017945A JP2012152841A JP2012152841A JP2014017945A JP 2014017945 A JP2014017945 A JP 2014017945A JP 2012152841 A JP2012152841 A JP 2012152841A JP 2012152841 A JP2012152841 A JP 2012152841A JP 2014017945 A JP2014017945 A JP 2014017945A
Authority
JP
Japan
Prior art keywords
voltage
low
customer
consumer
reactive power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012152841A
Other languages
Japanese (ja)
Other versions
JP5963250B2 (en
Inventor
Yuichiro Kabasawa
祐一郎 樺澤
Migaku Noda
琢 野田
Kentaro Fukushima
健太郎 福島
Koshichi Nemoto
孝七 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2012152841A priority Critical patent/JP5963250B2/en
Publication of JP2014017945A publication Critical patent/JP2014017945A/en
Application granted granted Critical
Publication of JP5963250B2 publication Critical patent/JP5963250B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Abstract

PROBLEM TO BE SOLVED: To provide a consumer voltage stabilization system in a low voltage system of a power distribution system that coordinately performs appropriate reactive power compensation on every no-load power compensation device in the case of distributed installation of a plurality of reactive power compensation devices in correspondence with low voltage system consumers.SOLUTION: The consumer voltage stabilization system so configured that a plurality of reactive power compensation devices 9A-9F distributedly installed in a low voltage system I regulate individual voltages at consumer ends P2 is configured to reduce the low voltage system I into an equivalent low voltage system in which a pole transformer 3 connects to a single consumer via a low voltage distribution line 14 and a single incoming line, then on the reduced low voltage system, compute a reactive current component of reactive power required to cancel a variation in voltage in the low voltage system on the basis of a primary side voltage of the pole transformer 3, an impedance of the reduced low voltage system and a current of the consumer end P2, and divide the computed reactive current component by the number of consumers 6A-6F to produce a proportional compensation current to be supplied.

Description

本発明は配電系統の低圧系における需要化電圧安定化システムに関し、特に配電系統の低圧系に複数の無効電圧補償装置を分散配置した場合に適用して有用なものである。   The present invention relates to a demanded voltage stabilization system in a low-voltage system of a distribution system, and is particularly useful when applied to a case where a plurality of reactive voltage compensators are distributed in a low-voltage system of a distribution system.

住宅用の太陽光発電設備(PV)および電気自動車(EV)が普及すると、PVからの逆潮流による電圧上昇やEVの一斉充電による電圧低下が原因で配電系統の電圧を調整することが困難になると懸念されている。このため、主に、SVR、SVCなどを用いて配電系統全体の電圧調整を行う手法が検討されてきた。   When residential photovoltaic power generation facilities (PV) and electric vehicles (EV) become widespread, it becomes difficult to adjust the voltage of the distribution system due to voltage increase due to reverse power flow from PV and voltage decrease due to simultaneous charging of EV There are concerns. For this reason, techniques for adjusting the voltage of the entire distribution system using SVR, SVC, etc. have been mainly studied.

一方、配電系統における無効電力の補償システムとして、配電系統における変圧器の低圧側の各配電線に接続される需要家毎に、個別に無効電力補償を行う無効電力補償装置を分散配置することで、前記需要家毎に自律的に無効電力の補償を行う手法が提案されている(非特許文献1参照)。   On the other hand, as a compensation system for reactive power in the distribution system, reactive power compensation devices that perform reactive power compensation individually are distributed for each customer connected to each distribution line on the low voltage side of the transformer in the distribution system. A method for autonomously compensating reactive power for each consumer has been proposed (see Non-Patent Document 1).

上述の如く、需要家毎に個別に無効電力補償を行う無効電力補償装置を分散配置し、需要家毎に自律的に無効電力の補償を行う場合には、電圧変動を引き起こす原因の箇所の直近で対策を施すことが可能であるため、問題のある箇所にスポット的に対応することができるばかりでなく、無効電力補償装置を構成する半導体素子の耐圧性能等を軽減して全体的なコストを低減することができる。この結果、負荷側に電圧変動の原因となるPVやEVの分散電源が接続されている場合であっても、低廉なコストで配電系統における需要家電圧の安定化を実現できるという効果を得ることができる。   As described above, when reactive power compensation devices that perform reactive power compensation individually for each consumer are distributed and the reactive power compensation is autonomously performed for each consumer, the nearest to the location that causes the voltage fluctuation In addition to being able to respond to spots where there is a problem, it is possible to reduce the breakdown voltage performance of the semiconductor elements constituting the reactive power compensator and reduce the overall cost. Can be reduced. As a result, even when a PV or EV distributed power source that causes voltage fluctuation is connected to the load side, it is possible to achieve stabilization of consumer voltage in the distribution system at low cost. Can do.

福島健太郎、野田琢、樺澤祐一郎、根本孝七、「需要家端に設置する分散型無効電力補償装置μSTATCOMの基本コンセプト」、平成23年電気学会電力・エネルギー部門大会、No.224,pp.17−18,2011年Kentaro Fukushima, Atsushi Noda, Yuichiro Serizawa, Koshiro Nemoto, “Basic concept of μSTATCOM, a distributed reactive power compensator installed at the consumer end”, 2011 IEEJ Power and Energy Division Conference, No. 224, pp. 17-18, 2011

しかしながら、上述の如き無効電力補償装置が低圧系(本明細書では、柱上変圧器、低圧配電線および引き込み線をいう)の需要家の1軒だけに対応させて複数の低圧系においてそれぞれ配置されている場合には全く問題はないが、複数の需要家に対応させて柱上変圧器等、配電用の変圧器の2次側で複数台の無効電力補償装置が低圧系に分散配置された場合には各無効電力補償装置をどのように制御するかが問題となる場合がある。すなわち、分散配置された各無効電力補償装置毎の個別制御により無効電力を発生させた場合には、電圧が過大に上昇し(PVの場合)、また過大に低下(EV)する可能性がある。この場合には、最適な電圧制御が困難になる。   However, the reactive power compensator as described above is arranged in each of a plurality of low voltage systems corresponding to only one customer of a low voltage system (in this specification, a pole transformer, a low voltage distribution line, and a lead-in line). However, there is no problem at all, but multiple reactive power compensators are distributed in a low-voltage system on the secondary side of the distribution transformer, such as pole transformers, corresponding to multiple customers. In such a case, it may be a problem how to control each reactive power compensator. That is, when reactive power is generated by individual control for each reactive power compensator arranged in a distributed manner, the voltage may increase excessively (in the case of PV) or excessively decrease (EV). . In this case, optimal voltage control becomes difficult.

本発明は、上記従来技術に鑑み、低圧系の需要家に対応させて複数台の無効電力補償装置を分散配置させた場合において、無負荷電力補償装置毎に、協調して適切な無効電力補償を行うことができる配電系統の低圧系における需要家電圧安定化システムを提供することを目的とする。   In view of the above-described prior art, the present invention provides an appropriate reactive power compensation in cooperation with each no-load power compensation device when a plurality of reactive power compensation devices are distributed in correspondence with low-voltage customers. An object is to provide a consumer voltage stabilization system in a low-voltage system of a power distribution system that can perform power supply.

