JP2014017694A - Millimeter wave band filter and method for varying resonance frequency therefor - Google Patents

Millimeter wave band filter and method for varying resonance frequency therefor Download PDF

Info

Publication number
JP2014017694A
JP2014017694A JP2012154325A JP2012154325A JP2014017694A JP 2014017694 A JP2014017694 A JP 2014017694A JP 2012154325 A JP2012154325 A JP 2012154325A JP 2012154325 A JP2012154325 A JP 2012154325A JP 2014017694 A JP2014017694 A JP 2014017694A
Authority
JP
Japan
Prior art keywords
waveguide
radio wave
half mirrors
millimeter
wave band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012154325A
Other languages
Japanese (ja)
Other versions
JP5781474B2 (en
Inventor
Hisashi Kawamura
尚志 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2012154325A priority Critical patent/JP5781474B2/en
Priority to US13/685,820 priority patent/US9184486B2/en
Publication of JP2014017694A publication Critical patent/JP2014017694A/en
Priority to US14/725,349 priority patent/US9871278B2/en
Priority to US14/725,524 priority patent/US9871279B2/en
Application granted granted Critical
Publication of JP5781474B2 publication Critical patent/JP5781474B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a millimeter wave band filter having no characteristic deterioration due to wavefront conversion, applying a high degree of freedom in design of a radio wave half mirror, having little loss due to space radiation, and being capable of varying a frequency with a compact structure, and highly maintaining its characteristics of a filter.SOLUTION: A millimeter wave band filter comprises: a waveguide tube 21 including a waveguide rectangular in cross section for propagating electromagnetic waves in a prescribed frequency range within a millimeter wave band from its one end to the other end in a TE10 mode; and a pair of radio wave half mirrors 40A and 40B fixed in the waveguide tube at a prescribed interval so as to close the waveguide. The millimeter wave band filter selectively allows frequency components having a resonance frequency of a resonator provided between the radio wave half mirrors 40A and 40B, as the center thereof, to pass therethrough. The waveguide tube 21 varies a distance W between wall faces 23c and 23d, which are along short sides of four wall faces enclosing a waveguide 22b rectangular in cross section formed between the radio wave half mirrors 40A and 40B, in order to vary the resonance frequency.

Description

本発明は、ミリ波帯に用いるフィルタに関する。   The present invention relates to a filter used in a millimeter wave band.

近年、ユビキタスネットワーク社会を迎え、電波利用ニーズが高まる中、家庭内のワイヤレスブロードバンド化を実現するWPAN(ワイヤレスパーソナルエリアネットワーク)や安全・安心な運転をサポートするミリ波レーダー等のミリ波帯無線システムが利用され始めている。また、100GHz超無線システム実現への取組も積極的に行われてきている。   In recent years, with the ubiquitous network society and the increasing need for radio wave use, WPAN (wireless personal area network) that realizes wireless broadband in the home and millimeter wave radio systems such as millimeter wave radar that supports safe and secure driving Has begun to be used. In addition, efforts to realize a 100 GHz super wireless system have been actively carried out.

その一方で、60〜70GHz帯の無線システムの2次高調波評価や100GHz超の周波数帯における無線信号の評価については、周波数が高くなるにつれ測定器の雑音レベル及びミキサの変換損失が増加するとともに周波数精度が低下するため、100GHzを超える無線信号の高感度、高精度測定技術が確立されていない状況となっている。しかも、これまでの測定技術では局部発振の高調波を測定結果から分離することができず、不要発射等の厳密な測定が困難となっている。   On the other hand, for the second harmonic evaluation of the radio system in the 60-70 GHz band and the evaluation of the radio signal in the frequency band exceeding 100 GHz, the noise level of the measuring instrument and the conversion loss of the mixer increase as the frequency increases. Since the frequency accuracy is lowered, a high-sensitivity and high-precision measurement technique for wireless signals exceeding 100 GHz has not been established. Moreover, the conventional measurement techniques cannot separate the local oscillation harmonics from the measurement results, making it difficult to accurately measure unwanted emissions.

これらの技術課題を克服し、100GHz超帯域無線信号の高感度・高精度測定を実現するためには、イメージ応答及び高次高調波応答を抑制するためのミリ波帯の狭帯域なフィルタ技術の開発が必要であり、特に、可変周波数型(チューナブル)に適応可能なものが望ましい。   In order to overcome these technical issues and realize high-sensitivity and high-accuracy measurement of 100 GHz super-band radio signals, millimeter-wave narrow-band filter technology for suppressing image response and higher-order harmonic response Development is necessary, and it is particularly desirable to be adaptable to a variable frequency type (tunable).

これまで、ミリ波帯で周波数可変型として用いられるフィルタとしては、(a)YIG共振器を用いたもの、(b)バラクタダイオードを共振器に付加したもの、(c)ファブリペロー共振器が知られている。   Up to now, the filters used as the variable frequency type in the millimeter wave band include (a) a filter using a YIG resonator, (b) a varactor diode added to the resonator, and (c) a Fabry-Perot resonator. It has been.

(a)のYIG共振器を用いたものでは現状で80GHz程度まで使用できるものが知られ、(b)のバラクタダイオードを共振器に付加したものでは40GHz程度まで使用できるものが知られているが、100GHzを超える周波数では製造が困難である。   A device using a YIG resonator of (a) is known that can be used up to about 80 GHz at present, and a device having a varactor diode of (b) added to the resonator can be used up to about 40 GHz. It is difficult to manufacture at a frequency exceeding 100 GHz.

