JP2014016345A - Radiation convergence method and electromotive method using converged radiation - Google Patents

Radiation convergence method and electromotive method using converged radiation Download PDF

Info

Publication number
JP2014016345A
JP2014016345A JP2013135522A JP2013135522A JP2014016345A JP 2014016345 A JP2014016345 A JP 2014016345A JP 2013135522 A JP2013135522 A JP 2013135522A JP 2013135522 A JP2013135522 A JP 2013135522A JP 2014016345 A JP2014016345 A JP 2014016345A
Authority
JP
Japan
Prior art keywords
radiation
particles
semiconductor nanocrystal
converging
colloid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013135522A
Other languages
Japanese (ja)
Inventor
Hiroshi Kano
浩 加納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2013135522A priority Critical patent/JP2014016345A/en
Publication of JP2014016345A publication Critical patent/JP2014016345A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • External Artificial Organs (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a radiation convergence method.SOLUTION: In the radiation convergence method, radioactive wastes are converged into semiconductor nano-crystal colloid, and the radioactivity is totally recovered from radioactive wastes and is subjected to final disposal. Semiconductor nano-colloid is added to mix with circulation water in a meltdown nuclear fission reactor to absorb the radiation, and the meltdown nuclear fission reactor is subject to final disposal. The radiation convergence method is also applied to treatment of internal exposure in a manner that, after adding semiconductor nano-crystal colloid into blood to absorb the radiation due to internal exposure, the blood is filtered using external circulation while applying a voltage. The radiation convergence method also provides a radiation immunotherapy utilizing reaction of neutron and boron having a sensitization effect therewith, in which the semiconductor nano-crystal colloid destroys selectively tumor cells only without giving little damage to normal cells. Since the converged radiation is an energy with high safety and easy to use, the converged radiation is expected as a new energy in place of petroleum/nuclear power or a new medical treatment method.

Description

本発明は、放射線の収束方法に関する。詳しくは、放射線の収束方法と放射線収束物による起電方法に関する。The present invention relates to a radiation convergence method. In detail, it is related with the convergence method of a radiation, and the electromotive force method by a radiation convergence thing.

核廃棄物は、プルトニウムと燃えカスのウランを含み、貯蔵プールで5年冷却した後、再処理され、廃液はガラス固化して、再処理後30〜50年間一時貯蔵し、地下300m以深に地層処分するしか現時点で方法がない。ガラス固化体はオーバーパックという障壁で固められていて、加えて地層が放射能の住宅地浸潤を遅らせるとされる。しかし、再処理後の廃棄物は、死の灰を大量に含み残存する。現在の廃棄物処理方法では、負の遺産を将来にわたって、残してしまい、その最終処理には課題が残る。  Nuclear waste contains plutonium and burnt uranium, cooled in the storage pool for 5 years and then reprocessed. The waste liquid is vitrified and stored temporarily for 30 to 50 years after reprocessing. There is currently no way but to dispose of it. The vitrified body is hardened by a barrier called overpack, and the formation is said to delay radioactive infiltration into residential areas. However, the waste after reprocessing contains a large amount of dead ash and remains. Current waste disposal methods leave a negative legacy for the future, and the final treatment remains a challenge.

核分裂炉がメルトダウンした場合、核燃料が露出して、核爆発してしまう。これを食い止めるのに、中性子を吸収する性質のあるキセノン135があるが、キセノン133は死の灰となって降るため実用的でない。ホウ素も放射能を吸収するが、爆発的な発熱が起きたときには実用的に役に立つか疑問である。核分裂反応でウランから放出されるエネルギは、1グラム当たり、8.2×1010Jと、莫大である。核分裂炉の温度は、2400度にも達し、暴走してメルトダウンすれば、炉内に中性子と放射線が飛び交うことになる。When the fission reactor melts down, nuclear fuel is exposed and a nuclear explosion occurs. To stop this, there is xenon 135 that absorbs neutrons, but xenon 133 is not practical because it falls as death ash. Boron also absorbs radioactivity, but it is questionable whether it is practically useful when explosive heat generation occurs. The energy released from uranium in the fission reaction is enormous, 8.2 × 10 10 J per gram. The temperature of the fission reactor reaches 2400 degrees, and if it runs away and melts down, neutrons and radiation will fly into the reactor.

一方、原子核融合は、軽い核種同士が融合してより重い核種になる反応である。原子核同士がある程度接近すると、原子核同士が引き合う力(核力)が反発するクーロン力を超え、2つの原子が融合することになり、このとき莫大なエネルギが放出される。よって、この原子核融合の技術の完成が期待されるところである。On the other hand, nuclear fusion is a reaction in which light nuclides fuse to become heavier. When the nuclei approach each other to some extent, the force (nuclear force) that attracts the nuclei exceeds the repulsive Coulomb force, and the two atoms are fused, and enormous energy is released at this time. Therefore, the completion of this nuclear fusion technology is expected.

内部被ばくに置いて、人体内の放射線の収束方法等効果的な治療法が見出されていないのが、現状である。  At present, no effective treatment has been found, such as a method for converging radiation in the human body, in the case of internal exposure.

又、国内の多くの施設で取り入れられている放射線治療は、X線やガンマ線と呼ばれる放射線を使っている。悪性の癌は広い範囲に微小浸潤しているため、脳腫瘍細胞を完全に治療するためには広い範囲の正常組織に大量の放射線をかける必要が生じる。強力に治療を行おうとすればするほど微小浸潤のある周りの正常組織の障害も避けられないというジレンマがあり、これが治療の限界となっている。従来は、増感効果のない放射線治療では近接する腫瘍細胞と正常細胞はほぼ同じ物理的なダメージを受け、放射線感受性が同じであればほぼ同じダメージを受けてしまい、強力に治療を行おうとすればするほど微小浸潤のある周りの正常組織の障害も避けられないというジレンマがあり、これが治療の限界となっていた。したがって正常細胞の耐えられる線量までの放射線をかけて脳腫瘍部だけの治療を行おうとしていたが、これでは腫瘍細胞がダメージを受けきれない。In addition, radiation therapy that is adopted in many facilities in Japan uses radiation called X-rays or gamma rays. Since malignant cancers are microinfiltrated over a wide area, it is necessary to apply a large amount of radiation to a wide range of normal tissues in order to completely treat brain tumor cells. There is a dilemma that the more aggressive treatment is, the more injured the surrounding normal tissue with microinvasion is unavoidable, which limits the treatment. Conventionally, in radiotherapy without sensitization effect, adjacent tumor cells and normal cells receive almost the same physical damage, and if the radiosensitivity is the same, they receive almost the same damage, so they are going to be treated strongly. The dilemma that the damage of surrounding normal tissues with minute infiltration was unavoidably avoided, and this was the limit of treatment. Therefore, it was attempted to treat only the brain tumor by applying radiation up to the dose that normal cells can withstand, but this does not damage the tumor cells.

非特許文献1は、プロセスプラズマ中の半導体ナノ結晶粒子の凝集と輸送についての記述である。部分帯電した半導体ナノ結晶粒子群の凝集成長の三条件など詳細の説明などが記されている。しかし、非特許文献1には放射線の収束方法に関して何らの説明も記載されていない。Non-Patent Document 1 describes the aggregation and transport of semiconductor nanocrystal particles in process plasma. Details such as three conditions for the agglomeration growth of partially charged semiconductor nanocrystal particles are described. However, Non-Patent Document 1 does not describe any explanation regarding the method of convergence of radiation.

非特許文献2は、有機分子による表面修飾なしで極性溶媒分散性を有するP、B同時ドープSiナノ結晶の近赤外発光特性についての記述で、シリコンナノ半導体ナノ結晶粒子のコロイド特性など詳細に記載されている。しかし、非特許文献2には放射線の収束方法に関して何らの説明も記載されていない。Non-Patent Document 2 describes the near-infrared emission characteristics of P and B co-doped Si nanocrystals having polar solvent dispersibility without surface modification with organic molecules, and details such as colloidal characteristics of silicon nanosemiconductor nanocrystal particles Have been described. However, Non-Patent Document 2 does not describe any explanation regarding the method of convergence of radiation.

特許文献1は、放射性物質の環境への放出量を最小化する装置に関して開示されている。しかし、特許文献1には放射線の収束方法に関して何らの説明も記載されていない。Patent Document 1 discloses an apparatus that minimizes the amount of radioactive material released into the environment. However, Patent Document 1 does not describe any explanation regarding the radiation convergence method.

特許文献2は、放射性固体廃棄物を、プラズマ加熱して溶融させるプラズマ溶融処理方法にについて開示されている。しかし、特許文献2には放射線の収束方法に関して何らの説明も記載されていない。Patent Document 2 discloses a plasma melting processing method in which radioactive solid waste is melted by plasma heating. However, Patent Document 2 does not describe any explanation regarding the method of convergence of radiation.

特許文献3は、ホウ素中性子捕捉療法による尿生殖器ガンの治療などの詳細の説明などが記されている。しかし、非特許文献2には放射線の収束方法に関して何らの説明も記載されていない。
特願平3−191898号広報 特許第3764528号広報 特願平8−515485号広報 2011年1月3日、九州大学、古閑 一憲らの『プロセスプラズマ中の半導体ナノ結晶粒子の凝集と輸送』の記事。 神戸大学、杉本 泰らの『有機分子による表面修飾なしで極性溶媒分散性を有するP、B同時ドープSiナノ結晶の近赤外発光特性』の記事。
Patent Document 3 describes details such as treatment of urogenital cancer by boron neutron capture therapy. However, Non-Patent Document 2 does not describe any explanation regarding the method of convergence of radiation.
Japanese Patent Application No. 3-191898 Patent No. 3764528 Japanese Patent Application No. 8-515485 January 3, 2011, Kyushu University, Kazunori Koga et al., “Agglomeration and Transport of Semiconductor Nanocrystal Particles in Process Plasma”. “Near-infrared emission characteristics of P and B co-doped Si nanocrystals with polar solvent dispersibility without surface modification by organic molecules” by Kobe University, Yasugi Sugimoto et al.

上記の状況を鑑み、本発明は、放射線の収束方法と放射線収束物による起電方法を課題とする。In view of the above situation, an object of the present invention is to provide a method for converging radiation and a method for generating electricity using a radiation converging material.

上記の課題を解決するための本発明のうち、請求項1に記載する発明は、重水を入れ、コンクリで覆ったステンレス構造体貯蔵プールを循環冷却して、半導体ナノ結晶コロイドを混入し、使用停止後5年冷却した燃料集合体を水没させ、この放射性廃棄物から放射される放射線を、半導体ナノ結晶コロイドに収束させ安全に最終処理する、放射線の収束方法である。Among the present inventions for solving the above-mentioned problems, the invention described in claim 1 uses heavy water, circulates and cools a stainless steel structure storage pool covered with concrete, and mixes and uses a semiconductor nanocrystal colloid. This is a radiation converging method in which a fuel assembly cooled for five years after stopping is submerged, and the radiation emitted from this radioactive waste is converged on a semiconductor nanocrystal colloid to be safely finalized.