上記目的を達成する本発明の第1の態様は、
配電系統における高圧から低圧へ降圧する変圧器、この変圧器に接続された低圧配電線および低圧配電線に接続された複数の引込線で構成される低圧系において、前記低圧配電線に前記引込線を介して分散配置された複数の無効電力補償装置で個別に引込線と需要家との接続点である需要家端の電圧を調整するように構成した配電系統の低圧系における需要家電圧安定化システムであって、
各需要家毎に、配電用変電所の送り出し点から高圧配電線を介して前記低圧配電線に接続された各引込線の接続位置までの距離および各引込線の距離の情報に基づき、前記送り出し点から前記引込線に至る配電系統のインピーダンスを算出し、前記低圧系に接続される複数の需要家を、前記送り出し点から前記高圧配電線、前記変圧器、前記低圧配電線および前記引込線を介して1軒の需要家に至る等価的な配電系統に縮約するとともに、
前記配電系統への送り出し電圧、縮約された前記配電系統のインピーダンス、前記各需要家端における電流の総和に基づき前記インピーダンスを用いて前記配電系統に与える電圧の変動分を算出し、その変動分をキャンセルするために必要な無効電力の無効電流成分を演算して前記需要家の数で按分し、按分した無効電流成分を前記各需要家端に供給するように前記各無効電力補償装置を制御するように構成したことを特徴とする配電系統の低圧系における需要家電圧安定化システムにある。
The first aspect of the present invention for achieving the above object is as follows:
In a low-voltage system composed of a transformer that steps down from a high voltage to a low voltage in a distribution system, a low-voltage distribution line connected to the transformer, and a plurality of service lines connected to the low-voltage distribution line, the low-voltage distribution line via the service line This is a consumer voltage stabilization system in the low voltage system of the distribution system that is configured to adjust the voltage at the customer end, which is the connection point between the service line and the customer, with multiple reactive power compensators arranged in a distributed manner. And
For each customer, based on the information on the distance from the delivery point of the distribution substation to the connection position of each service line connected to the low voltage distribution line via the high voltage distribution line and the distance of each service line, from the service point Calculate the impedance of the distribution system leading to the lead-in line, and connect a plurality of consumers connected to the low-voltage system from the delivery point through the high-voltage distribution line, the transformer, the low-voltage distribution line, and the lead-in line And reduced to an equivalent power distribution system leading to
Calculate the amount of fluctuation of the voltage applied to the power distribution system using the impedance based on the supply voltage to the power distribution system, the reduced impedance of the power distribution system, and the sum of the current at each consumer end, The reactive power compensator is controlled so as to calculate the reactive current component of the reactive power necessary for canceling and distribute the reactive current component by the number of consumers and supply the distributed reactive current component to each consumer end. It is in the customer voltage stabilization system in the low voltage | pressure system of the power distribution system characterized by being comprised.

本態様によれば、複数の引込線にそれぞれ接続される複数の需要家を有する低圧系を1本の引込線およびにこれに接続される一軒の需要家に等価的に置き換えて低圧系の無効電力の補償量を演算するので、この補償量の演算を容易かつ適確に行うことができる。   According to this aspect, the low-voltage system reactive power is replaced by equivalently replacing the low-voltage system having a plurality of consumers connected to the plurality of service lines with one service line and one customer connected to the service line. Therefore, the compensation amount can be calculated easily and accurately.

本発明の第2の態様は、
第1の態様に記載する配電系統の低圧系における需要家電圧安定化システムにおいて、
前記送り出し電圧として前記変圧器の1次側の電圧、前記配電系統のインピーダンスとして前記低圧系のインピーダンスを用いたことを特徴とする配電系統の低圧系における需要家電圧安定化システムにある。
The second aspect of the present invention is:
In the customer voltage stabilization system in the low voltage system of the power distribution system described in the first aspect,
In the consumer voltage stabilization system in the low voltage system of the distribution system, the voltage on the primary side of the transformer is used as the delivery voltage, and the low voltage system impedance is used as the impedance of the distribution system.

本態様によれば、PVやEVによる需要家端の電圧変動に対して、高圧配電線のインピーダンスはほとんど影響せず、主に低圧系のインピーダンスが寄与することに着目し、この特性を利用することにより、縮約した低圧系のインピーダンスのみを用いて各需要家端に分散設置した各無効電力補償装置の補償量を演算することができるので、補償量の演算を簡素化することができる。すなわち、本態様では、高圧配電線のインピーダンス等のパラメータは一切利用していないので、高圧配電線の構造の変更によるパラメータの変更の影響を受けることなく必要な補償量の演算を行うことができる。ちなみに、高圧配電線側では、高圧配電線の新設や撤去に伴う線路長の増減や高圧配電線の系統変更などによる線路長の増減が低圧系に比べて比較的頻繁に行われる場合があり、高圧配電線のインピーダンスは頻繁に変更される。すなわち、高圧配電線のインピーダンスを補償量の演算のパラメータとして利用した場合には、高圧配電線が変更される毎に補償量を演算するためのパラメータを変更する必要がある。   According to this aspect, attention is paid to the fact that the impedance of the high-voltage distribution line hardly influences the voltage fluctuation at the consumer end due to PV or EV, and the impedance of the low-voltage system mainly contributes, and this characteristic is used. As a result, the compensation amount of each reactive power compensator distributed and installed at each customer end can be calculated using only the reduced low-voltage impedance, so that the calculation of the compensation amount can be simplified. That is, in this aspect, since parameters such as the impedance of the high-voltage distribution line are not used at all, the necessary compensation amount can be calculated without being affected by the change of the parameter due to the change of the structure of the high-voltage distribution line. . By the way, on the high-voltage distribution line side, the increase and decrease of the line length due to the installation and removal of the high-voltage distribution line and the system change of the high-voltage distribution line, etc. may occur relatively frequently compared to the low-voltage system, The impedance of high-voltage distribution lines is frequently changed. That is, when the impedance of the high voltage distribution line is used as a parameter for calculating the compensation amount, it is necessary to change the parameter for calculating the compensation amount every time the high voltage distribution line is changed.

本発明の第3の態様は、
第1または第2の態様に記載する配電系統の低圧系における需要家電圧安定化システムにおいて、
縮約した低圧系における無効電流成分の演算は、前記需要家端の電圧Vを(1)式または(2)式で与えられた(3)式または(4)式を用いて演算することを特徴とする配電系統の低圧系における需要家電圧安定化システムにある。
The third aspect of the present invention is:
In the customer voltage stabilization system in the low-voltage system of the power distribution system described in the first or second aspect,
The calculation of the reactive current component in the contracted low-voltage system is performed by calculating the consumer end voltage V 2 using the formula (3) or (4) given by the formula (1) or (2). It is in the customer voltage stabilization system in the low voltage system of the distribution system characterized by

本発明の第4の態様は、
第1〜第3の態様の何れか一つに記載する配電系統の低圧系における需要家電圧安定化システムにおいて、
前記縮約の際に必要な他の需要家の情報を電力線通信を利用して授受するように構成したことを特徴とする配電系統の低圧系における需要家電圧安定化システムにある。
The fourth aspect of the present invention is:
In the consumer voltage stabilization system in the low voltage system of the power distribution system described in any one of the first to third aspects,
The customer voltage stabilization system in the low voltage system of the distribution system is configured to exchange information of other customers necessary for the contraction using power line communication.

本態様によれば、需要家における無効電力補償装置同士で低圧系の縮約に必要な情報の授受を必要に応じ、自動的に適宜行うことができる。特に、当該低圧系に新たな需要家が追加された場合や、需要家が外された場合等、縮約のためのパラメータの変更が生じた場合でも、これに迅速かつ柔軟に対処することができる。さらに、通信路として電力線を利用しているので、設備費を可及的に低減できる。   According to this aspect, information necessary for reduction of the low-voltage system can be automatically and appropriately performed between the reactive power compensators in the consumer as necessary. In particular, even when a new customer is added to the low-pressure system or when a customer is removed, the parameter can be changed quickly and flexibly. it can. Furthermore, since the power line is used as the communication path, the equipment cost can be reduced as much as possible.

本発明によれば、PVやEVによる需要家端の電圧変動に対して、高圧配電線のインピーダンスはほとんど影響せず、主に低圧系のインピーダンスが寄与することに着目し、この特性を利用することにより、各需要家端に分散設置した無効電力補償装置を用いて、柱上変圧器等、配電用の変圧器一台に接続される複数の需要家の無効電力補償装置を対象として需要家毎に適切な無効電力補償を行うことができる。すなわち、電圧調整のために必要な無効電力補償量を、配電用の変圧器一台に接続された低圧系を縮約表現することにより算出し、これを複数の無効電力補償装置で等分に分担し協調して出力するようにしたので、需要家端電圧を適切に調整することが可能になる。   According to the present invention, attention is paid to the fact that the impedance of the high-voltage distribution line hardly affects the voltage fluctuation at the consumer end due to PV or EV, and the impedance of the low-voltage system contributes mainly, and this characteristic is utilized. By using the reactive power compensator distributed at the end of each consumer, the customer can target the reactive power compensator of multiple customers connected to a single distribution transformer such as a pole transformer. Appropriate reactive power compensation can be performed every time. In other words, the amount of reactive power compensation required for voltage adjustment is calculated by reducing the low-voltage system connected to one distribution transformer, and this is equally divided by multiple reactive power compensators. Since the output is shared and coordinated, the customer end voltage can be adjusted appropriately.