これに対し、(c)のファブリペロー共振器は光の分野でよく用いられており、これをミリ波に用いる技術が非特許文献1に開示されている。この非特許文献1には、ミリ波を反射させる一対の球面反射鏡を、その曲率半径に等しい間隔で対向させて高いQを実現した共焦点型のファブリペロー共振器が示されている。   On the other hand, the Fabry-Perot resonator of (c) is often used in the field of light, and Non-Patent Document 1 discloses a technique of using this for millimeter waves. Non-Patent Document 1 discloses a confocal Fabry-Perot resonator in which a pair of spherical reflectors that reflect millimeter waves are opposed to each other at an interval equal to the radius of curvature to achieve a high Q.

手代木 扶、米山 務 著「新ミリ波技術」オーム社,1993年,p70Teshirogi, Satoshi Yoneyama, “New Millimeter-Wave Technology” Ohmsha, 1993, p70

しかしながら、上記共焦点型のファブリペロー共振器では、通過帯域をチューニングするために鏡面間の距離を動かした場合、原理的に焦点がずれるためQの大幅な低下が予想される。したがって周波数毎に曲率の違う反射鏡対を選択的に用いなければならない。   However, in the above-mentioned confocal Fabry-Perot resonator, when the distance between the mirror surfaces is moved to tune the pass band, the focal point is deviated in principle, so that a significant decrease in Q is expected. Therefore, it is necessary to selectively use reflector pairs having different curvatures for each frequency.

一方、光の分野でよく用いられるファブリペロー共振器としては平面型ハーフミラーを対向配置した構造のものがあり、この構造であれば、原理的に鏡面間の距離を変化させてもQの低下は生じないが、この平面型ファブリペロー共振器を利用したフィルタをミリ波帯で実現するためには、さらに解決すべき次のような課題があった。   On the other hand, a Fabry-Perot resonator often used in the field of light has a structure in which planar half mirrors are arranged opposite to each other. With this structure, the Q is lowered even if the distance between mirror surfaces is changed in principle. However, in order to realize a filter using the planar Fabry-Perot resonator in the millimeter wave band, there are the following problems to be solved.

(A)ハーフミラーに平面波を平行に入射する必要がある。フィルタへの入力が導波管の場合、その径をホーンアンテナのように大きくし平面波を実現することが考えられるがサイズが大きくなる。その場合でも完全平面波の実現は困難であり特性が劣化する。
(B)ハーフミラーは平面波の一定量を平面波のままで透過させる機能をもつ必要がある。このためハーフミラーの構造が制限され、設計の自由度が低い。
(C)開放型であるため、空間に放射することによる損失が大きい。
(A) A plane wave needs to be incident on the half mirror in parallel. When the input to the filter is a waveguide, it may be possible to realize a plane wave by increasing its diameter like a horn antenna, but the size increases. Even in that case, it is difficult to realize a perfect plane wave, and the characteristics deteriorate.
(B) The half mirror needs to have a function of transmitting a certain amount of plane wave as it is. For this reason, the structure of the half mirror is limited, and the degree of freedom in design is low.
(C) Since it is an open type, there is a large loss due to radiation into space.

上記課題を解決するミリ波帯フィルタとして、図6のように、ミリ波帯の所定周波数範囲の電磁波をTE10モードで一端から他端に伝搬させる導波管1によって形成される導波路1aの内部に、前記所定周波数範囲の電磁波の一部を透過させ、一部を反射させる特性をもつ平面型の一対の電波ハーフミラー2、3を互いに間隔を開けて対向配置し、それら一対の電波ハーフミラーの間に形成される共振器の共振周波数を中心とする周波数成分を選択的に通過させる構造が考えられる。   As a millimeter wave band filter that solves the above problem, as shown in FIG. 6, the inside of a waveguide 1a formed by a waveguide 1 that propagates electromagnetic waves in a predetermined frequency range of the millimeter wave band from one end to the other end in a TE10 mode. In addition, a pair of flat radio wave half mirrors 2 and 3 having a characteristic of transmitting a part of the electromagnetic wave in the predetermined frequency range and reflecting a part thereof are arranged to face each other with a space therebetween, and the pair of radio wave half mirrors A structure in which a frequency component centered on the resonance frequency of the resonator formed between the electrodes is selectively passed is conceivable.

上記構造であれば、波面変換による特性劣化がなく、電波ハーフミラーの設計に高い自由度を与えることができ、しかも空間放射による損失が少なくて済む。   With the above structure, there is no characteristic deterioration due to wavefront conversion, a high degree of freedom can be given to the design of the radio wave half mirror, and loss due to spatial radiation can be reduced.

そして、一対の電波ハーフミラー2、3の間の電気長を変化させることで共振器の共振周波数を可変することができ、そのために一対の電波ハーフミラーの間隔を可変する機構を用いればよい。   The resonance frequency of the resonator can be varied by changing the electrical length between the pair of radio wave half mirrors 2, 3. For this purpose, a mechanism for varying the distance between the pair of radio wave half mirrors may be used.

ところが、上記のように一対の電波ハーフミラーの間隔を可変する原理の周波数可変型のミリ波帯フィルタを実際に製造する際には、さらに解決すべき課題がある。   However, when the frequency variable millimeter wave band filter based on the principle of changing the distance between the pair of radio wave half mirrors as described above is actually manufactured, there is a further problem to be solved.