また、同請求項2に記載する発明は、廃炉にするため重水を入れたメルトダウン核分裂格納容器に、於いて、循環冷却水に半導体ナノ結晶コロイドを混入して循環し、これに放射線を収束させてメルトダウン核分裂炉を収束させる、放射線の収束方法である。The invention described in claim 2 circulates in the meltdown fission containment vessel containing heavy water for decommissioning, circulating semiconductor nanocrystal colloid in the circulating cooling water, This is a method for converging radiation, which converges the meltdown fission reactor.

また、同請求項3に記載する発明は、半導体ナノ結晶コロイドを、炭素繊維に導通することにより型選別して血液循環させて、内部被ばく照射放射線を収束させ、外部循環させる血液に電圧をかけて、負に帯電しているこの放射線収束物を透析ろ過する、人体内部被ばく治療に関する放射線の収束方法である。Furthermore, the invention described in claim 3 applies a voltage to blood to be externally circulated by converging the semiconductor nanocrystal colloid by conducting the type selection by circulating to the carbon fiber and circulating the blood, converging the radiation irradiated internally. Thus, the radiation converging method relating to the treatment of internal human exposure is performed by diafiltration of the negatively charged radiation converging substance.

また、同請求項4に記載する発明は、放射線免疫治療に置いて、中性子とそれに増感効果のあるほう素との反応を利用して、正常細胞にあまり損傷を与えず、半導体ナノ結晶コロイドを腫瘍細胞に投与することにより、核分裂によって放射されるα粒子と7Li原子核を収束し、癌のみを選択的に破壊する放射線の収束方法である。In addition, the invention described in claim 4 uses a reaction between neutrons and boron which has a sensitizing effect in radioimmunotherapy, and does not cause much damage to normal cells. Is a method of converging radiation that selectively destroys only cancer by converging α particles and 7Li nuclei emitted by fission.

また、同請求項5に記載する発明は、請求項1に記載の方法で生成する放射線収束物よる起電方法で、放射線収束物コロイドを入れたタンクに二次コイルの炭素繊維電極を浸し、一次コイルに電流を流して、相互インダクタンスにより二次コイルの炭素繊維内に放射線収束物を移動させて電位差を起こして起電する電力の起電方法である。Further, the invention described in claim 5 is a method of generating electricity by the radiation converging material generated by the method of claim 1, wherein the carbon fiber electrode of the secondary coil is immersed in a tank containing the radiation converging material colloid, This is an electric power generation method in which an electric current is passed through a primary coil and a radiation converging substance is moved into the carbon fiber of the secondary coil by mutual inductance to generate an electric potential difference.

本発明に係る放射線の収束方法のうち、請求項1に記載する発明は、現在の核エネルギ利用に於いて、核廃棄問題で決定的な解決方法が見出されていないのを踏まえ、効率的なエネルギ変換利用方法提供している。請求項2に記載する発明は、事故後のメルトダウン核分裂炉の安全対策として救護利用価値がすこぶる高い。請求項3に記載の発明は、放射線事故患者の内部被ばく解消につながり、内部被ばく患者救済効果が向上する。請求項4に記載の発明は、放射線免疫療法に置いて腫瘍選択性を向上させて、癌治療の完治効果向上につながる。請求項5に記載の放射線収束物は、安全性が高く利用しやすいエネルギとなるため、石油・原子力に代わる新たなエネルギとして期待できる。原子力も核廃棄問題が解決し、本発明はエネルギ事情と放射線医療に多大な効果をもたらす。Among the radiation convergence methods according to the present invention, the invention described in claim 1 is efficient in view of the fact that no definitive solution has been found in the nuclear waste problem in the current use of nuclear energy. Provide energy conversion methods. The invention described in claim 2 has a very high rescue use value as a safety measure for the meltdown nuclear fission reactor after the accident. The invention according to claim 3 leads to the elimination of the internal exposure of the radiation accident patient, and the internal exposure patient relief effect is improved. The invention according to claim 4 improves the tumor selectivity in radioimmunotherapy and leads to an improvement in the complete cure effect of cancer treatment. Since the radiation converging substance according to the fifth aspect has high safety and is easy to use, it can be expected as a new energy to replace petroleum and nuclear power. Nuclear power also solves the problem of nuclear disposal, and the present invention has a great effect on the energy situation and radiation medicine.

まず、半導体ナノ結晶粒子とコロイドのダストプラズマからの成長について説明する。プラズマ中には、径が1nm〜100μmの微粒子があり、この微粒子は、電子電荷の一千倍〜一万倍の大きな負の電荷をもっている。多くの場合結晶して、互いに強く相互作用している。ここでは、放射線の収束物として、この微粒子、ダストプラズマに注目する。ダストプラズマを半導体ナノ結晶粒子に成長させるには、化学気相成長反応法で行う。化学気相成長反応法は、気相中の化学反応により、ダスト微粒子を薄膜に成長させ、粉砕法又は、エッチング等によって、半導体ナノ結晶粒子やコロイドを得るものである。First, the growth of semiconductor nanocrystal particles and colloid from dust plasma will be described. In the plasma, there are fine particles having a diameter of 1 nm to 100 μm, and these fine particles have a large negative charge that is 1,000 to 10,000 times the electronic charge. They often crystallize and interact strongly with each other. Here, attention is focused on the fine particles and dust plasma as a radiation converging substance. In order to grow dust plasma into semiconductor nanocrystal particles, a chemical vapor deposition reaction method is used. In the chemical vapor deposition reaction method, dust fine particles are grown into a thin film by a chemical reaction in a gas phase, and semiconductor nanocrystal particles or a colloid are obtained by a pulverization method or etching.

次に、放射線の収束方法について説明する。この半導体ナノ結晶粒子が放射線収束物に成長するには、核分裂雰囲気で帯電され、大きな負電荷を持つ塊となることが必須である。不安定な負電荷を持ったこの塊は、α崩壊で飛び交うα粒子を収束する。核内は核力を増し、核力で雰囲気に飛び交う中性子を捕食する。雰囲気には、γ線も照射されていて、これが半導体ナノ結晶粒子内にエネルギを励起する。電子で帯電された半導体ナノ結晶粒子は、α粒子吸引と中性子捕食が連鎖し、γ線を収束し続ける。核分裂で放出する核崩壊エネルギは、各粒子の運動エネルギとγ線の総和と考えられ、帯電が定常状態に達するまで収束され続ける。Next, a radiation convergence method will be described. In order for the semiconductor nanocrystal particles to grow into a radiation converging substance, it is essential that the semiconductor nanocrystal particles are charged in a fission atmosphere and become a mass having a large negative charge. This lump with an unstable negative charge converges α particles that fly by α decay. The inside of the nucleus increases its nuclear power, and prey on neutrons that fly into the atmosphere. The atmosphere is also irradiated with gamma rays, which excites energy in the semiconductor nanocrystal particles. Semiconductor nanocrystal particles charged with electrons continue to converge γ rays by a chain of alpha particle attraction and neutron predation. The nuclear decay energy released by fission is considered to be the sum of the kinetic energy of each particle and γ rays, and continues to converge until the charging reaches a steady state.

半導体ナノ結晶粒子は、負電荷を持ち、α粒子を蓄える。α粒子は、エネルギの励起分引力を及ぼす。この力は、半導体ナノ結晶粒子の負電荷によって吸引されたα粒子の質量欠損の級数的総和によって及ぼされる。
よって、この力をクーロン核力と呼ぶことにする。クーロン核力は蓄積したα粒子が必要とする結合エネルギの総和である。
Semiconductor nanocrystal particles have a negative charge and store alpha particles. The α particles exert an excitation attractive force of energy. This force is exerted by the series sum of the mass defects of α particles attracted by the negative charge of the semiconductor nanocrystal particles.
Therefore, this force is called Coulomb nuclear force. Coulomb nuclear force is the sum of the binding energy required by the accumulated α particles.

ある瞬間に、電荷をもたない半導体ナノ結晶粒子が核分裂中の雰囲気内にあった時、半導体ナノ結晶粒子内は、速度の大きなβ線の電子による負電荷の流れの方が正電荷のα粒子の流れより大きくなる。ここで、ウラン238のエネルギ照射最大量、β線;Eβ=3.3MeV、α線;Eα=7.7MeVだから、mβ=0.00055(u)×1.661×10−27(Kg)、mα=4.002(u)×1.661×10−27(Kg)。
よって、∴Vβ>>Vα(約60倍)。したがって、二つの電流の和として、半導体ナノ結晶粒子にはβ線が流れ込む。負に帯電した半導体ナノ結晶粒子は、周りに比べて電位が低くなる。この時、半導体ナノ結晶粒子はクーロン力を持つ。又、雰囲気中の正に帯電したα粒子が減速材に衝突して減速されることにより、半導体ナノ結晶粒子の静電エネルギがα粒子の運動エネルギに打ち勝つ。こうなると、β線の流れは減速されて減少し、半導体ナノ結晶粒子に向かうα粒子の流れが加速、増加する。この時、半導体ナノ結晶粒子は、クーロン力でα粒子を収束し蓄積する。
At a certain moment, when a semiconductor nanocrystal particle having no charge is in a fission atmosphere, the flow of negative charge due to high-velocity β-ray electrons is more positive in the semiconductor nanocrystal particle. It becomes larger than the flow of particles. Here, the maximum energy irradiation amount of uranium 238, β ray; E β = 3.3 MeV, α ray; E α = 7.7 MeV, so m β = 0.00055 (u) × 1.661 × 10 −27 ( Kg), m α = 4.002 (u) × 1.661 × 10 −27 (Kg).
Thus, ∴V β >> V α (about 60 times). Accordingly, β-rays flow into the semiconductor nanocrystal particles as the sum of the two currents. Negatively charged semiconductor nanocrystal particles have a lower potential than the surroundings. At this time, the semiconductor nanocrystal particles have Coulomb force. Also, the positively charged α particles in the atmosphere collide with the moderator and decelerate, so that the electrostatic energy of the semiconductor nanocrystal particles overcomes the kinetic energy of the α particles. In this case, the flow of β rays is decelerated and reduced, and the flow of α particles toward the semiconductor nanocrystal particles is accelerated and increased. At this time, the semiconductor nanocrystal particles converge and accumulate the α particles by Coulomb force.