本発明の実施の形態に係る需要家電圧安定化システムを適用する配電系統を概念的に示す説明図である。It is explanatory drawing which shows notionally the power distribution system which applies the consumer voltage stabilization system which concerns on embodiment of this invention. 図1の低圧系の一つを抽出するとともに、これを一本の引込線および1軒の需要家に縮約した場合の説明図である。It is explanatory drawing at the time of extracting one of the low voltage | pressure systems of FIG. 1, and contracting this to one service line and one customer. 図1の低圧系におけるPLCの態様を説明するための説明図である。It is explanatory drawing for demonstrating the aspect of PLC in the low voltage | pressure system of FIG. 負荷をPVとした場合に発生する無効電流を説明するための図で、(a)はその回路構成図、(b)はその等価回路図である。It is a figure for demonstrating the reactive current generate | occur | produced when load is PV, (a) is the circuit block diagram, (b) is the equivalent circuit schematic. 図4に示す場合において、PVとともに無効電力補償装置を接続した場合の等価回路図である。In the case shown in FIG. 4, it is an equivalent circuit diagram at the time of connecting a reactive power compensator with PV. 負荷をEVとした場合に発生する無効電流を説明するための図で、(a)はその回路構成図、(b)はその等価回路図である。It is a figure for demonstrating the reactive current generate | occur | produced when load is EV, (a) is the circuit block diagram, (b) is the equivalent circuit schematic. 本発明の実施の形態に係る需要家電圧安定化システムに適用する無効電力補償装置を示すブロック図である。It is a block diagram which shows the reactive power compensation apparatus applied to the consumer voltage stabilization system which concerns on embodiment of this invention.

以下、本発明の実施の形態を図面に基づき詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明の実施の形態に係る需要家電圧安定化システムを適用する配電系統を概念的に示す説明図である。同図に示すように、当該配電系統は、配電用変電所1、配電用変電所1に接続された高圧配電線2および配電用変圧器である柱上変圧器3を介して高圧配電線2に接続された複数の低圧系I(図には一系統のみを示す)からなる。低圧系Iは、柱上変圧器3、低圧配電線4および引込線5からなり、各引込線5A,5B,5C,5D,5E,5Fの端部に需要家6A,6B,6C,6D,6E,6Fが接続されている。このように一台の柱上変圧器3に接続される複数の負荷となる需要家6A〜6Fのグループをバンクと呼ぶ。各需要家6A〜6Fは、PV7A,7B,7C,7D,7E,7FやEV8A,8B,8C,8D,8E,8Fとともに照明等の通常負荷を有するとともに、PV7A〜7Fによる需要家端での電圧上昇や、EV8A〜8Fによる需要家端での電圧低下を抑制するため、無効電力補償装置9A,9B,9C,9D,9E,9Fを有している。すなわち、本形態における低圧系Iには、複数(本形態では6軒)の需要家6A〜6Fに対応させて柱上変圧器3の2次側で複数台(本形態では6台)の無効電力補償装置9A〜9Fが分散配置されている。   FIG. 1 is an explanatory diagram conceptually showing a power distribution system to which a customer voltage stabilization system according to an embodiment of the present invention is applied. As shown in the figure, the distribution system includes a distribution substation 1, a high voltage distribution line 2 connected to the distribution substation 1, and a pole transformer 3 that is a distribution transformer. And a plurality of low-pressure systems I (only one system is shown in the figure). The low-voltage system I includes a pole transformer 3, a low-voltage distribution line 4, and a lead-in line 5. At the ends of the lead-in lines 5A, 5B, 5C, 5D, 5E, and 5F, consumers 6A, 6B, 6C, 6D, 6E, 6F is connected. A group of consumers 6A to 6F that are a plurality of loads connected to one pole transformer 3 in this way is called a bank. Each consumer 6A-6F has normal loads such as lighting together with PV7A, 7B, 7C, 7D, 7E, 7F and EV8A, 8B, 8C, 8D, 8E, 8F, and at the consumer end with PV7A-7F Reactive power compensators 9A, 9B, 9C, 9D, 9E, and 9F are provided in order to suppress voltage rise and voltage drop at the consumer end due to EVs 8A to 8F. That is, in the low-voltage system I in this embodiment, a plurality of (six in this embodiment) are invalid on the secondary side of the pole transformer 3 in correspondence with a plurality (six in this embodiment) of consumers 6A to 6F. The power compensation devices 9A to 9F are distributedly arranged.

ここで、需要家6A〜6Fから配電系統を見込んだとき、低圧系のインピーダンスに比べて高圧配電線2のインピーダンスは極めて小さく無視できる。これより、高圧配電線2を無視し、柱上変圧器3の1次側が電圧源であると考えても差し支えない。図1において、配電用変電所1を柱上変圧器3の1次側と置き換え、高圧配電線2、柱上変圧器3、低圧配電線4および引込線5A〜5FのインピーダンスR+jXを、柱上変圧器3、低圧配電線4および引込線5A〜5Fのインピーダンスの総和とすることができる。このように考えると、電圧調整問題を柱上変圧器3の各バンクの問題に切り分けて簡単化することができる。   Here, when the distribution system is expected from the consumers 6A to 6F, the impedance of the high-voltage distribution line 2 is extremely small and can be ignored compared to the impedance of the low-voltage system. From this, it is safe to ignore the high-voltage distribution line 2 and consider that the primary side of the pole transformer 3 is a voltage source. In FIG. 1, the distribution substation 1 is replaced with the primary side of the pole transformer 3, and the impedance R + jX of the high voltage distribution line 2, the pole transformer 3, the low voltage distribution line 4 and the lead-in wires 5A to 5F is changed to the pole transformation. It can be set as the sum total of the impedance of the container 3, the low voltage distribution line 4, and the lead-in wires 5A to 5F. In this way, the voltage adjustment problem can be simplified by dividing it into problems for each bank of the pole transformer 3.

しかしながら、柱上変圧器3の各バンクには、数軒の需要家6A〜6Fが接続されており、低圧系Iには1軒の需要家のみが存在するという条件を満足することはできない。柱上変圧器3の各バンクに接続された需要家6A〜6Fが1軒であれば、無効電力補償装置をどのように制御するかが問題となる余地はない。   However, several customers 6A to 6F are connected to each bank of the pole transformer 3, and the low-voltage system I cannot satisfy the condition that there is only one customer. If there is one customer 6A-6F connected to each bank of the pole transformer 3, there is no room for a problem as to how to control the reactive power compensator.

すなわち、さらに問題を簡単化し、1軒の需要家のみが存在するという条件を満足するには、柱上変圧器3の各バンクに接続された数軒の需要家6A〜6Fを近似的に縮約して、図2に示すように、1軒の需要家6に置き換えて考えればよい。   That is, in order to further simplify the problem and satisfy the condition that only one customer exists, the several customers 6A to 6F connected to each bank of the pole transformer 3 are approximately reduced. In short, as shown in FIG.

本形態は、上述の点に着目したもので、図2に示すように、柱上変圧器3に接続された複数の需要家6A〜6F(図1参照)を縮約して等価的な1軒の需要家6を有する低圧系IIに置換する。すなわち、低圧系IIは、柱上変圧器3から低圧配電線4および一本の引込線5を介して1軒の需要家6に至る。ここで、需要家6は、照明等の通常負荷とともに、PV7やEV8を負荷として有するとともに、PV7による需要家端P2での電圧上昇や、EV8による需要家端P2での電圧低下を抑制するため、一台の無効電力補償装置9を有している。   The present embodiment focuses on the above-mentioned points. As shown in FIG. 2, a plurality of consumers 6 </ b> A to 6 </ b> F (see FIG. 1) connected to the pole-mounted transformer 3 are contracted and equivalent 1 Replace with low-pressure system II with eaves customers 6. That is, the low-voltage system II reaches one consumer 6 via the pole transformer 3 through the low-voltage distribution line 4 and one service line 5. Here, the consumer 6 has PV7 and EV8 as loads together with normal loads such as lighting, and suppresses voltage increase at the customer end P2 due to PV7 and voltage drop at the customer end P2 due to EV8. The reactive power compensator 9 is provided.