即ち、一対の電波ハーフミラー2、3の間隔を可変する機構を実現する場合、図7のように、所定周波数範囲の電磁波をTE10モードで伝搬させる第1導波管11と、第1導波管11の一端側をその外周との間に隙間のある状態で内部に受け入れる第1導波路12aおよび第1導波管11の導波路11aと同内径で第1導波路12aと同心に連続する第2導波路12bを有する第2導波管12とを、導波路の長さ方向に沿って相対的に移動できるようにするとともに、一方の電波ハーフミラー2を第1導波管11の導波路11aの先端に固定し、他方の電波ハーフミラー3を第2導波管12の第2導波路12bの第1導波路12a寄りの端部に固定する構造となる。   That is, when realizing a mechanism for changing the distance between the pair of radio wave half mirrors 2 and 3, as shown in FIG. 7, the first waveguide 11 for propagating electromagnetic waves in a predetermined frequency range in the TE10 mode, and the first waveguide. The first waveguide 12a that receives one end side of the tube 11 with a gap between the first waveguide 12a and the outer periphery of the tube 11 and the waveguide 11a of the first waveguide 11 are concentrically continuous with the first waveguide 12a with the same inner diameter. The second waveguide 12 having the second waveguide 12b can be relatively moved along the length direction of the waveguide, and one of the radio wave half mirrors 2 is guided by the first waveguide 11. The other radio wave half mirror 3 is fixed to the end of the second waveguide 12 near the first waveguide 12a and fixed to the tip of the waveguide 11a.

つまり、フィルタの共振周波数を可変するために導波管をその電磁波の伝搬方向に移動させる必要があり、その方向は必然的に導波管との外部回路との接続部分となるから、周波数可変になんら寄与しない外部回路も可動される構造になってしまう。   In other words, in order to change the resonance frequency of the filter, it is necessary to move the waveguide in the propagation direction of the electromagnetic wave, and that direction inevitably becomes a connection part with the external circuit with the waveguide, so the frequency can be changed. The external circuit that does not contribute to the structure is also movable.

これを防ぐために、例えば、図8のように、周波数可変のために可動する第1導波管11の他端側を、固定された第3導波管15の内側(または外側)に受け入れたフィルタ構造とすることで、周波数可変のために第1導波管11がスライドしても、フィルタ全体の長さを不変にし、固定された第2導波管12と第3導波管15に外部回路を固定接続することができる。   In order to prevent this, for example, as shown in FIG. 8, the other end of the first waveguide 11 that is movable for variable frequency is received inside (or outside) the fixed third waveguide 15. By adopting the filter structure, even if the first waveguide 11 slides to change the frequency, the length of the entire filter remains unchanged, and the fixed second waveguide 12 and third waveguide 15 are fixed. An external circuit can be fixedly connected.

ところが、上記ように3本の導波管を用いた構造はフィルタを大型化してしまい、また摺動部の増加に伴って電磁波の漏れ等による特性悪化を引き起こす。   However, the structure using three waveguides as described above increases the size of the filter, and causes deterioration of characteristics due to leakage of electromagnetic waves and the like as the number of sliding portions increases.

本発明は、これらの課題を解決し、波面変換による特性劣化がなく、電波ハーフミラーの設計に高い自由度を与えることができ、空間放射による損失が少なくて済み、さらに、小型な構造で周波数可変でき、フィルタとして特性を高く維持できるミリ波帯フィルタおよびその共振周波数可変方法を提供することを目的としている。   The present invention solves these problems, does not deteriorate characteristics due to wavefront conversion, can provide a high degree of freedom in the design of a radio wave half mirror, requires little loss due to spatial radiation, and has a small structure and frequency. An object of the present invention is to provide a millimeter-wave band filter that can be varied and maintain high characteristics as a filter, and a method for varying the resonance frequency thereof.

前記目的を達成するために、本発明の請求項1のミリ波帯フィルタは、
ミリ波帯の所定周波数範囲の電磁波をTE10モードで一端側から他端側へ伝搬させる断面長方形の導波路を有する導波管(21)と、
前記所定周波数範囲の電磁波の一部を透過させ、一部を反射させる特性をもち、前記導波管内で前記導波路を塞ぐようにして所定距離隔てて固定された一対の電波ハーフミラー(40A、40B)とを有し、
前記所定周波数範囲の電磁波のうち、前記一対の電波ハーフミラーの間に形成される共振器の共振周波数の電磁波を選択的に通過させるミリ波帯フィルタであって、
前記導波管は、前記一対の電波ハーフミラーの間に形成される断面長方形の導波路を囲む4つの壁面のうち、前記断面長方形の短辺に沿った壁面の間隔を可変できる構造を有しており、
該短辺に沿った壁面の間隔の可変により、前記共振周波数を可変できるようにしたことを特徴とする。
In order to achieve the above object, the millimeter waveband filter according to claim 1 of the present invention comprises:
A waveguide (21) having a waveguide having a rectangular cross section for propagating electromagnetic waves in a predetermined frequency range of the millimeter wave band from one end side to the other end side in a TE10 mode;
A pair of radio wave half mirrors (40A, 40A, 40a, 40b, having a characteristic of transmitting a part of the electromagnetic wave in the predetermined frequency range and reflecting a part thereof, and being fixed at a predetermined distance so as to close the waveguide in the waveguide 40B)
Among the electromagnetic waves in the predetermined frequency range, a millimeter wave band filter that selectively passes electromagnetic waves having a resonance frequency of a resonator formed between the pair of radio wave half mirrors,
The waveguide has a structure capable of varying the interval of the wall surfaces along the short side of the rectangular cross section among the four wall surfaces surrounding the rectangular waveguide formed between the pair of radio wave half mirrors. And
The resonance frequency can be varied by varying the interval between the wall surfaces along the short side.

また、本発明の請求項2のミリ波帯フィルタは、請求項1記載のミリ波帯フィルタにおいて、
前記一対の電波ハーフミラーの間に形成される断面長方形の導波路を囲む4つの壁面のうち、前記断面長方形の短辺に沿った壁面から前記導波管外周面まで連続するエアダクト(60)を設けたことを特徴とする。
The millimeter waveband filter according to claim 2 of the present invention is the millimeter waveband filter according to claim 1,
An air duct (60) continuous from the wall surface along the short side of the rectangular cross section to the outer peripheral surface of the waveguide among the four wall surfaces surrounding the waveguide having a rectangular cross section formed between the pair of radio wave half mirrors. It is provided.