運動エネルギを持った、α粒子を半導体ナノ結晶粒子に静電気力で収束させるには、α粒子を半導体ナノ結晶粒子の静電エネルギ以下に減速する必要がある。減速材には重水素を用いる。重水素 は、ちょうど Heの質量の半分で、正に帯電して居て反発するので、好適にα粒子を減速できる。半導体ナノ結晶粒子の大きさは、1nm〜100μmで、好ましくは半径;rdust、1μmである。半導体ナノ結晶粒子のパラメータ、電子温度1〜3eVで、好ましくは電子温度1eVの電子が、半導体ナノ結晶粒子表面の流れへ影響を及ぼすと、半導体ナノ結晶粒子内の電場に1V掛かる。1μmの球の電気容量Cは、C=1.1×10−16(F)、半導体ナノ結晶粒子の電荷q=1.1×10−16(C)。半導体ナノ結晶粒子とα粒子の及ぼす静電エネルギQは、半導体ナノ結晶粒子とα粒子の半径の和をRとすると、α粒子はZ=2なので、静電エネルギは、
半導体ナノ結晶粒子の電荷q=1.1×10−16(C)、
α粒子の電荷、2q=2×1.6×10−19(C)
dust(半導体ナノ結晶粒子の半径);1.0×10−6>>rα(α粒子の半径);1.90×10−15
二粒子間の距離Rの式を(数1)に示すと、

Figure 2014016345
よって、Q=2.0eV。In order to cause α particles having kinetic energy to converge on semiconductor nanocrystal particles by electrostatic force, it is necessary to decelerate the α particles below the electrostatic energy of semiconductor nanocrystal particles. Deuterium is used for the moderator. Deuterium 2 1 H + is just half the mass of 4 2 He + and is positively charged and repels, so that the α particles can be suitably decelerated. The size of the semiconductor nanocrystal particles is 1 nm to 100 μm, preferably a radius; r dust , 1 μm. When the parameters of the semiconductor nanocrystal particle, the electron temperature of 1 to 3 eV, and preferably the electron of the electron temperature of 1 eV affect the flow on the surface of the semiconductor nanocrystal particle, 1V is applied to the electric field in the semiconductor nanocrystal particle. The electric capacitance C of a 1 μm sphere is C = 1.1 × 10 −16 (F), and the charge q 1 = 1.1 × 10 −16 (C) of the semiconductor nanocrystal particles. The electrostatic energy Q exerted by the semiconductor nanocrystal particles and the α particles is Z = 2, where R is the sum of the radii of the semiconductor nanocrystal particles and the α particles.
Charge of semiconductor nanocrystal particle q 1 = 1.1 × 10 −16 (C),
Charge of α particle, 2q 2 = 2 × 1.6 × 10 −19 (C)
r dust (radius of semiconductor nanocrystal particles); 1.0 × 10 −6 >> r α (radius of α particles); 1.90 × 10 −15
When the equation for the distance R between two particles is shown in (Equation 1),
Figure 2014016345
Therefore, Q = 2.0 eV.

又、ウラン238がα崩壊した時に生じる、α粒子の運動エネルギは、4.2MeVとなる。ここで、α粒子が半導体ナノ結晶粒子に吸引されるには、2.0eV以下に減速される必要がある。又、重水素 のエネルギは、130MeVである。この事から、重水素は半導体ナノ結晶粒子に収束されず、α粒子の減速材として好適と言える。In addition, the kinetic energy of α particles generated when uranium 238 undergoes α decay is 4.2 MeV. Here, in order to attract the α particles to the semiconductor nanocrystal particles, it is necessary to decelerate to 2.0 eV or less. The energy of deuterium 2 1 H + is 130 MeV. From this, deuterium does not converge on the semiconductor nanocrystal particles and can be said to be suitable as a moderator for the α particles.

α粒子が減速されるには、雰囲気中の減速材のD分子との衝突が必要で、衝突の式を(数2)に示すと、

Figure 2014016345
ここで、
;衝突後のエネルギ、
;衝突前のエネルギ、
M;α粒子の質量、4、
m;重水素の質量、2、
a;衝突回数
=2.0(eV)、
=4.0×10(eV)、
を代入して、aを求めると、a=7だから、雰囲気中、7回の衝突が必要となる。The α particles are decelerated, requires collision with D 2 molecules of moderator in the atmosphere, indicating the expression of a collision in (Equation 2),
Figure 2014016345
here,
E n ; energy after collision,
E 0 ; energy before collision,
M: mass of α particles, 4,
m: mass of deuterium, 2,
a: Number of collisions E n = 2.0 (eV),
E 0 = 4.0 × 10 6 (eV),
When a is obtained by substituting, a = 7, so seven collisions are required in the atmosphere.

半導体ナノ結晶粒子内の正負の電荷の流れがバランスして0となるところまで半導体ナノ結晶粒子の電荷が負になると、それ以上半導体ナノ結晶粒子は、電荷の変化をしない定常状態に達する。
半導体ナノ結晶粒子を一つの電荷の塊として、その表面からα粒子の電荷までの距離をdとする。
半導体ナノ結晶粒子の作る、負の電場Edustの式を(数3)に示すと、

Figure 2014016345
ここで、d=rdust(半導体ナノ結晶粒子の半径)
とすると、半導体ナノ結晶粒子内の電圧を1Vだから、
dust=1(V)、
dust=1.0×10−6(m)
∴Edust=−1.0×10(V/m)
半導体ナノ結晶粒子は、α粒子を蓄積するから、α粒子の作る電場にかかる電圧Vαの式を(数4)に示すと、
Figure 2014016345
蓄積された、α粒子の作る電場Eの式を(数5)に示すと、
Figure 2014016345
ここで、半導体ナノ結晶粒子の静電容量;C=1.1×10−16(F)だから、半導体ナノ結晶粒子をコンデンサと見立てて、その静電容量C(F)の電荷のα粒子も蓄積しているはずだから、
=2.9×10Σk=2.9×10・n(n+1)/2(V/m)
よって、半導体ナノ結晶粒子内の電場の和;Eが、0の時電界が消滅するから、
電場の式を(数6)に示すと、
Figure 2014016345
−1.0×106;+1.45×10n(n+1)=0
∴n(整数)=26 と、求まる。When the charge of the semiconductor nanocrystal particles becomes negative to the point where the flow of positive and negative charges in the semiconductor nanocrystal particles is balanced to zero, the semiconductor nanocrystal particles reach a steady state where the charge does not change any more.
Let the semiconductor nanocrystal particles be one charge lump, and let d be the distance from the surface to the charge of the α particles.
The expression of the negative electric field E dust created by the semiconductor nanocrystal particles is shown in (Equation 3):
Figure 2014016345
Where d = r dust (radius of semiconductor nanocrystal particles)
Then, since the voltage in the semiconductor nanocrystal particles is 1V,
V dust = 1 (V),
r dust = 1.0 × 10 −6 (m)
∴E dust = −1.0 × 10 6 (V / m)
Since the semiconductor nanocrystal particles accumulate α particles, the expression of the voltage V α applied to the electric field created by the α particles is shown in (Equation 4):
Figure 2014016345
It was accumulated, indicating expression of the electric field E D make the α particles (5),
Figure 2014016345
Here, the electrostatic capacity of the semiconductor nanocrystal particles: C = 1.1 × 10 −16 (F) Therefore, assuming that the semiconductor nanocrystal particles are capacitors, the α particles having the electric charge of the electrostatic capacity C (F) are also Because it should have accumulated,
E D = 2.9 × 10 3 Σk = 2.9 × 10 3 · n (n + 1) / 2 (V / m)
Therefore, since the electric field disappears when the sum of the electric fields in the semiconductor nanocrystal particles; E is 0,
The electric field formula is shown in (Equation 6).
Figure 2014016345
−1.0 × 10 6; + 1.45 × 10 3 n (n + 1) = 0
∴n (integer) = 26

クーロン核力は、半導体ナノ結晶粒子の負電荷によって吸引される、α粒子の質量欠損の級数的総和によって及ぼされる。ここで、クーロン核力は、半導体ナノ結晶粒子内の電界が0になるまで成長する。言いかえれば、半導体ナノ結晶粒子は半導体ナノ結晶粒子内の電界が0になるまでα粒子を蓄積収束する。
クーロン核力を、Eとして、その式を(数7)に示すと、
半導体ナノ結晶粒子の単体の質量;mdust (u)
α粒子の質量欠損;0.0304 (u)

Figure 2014016345
よって、クーロン核力は、半導体ナノ結晶粒子内の電界が0になるΣkα、n=26を代入して、
1u=1.66×10−27(Kg)、
c=3.0×10(m/s)
∴E=(mdust+0.0304Σkα)c
=(mdust+0.0304n(n+1)/2)c
∴E=1.0×1010eV=10(GeV)まで成長して止まる。Coulomb nuclear force is exerted by the series summation of mass defects of α particles, which are attracted by the negative charge of semiconductor nanocrystal particles. Here, the Coulomb nuclear force grows until the electric field in the semiconductor nanocrystal particles becomes zero. In other words, the semiconductor nanocrystal particles accumulate and converge the α particles until the electric field in the semiconductor nanocrystal particles becomes zero.
When the Coulomb nuclear force is defined as EQ , and the equation is shown in (Equation 7),
Mass of a single semiconductor nanocrystal particle; m dust (u)
α particle mass defect; 0.0304 (u)
Figure 2014016345
Therefore, Coulomb nuclear force substitutes Σk α , n = 26 where the electric field in the semiconductor nanocrystal particle becomes 0,
1u = 1.66 × 10 −27 (Kg),
c = 3.0 × 10 8 (m / s)
∴E Q = (m dust + 0.0304Σk α ) c 2
= (M dust + 0.0304n (n + 1) / 2) c 2
成長 E Q = 1.0 × 10 10 eV = 10 (GeV), and stops growing.

エネルギ保存式の式を(数8)に示すと、

Figure 2014016345
;クーロン核力
;α粒子の総運動エネルギ、
;半導体ナノ結晶粒子とα粒子の及ぼす静電エネルギ(引力)
γ;放射エネルギ
α粒子の運動エネルギは、吸収され加算されるので、右辺での符号は負。半導体ナノ結晶粒子とα粒子の及ぼす静電エネルギも引力なので、右辺での符号は負。放射エネルギEγは,結合エネルギに消費されるので、右辺での符号は正である。α粒子が半導体ナノ結晶粒子内の電界にする仕事は無視できるとして、E、E、Eγの値の式を、それぞれ、(数9)(数10)(数11)に示す。
Figure 2014016345
Figure 2014016345
Figure 2014016345
それぞれ、Σk n=26を代入して、
(1) E=1.5(GeV)
(2) E=1.0(GeV)
(3) E=10 (GeV)
より、Eγ=12.5GeVとなる。The energy conservation equation is shown in (Equation 8).
Figure 2014016345
E Q ; Coulomb nuclear force E D ; Total kinetic energy of α particle,
E C : Electrostatic energy (attraction) of semiconductor nanocrystal particles and α particles
E γ ; Radiant energy α The kinetic energy of the particles is absorbed and added, so the sign on the right side is negative. Since the electrostatic energy of semiconductor nanocrystal particles and α particles is also attractive, the sign on the right side is negative. Since the radiant energy Eγ is consumed by the binding energy, the sign on the right side is positive. Assuming that the work performed by the α particles in the electric field in the semiconductor nanocrystal particles is negligible, the expressions of the values of E D , E C , and E γ are shown in (Equation 9), (Equation 10), and (Equation 11), respectively.
Figure 2014016345
Figure 2014016345
Figure 2014016345
Substituting Σk n = 26 respectively,
(1) E D = 1.5 (GeV)
(2) E C = 1.0 (GeV)
(3) E Q = 10 (GeV)
Thus, E γ = 12.5 GeV.