図1に示すような、複数の需要家6A〜6Fを、図2に示すような1軒の需要家6に縮約した等価的な低圧系IIは、次の手順で求めることができる。
(手順1) 需要家6A〜6Fごとにそこから見た低圧配電線4の長さは異なる。そこで、各需要家6A〜6Fから見た低圧配電線4の長さの平均を求め、この平均長さの低圧配電線14のインピーダンスで等価的な低圧配電線14を模擬する。
(手順2) 引込線5A〜5Fについても、需要家6A〜6Fごとにその長さが異なるため、その平均長を求める。引込線5A〜5Fは並列に接続されることを勘案し、平均長の引込線15のインピーダンスを需要家6A〜6Fの数で割った値で等価的な引込線15を模擬する。
(手順3) 需要家6A〜6Fに存在するPV7A〜7Fの逆潮流電流の総和もしくはEV8A〜8Fの充電電流の総和を採ることで等価的な需要家6の逆潮流・充電電流を模擬する。
An equivalent low-pressure system II in which a plurality of consumers 6A to 6F as shown in FIG. 1 is reduced to a single customer 6 as shown in FIG. 2 can be obtained by the following procedure.
(Procedure 1) The length of the low voltage distribution line 4 viewed from each of the consumers 6A to 6F is different. Therefore, the average length of the low-voltage distribution line 4 viewed from each of the consumers 6A to 6F is obtained, and the equivalent low-voltage distribution line 14 is simulated by the impedance of the low-voltage distribution line 14 having this average length.
(Procedure 2) Since the lengths of the service lines 5A to 5F are different for each of the consumers 6A to 6F, the average length is obtained. Considering that the service lines 5A to 5F are connected in parallel, the equivalent service line 15 is simulated by a value obtained by dividing the impedance of the average length of the service line 15 by the number of consumers 6A to 6F.
(Procedure 3) The reverse flow / charge current of the equivalent customer 6 is simulated by taking the sum of the reverse flow currents of PV7A-7F existing in the consumers 6A-6F or the sum of the charge currents of EV8A-8F.

かかる縮約手順を、図1の6軒の需要家6A〜6Fからなる低圧系Iを例に採り、さらに具体的に説明する。いま、低圧配電線4の長さが、需要家6A,6Bから見れば0m、需要家6C,6Dから見れば40m、需要家6E,6Fから見れば80mであるとすると、その平均長を求めると40mとなる。低圧配電線4の80mのインピーダンスをZLVとしたとき、縮約後の等価的な低圧配電線14のインピーダンスは、40m分に相当するZLV/2となる。 This contraction procedure will be described more specifically by taking the low-pressure system I composed of the six customers 6A to 6F in FIG. 1 as an example. Now, assuming that the length of the low-voltage distribution line 4 is 0 m when viewed from the consumers 6A and 6B, 40 m when viewed from the consumers 6C and 6D, and 80 m when viewed from the consumers 6E and 6F, the average length is obtained. And 40m. When the 80 m impedance of the low voltage distribution line 4 is Z LV , the equivalent impedance of the low voltage distribution line 14 after contraction is Z LV / 2 corresponding to 40 m.

次に、引込線5A〜5Fについては、6軒の需要家6A〜6Fの全てにおいて15mであるとすると、平均長は15mとなり、さらにこれを需要家6A〜6Fの数で割ると2.5mとなる。引込線5A〜5Fの15m分のインピーダンスをZSDLとすると、縮約後の等価的な引込線15のインピーダンスは2.5m分に相当するZSDL/6となる。 Next, about the service lines 5A-5F, if it is 15 m in all the six customers 6A-6F, the average length will be 15m, and if this is further divided by the number of customers 6A-6F, it will be 2.5m Become. Assuming that the impedance of the lead wires 5A to 5F for 15 m is Z SDL , the equivalent impedance of the lead-in wire 15 after contraction is Z SDL / 6 corresponding to 2.5 m.

最後に、PV7A〜7Fの逆潮流電流を縮約する。図1において、全部の需要家6A〜6Fが一律にIPVの逆潮流電流を発生しているとすると、その総和を取ることで、縮約後の等価的な逆潮流電流の値は6×IPVとなる。なお、EV8A〜8Fに関しても同様の手順で所望の縮約を行うことができる。 Finally, the reverse flow current of PV7A-7F is reduced. In Figure 1, when the whole of the consumer 6A~6F is generating reverse flow current I PV uniformly, by taking the sum, the value of equivalent reverse flow current after contraction is 6 × I PV . It should be noted that EV8A to 8F can be contracted in a similar manner.

以上の手順で得た、縮約後の等価的な低圧系IIが図2に示す低圧系IIである。かかる手順で柱上変圧器3のバンクごとに複数軒の需要家6A〜6Fを縮約して1軒の需要家6とすることで、PV7の逆潮流による電圧上昇もしくはEV8の充電による電圧低下を補償するために必要な無効電力を算出する。   The equivalent low-pressure system II obtained by the above procedure after contraction is the low-pressure system II shown in FIG. By such a procedure, multiple customers 6A to 6F are reduced to one customer 6 for each bank of pole transformer 3, so that voltage rise due to reverse power flow of PV7 or voltage drop due to EV8 charging. Reactive power required to compensate for is calculated.

ここで、無効電力補償装置9A〜9Fの設置点を各需要家端P2とすれば、各無効電力補償装置9A〜9Fが計測したPV7A〜7Fの逆潮流電流もしくはEV8A〜8Fの充電電流の情報を低圧系Iの高速PLC(Power Line Communication)により相互に交換し、無効電力の算出に用いることができる。かかる情報交換の態様を図3に示す。同図に示すように、各無効電力補償装置9A〜9Fは、算出した無効電力を無効電力補償装置9A〜9Fの台数で按分して出力する。   Here, if the installation points of the reactive power compensators 9A to 9F are the customer ends P2, the information on the reverse flow current of PV7A to 7F or the charging current of EV8A to 8F measured by each reactive power compensator 9A to 9F. Can be exchanged with each other by a high-speed PLC (Power Line Communication) of the low-pressure system I and used for calculation of reactive power. Such an information exchange mode is shown in FIG. As shown in the figure, each reactive power compensator 9A to 9F distributes the calculated reactive power by the number of reactive power compensators 9A to 9F.

このように複数の需要家6A〜6Fを縮約し、それぞれの需要家6A〜6Fに設置された無効電力補償装置9A〜9Fが無効電力を注入すれば、「ある低圧系内でPVもしくはEVが生じた電圧変動については、当該低圧系に設置された複数の無効電力補償装置μSTATCOMにより補償する」という形の、柱上変圧器1バンクごとに自律分散的な制御が可能となる。   In this way, if a plurality of consumers 6A to 6F is contracted and reactive power compensators 9A to 9F installed in the respective consumers 6A to 6F inject reactive power, “PV or EV in a certain low voltage system” It is possible to perform autonomous decentralized control for each bank of pole transformers in the form of “compensating for voltage fluctuations that occur with a plurality of reactive power compensators μSTATCOM installed in the low voltage system”.

上述の如きPLCを利用した無効電力補償装置9A〜9Fでの動作を要約すると次の通りである。
1)無効電力補償装置9A〜9Fの設置時には柱上変圧器3の同一バンクに接続された需要家6A〜6Fに対して上述の如き縮約手法により低圧配電線4と引込線5A〜5Fに関する情報からその等価なインピーダンスを求め、その値をセットしておく。
2)需要家端P2の電圧が所定の規定電圧の範囲を逸脱する恐れがある場合には、各無効電力補償装置9A〜9Fが計測したPV7A〜7Fの逆潮流電流もしくはEV8A〜8Fの充電電流の情報を低圧系Iの高速PLCにより交換し、その総和を算出する。
3)各無効電力補償装置9A〜9Fは、後に詳述する手法により電圧上昇もしくは電圧低下を補償するために必要な無効電力を算出し、これを無効電力補償装置9A〜9Fの台数で等分して出力する。
The operation of the reactive power compensators 9A to 9F using the PLC as described above is summarized as follows.
1) Information on the low-voltage distribution line 4 and the service lines 5A to 5F by the contraction method as described above for the consumers 6A to 6F connected to the same bank of the pole transformer 3 when the reactive power compensators 9A to 9F are installed. The equivalent impedance is obtained from the above and the value is set.
2) When there is a possibility that the voltage at the customer end P2 deviates from the range of the predetermined specified voltage, the reverse flow current of PV7A-7F or the charging current of EV8A-8F measured by each reactive power compensator 9A-9F Are exchanged by the high-speed PLC of the low-pressure system I, and the sum is calculated.
3) Each reactive power compensator 9A to 9F calculates reactive power required to compensate for a voltage rise or a voltage drop by a method described in detail later, and this is equally divided by the number of reactive power compensators 9A to 9F. And output.

なお、この手法で用いる高速PLCは、低圧系Iの範囲内の通信であり、柱上変圧器3を越える必要がないため、技術的な問題はない。   Note that the high-speed PLC used in this method is communication within the range of the low-voltage system I and does not need to go beyond the pole transformer 3, so there is no technical problem.