また、本発明の請求項3のミリ波帯フィルタの共振周波数可変方法は、
ミリ波帯の所定周波数範囲の電磁波をTE10モードで一端側から他端側へ伝搬させる断面長方形の導波路を有する導波管(21)と、
前記所定周波数範囲の電磁波の一部を透過させ、一部を反射させる特性をもち、前記導波管内で前記導波路を塞ぐようにして所定距離隔てて固定された一対の電波ハーフミラー(40A、40B)とを有し、
前記所定周波数範囲の電磁波のうち、前記一対の電波ハーフミラーの間に形成される共振器の共振周波数の電磁波を選択的に通過させるミリ波帯フィルタの共振周波数可変方法であって、
前記導波管の前記一対の電波ハーフミラーの間に形成される断面長方形の導波路を囲む4つの壁面のうち、前記断面長方形の短辺に沿った壁面の間隔を可変することにより、前記共振周波数を可変することを特徴とする。
Further, the resonance frequency varying method of the millimeter waveband filter according to claim 3 of the present invention is:
A waveguide (21) having a waveguide having a rectangular cross section for propagating electromagnetic waves in a predetermined frequency range of the millimeter wave band from one end side to the other end side in a TE10 mode;
A pair of radio wave half mirrors (40A, 40A, 40a, 40b, having a characteristic of transmitting a part of the electromagnetic wave in the predetermined frequency range and reflecting a part thereof, and being fixed at a predetermined distance so as to close the waveguide in the waveguide 40B)
Among the electromagnetic waves in the predetermined frequency range, a resonant frequency variable method for a millimeter-wave band filter that selectively passes electromagnetic waves having a resonance frequency of a resonator formed between the pair of radio wave half mirrors,
Among the four wall surfaces surrounding the waveguide having a rectangular cross section formed between the pair of radio wave half mirrors of the waveguide, the resonance is achieved by varying the interval between the wall surfaces along the short side of the rectangular cross section. The frequency is variable.

上記のように、本発明のミリ波帯フィルタは、TE10モードのみを伝送する導波管の導波路内部に平面型の一対の電波ハーフミラーで形成された共振器を設けた構造であるから、平面波を入射するための特別な工夫が必要なくなり、また電波ハーフミラーも平面波を透過させる必要がなく任意の形状をとることができる。   As described above, the millimeter waveband filter of the present invention has a structure in which a resonator formed of a pair of planar radio wave half mirrors is provided inside a waveguide of a waveguide that transmits only the TE10 mode. No special device is required for incident plane waves, and the radio wave half mirror does not need to transmit plane waves and can take any shape.

また、フィルタ全体として密閉型となり、外部空間への放射による損失が原理上なく、ミリ波帯において、極めて高い選択特性を実現できる。   Further, the filter as a whole is hermetically sealed, and there is no principle of loss due to radiation to the external space, and extremely high selection characteristics can be realized in the millimeter wave band.

また、導波管は、一対の電波ハーフミラーの間に形成される断面長方形の導波路を囲む4つの壁面のうち、その断面長方形の短辺に沿った壁面の間隔を可変できる構造を有し、その短辺に沿った壁面の間隔の可変により、共振周波数を可変できるようにしたので、小型に構成できる。   In addition, the waveguide has a structure in which the interval between the wall surfaces along the short side of the rectangular cross section among the four wall surfaces surrounding the rectangular waveguide formed between the pair of radio wave half mirrors can be varied. Since the resonance frequency can be changed by changing the interval between the wall surfaces along the short side, the size can be reduced.

また、エアダクトを設けたものでは、周波数可変の際に生じる空気圧による電波ハーフミラーの歪みを防ぐことができ、安定に周波数可変できる。   In addition, in the case where the air duct is provided, it is possible to prevent the distortion of the radio wave half mirror due to the air pressure generated when the frequency is varied, and the frequency can be varied stably.

本発明のミリ波帯フィルタの基本構造を示す図The figure which shows the basic structure of the millimeter wave band filter of this invention 電波ハーフミラーの構造例と可動ブロックの配置の関係を示す図The figure which shows the structure example of an electric wave half mirror, and the relation of arrangement of a movable block 電波ハーフミラーの間の導波路の短辺に沿った壁面間隔を可変したときのフィルタの特性変化を示すシミュレーション結果Simulation results showing changes in filter characteristics when the wall spacing along the short side of the waveguide between radio wave half mirrors is varied 片方の壁面だけを可動させるフィルタの構造図Structure of filter that moves only one wall surface エアダクトを可動ブロックに設けた例を示す図The figure which shows the example which provided the air duct in the movable block 本発明の基礎となるミリ波帯フィルタの原理構造図Principle structure diagram of millimeter wave band filter which is the basis of the present invention ミリ波帯フィルタを実現する場合の第1の構造例First structure example for realizing a millimeter-wave band filter ミリ波帯フィルタを実現する場合の第2の構造例Second structural example for realizing millimeter-wave band filter

以下、図面に基づいて本発明の実施の形態を説明する。
図1は、本発明のミリ波帯フィルタ20の基本構造を示している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a basic structure of a millimeter wave band filter 20 of the present invention.

図1の(a)に示すように、このミリ波帯フィルタ20は、導波管21、一対の電波ハーフミラー40A、40Bおよび共振周波数可変機構50を有している。   As shown in FIG. 1A, the millimeter wave band filter 20 includes a waveguide 21, a pair of radio wave half mirrors 40 </ b> A and 40 </ b> B, and a resonance frequency variable mechanism 50.