クーロン核力を持った半導体ナノ結晶粒子は、雰囲気中に飛び交う中性子を捕食する。中性子の捕食条件として、半導体ナノ結晶粒子が中性子で核分裂しないことがあげられる。
熱中性子による核分裂は、半導体ナノ結晶粒子が中性子を捕獲して励起したエネルギが、α粒子を蓄積した半導体ナノ結晶粒子のエネルギ障壁を超える時起きる。ここで、半導体ナノ結晶粒子のエネルギ障壁は、α粒子が核力を及ぼした時の結合エネルギと考えられ、α粒子の質量欠損の総数Eの式を(数12)に示すと、

Figure 2014016345
特にkα=1の時最小で、その値は、EQ=63.8MeV。又、中性子が捕獲されたとしてその励起エネルギは、中性子の質量欠損分の総数EQの式を(数13)に示すと、
Figure 2014016345
特にkα=1のときに、kn=1以外取りえないから、EQ=1.5MeVのエネルギが励起する。だから、EQ<EQで、中性子の励起分でもエネルギ障壁を超えることができない。
質量数が偶数の親物質は、陽子も中性子も偶数なので、初めから対エネルギ分だけ安定で、中性子が入り込む余地がない。α粒子が収束して結晶した塊である半導体ナノ結晶粒子は、陽子、中性子も偶数で初めから対エネルギの分だけ安定で、熱中性子では核分裂しないと言える。そのため、高エネルギを持つ中性子で破壊する必要がある。
断面積σの時、断面積とエネルギの関係の式を(数14)に示すと、
Figure 2014016345
Eを運動エネルギとすると、1/V法則となる。Vが大きい(速い)程、中性子が原子核の近くにいる時間が短く、Vが小さい(遅い)程長い。これは、高速中性子による核分裂である。又、1/V法則から、断面積の比例式を(数15)に示すと、
Figure 2014016345
であり、Vが速いと半導体ナノ結晶粒子に近づく時間が短くなり、σも比例して小さくなって、核分裂の可能性は低くなる。よって、貯蔵プール内に混入された半導体ナノ結晶コロイドに中性子は速いほど核分裂断面積が小さくて核分裂しにくい。
よって、浮遊する中性子は、半導体ナノ結晶コロイドの核力により捕獲され、核分裂せずに収束される。Semiconductor nanocrystal particles with Coulomb nuclear power prey on neutrons flying in the atmosphere. As neutron predation conditions, semiconductor nanocrystal particles are not fissioned by neutrons.
Fission by thermal neutrons occurs when the energy of semiconductor nanocrystal particles excited by capturing neutrons exceeds the energy barrier of semiconductor nanocrystal particles that have accumulated α particles. Here, the energy barrier of the semiconductor nanocrystal is considered binding energy when α particles had a nuclear power, indicating expression of the total number E Q mass defect of α particles (number 12),
Figure 2014016345
Especially when k α = 1, the minimum value is EQ 1 = 63.8 MeV. Further, assuming that the neutron is captured, the excitation energy is expressed by the equation (13) of the total number EQ n of neutron mass defects.
Figure 2014016345
In particular, when k α = 1, energy other than kn N = 1 can be obtained, so that energy of EQ n = 1.5 MeV is excited. Therefore, with EQ n <EQ 1 , the energy barrier cannot be exceeded even with the excitation of neutrons.
The parent material with an even mass number has an even number of protons and neutrons, so it is stable from the beginning by the amount of energy and there is no room for neutrons to enter. Semiconductor nanocrystal particles, which are a mass of α particles converged and crystallized, are protons and neutrons even and stable from the beginning by the amount of energy, and it can be said that thermal neutrons do not cause fission. Therefore, it is necessary to destroy with high energy neutrons.
When the cross-sectional area is σ, the expression of the relationship between the cross-sectional area and energy is shown in (Equation 14).
Figure 2014016345
If E is kinetic energy, the 1 / V law is obtained. The longer V is (faster), the shorter the time that neutrons are near the nucleus, and the longer V is (longer), the longer. This is fission by fast neutrons. Also, from the 1 / V law, the proportional expression of the cross-sectional area is shown in (Equation 15):
Figure 2014016345
When V is fast, the time for approaching the semiconductor nanocrystal particles is shortened, and σ is proportionally reduced, so that the possibility of fission is reduced. Therefore, the faster the neutrons are in the semiconductor nanocrystal colloid mixed in the storage pool, the smaller the fission cross section, and the more difficult the fission occurs.
Therefore, floating neutrons are captured by the nuclear force of the semiconductor nanocrystal colloid and converge without fission.

半導体ナノ結晶粒子は、α粒子により膨張し、中性子の捕食により成長する。中性子を食いだした半導体ナノ結晶粒子は、粒子内のα粒子と中性子を繋ぎ止めるためにエネルギを必要とする。ここで、雰囲気中のγ線等の放射線を収束する。半導体ナノ結晶粒子のα粒子吸収は、半導体ナノ結晶粒子内の負の電荷が定常状態に達するまで継続する。α粒子が蓄積して半導体ナノ結晶粒子内の負電荷と釣り合って、静電気力が定常状態に達するまで、半導体ナノ結晶粒子のα粒子収束が続く。この時、クーロン核力が、中性子捕食に消費されつくされるまで中性子捕食が続く。中性子捕食が続く限り、γ線等の放射線収束が連鎖する。半導体ナノ結晶粒子は、約12.5GeVのエネルギを収束しつくす。即発中性子の運動エネルギ2MeVが、中性子の質量欠損;X分結合エネルギの一部になるから、中性子の質量欠損は級数的に増加して、捕食された中性子は、その運動エネルギを結合エネルギに追加し、その増加分は、また中性子を捕食する。Semiconductor nanocrystal particles expand by α particles and grow by neutron predation. Semiconductor nanocrystal particles that have engulfed neutrons require energy to keep the alpha particles in the particles and neutrons locked together. Here, the radiation such as γ rays in the atmosphere is converged. The α-particle absorption of the semiconductor nanocrystal particles continues until the negative charge in the semiconductor nanocrystal particles reaches a steady state. The α particle convergence of the semiconductor nanocrystal particles continues until the α particles accumulate and balance with the negative charges in the semiconductor nanocrystal particles until the electrostatic force reaches a steady state. At this time, neutron predation continues until Coulomb nuclear power is consumed and consumed by neutron predation. As long as neutron predation continues, the convergence of radiation such as gamma rays is linked. The semiconductor nanocrystal particles converge about 12.5 GeV of energy. Prompt neutron kinetic energy 2MeV becomes part of the neutron mass deficit; Xn min binding energy, so the neutron mass deficiency increases in series, and the predated neutrons use their kinetic energy as binding energy In addition, the increase will also prey on neutrons.

ここに、中性子捕食連鎖が生まれる。中性子捕食連鎖の式を(数16)に示すと、
中性子の質量欠損をX(eV)として、中性子の質量をM(Kg)、速さをV(m/s)とすると、

Figure 2014016345
ここで、中性子の運動エネルギが蓄積し、それの式を(数17)に示すと、
Figure 2014016345
として、中性子がエネルギEγに収束されつくす。
中性子捕食エネルギ保存の式を(数18)に示すと、
Figure 2014016345
クーロン核力と中性子の運動エネルギの総和が、放射エネルギに消費される。
式(数18)のEγに、(数11)の右辺を代入して、Eγを消去し、その式を(数19)に示すと、
Figure 2014016345
;α粒子の総運動エネルギ
;半導体ナノ結晶粒子とα粒子の及ぼす静電エネルギ
;中性子の総運動エネルギ
γ;放射エネルギ
;クーロン核力
は、負に帯電しているので、右辺での符号は負である。式≪数19≫は、α粒子と中性子の運動エネルギの総和が、半導体ナノ結晶粒子の負の静電エネルギと釣り合ったとき、中性子捕食の連鎖が止まることを意味する。よって、半導体ナノ結晶粒子の静電エネルギが0になれば、α粒子と中性子の運動エネルギの総和も0になり、中性子捕食の連鎖が止まる。
式(数19)より、
=1.5GeV
=1.0GeV
即発中性子の運動エネルギ、2Mevだから、E=2×10Σk
を、式(数19)に代入して、
2.0×10・Σk=5.0×10、 n(n+1)=5.0×10
これを解いて、n=22。Here, a neutron predation chain is born. The equation for the neutron predation chain is shown in (Equation 16).
If the neutron mass defect is X n (eV), the neutron mass is M N (Kg), and the speed is V N (m / s),
Figure 2014016345
Here, the kinetic energy of neutrons accumulates, and the equation is shown in (Equation 17):
Figure 2014016345
As a result, the neutron is converged to the energy E γ .
The equation for conservation of neutron predation energy is shown in (Equation 18).
Figure 2014016345
The sum of Coulomb nuclear force and neutron kinetic energy is consumed in radiant energy.
Substituting the right side of (Equation 11) into E γ in Equation (Equation 18) to eliminate E γ E Q ,
Figure 2014016345
E D ; total kinetic energy of α particles E C ; electrostatic energy E N of semiconductor nanocrystal particles and α particles; total kinetic energy of neutrons E γ ; radiant energy E Q ; Coulomb nuclear force E C is negatively charged The sign on the right side is negative. The expression << Equation 19 >> means that the chain of neutron predation stops when the sum of the kinetic energy of α particles and neutrons balances with the negative electrostatic energy of the semiconductor nanocrystal particles. Therefore, if the electrostatic energy of the semiconductor nanocrystal particles becomes zero, the sum of the kinetic energy of the α particles and the neutrons also becomes zero, and the chain of neutron predation stops.
From the equation (Equation 19),
E D = 1.5 GeV
E C = 1.0 GeV
Since the kinetic energy of prompt neutrons is 2 Mev, E N = 2 × 10 6 Σk N
Is substituted into the equation (Equation 19),
2.0 × 10 6 · Σk N = 5.0 × 10 8 , n N (n N +1) = 5.0 × 10 2
Solving this, n N = 22.

よって、α線、β線、γ線、中性子を収束した、半導体ナノ結晶粒子は、放射線収束物に成長する。  Therefore, semiconductor nanocrystal particles in which α-rays, β-rays, γ-rays, and neutrons are converged grow into radiation converging substances.