ここで、図2に示すように、柱上変圧器3に接続された低圧配電線14に1軒のみの需要家6が接続されている形態に縮約した低圧系IIにおける電圧上昇もしくは電圧低下を補償する無効電力補償装置9の基本動作原理を説明しておく。なお、ここでは、図1における需要家6A〜6Fから配電系統を見込んだとき、低圧系Iのインピーダンスに比べて高圧配電線2のインピーダンスが極めて小さく無視できるという知見を利用する。したがって、高圧配電線2を無視し、柱上変圧器3の1次側が電圧源であると考えて説明を進める。   Here, as shown in FIG. 2, voltage increase or voltage decrease in the low-voltage system II reduced to a form in which only one customer 6 is connected to the low-voltage distribution line 14 connected to the pole transformer 3. The basic operation principle of the reactive power compensator 9 that compensates for the above will be described. Here, the knowledge that the impedance of the high-voltage distribution line 2 is extremely small compared to the impedance of the low-voltage system I and can be ignored when the distribution system is expected from the consumers 6A to 6F in FIG. Therefore, the explanation will proceed by ignoring the high-voltage distribution line 2 and assuming that the primary side of the pole transformer 3 is a voltage source.

無効電力補償装置9は、PV7、EV8による需要家端P2の電圧変動に対処するため、低圧系II、特に需要家端P2に設置して無効電力補償により電圧調整を行う装置である。この際、注入する無効電力は以下のように決定する。   The reactive power compensator 9 is a device that is installed at the low voltage system II, particularly at the customer end P2, and adjusts the voltage by reactive power compensation in order to cope with voltage fluctuations at the customer end P2 due to PV7 and EV8. At this time, the reactive power to be injected is determined as follows.

無効電力補償装置9は、PV7による電圧上昇とEV8による電圧低下の双方に対処できるが、最初にPV7による電圧上昇への対処法を説明する。PV7は、一般に一つの低圧配電線4内に多数設置され、それぞれが系統電圧に影響を与えることになる。しかし、ここでは、簡単のため、図2に示すような縮約後の低圧系IIに関して考える。すなわち、
この場合の構成は、図4(a)に示すように、柱上変圧器3の1次側を電圧源と考えているので、その電圧源P1から長さlの位置である需要家端P2に存在する需要家6にPV7が設置され、このPV7が力率1で発電している状況を考える。
The reactive power compensator 9 can cope with both a voltage rise due to PV7 and a voltage drop due to EV8. First, a method for dealing with a voltage rise due to PV7 will be described. In general, a large number of PVs 7 are installed in one low-voltage distribution line 4 and each affects the system voltage. However, here, for the sake of simplicity, the low-pressure system II after contraction as shown in FIG. 2 will be considered. That is,
In the configuration in this case, as shown in FIG. 4 (a), the primary side of the pole transformer 3 is considered as a voltage source, so that the customer end P2 is located at a length l from the voltage source P1. Consider a situation in which a PV 7 is installed in a consumer 6 existing in the factory and the PV 7 generates power with a power factor of 1.

需要家6から低圧系IIへ出力(逆潮流)される電力は、PV7の発電電力から需要家6内の消費電力を差し引いた電力となる。このとき需要家6から低圧系II側に流れ込む電流をIとする。 The power output (reverse power flow) from the customer 6 to the low-voltage system II is power obtained by subtracting the power consumption in the customer 6 from the generated power of the PV 7. In this case the current flowing from the consumer 6 to the low-pressure system II side and I 2.

この状況を図4(b)の等価回路に示す。同図に示すように、電圧源P1から需要家端P2までの低圧系IIのインピーダンスをR+jXとすると、需要家端P2の電圧Vは、電流Iに起因する電圧上昇により電圧源P1の電圧Vよりも(R+jX)・Iだけ高くなる。すなわち、需要家端P2の電圧Vは(11)式となる。 This situation is shown in the equivalent circuit of FIG. As shown in the figure, when the impedance of the low-pressure system II from the voltage source P1 up to the consumer terminal P2 and R + jX, the voltage V 2 of the customer terminal P2 is the voltage source P1 by voltage rise caused by the current I 2 It is higher than the voltage V 1 by (R + jX) · I 2 . That is, the voltage V 2 of the customer terminal P2 is (11).

この電圧上昇が、需要家端P2の電圧Vを所定の電圧範囲内 (101±6V、202±20V)に調整することを困難にする。そこで、需要家端P2に無効電力補償装置を設置し、無効電力を注入することにより電圧Vの絶対値と電圧Vの絶対値を等しくする。すなわち、需要家端P2の電圧Vと電圧源P1の電圧Vとを等しくすることを考える。 This voltage rise makes it difficult to adjust the voltage V 2 of the customer terminal P2 within a predetermined voltage range (101 ± 6V, 202 ± 20V ). Therefore, it sets up a reactive power compensation device to consumer end P2, equal to the absolute value and the absolute value of the voltage V 1 of the voltage V 2 by injecting reactive power. In other words, considering that equal to the voltage V 1 of the voltage V 2 and the voltage source P1 of the consumer end P2.

無効電力補償装置を需要家端に設置した状況を図5に示す。ここで、需要家端P2の電圧Vの位相を基準にとり、需要家6から低圧系IIに流れ込む電流Iについて考える。電流Iのうち、電圧Vと同相の成分(有効電流)をI2d,直交する成分(無効電流)をI2qと分解する。すなわち、 The situation where the reactive power compensator is installed at the consumer end is shown in FIG. Here, the current I 2 flowing from the customer 6 into the low voltage system II is considered with reference to the phase of the voltage V 2 at the customer end P2. Of the current I 2 , a component in phase with the voltage V 2 (active current) is decomposed into I 2d , and a component orthogonal to the reactive current (reactive current) is decomposed into I 2q . That is,

と表される。 It is expressed.

PV7が力率1で運転され、無効電力補償装置9が無効電力のみを出力するものと仮定すると、有効電流I2dがPV7からの有効電力に対応する電流、無効電流I2qが無効電力補償装置9からの無効電力に対応する電流となる。この無効電流I2qにより需要家端の電圧Vを低下させることで電圧調整を行うことになる。いま、無効電流I2qの注入により需要家端の電圧が電圧Vから電圧V′に変化したとすると、電圧V′は(13)式で与えられる。 Assuming that the PV 7 is operated at a power factor of 1 and the reactive power compensator 9 outputs only reactive power, the active current I 2d is a current corresponding to the active power from the PV 7, and the reactive current I 2q is a reactive power compensator. 9 corresponds to the reactive power from 9. So that the voltage is adjusted by decreasing the voltage V 2 of the customer terminal by the reactive current I 2q. Now, 'when the changes in the voltage V 2' voltage consumer end by injecting reactive current I 2q from the voltage V 2 voltage V 2 is given by equation (13).

上記(13)式から電圧V′の絶対値は、(14)式で与えられる。 From the above equation (13), the absolute value of the voltage V 2 ′ is given by equation (14).

上記(14)式から、無効電流I2qを求めると、 From the above equation (14), the reactive current I 2q is obtained.

となる。ここで、(15)式は2つの解を持つが、注入する無効電力が小さい方が無効電力補償装置9の機器容量を小さくできるため、
とする。ただし、電圧V′は無効電力補償装置9が無効電力を注入している状態での需要家端P2の電圧である。(16)式において、電圧V′の絶対値を電圧Vの絶対値と等しくする。すなわち、|V′|=|V|とすれば、PV7から逆潮流電流が低圧系IIに供給される場合に無効電力補償装置9が注入すべき無効電力に対応する補償電流ISTを決定することができる。これにより、PV7が設置された需要家6の電圧上昇を補償することができる。
It becomes. Here, equation (15) has two solutions, but the device capacity of the reactive power compensator 9 can be reduced when the reactive power injected is smaller,
And However, the voltage V 2 ′ is a voltage at the consumer end P2 in a state where the reactive power compensator 9 is injecting reactive power. In the equation (16), the absolute value of the voltage V 2 ′ is made equal to the absolute value of the voltage V 1 . That is, if | V 2 ′ | = | V 1 |, the compensation current I ST corresponding to the reactive power to be injected by the reactive power compensator 9 when the reverse flow current is supplied from the PV 7 to the low voltage system II is set. Can be determined. Thereby, the voltage rise of the consumer 6 in which PV7 was installed can be compensated.