導波管21は、金属材で断面長方形の角筒状に形成され、ミリ波帯の所定周波数範囲(例えば110〜140GHz)の電磁波をTE10モード(単一モード)で伝搬させる口径(例えば、幅a×高さb=2.032mm×1.016mmの長方形)の導波路22が一端側から他端側に一直線状に連続して形成されている。   The waveguide 21 is formed of a metal material in a rectangular tube shape having a rectangular cross section, and has a diameter (for example, width) for propagating electromagnetic waves in a millimeter wave band in a predetermined frequency range (for example, 110 to 140 GHz) in a TE10 mode (single mode). A waveguide 22 of a × height b = 2.032 mm × 1.016 mm) is continuously formed in a straight line from one end side to the other end side.

導波管21の中央部には、前記所定周波数範囲の電磁波の一部を透過させ、一部を反射させる特性をもつ一対の電波ハーフミラー40A、40Bが導波路22を塞ぐ状態で一定距離隔てて対向するように固定されている。   A pair of radio wave half mirrors 40 </ b> A and 40 </ b> B having a characteristic of transmitting a part of the electromagnetic wave in the predetermined frequency range and reflecting a part of the electromagnetic wave in the predetermined frequency range is separated from the central part of the waveguide 21 by a certain distance. Are fixed so that they face each other.

一対の電波ハーフミラー40A、40Bは、例えば図2に示しているように、固定される導波路22の口径に対応した大きさの矩形の誘電体基板41と、その表面を覆う金属膜42と、その金属膜42に設けられた電磁波透過用のスリット43とを有し、金属膜42の外周が導波路22の内壁に接触する状態で固定されていて、スリット43の形状や面積に対応した透過率で電磁波を透過させる。   For example, as shown in FIG. 2, the pair of radio wave half mirrors 40A and 40B includes a rectangular dielectric substrate 41 having a size corresponding to the diameter of the waveguide 22 to be fixed, and a metal film 42 covering the surface thereof. The slit 43 for transmitting electromagnetic waves provided in the metal film 42 is fixed so that the outer periphery of the metal film 42 is in contact with the inner wall of the waveguide 22, and corresponds to the shape and area of the slit 43. Transmit electromagnetic waves with transmittance.

導波管21の内壁で囲まれた導波路22は、二つの電波ハーフミラー40A、40Bによって第1導波路22a、第2導波路22b、第3導波路22cに区画される。   The waveguide 22 surrounded by the inner wall of the waveguide 21 is partitioned into a first waveguide 22a, a second waveguide 22b, and a third waveguide 22c by two radio wave half mirrors 40A and 40B.

そして、電波ハーフミラー40A、40Bの間に形成される長方形断面の第2導波路22bを囲む4つの壁面23a〜23dのうち、その長方形の短辺に沿った壁面23c、23dの間隔Wは、共振周波数可変機構50により可変できるようになっている。   Of the four wall surfaces 23a to 23d surrounding the rectangular waveguide second waveguide 22b formed between the radio wave half mirrors 40A and 40B, the interval W between the wall surfaces 23c and 23d along the short side of the rectangle is The resonance frequency variable mechanism 50 can be varied.

即ち、導波管21には、第2導波路22bの短辺に沿った両側面から、長辺方向に沿ってそれぞれ導波管21の両側面21a、21bまで連続するガイド穴51、52が貫通形成されている。   That is, the waveguide 21 has guide holes 51 and 52 that are continuous from both side surfaces along the short side of the second waveguide 22b to both side surfaces 21a and 21b of the waveguide 21 along the long side direction. It is formed through.

このガイド穴51、52の高さは、第2導波路22bの高さb(短辺=1.016mm)にほぼ一致し、ガイド穴51、52の幅は、第2導波路22bの伝搬方向の長さ(ここでは電波ハーフミラー40A、40Bの間隔Dに等しい)に一致している。   The height of the guide holes 51 and 52 substantially matches the height b (short side = 1.016 mm) of the second waveguide 22b, and the width of the guide holes 51 and 52 is the propagation direction of the second waveguide 22b. (Here, equal to the interval D between the radio wave half mirrors 40A and 40B).

そして、このガイド穴51、52には、ガイド穴51、52の内周に4つの側面を接するように内接収容され、断面長方形の第2導波路22bの長辺方向に摺動自在な直方体の金属製の可動ブロック53、54が配置されている。   The guide holes 51 and 52 are inscribed and accommodated so that the four side surfaces are in contact with the inner circumferences of the guide holes 51 and 52, and are slidable in the long side direction of the second waveguide 22b having a rectangular cross section. Metal movable blocks 53 and 54 are arranged.

したがって、これら二つの可動ブロック53、54の互いに対向する内面側は、第2導波路22bの短辺に沿った壁面23c、23dをなしている。   Accordingly, the inner surfaces of the two movable blocks 53 and 54 facing each other form wall surfaces 23c and 23d along the short side of the second waveguide 22b.

二つの可動ブロック53、54は、導波管21の側面21a、21bに固定された駆動装置55、56と連結されており、この駆動装置55、56によって、互いの間隔、即ち、第2導波路22bの短辺側の壁面23c、23dの間隔Wを変化させる。ここで駆動装置55、56は、例えば間隔Wを第1導波路22a、第3導波路22cの長辺長2.032mmから2m程度増加させることができるものであればよく、ステッピングモータ、サーボモータ、ソレノイドを駆動源とするもので構成できる。   The two movable blocks 53 and 54 are connected to driving devices 55 and 56 fixed to the side surfaces 21a and 21b of the waveguide 21, and the driving devices 55 and 56 allow the distance between them, that is, the second guide. The interval W between the wall surfaces 23c and 23d on the short side of the waveguide 22b is changed. Here, the driving devices 55 and 56 may be any device that can increase the distance W from about 2.032 mm to 2 m from the long side length of the first waveguide 22a and the third waveguide 22c. The solenoid can be used as a drive source.

上記のように、一対の電波ハーフミラー40A、40Bの間の第2導波路22bの短辺に沿った壁面間隔Wを可変することで、電波ハーフミラー40A、40B間に形成される共振器の共振周波数を可変させることができる。   As described above, by changing the wall surface distance W along the short side of the second waveguide 22b between the pair of radio wave half mirrors 40A and 40B, the resonator formed between the radio wave half mirrors 40A and 40B can be changed. The resonance frequency can be varied.

即ち、導波管の管内波長λgは、次式で表されることが知られている。
λg=λ/[1−(λ/λC10 1/2
=λ/[1−(λ/2a′)1/2
λ:自由空間波長 λC10 :TE01モードの遮断周波数
a′:導波管の開口の長辺
That is, it is known that the guide wavelength λg of the waveguide is expressed by the following equation.
λg = λ / [1- (λ / λ C10 ) 2 ] 1/2
= Λ / [1- (λ / 2a ′) 2 ] 1/2
λ: free space wavelength λ C10 : cutoff frequency of TE01 mode a ′: long side of waveguide opening

そして、電波ハーフミラー40A、40Bを対向させた構造のフィルタの共振波長(通過帯域の中心波長)は管内波長λgの1/2となるから、第2導波路22bの長辺a′、即ち、第2導波路22bの短辺に沿った壁面の間隔Wを可変することで、フィルタの共振周波数を可変できる。   Since the resonance wavelength (center wavelength of the pass band) of the filter having the structure in which the radio wave half mirrors 40A and 40B are opposed to each other is ½ of the guide wavelength λg, the long side a ′ of the second waveguide 22b, that is, The resonance frequency of the filter can be varied by varying the interval W between the wall surfaces along the short side of the second waveguide 22b.

図3は、ハーフミラー間隔D=1.28mm、第2導波路22bの短辺に沿った壁面の間隔Wを2.032mm(=a)〜4.032mmまで0.2mmステップで変化(導波路中心に対して両可動ブロック53、54を対称に変化)させたときの共振周波数変化をシミュレーションした結果である。   In FIG. 3, the half mirror interval D = 1.28 mm, and the wall surface interval W along the short side of the second waveguide 22b is changed in steps of 0.2 mm from 2.032 mm (= a) to 4.032 mm (waveguide). This is a result of simulating a change in resonance frequency when both movable blocks 53 and 54 are changed symmetrically with respect to the center.

この図から明らかなように、共振周波数をおよそ125GHzから140GHzの範囲で可変できることがわかる。   As is apparent from this figure, it can be seen that the resonance frequency can be varied in a range of approximately 125 GHz to 140 GHz.

上記構造をもつミリ波帯フィルタ20では、互いに対向する一対の電波ハーフミラー40A、40Bの間に形成される第2導波路22bの管内波長の1/2で共振する平面型のファブリペロー共振器が形成され、その共振周波数を中心とする周波数成分だけが選択的に通過できる状態となる。   In the millimeter waveband filter 20 having the above-described structure, a planar Fabry-Perot resonator that resonates at half the guide wavelength of the second waveguide 22b formed between the pair of radio half mirrors 40A and 40B facing each other. Is formed, and only a frequency component centered on the resonance frequency can be selectively passed.

しかも、導波路22は、ミリ波帯において極めて低損失の閉鎖型の伝送路としての導波管構造で形成され、進行方向に直交する平面にのみ電界が存在するTE波を用いるから、波面変換などの処理は不要で、共振器で抽出された信号成分のみをTE10モードで極めて低損失に出力させることができる。   In addition, the waveguide 22 is formed of a waveguide structure as a closed transmission line with extremely low loss in the millimeter wave band, and uses a TE wave having an electric field only in a plane orthogonal to the traveling direction. Such a process is unnecessary, and only the signal component extracted by the resonator can be output in the TE10 mode with extremely low loss.

また、フィルタ全体としてほぼ密閉型となり、外部空間への放射による損失が少なく、ミリ波帯において、極めて高い選択特性を実現できる。   Further, the filter as a whole is almost hermetically sealed so that there is little loss due to radiation to the external space, and extremely high selection characteristics can be realized in the millimeter wave band.

そして、このミリ波帯フィルタ20では、一対の電波ハーフミラー40A、40Bの間に形成された第2導波路22bの短辺に沿った壁面の間隔Wを可変することで、電波ハーフミラー40A、40B間に形成される共振器の共振周波数を可変させているから、このフィルタの両端(導波管21の両端)に外部回路を固定状態で接続することができ、可動吸収用の他の導波管も不要となり、フィルタ全体を小型に構成できる。   And in this millimeter wave band filter 20, by changing the interval W between the wall surfaces along the short side of the second waveguide 22b formed between the pair of radio wave half mirrors 40A, 40B, the radio wave half mirror 40A, Since the resonance frequency of the resonator formed between 40B is varied, an external circuit can be fixedly connected to both ends (both ends of the waveguide 21) of this filter, and other guides for movable absorption can be obtained. A wave tube is also unnecessary, and the entire filter can be made compact.

なお、ここでは、一対の電波ハーフミラー40A、40Bの間に形成された第2導波路22bの短辺に沿った両方の壁面を可動させてその間隔を可変していたが、図4のように、一方の壁面だけを可変するようにしても共振周波数を可変できる。   Here, both the wall surfaces along the short side of the second waveguide 22b formed between the pair of radio wave half mirrors 40A and 40B are moved to change the interval, but as shown in FIG. In addition, the resonance frequency can be varied by varying only one wall surface.

また、上記実施形態では導波管21や共振周波数可変機構の基本構造を模式的に示したが、実際の構造については任意の変形が可能である。   In the above embodiment, the basic structures of the waveguide 21 and the resonance frequency variable mechanism are schematically shown. However, the actual structure can be arbitrarily modified.

なお、上記構造で可動ブロック53、54を比較的早い速度で移動させたとき、一対の電波ハーフミラー40A、40Bの間の空間の体積が増減するが、その中に存在する空気が狭い隙間を抜けきらずに内部の圧力が変化し、その圧力によって薄い電波ハーフミラー40A、40Bに歪みが生じ、フィルタの共振周波数が所望値からずれたり、損失が大きくなる等の問題が生じる可能性がある。   In addition, when the movable blocks 53 and 54 are moved at a relatively high speed with the above structure, the volume of the space between the pair of radio wave half mirrors 40A and 40B increases or decreases, but the air present therein has a narrow gap. The internal pressure changes without being removed, and the pressure causes distortion in the thin radio wave half mirrors 40A and 40B, which may cause problems such as the resonance frequency of the filter deviating from a desired value and loss.

その圧力変化によるフィルタ特性への影響が無視できない場合には、第2導波路22bの短辺に沿った壁面から導波管21の外周面まで連続するエアダクトを設け、電波ハーフミラー40A、40Bの間の空間と導波管外部との間で空気が通りやすくすればよい。図5はその一例を示すものであり、第2導波路22bの短辺に沿った壁面を構成する可動ブロック53の側部にエアダクト60を形成して、導波路内と導波管21の外部との間で空気が通りやすくしている。   When the influence on the filter characteristics due to the pressure change cannot be ignored, an air duct that continues from the wall surface along the short side of the second waveguide 22b to the outer peripheral surface of the waveguide 21 is provided, and the radio wave half mirrors 40A and 40B What is necessary is just to make air easy to pass between the space between and the waveguide exterior. FIG. 5 shows an example of this. An air duct 60 is formed on the side of the movable block 53 that forms the wall surface along the short side of the second waveguide 22b, and the inside of the waveguide and the outside of the waveguide 21 are shown. Air is easy to pass between.

なお、上記のように第2導波路22bと導波管外部との間に空洞ができることによるフィルタ特性へ影響が心配されるが、矩形導波路の長辺側に比べて短辺側の形状変化の悪影響は少ないことが知られており、エアを抜く程度では問題ないことが確認されている。ここでは、可動ブロック53にエアダクト60を設けていたが、ガイド穴51側にエアダクトを設けたり、図4に示したような可動しない壁面23dから導波管21の側面21bまで貫通するエアダクトを設けてもよい。   Although there is a concern about the effect on the filter characteristics due to the formation of a cavity between the second waveguide 22b and the outside of the waveguide as described above, the shape change on the short side compared to the long side of the rectangular waveguide It is known that there are few adverse effects, and it has been confirmed that there is no problem if the air is removed. Here, the air duct 60 is provided in the movable block 53. However, an air duct is provided on the guide hole 51 side, or an air duct penetrating from the non-movable wall surface 23d to the side surface 21b of the waveguide 21 as shown in FIG. May be.

20……ミリ波帯フィルタ、21……導波管、22……導波路、22a……第1導波路、22b……第2導波路、22c……第3導波路、40A、40B……電波ハーフミラー、50……共振周波数可変機構、60……エアダクト   20... Millimeter wave filter, 21... Waveguide, 22... Waveguide, 22 a... First waveguide, 22 b... Second waveguide, 22 c. Radio wave half mirror, 50 ... Resonance frequency variable mechanism, 60 ... Air duct

Claims (3)

ミリ波帯の所定周波数範囲の電磁波をTE10モードで一端側から他端側へ伝搬させる断面長方形の導波路を有する導波管(21)と、
前記所定周波数範囲の電磁波の一部を透過させ、一部を反射させる特性をもち、前記導波管内で前記導波路を塞ぐようにして所定距離隔てて固定された一対の電波ハーフミラー(40A、40B)とを有し、
前記所定周波数範囲の電磁波のうち、前記一対の電波ハーフミラーの間に形成される共振器の共振周波数の電磁波を選択的に通過させるミリ波帯フィルタであって、
前記導波管は、前記一対の電波ハーフミラーの間に形成される断面長方形の導波路を囲む4つの壁面のうち、前記断面長方形の短辺に沿った壁面の間隔を可変できる構造を有しており、
該短辺に沿った壁面の間隔の可変により、前記共振周波数を可変できるようにしたことを特徴とするミリ波帯フィルタ。
A waveguide (21) having a waveguide having a rectangular cross section for propagating electromagnetic waves in a predetermined frequency range of the millimeter wave band from one end side to the other end side in a TE10 mode;
A pair of radio wave half mirrors (40A, 40A, 40a, 40b, having a characteristic of transmitting a part of the electromagnetic wave in the predetermined frequency range and reflecting a part thereof, and being fixed at a predetermined distance so as to close the waveguide in the waveguide 40B)
Among the electromagnetic waves in the predetermined frequency range, a millimeter wave band filter that selectively passes electromagnetic waves having a resonance frequency of a resonator formed between the pair of radio wave half mirrors,
The waveguide has a structure capable of varying the interval of the wall surfaces along the short side of the rectangular cross section among the four wall surfaces surrounding the rectangular waveguide formed between the pair of radio wave half mirrors. And
A millimeter-wave band filter characterized in that the resonance frequency can be varied by varying the interval between the wall surfaces along the short side.
前記一対の電波ハーフミラーの間に形成される断面長方形の導波路を囲む4つの壁面のうち、前記断面長方形の短辺に沿った壁面から前記導波管外周面まで連続するエアダクト(60)を設けたことを特徴とする請求項1記載のミリ波帯フィルタ。   An air duct (60) continuous from the wall surface along the short side of the rectangular cross section to the outer peripheral surface of the waveguide among the four wall surfaces surrounding the waveguide having a rectangular cross section formed between the pair of radio wave half mirrors. The millimeter waveband filter according to claim 1, wherein the millimeter waveband filter is provided. ミリ波帯の所定周波数範囲の電磁波をTE10モードで一端側から他端側へ伝搬させる断面長方形の導波路を有する導波管(21)と、
前記所定周波数範囲の電磁波の一部を透過させ、一部を反射させる特性をもち、前記導波管内で前記導波路を塞ぐようにして所定距離隔てて固定された一対の電波ハーフミラー(40A、40B)とを有し、
前記所定周波数範囲の電磁波のうち、前記一対の電波ハーフミラーの間に形成される共振器の共振周波数の電磁波を選択的に通過させるミリ波帯フィルタの共振周波数可変方法であって、
前記導波管の前記一対の電波ハーフミラーの間に形成される断面長方形の導波路を囲む4つの壁面のうち、前記断面長方形の短辺に沿った壁面の間隔を可変することにより、前記共振周波数を可変することを特徴とするミリ波帯フィルタの共振周波数可変方法。
A waveguide (21) having a waveguide having a rectangular cross section for propagating electromagnetic waves in a predetermined frequency range of the millimeter wave band from one end side to the other end side in a TE10 mode;
A pair of radio wave half mirrors (40A, 40A, 40a, 40b, having a characteristic of transmitting a part of the electromagnetic wave in the predetermined frequency range and reflecting a part thereof, and being fixed at a predetermined distance so as to close the waveguide in the waveguide 40B)
Among the electromagnetic waves in the predetermined frequency range, a resonant frequency variable method for a millimeter-wave band filter that selectively passes electromagnetic waves having a resonance frequency of a resonator formed between the pair of radio wave half mirrors,
Among the four wall surfaces surrounding the waveguide having a rectangular cross section formed between the pair of radio wave half mirrors of the waveguide, the resonance is achieved by varying the interval between the wall surfaces along the short side of the rectangular cross section. A method for varying the resonant frequency of a millimeter-wave band filter, wherein the frequency is varied.
JP2012154325A 2011-11-30 2012-07-10 Millimeter-wave band filter and resonance frequency variable method thereof Active JP5781474B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012154325A JP5781474B2 (en) 2012-07-10 2012-07-10 Millimeter-wave band filter and resonance frequency variable method thereof
US13/685,820 US9184486B2 (en) 2011-11-30 2012-11-27 Millimeter waveband filter and method of varying resonant frequency thereof
US14/725,349 US9871278B2 (en) 2011-11-30 2015-05-29 Millimeter waveband filter and method of varying resonant frequency thereof
US14/725,524 US9871279B2 (en) 2011-11-30 2015-05-29 Millimeter waveband filter and method of varying resonant frequency thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012154325A JP5781474B2 (en) 2012-07-10 2012-07-10 Millimeter-wave band filter and resonance frequency variable method thereof

Publications (2)

Publication Number Publication Date
JP2014017694A true JP2014017694A (en) 2014-01-30
JP5781474B2 JP5781474B2 (en) 2015-09-24

Family

ID=50112008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012154325A Active JP5781474B2 (en) 2011-11-30 2012-07-10 Millimeter-wave band filter and resonance frequency variable method thereof

Country Status (1)

Country Link
JP (1) JP5781474B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61102803A (en) * 1984-10-24 1986-05-21 Nec Corp Band-pass filter
JPS63198202U (en) * 1987-06-10 1988-12-20
JPH01152801A (en) * 1987-12-10 1989-06-15 Nec Corp Waveguide band-pass filter
JPH0262806U (en) * 1988-10-31 1990-05-10
JPH0461844U (en) * 1990-10-05 1992-05-27

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61102803A (en) * 1984-10-24 1986-05-21 Nec Corp Band-pass filter
JPS63198202U (en) * 1987-06-10 1988-12-20
JPH01152801A (en) * 1987-12-10 1989-06-15 Nec Corp Waveguide band-pass filter
JPH0262806U (en) * 1988-10-31 1990-05-10
JPH0461844U (en) * 1990-10-05 1992-05-27

Also Published As

Publication number Publication date
JP5781474B2 (en) 2015-09-24

Similar Documents

Publication Publication Date Title
US9160044B2 (en) Millimeter waveband filter and method of manufacturing the same
JP5442804B2 (en) Millimeter wave band filter
JP5187766B2 (en) Tunable bandpass filter
US9871278B2 (en) Millimeter waveband filter and method of varying resonant frequency thereof
KR20100063353A (en) Probe and antenna
JP5597065B2 (en) Waveguide / planar line converter and high frequency circuit
JP5442702B2 (en) Radio wave half mirror for millimeter wave band and its transmittance flattening method
JP5662970B2 (en) Millimeter-wave filter and method for increasing stopband attenuation
JP5781474B2 (en) Millimeter-wave band filter and resonance frequency variable method thereof
US9525199B2 (en) Millimeter waveband filter
JP5978180B2 (en) Millimeter wave filter and method for preventing leakage of electromagnetic wave
US9627733B2 (en) Millimeter waveband filter
KR101468409B1 (en) Dual mode resonator including the disk with notch and filter using the same
JP6025639B2 (en) Radio wave half mirror for millimeter wave band and its transmittance flattening method
RU146668U1 (en) WAVEGUIDE BANDWAVE FILTER MICROWAVE FILTER
JP6315458B2 (en) Millimeter wave band filter
JP6220722B2 (en) Radio wave half mirror for millimeter wave band and method for flattening its transmission coefficient
Huang et al. A WR-3 dual-band bandpass filter based on parallel coupling structure
Katsenelenbaum Linear-to-circular polarization transformation
Islamov Current State of Analysis and Optimal Synthesis of Microwave Waveguide Systems of Complex Structure
Kogut et al. Excitation of whispering gallery modes in a high double-layer disc shielded dielectric resonator
Maeda et al. Bending loss in two dimensional photonic crystal waveguide
Bankov et al. Study of Tunable Single and Coupled EBG Resonators

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150515

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150715

R150 Certificate of patent or registration of utility model

Ref document number: 5781474

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250