ここで、放射線収束物の最小質量数を求める。α粒子は、級数的にその質量数を重ね、クーロン核力が絶大な為、中性子の捕食数も安定している。
質量数=α粒子の総質量+中性子の総質量+(電子の総質量(極小))
α粒子の質量数が4で、放射線収束物内のα粒子が級数的に増加するとき、
n=26で、この時のα粒子の質量数Aαを求めるとAα=1404
中性子の質量数が1で、放射線収束物内の中性子が級数的に増加するとき、
=22で、この時の中性子の質量数Aを求めると、A=253
だから、1μm放射線収束物の最低質量数は、A=1657。
Here, the minimum mass number of the radiation focusing object is obtained. Alpha particles have a series of mass numbers, and the Coulomb nuclear force is great, so the predation number of neutrons is also stable.
Mass number = total mass of α particles + total mass of neutrons + (total mass of electrons (minimum))
When the alpha particle mass number is 4 and the alpha particles in the radiation converging material increase exponentially,
When n = 26 and the mass number A α of α particles at this time is determined, A α = 1404
When the neutron mass number is 1 and the neutrons in the radiation converging material increase exponentially,
When n N = 22 and the mass number A N of the neutron at this time is obtained, A N = 253
Therefore, the minimum mass number of the 1 μm radiation focused object is A = 1657.

1MWdayのエネルギが、8.6×1010Jで、これは、ウラン235原子核が、1.05gだけ核分裂したときに発生するエネルギである。また、1MWdayのエネルギを放射線収束物が収束するのに、0.12gしか要しない。1時間当たりの熱出力270万kW級の加圧水型重水炉(九州電力玄海3、4号機が118万kW)1基での、熱仕事量は、1.62×1013(J)で、放射線収束物1mol、1.2×1015J/molだから、熱出力270万kW級だと放射線収束物1molで1時間当たり74基分の熱エネルギを収束できる。The energy of 1 MWday is 8.6 × 10 10 J, which is generated when the uranium 235 nucleus is fissioned by 1.05 g. Moreover, it takes only 0.12 g for the radiation converging object to converge the energy of 1 MWday. Thermal work is 1.62 × 10 13 (J) in one pressurized water heavy water reactor (Kyushu Electric Power Genkai 3, No.4, 1.18 million kW) with a heat output of 2.7 million kW per hour. Since the convergent is 1 mol and 1.2 × 10 15 J / mol, if the thermal output is 2.7 million kW, the thermal energy for 74 units per hour can be converged with 1 mol of the radiation convergent.

ステンレス構造体貯蔵プールをコンクリで覆って、α粒子の減速材として用いる重水で満たし、この貯蔵プールを循環冷却して、半導体ナノ結晶コロイドを混入する。貯蔵プールの中に使用停止後5年冷却した燃料集合体を水没させる。この放射性廃棄物から放射される放射線を、半導体ナノ結晶コロイドに収束させ放射性廃棄物を最終処理する。
ここで、α粒子を半導体ナノ結晶コロイドの静電エネルギ以下に減速させるための、重水の量を求める。今、
α粒子の粒子密度nα(個/m
α粒子の断面積σα(m
α粒子が速さVα(m/s)
重水素の粒子密度N(個/m
重水素の断面積σ(m)の式を(数20)に示す。

Figure 2014016345
α粒子が重水素に衝突する必要個数Fの式を(数21)に示すと、
Figure 2014016345
α粒子の断面積σα(m)は、α粒子が半径Rαの球形であるとすると、σα=0.113bで、海水1L中に重水素3.3×10−2molあるから、天然に存在する濃度で1m中に重水素は、N=2.0×1019(個/m)。今、1mでα粒子の流束を考えているから、α粒子の運動エネルギ4.2MeVを電気素量で割って、単位体積当たりのα粒子の個数を求めると、nα=2.6×1025(個/m)。α粒子の運動エネルギから、その速度Vαをもとめると、運動エネルギは、α粒子の質量6.65×10−27(Kg)から、Vα=1.4×10(m/s)。よって、Fは、∴5.3×1022(個/m・s)となり、α粒子の減速材の必要mol数は、式≪数21≫から求まるFと式≪数2≫から求まる、衝突回数7回から、0.62molとなる。重水1L中に重水素3.3×10−2molあるから、重水の必要量は、19mと求まる。出力270万(計算上450万)Kw級原子炉で放出されるエネルギは、
4.5×10×60×60=1.62×1013(J)
ウラン235、1個核分裂すると200MeVのエネルギが放出されるから、1molで、
200×10×1.6×10−19×6.02×1023=1.9×1013(J/mol)
よって、270万Kw級の原子炉の核分裂するmol数は、0.84mol。ウラン235、1molで重水素19m必要だから、0.84molでは、16m必要。よって、270万Kw級原子炉一基で、3.3×10−2mol/Lの重水の必要量は16mである。The stainless steel structure storage pool is covered with concrete and filled with heavy water used as an alpha particle moderator, and the storage pool is circulated and cooled to incorporate semiconductor nanocrystal colloids. The fuel assembly that has been cooled for five years after being stopped is submerged in the storage pool. The radiation emitted from the radioactive waste is focused on the semiconductor nanocrystal colloid to finalize the radioactive waste.
Here, the amount of heavy water for decelerating the α particles below the electrostatic energy of the semiconductor nanocrystal colloid is determined. now,
Particle density n α of α particles (pieces / m 3 )
α particle cross section σ α (m 2 )
α particle speed V α (m / s)
Deuterium particle density N D (pieces / m 3 )
The formula of the deuterium cross-sectional area σ D (m 2 ) is shown in (Equation 20).
Figure 2014016345
The equation for the required number F of α particles colliding with deuterium is shown in (Equation 21):
Figure 2014016345
The cross-sectional area σ α (m 2 ) of α particles is σ α = 0.113b, and deuterium is 3.3 × 10 −2 mol in 1 L of seawater, assuming that the α particles are spherical with a radius R α. Deuterium in 1 m 3 at a naturally occurring concentration is N D = 2.0 × 10 19 (pieces / m 3 ). Since the flux of α particles is considered at 1 m 3 , n α = 2.6 is obtained by dividing the α particle kinetic energy 4.2 MeV by the elementary electric quantity to obtain the number of α particles per unit volume. × 10 25 (pieces / m 3 ). When the velocity V α is obtained from the kinetic energy of α particles, the kinetic energy is V α = 1.4 × 10 7 (m / s) from the mass 6.65 × 10 −27 (Kg) of α particles. Therefore, F becomes ∴5.3 × 10 22 (pieces / m 3 · s), and the required number of moles of the alpha particle moderator is obtained from F obtained from the equation << Equation 21 >> and the expression << Equation 2 >>. From 7 collisions, it becomes 0.62 mol. Since there is 3.3 × 10 −2 mol of deuterium in 1 liter of heavy water, the required amount of heavy water is 19 m 3 . The energy released in an output of 2.7 million (calculated 4.5 million) Kw class reactor is
4.5 × 10 9 × 60 × 60 = 1.62 × 10 13 (J)
When uranium 235 and one fission, 200 MeV energy is released, so at 1 mol,
200 × 10 6 × 1.6 × 10 −19 × 6.02 × 10 23 = 1.9 × 10 13 (J / mol)
Therefore, the number of moles of nuclear fission in a 2.7 million Kw class nuclear reactor is 0.84 mol. Since uranium 235 and 1 mol require 19 m 3 of deuterium, 0.84 mol requires 16 m 3 . Therefore, the required amount of 3.3 × 10 −2 mol / L heavy water is 16 m 3 in one 2.7 million Kw class nuclear reactor.

廃炉にするため重水を入れたメルトダウン核分裂格納容器に、於いて、循環冷却水に半導体ナノ結晶コロイドを混入して循環し、これに放射線を収束させてメルトダウン核分裂炉を収束させる放射線の収束方法について考える。半導体ナノ結晶コロイドは、放射性廃棄物から放出されるβ線により、負に帯電する。核分裂でα崩壊するα粒子は、4.2MeVの運動エネルギを持っている。よって、α粒子の運動エネルギが、半導体ナノ結晶コロイド内の静電エネルギ以下に減速できれば、α粒子を静電気力で収束できる。
今、半導体ナノ結晶粒子1mol当たり、1.2×1015(J)のエネルギを収束するから、270万Kw級核分裂炉、1時間当たりの総燃料の発熱量、1.62×1013(J)に対して、半導体ナノ結晶粒子は、1.35%必要である。重水素必要量は、燃料1molに対して重水19mだから、半導体ナノ結晶粒子の必要量割合で割って、1,407(t)。福島原発マークI(138万Kw級原子炉)の水量1,750(t)の容量内である。
In a meltdown containment vessel containing heavy water for decommissioning, the semiconductor nanocrystal colloid is mixed and circulated in the circulating cooling water, and the radiation is focused on this to converge the meltdown fission reactor. Think about the convergence method. The semiconductor nanocrystal colloid is negatively charged by β rays emitted from radioactive waste. Alpha particles that undergo alpha decay by fission have a kinetic energy of 4.2 MeV. Therefore, if the kinetic energy of the α particles can be decelerated below the electrostatic energy in the semiconductor nanocrystal colloid, the α particles can be converged by electrostatic force.
Now, energy of 1.2 × 10 15 (J) is converged per 1 mol of the semiconductor nanocrystal particles, so that the heat generation amount of the fuel of 20.7 million Kw class fission reactor per hour, 1.62 × 10 13 (J ), 1.35% of semiconductor nanocrystal particles are required. Since the deuterium requirement is 19 m 3 of heavy water with respect to 1 mol of fuel, it is 1,407 (t) divided by the required proportion of semiconductor nanocrystal particles. It is within the capacity of 1,750 (t) of water in the Fukushima nuclear power plant mark I (13.8 million Kw class reactor).

放射性物質は血液またはリンパ液とともに体内を移動する。体内の臓器や組織はそれぞれ特定の種類の放射性物質を沈着させやすい性質を持っている。そのため、血液やリンパ液中の放射性物質のあるものは各々特定の臓器や組織に集まる。放射性物質からの放射線は沈着臓器・組織とその周辺の臓器・組織を照射し、内部被ばくが発生する。放射性物質のうち、特定の臓器・組織に沈着するものは身体の一部に被ばくをもたらす部分被ばくするが、トリチウム、カリウム(40K)、セシウム(137Cs)などは身体全体に分布するので全身が放射線の照射を受ける全身均等被ばくする。また、内部被ばくではα線やβ線のように透過性の小さい放射線も含め全ての放射線が臓器・組織の照射に寄与する点で、透過性の大きいX線、γ線あるいは中性子線のみが照射に寄与する外部被ばくと様子が異なっている。特に、体内に取り込まれた放射性物質から放出された透過性の小さい放射線、α線と大部分のβ線は、身体内を通過する間に、持っているエネルギの大部分を周りの臓器・組織に与えるので、内部被ばく上重要になる。Radioactive substances move with the blood or lymph. Each organ or tissue in the body has the property of easily depositing a specific type of radioactive material. For this reason, certain radioactive substances in blood and lymph collect in specific organs and tissues. Radiation from radioactive materials irradiates deposited organs and tissues and surrounding organs and tissues, causing internal exposure. Among the radioactive material, but is intended to deposit on the particular organs and tissues to partial exposure results in the exposure of a body part, tritium, potassium (40 K), since cesium (137 Cs) are distributed throughout the body systemically Equally exposed to whole body exposed to radiation. In addition, internal radiation only emits highly permeable X-rays, γ-rays, or neutrons in that all radiation, including α- and β-rays with low permeability, contributes to the irradiation of organs and tissues. The situation is different from external exposure that contributes to In particular, low-permeability radiation, alpha rays and most beta rays emitted from radioactive substances taken into the body, while passing through the body, have most of the energy they have around the surrounding organs / tissues. Is important for internal exposure.