次に、EVによる電圧低下への対処について説明する。図6(a)に示すように、電圧源P1から距離lの需要家端P2に存在する需要家6にEV8が設置され、このEV8が充電のために力率1で電流Iを低圧系IIから取っているとする。この状況を図6(b)の等価回路に示す。EV8が設置された需要家端P2の電圧Vは、電流Iに起因する電圧低下により電圧源P1の電圧Vよりも(R+jX)・Iだけ低くなる。すなわち、需要家端P2の電圧Vは(17)式となる。 Next, how to deal with voltage drop due to EV will be described. As shown in FIG. 6 (a), an EV 8 is installed at the consumer 6 existing at the consumer end P2 at a distance l from the voltage source P1, and this EV 8 uses a power factor of 1 to charge the current I 2 for charging. Suppose you are taking from II. This situation is shown in the equivalent circuit of FIG. EV8 voltage V 2 of the installed customer terminal P2 is becomes even (R + jX) only · I 2 lower than the voltage V 1 of the voltage source P1 by voltage drop caused by the current I 2. That is, the voltage V 2 of the customer terminal P2 is (17).

EV8の充電による電圧低下を補償するため、需要家端P2に設置された無効電力補償装置9(図5参照)から無効電力を注入し、需要家端P2の電圧Vの絶対値と電圧源P1の電圧Vの絶対値を等しくすることを考える。EV8が力率1で充電され、無効電力補償装置9が無効電力のみを出力するものと仮定すれば、電流Iの符号が逆であることに留意してPVの場合の(14)〜(17)式と同様の式を導出することができる。その結果、注入すべき無効電力に対応する電流I2qは、 To compensate for the charge voltage drop due to the EV8, injecting reactive power from the consumer end the installed reactive power compensator to P2 9 (see FIG. 5), the absolute value of the voltage V 2 of the customer terminal P2 and the voltage source Given that equal the absolute value of the voltage V 1 of the P1. Assuming that the EV 8 is charged with a power factor of 1 and the reactive power compensator 9 outputs only reactive power, it is noted that the sign of the current I 2 is opposite (14) to (14) in the case of PV. It is possible to derive an expression similar to the expression 17). As a result, the current I 2q corresponding to the reactive power to be injected is

となる。ただし、電圧V′は無効電力補償装置9が無効電力を注入している状態での需要家端P2の電圧である。(18)式において、電圧V′の絶対値を電圧Vの絶対値と等しくする。すなわち、|V′|=|V|とすれば、EV8が低圧系IIから電流を吸い込んでいる場合に無効電力補償装置9が注入すべき無効電力に対応する補償電流ISTを決定することができる。これにより、PV7が設置された需要家6の電圧上昇を補償することができる。 It becomes. However, the voltage V 2 ′ is a voltage at the consumer end P2 in a state where the reactive power compensator 9 is injecting reactive power. In the equation (18), the absolute value of the voltage V 2 ′ is made equal to the absolute value of the voltage V 1 . That is, if | V 2 ′ | = | V 1 |, the compensation current I ST corresponding to the reactive power to be injected by the reactive power compensator 9 when the EV 8 is sucking current from the low voltage system II is determined. be able to. Thereby, the voltage rise of the consumer 6 in which PV7 was installed can be compensated.

ここで、無効電力補償装置9は、PV7、EV8による需要家端P2の電圧変動のみに対処することを目的としているため、(11)式および(17)式では、それぞれ電圧源P1の電圧VにPV7による電圧上昇を足し合わせるか、もしくはEV8の充電による電圧低下を差し引く形で需要家端P2の電圧Vを得ている。需要家端P2の電圧Vは、当然、当該需要家6で測定可能であり、その測定値を用いることも考えられるが、無効電力補償装置9は、あえて(11)式および(17)式により需要家端の電圧Vを得ることとしている。需要家6で測定される需要家端P2の電圧Vは、当該需要家6の影響だけではなく、他の需要家6の影響を大きく受ける。すなわち、図4(b)や図6(b)に示したように、当該需要家6のPV7もしくはEV8のみが存在するという状況からは大きく外れる。 Here, the reactive power compensator 9 is intended to deal only with voltage fluctuations at the customer end P2 due to PV7 and EV8. Therefore, in the equations (11) and (17), the voltage V of the voltage source P1 is used. to obtain a voltage V 2 of the customer end P2 1 on whether adding the voltage rise due to PV7, or in the form of subtracting the charge voltage drop due to the EV8. Voltage V 2 of the customer terminal P2 is, of course, can be measured in the consumer 6, it is considered to use the measured value, reactive power compensator 9, dare (11) and (17) It is set to obtain a voltage V 2 of the customer end by. Voltage V 2 of the consumer terminal P2 to be measured by the consumer 6, not only the influence of the consumer 6, greatly influenced by other customers 6. That is, as shown in FIG. 4B and FIG. 6B, the situation greatly deviates from the situation where only the PV 7 or EV 8 of the customer 6 exists.

一方、(11)式および(17)式により需要家端P2の電圧Vを算出すると、当該需要家6のPV7、EV8の電流による電圧上昇・低下のみが考慮され、図4(b)や図6(b)に示した状況となる。すなわち、(11)式および(17)式による需要家端P2の電圧Vは、当該需要家6による電圧変動だけを反映した値であり、この電圧Vの値をもとに当該需要家6に設置された無効電力補償装置9が無効電力を注入すれば、「ある需要家6のPV7もしくはEV8が生じた電圧変動については、当該需要家6に設置された無効電力補償装置9が補償する」という形の自律分散的な制御が可能となる。このような自律分散制御を可能とするため、無効電力補償装置9では需要家端での電圧Vの測定値ではなく、(11)式および(17)式により需要家端の電圧Vを算出する。 On the other hand, (11) calculating the voltage V 2 of the customer terminal P2 by formula and (17), only the voltage rise and drop according to PV7, EV8 the current of the consumer 6 is considered, Ya FIG 4 (b) The situation shown in FIG. That is, (11) and (17) the voltage V 2 of the customer terminal P2 by formula is a value that reflects only the voltage fluctuation due to the consumer 6, the customer value of the voltage V 2 based on If the reactive power compensator 9 installed at 6 injects reactive power, “the voltage fluctuation caused by PV7 or EV8 of a certain consumer 6 is compensated by the reactive power compensator 9 installed at the consumer 6. Autonomous decentralized control in the form of “Yes” is possible. To enable such an autonomous distributed control, instead of the measured value of the voltage V 2 at the reactive power compensator 9, the consumer end, the voltage V 2 of the customer end by (11) and (17) calculate.

図7は本発明の実施の形態に係る需要家電圧安定化システムに適用する無効電力補償装置を示すブロック図である。同図に示すように、無効電力補償装置は、各需要家6A〜6Fにそれぞれ設置されるものであり、補償電流ISTを演算する制御部21を有する。制御部21は、パラメータ記憶部21A、PLC21B、縮約情報演算部21C、需要家端電圧演算部21Dおよび補償量演算部21Eを有している。ここで、パラメータ記憶部21Aには、低圧系Iの縮約のための低圧配電線4に関する距離情報、引込線5A〜5Fに関する距離情報、需要家6A〜6Fの数等、所定の情報が、(16)式、(18)式に基づき補償電流ISTを演算するための電圧V、V、低圧系Iのインピーダンス(R+jX)に関する情報とともに記憶されている。低圧系Iの前述の如き縮約のための距離情報等は、PLC21Bにより取得する。すなわち、図3に示すような情報の授受を行ことにより取得して格納する。縮約情報演算部21Cはパラメータ記憶部21Aの記憶内容に基づき、前述の如き所定の手順を実行して、低圧系Iを低圧系IIに縮約した場合のパラメータを演算する。需要家端電圧演算部21Dは、パラメータ記憶部21Aに記憶されている所定のパラメータを参照して(11)式または(17)式に基づき需要家端P2の電圧Vを演算する。 FIG. 7 is a block diagram showing a reactive power compensator applied to the consumer voltage stabilization system according to the embodiment of the present invention. As shown in the figure, the reactive power compensation device is intended to be installed to each customer 6A-6F, a control unit 21 for calculating a compensation current I ST. The control unit 21 includes a parameter storage unit 21A, a PLC 21B, a contraction information calculation unit 21C, a consumer end voltage calculation unit 21D, and a compensation amount calculation unit 21E. Here, in the parameter storage unit 21A, predetermined information such as distance information about the low-voltage distribution line 4 for contraction of the low-voltage system I, distance information about the service lines 5A to 5F, and the number of customers 6A to 6F is ( 16), the voltages V 1 and V 2 for calculating the compensation current I ST based on the equations (18) and information on the impedance (R + jX) of the low voltage system I are stored. The distance information and the like for the contraction of the low-pressure system I as described above is acquired by the PLC 21B. That is, it is acquired and stored by exchanging information as shown in FIG. The contraction information calculation unit 21C executes a predetermined procedure as described above based on the stored contents of the parameter storage unit 21A, and calculates parameters when the low pressure system I is contracted to the low pressure system II. Consumer end voltage calculation unit 21D calculates a voltage V 2 of the customer terminal P2 based on with reference to the predetermined parameters stored in the parameter storage section 21A (11) or (17).