ここで、半導体ナノ結晶コロイドを血液循環させて、内部被ばくしている人体から放射線を収束させることについて考える。半導体ナノ結晶コロイドはその大きさが1nm〜100μmだから、面間距離が1μm以下の炭素繊維に導通して、径が5〜10μmである毛細血管も通過するよう型選別をする。Here, let us consider circulating blood from a semiconductor nanocrystal colloid to converge radiation from a human body exposed internally. Since the size of the semiconductor nanocrystal colloid is 1 nm to 100 μm, the semiconductor nanocrystal colloid conducts through a carbon fiber having a face-to-face distance of 1 μm or less, and performs type selection so that a capillary vessel having a diameter of 5 to 10 μm also passes.

図1に於いて、1の血液透析ポンプで、2aの血液透析パイプにより人体から血液を吸引し、3の血液半導体ナノ結晶コロイド混合ろ過タンクに送り、4aの炭素繊維吸着電極で半導体ナノ結晶コロイドを5の半導体ナノ結晶コロイドタンクに送る。この時、6の炭素繊維導線を通る半導体ナノ結晶コロイドが型選別される。3の血液半導体ナノ結晶コロイド混合ろ過タンクは、半導体ナノ結晶コロイドと血液を型選別の前の混合の役目と、透析血液をろ過する役目を持つ。4bの炭素繊維放電電極で半導体ナノ結晶コロイドを放電し、5の半導体ナノ結晶コロイドタンクの半導体ナノ結晶コロイドを、8の戻しパイプで1の血液透析ポンプによって濃度調整して血液と混合し、2b血液透析パイプより混合血液を人体に戻す。半導体コロイドの透析ろ過は、3aパイプからろ過後の上澄み(半導体結晶ナノコロイドは密度1×10〜10(g/cm)なので血液より下に沈む)血液を1の血液透析ポンプに戻し半導体ナノ結晶コロイド混合濃度調整して人体に送る。In FIG. 1, blood is drawn from a human body with a hemodialysis pipe 1a through a hemodialysis pipe 1a, and sent to a blood filtration nanocrystal colloid mixed filtration tank 3 with a semiconductor nanocrystal colloid 4a carbon fiber adsorption electrode. To 5 semiconductor nanocrystal colloid tanks. At this time, the semiconductor nanocrystal colloid passing through the carbon fiber lead 6 is type-sorted. The blood semiconductor nanocrystal colloid mixing filtration tank 3 has a role of mixing the semiconductor nanocrystal colloid and blood before type selection and a role of filtering dialyzed blood. The semiconductor nanocrystal colloid is discharged with the carbon fiber discharge electrode of 4b, the concentration of the semiconductor nanocrystal colloid in the semiconductor nanocrystal colloid tank of 5 is adjusted by the hemodialysis pump of 1 with the return pipe of 8 and mixed with blood. The mixed blood is returned to the human body from the hemodialysis pipe. The diafiltration of the semiconductor colloid is the supernatant after filtration from the 3a pipe (the semiconductor crystal nanocolloid has a density of 1 × 10 4 to 10 5 (g / cm 3 ) and sinks below the blood). Adjust the semiconductor nanocrystal colloid mixture concentration and send it to the human body.

内部被ばくでは、放射線が人体に取り込まれる形でとどまっている。細胞近隣の毛細血管を通過し、体内照射される放射線を、半導体ナノ結晶コロイドは収束する。ここで、半導体ナノ結晶コロイドが血液に混入した時、限界内部被ばく線量を収束する時の放電量から血液混入できるか判別する。ここで言う半導体ナノ結晶コロイドは、元はSi,SiO、メラミンの結晶でありで、前二者は人体に含まれるほか、メラミンは安定な化学物質であり、人体への影響は報告されていない。With internal exposure, radiation stays in the human body. The semiconductor nanocrystal colloid converges the radiation that passes through the capillaries in the vicinity of the cells and is irradiated inside the body. Here, when the semiconductor nanocrystal colloid is mixed into the blood, it is determined whether the blood can be mixed from the discharge amount when the limit internal exposure dose is converged. The semiconductor nanocrystal colloid mentioned here is originally a crystal of Si, SiO 2 and melamine. The former two are contained in the human body, and melamine is a stable chemical substance, and its effects on the human body have been reported. Absent.

半導体ナノ結晶コロイドを血液に混入した時、限界被ばく線量を収束できる、これの濃度を求めると、血液の密度1.052〜1.063(Kg/L)。人の限界内部被ばく線量0.8msv(国際放射防護委員会(ICRP))から、
8.0×10−4×1.052〜1.063=8.4〜8.5×10−4(J/L)
半導体ナノ結晶コロイドが、エネルギを好ましくは12.5GeV収束するから、1molの収束エネルギ量は、
γ=12.5×10×1.6×10−19×6.02×1023
よって、Eγ=1.2×1015(J/mol)これと実行質量数(反応に実際に寄与する質量数)A=1657より、
γ=7.3×1011(J/Kg)
よって、半導体ナノ結晶コロイドを血液に混入して、人の限界内部被ばく線量を収束するのに必要な濃度は、1.15〜1.16×10−15(Kg/L)実行質量数で割って、6.9〜7.0×10−19(mol/L)。半導体ナノ結晶コロイド1(mol/L)の放電量は、
1.1×10−16×6.02×1023/1(mol/L)=6.6×10(C/(mol/L))
よって、半導体ナノ結晶コロイドが血液に混入して、限界内部被ばく線量を収束する時の放電量は、4.5〜4.6×10−11(C)。人の許容生体電流は、0.01mA(心臓;ミクロショック時)だから、1.0×10−5(C)。よって、密度の濃い男性の血液に混入しても問題ない。
When the semiconductor nanocrystal colloid is mixed into the blood, the limit exposure dose can be converged. When the concentration of this is determined, the blood density is 1.052 to 1.063 (Kg / L). From the human limit internal exposure dose 0.8msv (International Commission on Radiological Protection (ICRP)),
8.0 × 10 −4 × 1.052 to 1.063 = 8.4 to 8.5 × 10 −4 (J / L)
Since the semiconductor nanocrystal colloid focuses the energy, preferably 12.5 GeV, the amount of convergence energy of 1 mol is
= 12.5 × 10 9 × 1.6 × 10 −19 × 6.02 × 10 23
Therefore, E γ = 1.2 × 10 15 (J / mol) From this and the effective mass number (mass number actually contributing to the reaction) A = 1657,
= 7.3 × 10 11 (J / Kg)
Therefore, the concentration required to bring the semiconductor nanocrystal colloid into the blood and converge the human limit internal exposure dose is divided by 1.15 to 1.16 × 10 −15 (Kg / L) effective mass number. 6.9 to 7.0 × 10 −19 (mol / L). The discharge amount of the semiconductor nanocrystal colloid 1 (mol / L) is
1.1 × 10 -16 × 6.02 × 10 23 /1(mol/L)=6.6×10 7 (C / (mol / L))
Therefore, the discharge amount when the semiconductor nanocrystal colloid is mixed with blood to converge the limit internal exposure dose is 4.5 to 4.6 × 10 −11 (C). The human allowable bioelectric current is 0.01 mA (heart; at the time of microshock), so 1.0 × 10 −5 (C). Therefore, there is no problem even if it is mixed into the blood of a dense male.

ほう素中性子捕捉療法について説明する。ほう素中性子捕捉療法の原理は、腫瘍細胞に取り込まれたほう素10Bと中性子との核反応により発生する粒子線(α線、7Li粒子)によって治療を行う。用いられる中性子はほう素10Bとの反応が大きな熱中性子を初めとする中性子である。ホウ素化合物に加え半導体ナノ結晶コロイドをあらかじめ任意な適当な経路(静脈内注射、経口送達またはカテーテルやその他直接的手段を含む)投与しておき、腫瘍にホウ素及び半導体ナノ結晶コロイドが集まったときに熱中性子線を照射すると、ほう素化合物と半導体ナノ結晶コロイドをほとんど取り込まない正常細胞はあまりダメージを受けないが、ホウ素を選択的に取り込んだ腫瘍細胞では、細胞内部でホウ素と熱中性子の核反応が生じ、核反応により発生したα線と7Li粒子が腫瘍細胞のみを殺してしまう。大きな利点は、α線も7Li粒子も半導体ナノ結晶コロイドに収束され必要以上に飛ばないため、正常細胞を傷つけることなく腫瘍細胞のみが選択的に治療できることである。ほう素中性子捕捉療法は、半導体ナノ結晶コロイドを用いることでより選択性が上がり、選択されない細胞は、半導体ナノ結晶コロイドが放射線を収束しているため受けるダメージが激減する。よって、より選択性が必要とされる脳腫瘍の放射線免疫治療に置いて、多大な効果をもたらすことが期待できる。前述の通り、ここで言う半導体ナノ結晶コロイドは、元はSi,SiO、メラミンの結晶でありで、前二者は人体に含まれるほか、メラミンは安定な化学物質であり、人体への影響は報告されていない。The boron neutron capture therapy will be described. The principle of boron neutron capture therapy is treatment using particle beams (α rays, 7Li particles) generated by a nuclear reaction between boron 10B taken into tumor cells and neutrons. The neutrons used are neutrons including thermal neutrons that have a large reaction with boron 10B. In addition to boron compound, semiconductor nanocrystal colloid is administered in advance by any appropriate route (including intravenous injection, oral delivery or catheter or other direct means), and when boron and semiconductor nanocrystal colloid gather in the tumor When irradiated with thermal neutrons, normal cells that rarely take up boron compounds and semiconductor nanocrystal colloids do not receive much damage, but tumor cells that selectively take up boron have a nuclear reaction between boron and thermal neutrons inside the cell. And α rays and 7Li particles generated by the nuclear reaction kill only the tumor cells. A great advantage is that only the tumor cells can be selectively treated without damaging normal cells, since neither α rays nor 7Li particles converge on the semiconductor nanocrystal colloid and fly more than necessary. Boron neutron capture therapy is more selective by using semiconductor nanocrystal colloids, and the cells that are not selected are greatly reduced in damage due to the semiconductor nanocrystal colloids converging radiation. Therefore, it can be expected to bring about a great effect in radioimmunotherapy for brain tumors that require more selectivity. As mentioned above, the semiconductor nanocrystal colloid mentioned here is originally a crystal of Si, SiO 2 and melamine. The former two are included in the human body, and melamine is a stable chemical substance that affects the human body. Has not been reported.

ほう素中性子捕捉療法に於いて、半導体ナノ結晶コロイドが、人体内で放射される放射線を収束する時、その必要量の半導体ナノ結晶コロイドが放電する。その放電値が、許容生体電流以下になるように、臓器への投与量を求める。
10B、中性子の核分裂反応で、放射するエネルギ量は、4.0×10(J/L)
半導体ナノ結晶コロイド1(mol)が収束するエネルギ量Eγは1(mol/L)では、1.2×1015(J/L)。上記より、放射されるエネルギを収束するのに必要な半導体ナノ結晶コロイドの割合は、3.3×10−10。q1とアボガドロ数から、半導体ナノ結晶コロイド1(mol/L)の放電量は、6.6×10(C/(mol/L))
放射されるエネルギを収束するのに必要な半導体ナノ結晶コロイドの放電量の総計は、
6.6×10×3.3×10−10=2.2×10−2(C/(mol/L))
ここで、人体の許容生体電流は、0.01mA(心臓、ミクロショック時)だから、
1.0×10−5×1(S)/2.2×10−2=4.5×10−4(mol/L)
よって、半導体ナノ結晶コロイドを投与できる許容量は、4.5×10−4(mol/L)。よって、1秒間に4.5×10−4(mol/L)まで投与できる。
In boron neutron capture therapy, when the semiconductor nanocrystal colloid focuses the radiation emitted in the human body, the required amount of semiconductor nanocrystal colloid is discharged. The dose to the organ is determined so that the discharge value is less than the allowable bioelectric current.
10B, the amount of energy emitted by the fission reaction of neutrons is 4.0 × 10 5 (J / L)
The energy amount E γ by which the semiconductor nanocrystal colloid 1 (mol) converges is 1.2 × 10 15 (J / L) at 1 (mol / L). From the above, the ratio of the semiconductor nanocrystal colloid necessary to converge the radiated energy is 3.3 × 10 −10 . From q1 and Avogadro's number, the discharge amount of semiconductor nanocrystal colloid 1 (mol / L) is 6.6 × 10 7 (C / (mol / L))
The total amount of semiconductor nanocrystal colloid discharge required to focus the emitted energy is
6.6 × 10 7 × 3.3 × 10 −10 = 2.2 × 10 −2 (C / (mol / L))
Here, since the allowable bioelectric current of the human body is 0.01 mA (at the time of heart, microshock),
1.0 × 10 −5 × 1 (S) /2.2×10 −2 = 4.5 × 10 −4 (mol / L)
Therefore, the allowable amount that can administer the semiconductor nanocrystal colloid is 4.5 × 10 −4 (mol / L). Therefore, it can administer up to 4.5 × 10 −4 (mol / L) per second.

又、人体の限界内部被ばく線量0.8msv(国際放射防護委員会(ICRP))から、放電から被ばくする放射量と比較すると、放射量は、
6.6×10×4.5×10−4=3.0×10(C)
時間当たり、1.1×10(C)。
人体の限界内部被ばく線量は、5×1015(C/Kg)。上記を、時間線量として、5.7×1011(C/Kg)。好ましくは、体重100Kgの人の電荷は、5.7×1013(C)なので、放射量は限界内部被ばく線量内である。
In addition, from the limit internal exposure dose of human body 0.8msv (International Radiation Protection Commission (ICRP)), compared with the radiation dose from the discharge, the radiation dose is
6.6 × 10 7 × 4.5 × 10 −4 = 3.0 × 10 4 (C)
1.1 × 10 8 (C) per hour.
The limit internal exposure dose of the human body is 5 × 10 15 (C / Kg). The above is 5.7 × 10 11 (C / Kg) as a time dose. Preferably, the charge of a person weighing 100 kg is 5.7 × 10 13 (C), so the radiation dose is within the limit internal exposure dose.

請求項1に記載の方法で生成する放射線収束物よる起電方法について説明する。放射線収束物コロイドを入れたタンクに二次コイルの炭素繊維電極を浸し、一次コイルに電流を流して、相互インダクタンスにより二次コイルの炭素繊維内に放射線収束物を移動させて電位差を起こして起電する電力の起電方法である。炭素繊維は、炭素原子の共有結合による規則正し六員環のネットワークの平面構造のグラッフェンの折り重なりから出来ている。完全な黒鉛結晶では、この面間距離0.3345nmである。炭素繊維では面間距離は、一般に0.34nmより大きい。繊維軸にほぼ平行に配列ているが、空洞、空孔、粒界及び不純物原子を含み、不規則である。そのサイズ分布は、熱処理と加える張力よって変化し、大きい物を好適に作れる。そこで、径が1μm程度である、放射線収束物も移動が可能になる。The electromotive force generation method using the radiation converging substance generated by the method according to claim 1 will be described. The carbon fiber electrode of the secondary coil is immersed in the tank containing the colloid of radiation converging material, current is passed through the primary coil, and the radiation converging material is moved into the carbon fiber of the secondary coil by mutual inductance, causing a potential difference. This is a method for generating electric power. Carbon fibers are made of graphene folds in a planar structure of a regular six-membered ring network formed by covalent bonding of carbon atoms. For perfect graphite crystals, the inter-plane distance is 0.3345 nm. For carbon fibers, the inter-plane distance is generally greater than 0.34 nm. Although arranged almost parallel to the fiber axis, it contains cavities, vacancies, grain boundaries and impurity atoms and is irregular. The size distribution varies depending on the heat treatment and applied tension, and a large object can be suitably made. Therefore, the radiation converging object having a diameter of about 1 μm can also be moved.

炭素繊維は金属と同様に自由電子がる。ここで、この放射線収束物が炭素繊維管を1m移動した時の起電量について考える。今、放射線収束物コロイドが入った溶媒タンクに、炭素繊維電極を浸たす。電極は、二次炭素繊維コイルに接続されていている。相互インダクタンスを実現できるよう、鉄心にこれともう一つ同様の一次コイルを巻き、一次コイルに一次電流I=1(A)を流す。コイルが同様であるから、二次電流は、Iとなり、相互誘導起電力の式を(数22)に示すと、

Figure 2014016345
これは、1秒間に、V=−M×1(V)となる。ここで、コイルの巻き数;N=1000回、長さ;l=10m、断面積;S=8×10−5で、コイルの相互インダクタンスMの式を(数23)に示すと、
Figure 2014016345
よって、M=−1.0×10−5(V・S/A)。1秒間にIの電流が流れると、電位差V1は、V1=1.0×10−5(V)。Carbon fiber has free electrons like metal. Here, the amount of electromotive force when this radiation converging substance moves 1 m in the carbon fiber tube will be considered. Now, immerse the carbon fiber electrode in the solvent tank containing the colloid of radiation focused material. The electrode is connected to the secondary carbon fiber coil. In order to realize mutual inductance, another similar primary coil is wound around the iron core, and a primary current I = 1 (A) is passed through the primary coil. Since the coils are the same, the secondary current is I, and the equation of mutual electromotive force is shown in (Equation 22):
Figure 2014016345
This is V = −M × 1 (V) per second. Here, the number of turns of the coil: N = 1000 times, length: l = 10 m, cross-sectional area; S = 8 × 10 −5 m 2 , and the equation of mutual inductance M of the coil is shown in (Equation 23):
Figure 2014016345
Therefore, M = −1.0 × 10 −5 (V · S / A). When a current of I flows for 1 second, the potential difference V1 is V1 = 1.0 × 10 −5 (V).

ここで、この放射線収束物が炭素繊維管を1(秒)移動した時、電子の起電量の何倍になるかについて考える。放射線収束物内の電荷は釣り合っていて、表面はコンデンサの様にq1で帯電しているから、qaを放射線収束物の電荷総数として、qaの式を(数24)に示すと、

Figure 2014016345
α ;蓄積しているα粒子の電荷
α ;蓄積しているα粒子の正電荷と釣り合っている電子電荷
q1;コンデンサとして帯電している電子電荷
ここで、|qα |−|qα |=0
なので、放射線収束物内の電荷は釣り合っているから、
全体の見かけの電荷は、qa=q1
∴q1=1.1×10−16(C)
又、qαは、蓄積したα粒子の電荷で、
α=蓄積したα粒子の個数×電気素量
4.2MeVのα粒子の運動エネルギが、すべて放射線収束物に蓄積するとして、
蓄積したα粒子の個数=α粒子の運動エネルギ/(電気素量×2価)
蓄積しているα粒子の電荷qαの式を(数25)に示すと、
Figure 2014016345
α粒子の運動エネルギ;Uα=4.2×10(eV)
だから、qα=2.1×10(C)
放射線収束物の電荷の絶対値の総数は、式(数26)から、
|qa|=|qα |+|qα |+|q1
α=2.1×10(C)
q1=1.1×10−16(C)
だから、|qa|=4.2×10(C)
放射線収束物の総数Mは、
放射線収束物の総エネルギ数;Eγ=12.5GeV
放射線収束物の電荷の絶対値の総数:|qa|=4.2×10(C)
として、放射線収束物の総数Mの式を(数26)に示すと、
Figure 2014016345
放射線収束物が炭素繊維内を移動する時の電荷が、電子電荷の何倍になるかと言うと、
放射線収束物の総数;m=3.0×10(個)
放射線収束物1個の電荷;1.1×10−16
だから、q=3.3×10−13(C)
これは、電子電荷の、2.1×10
よって、放射線収束物が炭素繊維管を、1時間、移動したときの電気量Paは、
I=1(A)
V1=1.0×10−5(V)
だから、Pa=76Kwhの電気量を発電できる。Here, it will be considered how many times the amount of electromotive force of electrons when this radiation converging substance moves 1 (second) through the carbon fiber tube. Since the charges in the radiation converging object are balanced and the surface is charged with q1 like a capacitor, when qa is the total number of charges of the radiation converging object, the expression of qa is shown in (Equation 24).
Figure 2014016345
q alpha +; charge q accumulated to have alpha particle alpha -; accumulated electron charge q1 are commensurate with and are alpha particles positively charged -; in electronic charge now being charged as a capacitor, | q alpha + | − | Q α | = 0
So the charge in the radiation focusing object is balanced,
The total apparent charge is qa = q1
∴q1 = 1.1 × 10 −16 (C)
Q α is the accumulated charge of α particles,
q α = number of accumulated α particles × elementary charge 4.2 MeV α particle kinetic energy is all accumulated in the radiation convergent,
Number of accumulated α particles = α particle kinetic energy / (elementary electric energy × divalent)
The expression of the charge q α of the accumulated α particles is shown in (Equation 25).
Figure 2014016345
α particle kinetic energy; U α = 4.2 × 10 6 (eV)
Therefore, q α = 2.1 × 10 6 (C)
The total number of absolute values of the charge of the radiation converging object can be calculated from the equation (Equation 26):
| Qa | = | q α + | + | q α | + | q1 |
q α = 2.1 × 10 6 (C)
q1 = 1.1 × 10 −16 (C)
Therefore, | qa | = 4.2 × 10 6 (C)
The total number M of convergent radiation is
Total energy number of radiation converging material; E γ = 12.5 GeV
Total number of absolute values of charge of radiation converging object: | qa | = 4.2 × 10 6 (C)
As an expression of the total number M of radiation convergents is shown in (Equation 26),
Figure 2014016345
How many times the electric charge when the radiation converging substance moves in the carbon fiber is larger than the electronic charge,
Total number of radiation focusing objects; m = 3.0 × 10 3 (pieces)
Charge of one radiation focus; 1.1 × 10 −16
Therefore, q = 3.3 × 10 −13 (C)
This is 2.1 × 10 6 times the electronic charge, so the amount of electricity Pa when the radiation converging substance moves through the carbon fiber tube for 1 hour is
I = 1 (A)
V1 = 1.0 × 10 −5 (V)
Therefore, it is possible to generate electricity with Pa = 76 Kwh.

以上、詳しく説明したとおり、本発明に係る、放射線の収束方法は、使用済み核燃料の核廃棄最終処理問題解消、メルトダウン核分裂炉の廃炉対策、核融合炉の開発の促進、人体内部被ばく治療、放射線免疫治療、新エネルギ対策の貢献に期待が出来、その技術的価値はすこぶる大きい。As described above in detail, the method for converging radiation according to the present invention solves the problem of final disposal of spent nuclear fuel, measures for decommissioning of meltdown nuclear fission reactor, promotion of development of fusion reactor, treatment of internal exposure to human body Therefore, it can be expected to contribute to radioimmunotherapy and new energy countermeasures, and its technical value is tremendous.

血液外部透析システムBlood external dialysis system

1. 血液透析ポンプ
2a.血液透析パイプ(吸引)
2b.血液透析パイプ(戻し)
3. 血液半導体ナノ結晶コロイド混合ろ過タンク
4a.炭素繊維電極(吸着)
4b.炭素繊維電極(放電)
5. 半導体ナノ結晶コロイドタンク
6. 炭素繊維導線
7. 直流電源
8. 半導体ナノ結晶コロイド戻しパイプ
1. Hemodialysis pump 2a. Hemodialysis pipe (suction)
2b. Hemodialysis pipe (return)
3. Blood semiconductor nanocrystal colloid mixed filtration tank 4a. Carbon fiber electrode (adsorption)
4b. Carbon fiber electrode (discharge)
5. 5. Semiconductor nanocrystal colloid tank 6. Carbon fiber conducting wire DC power supply8. Semiconductor nanocrystal colloid return pipe

Claims (5)

塵などを含んで負に帯電したダストプラズマを化学気相成長(Chemical Vapor Deposition)反応させて、半導体ナノ結晶粒子とし、放射性廃棄物から放射されるβ線(電子線)をこの粒子に帯電させて負電荷の塊に成長させ、粒子内に起きた電界により、静電気力が及ぶのを利用して、放射される正に帯電したα粒子を減速材との衝突で電界の静電エネルギ以下に減速させて収束し、蓄積したα粒子の及ぼす核力により中性子を捕食し、励起するエネルギとしてγ線や他の放射線を連鎖により収束しつくす、放射線の収束方法。ステンレス構造体貯蔵プールをコンクリで覆って、α粒子の減速材として用いる重水で満たし、この貯蔵プールを循環冷却して、半導体ナノ結晶コロイドを混入する。貯蔵プールの中に使用停止後5年冷却した燃料集合体を水没させ、この放射性廃棄物から放射される放射線を、上記の原理により半導体ナノ結晶コロイドに収束させ安全に最終処理する、放射線の収束方法。Chemical vapor deposition (chemical vapor deposition) reaction is performed on negatively charged dust plasma containing dust, etc. to form semiconductor nanocrystal particles, and this particle is charged with β-rays (electron beams) emitted from radioactive waste. The positively charged α particles emitted are reduced below the electrostatic energy of the electric field by colliding with the moderator, by using the electrostatic force exerted by the electric field generated in the particles. A method of converging radiation that converges by decelerating, precipitating neutrons by the nuclear force exerted by the accumulated α particles, and converging γ rays and other radiation as energy to be excited by a chain. The stainless steel structure storage pool is covered with concrete and filled with heavy water used as an alpha particle moderator, and the storage pool is circulated and cooled to incorporate semiconductor nanocrystal colloids. A fuel assembly that has been cooled for five years after being stopped in a storage pool is submerged, and the radiation emitted from this radioactive waste is converged to a semiconductor nanocrystal colloid according to the above principle and safely finalized. Method. 請求項1に記載の原理により、廃炉にするため重水を入れたメルトダウン核分裂格納容器に、於いて、循環冷却水に半導体ナノ結晶コロイドを混入して循環し、これに放射線を収束させてメルトダウン核分裂炉を収束させる、放射線の収束方法。According to the principle described in claim 1, in a meltdown fission containment vessel containing heavy water for decommissioning, semiconductor nanocrystal colloid is mixed in the circulating cooling water and circulated, and the radiation is focused on this. A method for converging radiation that converges a meltdown fission reactor. 請求項1に記載の半導体ナノ結晶コロイドを、炭素繊維に導通することにより型選別して血液循環させて、内部被ばく照射放射線を収束させ、外部循環させる血液に電圧をかけて負に帯電しているこの放射線収束物を透析ろ過する、人体内部被ばく治療に関する放射線の収束方法。The semiconductor nanocrystal colloid according to claim 1 is type-selected by conducting to carbon fiber and circulated through blood, the internal radiation irradiated radiation is converged, and voltage is applied to the externally circulated blood to be negatively charged. A method of converging radiation related to internal radiation treatment by diafiltration of the radiation converging substance. 放射線免疫治療に置いて、中性子とそれに増感効果のあるほう素との反応を利用して、正常細胞にあまり損傷を与えず、半導体ナノ結晶コロイドを腫瘍細胞に投与することにより、核分裂によって放射されるα粒子と7Li原子核を収束し、癌のみを選択的に破壊する放射線の収束方法。In radioimmunotherapy, the reaction between neutrons and sensitizing boron is used to irradiate fission by administering semiconductor nanocrystal colloids to tumor cells without damaging normal cells. Convergence Method of Radiation Converging Alpha Particles and 7Li Nuclei to selectively destroy only cancer 請求項1に記載の方法で生成する放射線収束物よる起電方法で、放射線収束物コロイドを入れたタンクに二次コイルの炭素繊維電極を浸し、一次コイルに電流を流して、相互インダクタンスにより二次コイルの炭素繊維内に放射線収束物を移動させて電位差を起こして起電する電力の起電方法。A method of generating electricity by a radiation converging substance generated by the method according to claim 1, wherein a carbon fiber electrode of a secondary coil is immersed in a tank containing a colloid of radiation converging substance, a current is passed through the primary coil, A method for generating electric power, in which a radiation converging substance is moved into a carbon fiber of a secondary coil to generate a potential difference and generate electric power.
JP2013135522A 2012-06-13 2013-06-12 Radiation convergence method and electromotive method using converged radiation Pending JP2014016345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013135522A JP2014016345A (en) 2012-06-13 2013-06-12 Radiation convergence method and electromotive method using converged radiation

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012147772 2012-06-13
JP2012147772 2012-06-13
JP2013135522A JP2014016345A (en) 2012-06-13 2013-06-12 Radiation convergence method and electromotive method using converged radiation

Publications (1)

Publication Number Publication Date
JP2014016345A true JP2014016345A (en) 2014-01-30

Family

ID=50111133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013135522A Pending JP2014016345A (en) 2012-06-13 2013-06-12 Radiation convergence method and electromotive method using converged radiation

Country Status (1)

Country Link
JP (1) JP2014016345A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104826184A (en) * 2015-04-29 2015-08-12 时红霞 Blood purifying device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104826184A (en) * 2015-04-29 2015-08-12 时红霞 Blood purifying device

Similar Documents

Publication Publication Date Title
JP6279656B2 (en) Method and apparatus for producing radioisotopes
Taskaev Development of an accelerator-based epithermal neutron source for boron neutron capture therapy
HU226446B1 (en) Method for exposing a material by neutron flux to producing a useful isotope and to transmuting at least one long-lived isotope of radioactive waste
RU2490737C1 (en) Method for obtaining molybdenum-99 radioisotope
JP6504683B2 (en) Nuclear reactor system for extinction
Bakht et al. A novel technique for simultaneous diagnosis and radioprotection by radioactive cerium oxide nanoparticles: study of cyclotron production of 137m Ce
JP5522563B2 (en) Method and apparatus for producing radioactive molybdenum
Khorshidi Exploration of adiabatic resonance crossing through neutron activator design for thermal and epithermal neutron formation in 99Mo production and BNCT applications
US20150380119A1 (en) Method and apparatus for synthesizing radioactive technetium-99m-containing substance
JP2014016345A (en) Radiation convergence method and electromotive method using converged radiation
JP2003525424A (en) Power from nuclear fission of spent nuclear waste
JP5522564B2 (en) Radioisotope production method and apparatus
US20160379728A1 (en) Yttrium-90 production system and method
JP5673916B2 (en) Radioisotope production method and apparatus
JP5522568B2 (en) Radioisotope production method and apparatus
JP5522567B2 (en) Radioisotope production method and apparatus
Gokov et al. Gamma and fast neutrons flux radiation minimization during the concentrated flux formation of delayed neutrons
Luo Nuclear Science and Technology
Luo Nuclear Science and Technology: Isotopes and Radiation
Gryzinski et al. Multipurpose epithermal neutron beam on new research station at MARIA research reactor in Swierk-Poland
RU2542740C1 (en) Nuclear reactor for combustion of transuranic chemical elements
JP5522565B2 (en) Radioisotope production method and apparatus
Klassen et al. Nanostructured Materials and Shaped Solids for Essential Improvement of Energetic Effectiveness and Safety of Nuclear Reactors and Radioactive Wastes
Dulugeac et al. Neutronic analysis for the fission Mo" 9" 9 production by irradiation of leu targets in TRIGA 14 MW reactor
JPS58129395A (en) Thermonuclear-nuclear fission hybrid reactor and its energy generation method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140428

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140805

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20141003