補償量演算部21Eは、パラメータ記憶部21A、縮約情報演算部21Cおよび需要家端電圧演算部21Dのパラメータに基づき(15)式または(18)式の演算を行い、算出された補償電流を需要家6A〜6Fの数で按分して各無効電力も無効電力補償装置9A〜9Fが補償すべき補償電流ISTを求める。 The compensation amount calculation unit 21E calculates the equation (15) or (18) based on the parameters of the parameter storage unit 21A, the contraction information calculation unit 21C, and the consumer end voltage calculation unit 21D, and calculates the calculated compensation current. customer each reactive power proportionally by the number of 6A~6F also reactive power compensator 9A~9F seeks compensation current I ST to be compensated.

本形態では、かかる補償電流ISTが各需要家端P2に供給されるように、PWM生成回路22および主回路制御信号23が形成される。 In the present embodiment, the PWM generation circuit 22 and the main circuit control signal 23 are formed so that the compensation current IST is supplied to each consumer terminal P2.

なお、上記実施の形態では、補償電流ISTを演算するために必要なパラメータである低圧系IIのインピーダンス等の情報を需要家6A〜6F相互間のPLC21Bにより取得するようにしたが、これに限るものではない。PLC21Bに限らず送信機および受信機を用いた通常の通信システムを利用しても同様の情報の授受を行うことができる。ただ、PLC21Bの場合には通信路として電力線を兼用できるので、設備費の点で最も有利なものとなる。さらに、必要に応じ、都度、作業者がパラメータ記憶部21Aの記憶内容を変更するようにしても良い。ただ、PLC21Bをはじめとする何らかの通信方式を用いて必要な情報の授受を行う場合には、低圧系Iに新たな需要家が追加されたり、需要家が取り外されたりした場合でも、迅速かつ的確にかかる状態の変更に対処して、最適な制御を行うことができる。 Incidentally, in the above embodiment, the information such as impedance of the low-pressure system II for a parameter necessary for calculating the compensation current I ST to be acquired by PLC21B between customer 6A~6F another, to It is not limited. The same information can be exchanged not only using the PLC 21B but also using a normal communication system using a transmitter and a receiver. However, in the case of PLC 21B, the power line can also be used as a communication path, which is most advantageous in terms of equipment costs. Furthermore, the operator may change the stored contents of the parameter storage unit 21A whenever necessary. However, when necessary information is exchanged using any communication method such as PLC 21B, even if a new customer is added to or removed from the low-voltage system I, it is prompt and accurate. Therefore, it is possible to perform optimal control in response to the change in the state.

また、上記実施の形態では、送り出し電圧として柱上変圧器3の1次側の電圧V、配電系統のインピーダンスとして低圧系Iのインピーダンス(R+jX)を用いたが、これらの代わりに、配電用変電所から高圧配電線2への送り出し電圧、高圧配電線2を含む配電系統のインピーダンスを用いた場合も本願発明の技術思想に含まれる。 In the above embodiment, the voltage V 1 on the primary side of the pole transformer 3 is used as the sending voltage, and the impedance (R + jX) of the low-voltage system I is used as the impedance of the distribution system. The case where the voltage sent from the substation to the high-voltage distribution line 2 and the impedance of the distribution system including the high-voltage distribution line 2 are used are also included in the technical idea of the present invention.

さらに、低圧系のインピーダンス(R+jX)や、電圧源P1の電圧Vは、無効電力補償装置9を系統に投入しない場合と投入した場合との低圧系IIの状態に基づき推定することもできる。 Furthermore, and low-voltage impedance (R + jX), the voltage V 1 of the voltage source P1 may be estimated based on the reactive power compensator 9 to the state of the low-pressure system II of the case which supplied with not charged to the system.

本発明は電力の配電系統に無効電力補償装置を分散配置した場合において、その配電系統を運用・保守管理する産業分野で有効に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be effectively used in the industrial field where the power distribution system is operated and maintained when the reactive power compensator is distributed in the power distribution system.

I、II 低圧系
3 柱上変圧器
4、14 低圧配電線
5A〜5F、15 引込線
6A〜6F、6 需要家
7A〜7F、7 PV
8A〜8F、8 EV
9A〜9F、9 無効電力補償装置
P1 電圧源
P2 需要家端
ST 補償電流
I, II Low voltage system 3 Pillar transformer 4, 14 Low voltage distribution line 5A-5F, 15 Lead-in line 6A-6F, 6 Customer 7A-7F, 7 PV
8A-8F, 8 EV
9A to 9F, 9 Reactive power compensator P1 Voltage source P2 Customer end I ST compensation current

Claims (4)

配電系統における高圧から低圧へ降圧する変圧器、この変圧器に接続された低圧配電線および低圧配電線に接続された複数の引込線で構成される低圧系において、前記低圧配電線に前記引込線を介して分散配置された複数の無効電力補償装置で個別に引込線と需要家との接続点である需要家端の電圧を調整するように構成した配電系統の低圧系における需要家電圧安定化システムであって、
各需要家毎に、配電用変電所の送り出し点から高圧配電線を介して前記低圧配電線に接続された各引込線の接続位置までの距離および各引込線の距離の情報に基づき、前記送り出し点から前記引込線に至る配電系統のインピーダンスを算出し、前記低圧系に接続される複数の需要家を、前記送り出し点から前記高圧配電線、前記変圧器、前記低圧配電線および前記引込線を介して1軒の需要家に至る等価的な配電系統に縮約するとともに、
前記配電系統への送り出し電圧、縮約された前記配電系統のインピーダンス、前記各需要家端における電流の総和に基づき前記インピーダンスを用いて前記配電系統に与える電圧の変動分を算出し、その変動分をキャンセルするために必要な無効電力の無効電流成分を演算して前記需要家の数で按分し、按分した無効電流成分を前記各需要家端に供給するように前記各無効電力補償装置を制御するように構成したことを特徴とする配電系統の低圧系における需要家電圧安定化システム。
In a low-voltage system composed of a transformer that steps down from a high voltage to a low voltage in a distribution system, a low-voltage distribution line connected to the transformer, and a plurality of service lines connected to the low-voltage distribution line, the low-voltage distribution line via the service line This is a consumer voltage stabilization system in the low voltage system of the distribution system that is configured to adjust the voltage at the customer end, which is the connection point between the service line and the customer, with multiple reactive power compensators arranged in a distributed manner. And
For each customer, based on the information on the distance from the delivery point of the distribution substation to the connection position of each service line connected to the low voltage distribution line via the high voltage distribution line and the distance of each service line, from the service point Calculate the impedance of the distribution system leading to the lead-in line, and connect a plurality of consumers connected to the low-voltage system from the delivery point through the high-voltage distribution line, the transformer, the low-voltage distribution line, and the lead-in line And reduced to an equivalent power distribution system leading to
Calculate the amount of fluctuation of the voltage applied to the power distribution system using the impedance based on the supply voltage to the power distribution system, the reduced impedance of the power distribution system, and the sum of the current at each consumer end, The reactive power compensator is controlled so as to calculate the reactive current component of the reactive power necessary for canceling and distribute the reactive current component by the number of consumers and supply the distributed reactive current component to each consumer end. A customer voltage stabilization system in a low-voltage system of a power distribution system, characterized by being configured to do so.
請求項1に記載する配電系統の低圧系における需要家電圧安定化システムにおいて、
前記送り出し電圧として前記変圧器の1次側の電圧、前記配電系統のインピーダンスとして前記低圧系のインピーダンスを用いたことを特徴とする配電系統の低圧系における需要家電圧安定化システム。
In the customer voltage stabilization system in the low voltage system of the power distribution system according to claim 1,
A customer voltage stabilization system in a low-voltage system of a distribution system, wherein the voltage on the primary side of the transformer is used as the delivery voltage and the low-voltage system impedance is used as an impedance of the distribution system.
請求項1または請求項2に記載する配電系統の低圧系における需要家電圧安定化システムにおいて、
縮約した低圧系における無効電流成分の演算は、前記需要家端の電圧Vを(1)式または(2)式で与えられた(3)式または(4)式を用いて演算することを特徴とする配電系統の低圧系における需要家電圧安定化システム。
In the customer voltage stabilization system in the low voltage system of the power distribution system according to claim 1 or claim 2,
The calculation of the reactive current component in the contracted low-voltage system is performed by calculating the consumer end voltage V 2 using the formula (3) or (4) given by the formula (1) or (2). The customer voltage stabilization system in the low voltage system of the power distribution system characterized by
請求項1〜請求項3の何れか一つに記載する配電系統の低圧系における需要家電圧安定化システムにおいて、
前記縮約の際に必要な他の需要家の情報を電力線通信を利用して授受するように構成したことを特徴とする配電系統の低圧系における需要家電圧安定化システム。
In the consumer voltage stabilization system in the low voltage | pressure system of the power distribution system as described in any one of Claims 1-3,
A customer voltage stabilization system in a low-voltage system of a distribution system, characterized in that information on other customers necessary for the contraction is exchanged using power line communication.
JP2012152841A 2012-07-06 2012-07-06 Customer voltage stabilization system in low-voltage distribution system. Expired - Fee Related JP5963250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012152841A JP5963250B2 (en) 2012-07-06 2012-07-06 Customer voltage stabilization system in low-voltage distribution system.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012152841A JP5963250B2 (en) 2012-07-06 2012-07-06 Customer voltage stabilization system in low-voltage distribution system.

Publications (2)

Publication Number Publication Date
JP2014017945A true JP2014017945A (en) 2014-01-30
JP5963250B2 JP5963250B2 (en) 2016-08-03

Family

ID=50112163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012152841A Expired - Fee Related JP5963250B2 (en) 2012-07-06 2012-07-06 Customer voltage stabilization system in low-voltage distribution system.

Country Status (1)

Country Link
JP (1) JP5963250B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104300553A (en) * 2014-10-17 2015-01-21 国家电网公司 Rural power network low voltage comprehensive treatment control device and method
WO2015190434A1 (en) * 2014-06-12 2015-12-17 国立研究開発法人産業技術総合研究所 Impedance estimation device and estimation method for power distribution line
CN105429152A (en) * 2015-12-23 2016-03-23 代阿敏 Energy-saving type power transmission voltage automatic monitoring method
CN105610168A (en) * 2016-02-03 2016-05-25 南方电网科学研究院有限责任公司 Application method of node voltage stability index of multi-infeed AC/DC system
CN106169759A (en) * 2016-07-18 2016-11-30 浙江群力电气有限公司 A kind of distribution network voltage control method and system
JP2016226232A (en) * 2015-06-03 2016-12-28 東京電力ホールディングス株式会社 Device and method for supporting discrimination against cause of system voltage rise
CN110401204A (en) * 2019-08-06 2019-11-01 竺炜 10 kilovolts of overhead line single-point reactive compensation methods of voltage constraint and line loss optimization
KR20210117839A (en) * 2020-03-20 2021-09-29 한국전력공사 POWER QUALITY COMPENSATION APPARATUS and METHOD

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005261010A (en) * 2004-03-09 2005-09-22 Chugoku Electric Power Co Inc:The Voltage flicker suppression system
JP2006158179A (en) * 2004-10-29 2006-06-15 Tokyo Electric Power Co Inc:The Distributed power supply, power distribution facility, and power supply method
JP2010213542A (en) * 2009-03-12 2010-09-24 Kansai Electric Power Co Inc:The Distribution system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005261010A (en) * 2004-03-09 2005-09-22 Chugoku Electric Power Co Inc:The Voltage flicker suppression system
JP2006158179A (en) * 2004-10-29 2006-06-15 Tokyo Electric Power Co Inc:The Distributed power supply, power distribution facility, and power supply method
JP2010213542A (en) * 2009-03-12 2010-09-24 Kansai Electric Power Co Inc:The Distribution system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6016010692; '充電器からの無効電力注入による電気自動車夜間一斉充電時の配電線電圧低下補償手法' 電力中央研究所報告 , 201104 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015190434A1 (en) * 2014-06-12 2015-12-17 国立研究開発法人産業技術総合研究所 Impedance estimation device and estimation method for power distribution line
JP2016001968A (en) * 2014-06-12 2016-01-07 国立研究開発法人産業技術総合研究所 Impedance estimation device and method for distribution line
US10365310B2 (en) 2014-06-12 2019-07-30 National Institute Of Advanced Industrial Science And Technology Impedance estimation device and estimation method for power distribution line
CN104300553A (en) * 2014-10-17 2015-01-21 国家电网公司 Rural power network low voltage comprehensive treatment control device and method
JP2016226232A (en) * 2015-06-03 2016-12-28 東京電力ホールディングス株式会社 Device and method for supporting discrimination against cause of system voltage rise
CN105429152A (en) * 2015-12-23 2016-03-23 代阿敏 Energy-saving type power transmission voltage automatic monitoring method
CN105610168A (en) * 2016-02-03 2016-05-25 南方电网科学研究院有限责任公司 Application method of node voltage stability index of multi-infeed AC/DC system
CN106169759A (en) * 2016-07-18 2016-11-30 浙江群力电气有限公司 A kind of distribution network voltage control method and system
CN106169759B (en) * 2016-07-18 2019-01-29 杭州电力设备制造有限公司 A kind of distribution network voltage adjusting method and system
CN110401204A (en) * 2019-08-06 2019-11-01 竺炜 10 kilovolts of overhead line single-point reactive compensation methods of voltage constraint and line loss optimization
CN110401204B (en) * 2019-08-06 2024-01-12 竺炜 10KV overhead line single-point reactive power compensation method with optimized voltage constraint and line loss
KR20210117839A (en) * 2020-03-20 2021-09-29 한국전력공사 POWER QUALITY COMPENSATION APPARATUS and METHOD
KR102404583B1 (en) * 2020-03-20 2022-06-07 한국전력공사 POWER QUALITY COMPENSATION APPARATUS and METHOD

Also Published As

Publication number Publication date
JP5963250B2 (en) 2016-08-03

Similar Documents

Publication Publication Date Title
JP5963250B2 (en) Customer voltage stabilization system in low-voltage distribution system.
Homaee et al. Real-time voltage control algorithm with switched capacitors in smart distribution system in presence of renewable generations
JP5862955B2 (en) Customer voltage stabilization system in distribution system
JP5618294B2 (en) High and low voltage distribution system voltage regulation system
JP4654416B2 (en) Distribution system voltage regulation system
WO2012063800A1 (en) Electrical power control system and method for electrical power control
Schönleber et al. Optimization-based reactive power control in HVDC-connected wind power plants
KR101127672B1 (en) Apparatus and method for controlling distributed power
CA2832574C (en) Power quality control
JP2009153333A (en) Distributed power supply system and its control method
JP2013183622A (en) Distributed power supply system and voltage adjustment method
Nutkani et al. Autonomous economic operation of grid connected DC microgrid
JPWO2011048944A1 (en) Control device, energy system and control method thereof
EP3070803B1 (en) Power transmission network
Saradarzadeh et al. The benefits of looping a radial distribution system with a power flow controller
US10097001B2 (en) Power control system for energy storage devices, and control device and control method thereof
Jung et al. Local steady-state and quasi steady-state impact studies of high photovoltaic generation penetration in power distribution circuits
Hazarika et al. Application of dynamic voltage restorer in electrical distribution system for voltage sag compensation
Barr et al. Introducing power system voltage droop as a new concept for harmonic current allocation
Emhemed et al. Protection analysis for plant rating and power quality issues in LVDC distribution power systems
Wang A planning scheme for penetrating embedded generation in power distribution grids
El-Taweel et al. Operation challenges of feeder shunt capacitors in islanded microgrids
Haghifam et al. Optimal placement of the distribution substations to improve reliability under load growth
Venkatraman et al. Optimal reactive power allocation to minimize line and DG losses in a radial distribution system
Kelm et al. Effectiveness of Energy Storage Application for improving the quality of supply in Low Voltage Networks with Distributed Generation

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160623

R150 Certificate of patent or registration of utility model

Ref document number: 5963250

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees