JP2014016272A - Detection sensor - Google Patents

Detection sensor Download PDF

Info

Publication number
JP2014016272A
JP2014016272A JP2012154597A JP2012154597A JP2014016272A JP 2014016272 A JP2014016272 A JP 2014016272A JP 2012154597 A JP2012154597 A JP 2012154597A JP 2012154597 A JP2012154597 A JP 2012154597A JP 2014016272 A JP2014016272 A JP 2014016272A
Authority
JP
Japan
Prior art keywords
piezoelectric vibrator
recess
flow path
electrode
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012154597A
Other languages
Japanese (ja)
Inventor
Shigenori Watanabe
重徳 渡辺
Mitsuyuki Nemoto
光進 根本
Kumiko Madono
久美子 真殿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP2012154597A priority Critical patent/JP2014016272A/en
Publication of JP2014016272A publication Critical patent/JP2014016272A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a detection sensor 20 which can prevent creeping of liquid, such as sample liquid, on a back surface side of a piezoelectric piece 31 placed inside a recessed part 23 and perform highly reliable measurement in the detection sensor 20 in which a common piezoelectric piece 31 where a first piezoelectric oscillator 3A and a second piezoelectric oscillator 3B are formed is placed so as to close the recessed part 23 on a wiring board 2.SOLUTION: A water-repellent agent 30 is adhered inside a recessed part 23 placed in the detection sensor 20 and provided with a piezoelectric piece 31, liquid which is entering the recessed part 23 is repelled, so that creeping of the liquid on a back surface side of the piezoelectric piece 31 is preventable. Thus, it is possible to prevent defect caused by the liquid being adhered on an electrode on the back surface side of the piezoelectric piece 31. Also, a similar effect can be obtained by sealing up a space between the piezoelectric piece 31 and a circumferential wall surface of the recessed part 23 with a seal material 8.

Description

本発明は、感知対象物がその表面に設けられた吸着層に吸着することで固有振動数が変わる圧電振動子を用いて感知対象物を感知するための感知センサーに関する。   The present invention relates to a sensing sensor for sensing a sensing object using a piezoelectric vibrator that changes its natural frequency by adsorbing to the adsorption layer provided on the surface of the sensing object.

試料流体中の感知対象物、例えば血液中あるいは血清中の微量なタンパク質を感知する方法として、例えば特許文献1に示すようなQCM(Quartz Crystal Microbalance)を利用した感知センサーが示されている。QCMは感知センサーに設けられた、水晶振動子の励振電極の表面に、感知対象物を抗原抗体反応により吸着する吸着膜が設けられ、当該水晶振動子に試料液を供給して、吸着による質量負荷による水晶振動子の周波数の変化に基づいて感知対象物の定量を行う。   As a method for detecting a detection object in a sample fluid, for example, a trace amount of protein in blood or serum, a detection sensor using QCM (Quartz Crystal Microbalance) as shown in Patent Document 1, for example, is shown. The QCM is provided with an adsorption film on the surface of the excitation electrode of the quartz vibrator provided in the sensing sensor, and adsorbs the sensing object by antigen-antibody reaction. The sensing object is quantified based on the change in the frequency of the crystal unit due to the load.

具体的には、感知対象物を含まない参照液を供給したときの前記周波数と、感知対象物の有無や濃度が未知である試料液を供給したときの前記周波数と、を検出し、これらの周波数の差分が前記吸着膜に吸着された感知対象物の質量に対応するものとして感知対象物の検出や濃度の測定を行う。水晶振動子の試料液の供給流路側は接地されており、裏面の試料液と接しない電極は検出用及び参照用の周波数を取得するための電極となっている。   Specifically, the frequency when the reference liquid that does not include the sensing object is supplied and the frequency when the sample liquid with the unknown presence or concentration of the sensing object is supplied are detected, and these frequencies are detected. The detection of the sensing object and the measurement of the concentration are performed assuming that the difference in frequency corresponds to the mass of the sensing object adsorbed on the adsorption film. The sample liquid supply flow path side of the crystal unit is grounded, and the electrode not in contact with the sample liquid on the back surface is an electrode for acquiring the frequency for detection and reference.

このような感知センサーを例えば臨床分野や食品検査の分野において使用する場合には、簡易な機器を用いて行われることが多く、小型で簡便な装置であって正確な検出をする装置が求められている。しかしながら感知センサーの小型化及び簡便化のために、供給流路を細く構成した場合には、僅かな凹凸により流速や流量に変化が生じてしまうため、供給流路への水晶片の設置によって、流量や流速が安定しなくなる場合や、励振電極上に試料液が供給されない場合があった。   When such a sensor is used, for example, in the clinical field or food inspection field, it is often performed using a simple device, and a small, simple device that accurately detects the device is required. ing. However, if the supply flow path is made narrower for downsizing and simplification of the sensor, the flow rate and flow rate will change due to slight unevenness, so by installing a crystal piece in the supply flow path, In some cases, the flow rate and flow velocity are not stable, or the sample solution is not supplied onto the excitation electrode.

また感知センサーを小型化をすると、電極間が狭くなるため、水晶片の裏面に回りこむ僅かな試料液や参照液によって、電極が濡れてしまい、付着した液分に基いて、あるいは第1の励振電極と第2の励振電極とが導通してしまうことに基いて、発振が弱まる場合や、正確な発振ができなくなることがあった。   Further, when the sensor is downsized, the space between the electrodes becomes narrower, so that the electrode gets wet by a slight sample liquid or reference liquid that wraps around the back surface of the crystal piece, and is based on the adhering liquid or the first liquid. On the basis of the conduction between the excitation electrode and the second excitation electrode, oscillation may be weakened or accurate oscillation may not be possible.

特開2009−206792号JP 2009-206792 A

本発明は、このような事情の下になされたものであり、その目的は第1の圧電振動子及び第2の圧電振動子が形成された共通の圧電片を、配線基板上の凹部を塞ぐように配置した感知センサーにおいて、凹部内に位置する圧電片の裏面側に試料液などの液体の回りこみを防止し、信頼性の高い測定を行うことのできる感知センサーを提供することにある。   The present invention has been made under such circumstances, and an object thereof is to close a concave portion on a wiring board with a common piezoelectric piece on which a first piezoelectric vibrator and a second piezoelectric vibrator are formed. An object of the present invention is to provide a sensor that can perform measurement with high reliability by preventing a liquid such as a sample liquid from flowing around a back surface of a piezoelectric piece located in a recess.

本発明の感知センサーは、発振周波数を測定するための測定器に接続される接続端子部を備えると共に一面側に凹部が形成された配線基板と、
前記凹部を塞ぐように配線基板に配置された共通の圧電片に各振動領域が凹部と対向するように励振電極を設けて構成され、各励振電極が前記接続端子部に電気的に接続される第1の圧電振動子及び第2の圧電振動子と、
前記第1の圧電振動子及び第2の圧電振動子を含む前記配線基板の一面側の領域を覆うように設けられ、当該領域との間に試料液を供給する流路を形成する流路形成部材と
前記第1の圧電振動子及び第2の圧電振動子のうち一方のみに前記流路に面して設けられ、試料液中の感知対象物を吸着する吸着膜と、
前記凹部内への液体の回り込みを抑えるために、当該凹部内に付着され、当該凹部を形成する材質よりも撥水性の大きい撥水剤と、を備え、
前記撥水領域によって、前記検出用電極と、前記参照用電極とが試料液により互いに導通することを防ぐことと、を特徴とする。
The sensing sensor of the present invention comprises a wiring board having a connection terminal portion connected to a measuring instrument for measuring an oscillation frequency and having a recess formed on one surface side,
An excitation electrode is provided on a common piezoelectric piece arranged on the wiring board so as to close the recess so that each vibration region faces the recess, and each excitation electrode is electrically connected to the connection terminal portion. A first piezoelectric vibrator and a second piezoelectric vibrator;
Forming a flow path that is provided so as to cover a region on one surface side of the wiring substrate including the first piezoelectric vibrator and the second piezoelectric vibrator and that supplies a sample liquid to the area. An adsorbing film that is provided on only one of the member and the first piezoelectric vibrator and the second piezoelectric vibrator so as to face the flow path and adsorbs a sensing object in the sample liquid;
A water repellent that is attached to the recess and has a greater water repellency than the material that forms the recess, in order to prevent the liquid from entering the recess.
The water-repellent region prevents the detection electrode and the reference electrode from being electrically connected to each other by the sample liquid.

また本発明の感知センサーは、前記第1の圧電振動子及び第2の圧電振動子の各励振電極は、前記流路に面した側の励振電極が接地電極であって、前記凹部と対向する側の励振電極が検出用電極及び参照用電極であることを特徴としてもよく、さらに前記撥水領域は、凹部の底面部に設けられたことを特徴としてもよい。   In the sensing sensor of the present invention, each of the excitation electrodes of the first piezoelectric vibrator and the second piezoelectric vibrator has a ground electrode on the side facing the flow path, and faces the recess. The excitation electrode on the side may be a detection electrode and a reference electrode, and the water-repellent region may be provided on the bottom surface of the recess.

あるいは本発明の感知センサーは、発振周波数を測定するための測定器に接続される接続端子部を備えると共に一面側に凹部が形成された配線基板と、
前記凹部を塞ぐように配線基板に配置された共通の圧電片に各振動領域が凹部と対向するように励振電極を設けて構成され、各励振電極が前記接続端子部に電気的に接続される第1の圧電振動子及び第2の圧電振動子と、
前記第1の圧電振動子及び第2の圧電振動子を含む前記配線基板の一面側の領域を覆うように設けられ、当該領域との間に試料液を供給する流路を形成する流路形成部材と、
前記第1の圧電振動子及び第2の圧電振動子のうち一方のみに前記流路に面して設けられ、試料液中の感知対象物を吸着する吸着膜と、
前記凹部の周壁面と、第1の圧電振動子及び第2の圧電振動子と、の間を塞ぐように設けられた非導電性のシール剤と、を備えることを特徴としてもよく、前記第1の圧電振動子及び第2の圧電振動子の各励振電極は、前記流路に面した側の励振電極が接地電極であって、前記凹部と対向する側の励振電極が検出用電極及び参照用電極であることを特徴としてもよい。
Alternatively, the sensing sensor of the present invention includes a wiring board having a connection terminal portion connected to a measuring instrument for measuring an oscillation frequency and having a recess formed on one surface side,
An excitation electrode is provided on a common piezoelectric piece arranged on the wiring board so as to close the recess so that each vibration region faces the recess, and each excitation electrode is electrically connected to the connection terminal portion. A first piezoelectric vibrator and a second piezoelectric vibrator;
Forming a flow path that is provided so as to cover a region on one surface side of the wiring substrate including the first piezoelectric vibrator and the second piezoelectric vibrator and that supplies a sample liquid to the area. Members,
An adsorbing film that is provided on only one of the first piezoelectric vibrator and the second piezoelectric vibrator so as to face the flow path and adsorbs a sensing object in a sample liquid;
A non-conductive sealing agent provided so as to close a space between the peripheral wall surface of the recess and the first and second piezoelectric vibrators. In each of the excitation electrodes of the first and second piezoelectric vibrators, the excitation electrode on the side facing the flow path is a ground electrode, and the excitation electrode on the side facing the recess is the detection electrode and the reference It may be a feature electrode.

本発明は、共通の圧電片に形成された第1の圧電振動子及び第2の圧電振動子の一方に試料液中の感知対象物を吸着する吸着膜を形成し、配線基板に形成された凹部を塞ぐように前記圧電片を配置した感知センサーにおいて、凹部内に撥水剤を付着させているので、凹部内に浸入しようとする液体が弾かれ、このため圧電片の裏面側への液体の回り込みを抑えることができる。従って圧電片の裏面側の電極に液体が付着することの不具合を防止できる。
また他の発明は、圧電片と凹部の周壁面との間をシール材により塞いでいるため、同様の効果がある。
In the present invention, an adsorption film that adsorbs a sensing object in a sample solution is formed on one of a first piezoelectric vibrator and a second piezoelectric vibrator formed on a common piezoelectric piece, and is formed on a wiring board. In the sensing sensor in which the piezoelectric piece is arranged so as to close the concave portion, the water repellent is adhered in the concave portion, so that the liquid entering the concave portion is repelled. Wraparound can be suppressed. Therefore, it is possible to prevent a problem that the liquid adheres to the electrode on the back surface side of the piezoelectric piece.
The other invention has the same effect because the space between the piezoelectric piece and the peripheral wall surface of the recess is closed by the sealing material.

本発明に係る感知装置の斜視図である。1 is a perspective view of a sensing device according to the present invention. 前記感知装置を構成する感知センサーの斜視図である。It is a perspective view of the sensing sensor which comprises the said sensing device. 感知センサーの各部の上面側を示した分解斜視図である。It is the disassembled perspective view which showed the upper surface side of each part of a detection sensor. 感知センサーの各部の下面側を示した分解斜視図である。It is the disassembled perspective view which showed the lower surface side of each part of a detection sensor. 前記水晶振動子と凹部の構成を示す縦断側面図である。It is a vertical side view which shows the structure of the said crystal oscillator and a recessed part. 前記水晶振動子と凹部の構成を示す斜視図である。It is a perspective view which shows the structure of the said crystal oscillator and a recessed part. 前記感知センサーを構成する水晶振動子の上面側を示す平面図である。It is a top view which shows the upper surface side of the crystal oscillator which comprises the said sensor. 前記感知センサーを構成する水晶振動子の下面側を示す平面図である。It is a top view which shows the lower surface side of the crystal oscillator which comprises the said sensor. 前記水晶振動子を供給流路に設置した状態を示す平面図である。It is a top view which shows the state which installed the said crystal oscillator in the supply flow path. 前記感知装置の概略構成図である。It is a schematic block diagram of the said sensing apparatus. 本発明の感知センサーの作用を説明する説明図である。It is explanatory drawing explaining the effect | action of the sensing sensor of this invention. 他の実施の形態に係る感知センサーの縦断側面図である。It is a vertical side view of the sensing sensor which concerns on other embodiment. 第2の実施の形態に係る感知センサーの構成を示す縦断側面図である。It is a vertical side view which shows the structure of the sensing sensor which concerns on 2nd Embodiment. 第2の実施の形態に係る感知センサーの構成を示す平面図である。It is a top view which shows the structure of the sensing sensor which concerns on 2nd Embodiment. 他の実施の形態に係る感知センサーの構成を示す平面図である。It is a top view which shows the structure of the sensing sensor which concerns on other embodiment.

以下、本発明の実施の形態に係る感知センサー20を用いた感知装置について説明する。この感知装置は、例えば人間の鼻腔の拭い液から得られた試料液中のインフルエンザウイルスなどの抗原の有無を検出し、人間のインフルエンザウイルスの感染の有無を判定することができるように構成されている。図1の外観斜視図に示すように、感知装置は発振回路ユニット12と本体部13とで構成される測定器11と、測定器11の発振回路ユニット12に着脱自在に接続される感知センサー20と、を備えており、発振回路ユニット12は例えば同軸ケーブル14を介して本体部13に接続されている。本体部13の前面に設けられた表示部15は、例えば周波数あるいは周波数の変化分の測定結果を表示する役割を果たし、例えば液晶表示画面により構成されている。   Hereinafter, a sensing device using the sensing sensor 20 according to the embodiment of the present invention will be described. This sensing device is configured to detect the presence or absence of human influenza virus infection by detecting the presence or absence of an antigen such as influenza virus in a sample liquid obtained from, for example, a human nasal wipe. Yes. As shown in the external perspective view of FIG. 1, the sensing device includes a measuring device 11 including an oscillation circuit unit 12 and a main body 13, and a detection sensor 20 that is detachably connected to the oscillation circuit unit 12 of the measuring device 11. The oscillation circuit unit 12 is connected to the main body 13 via a coaxial cable 14, for example. The display unit 15 provided on the front surface of the main body unit 13 serves to display, for example, the measurement result of the frequency or the change in the frequency, and is configured by a liquid crystal display screen, for example.

図2は感知センサー20の斜視図であり、以後の図中の配線及び電極には基板等と区別をするためにハッチングを施している。感知センサー20は、配線基板2と、圧電振動子の1つである水晶振動子3と、流路形成部材4と、により構成されており、長さ約2.0cm、幅約1.2cmの寸法で構成される。図3は、感知センサー20の各部の上面側を示した分解斜視図であり、図4は感知センサー20の各部の下面側を示した分解斜視図である。図5は、水晶振動子3と配線基板2の構成を示した縦断側面図であり、図6は水晶振動子3と配線基板2に設けられた凹部23の構成を示した分解斜視図である。これら図2〜図6を用いて感知センサー20について説明する。   FIG. 2 is a perspective view of the sensing sensor 20, and the wirings and electrodes in the subsequent drawings are hatched to distinguish them from the substrate or the like. The sensing sensor 20 includes a wiring board 2, a crystal resonator 3 that is one of piezoelectric resonators, and a flow path forming member 4, and has a length of about 2.0 cm and a width of about 1.2 cm. Consists of dimensions. FIG. 3 is an exploded perspective view showing the upper surface side of each part of the sensing sensor 20, and FIG. 4 is an exploded perspective view showing the lower surface side of each part of the sensing sensor 20. FIG. 5 is a longitudinal side view showing the configuration of the crystal unit 3 and the wiring board 2, and FIG. 6 is an exploded perspective view showing the configuration of the recess 23 provided in the crystal unit 3 and the wiring board 2. . The sensing sensor 20 will be described with reference to FIGS.

配線基板2は長さ方向の一端側に上記の発振回路ユニット12に差し込まれる接続端子部22を形成している。配線基板2の他端側(以後先端部21とする)には、矩形状の凹部23が深さ0.1mmで形成される。凹部23は、内壁に沿って、水晶振動子3の周縁部を支持するための段差24が設けられている。配線基板2に設けられた凹部23の底面部には、撥水剤30、具体的には、凹部23の撥水性よりも大きい撥水性を持つ、(例えばアデッソのような)撥水剤30を底面全体に塗布して、撥水領域を形成する。   The wiring board 2 has a connection terminal portion 22 inserted into the oscillation circuit unit 12 on one end side in the length direction. A rectangular recess 23 is formed with a depth of 0.1 mm on the other end side of the wiring board 2 (hereinafter referred to as a tip end portion 21). The recess 23 is provided with a step 24 for supporting the peripheral edge of the crystal unit 3 along the inner wall. A water repellent 30 (specifically, for example, Adesso) having a water repellency greater than the water repellency of the recess 23 is provided on the bottom surface of the recess 23 provided on the wiring board 2. Apply to the entire bottom surface to form a water repellent area.

配線基板2の上面には配線25、26、27が設けられている。これら配線25〜27は配線基板2の一端側(接続端子部22側)から凹部23の段差24まで引き回されており、配線基板2の長さ方向に沿って、夫々並行に伸びるように形成されている。配線25、26、27の接続端子部22側は夫々端子部25a、26a、27aを形成している。配線25、26、27は凹部23外縁から凹部23の底部へと引き回されており、配線の端部は夫々端子部25b、26b、27bを形成している。   Wirings 25, 26, and 27 are provided on the upper surface of the wiring board 2. These wirings 25 to 27 are routed from one end side (connection terminal portion 22 side) of the wiring board 2 to the step 24 of the recess 23 and are formed to extend in parallel along the length direction of the wiring board 2. Has been. Terminals 25a, 26a, and 27a are formed on the connection terminals 22 side of the wirings 25, 26, and 27, respectively. The wires 25, 26, and 27 are routed from the outer edge of the recess 23 to the bottom of the recess 23, and the ends of the wires form terminal portions 25b, 26b, and 27b, respectively.

続いて水晶振動子3についてその上面、下面を夫々示した図7、図8も参照しながら説明する。水晶振動子3は、例えばATカットされた、幅2.5mm、長さ5.0mm、厚さ0.05mmの矩形状の水晶片31上に形成されている。水晶片31上には、水晶片31の長さ方向を前後方向とすると、左半分及び右半分が夫々第1の水晶振動子3A及び第2の水晶振動子3Bに割り当てられている。水晶片31の左半分及び右半分の領域を以下では、夫々第1の振動領域32a及び第2の振動領域32bと呼ぶこととする。   Next, the crystal unit 3 will be described with reference to FIGS. 7 and 8 showing the upper and lower surfaces, respectively. The quartz resonator 3 is formed on a rectangular quartz piece 31 that is, for example, AT-cut and has a width of 2.5 mm, a length of 5.0 mm, and a thickness of 0.05 mm. On the crystal piece 31, if the length direction of the crystal piece 31 is the front-rear direction, the left half and the right half are assigned to the first crystal oscillator 3A and the second crystal oscillator 3B, respectively. Hereinafter, the left half region and the right half region of the crystal piece 31 will be referred to as a first vibration region 32a and a second vibration region 32b, respectively.

図7、図8中には第1の振動領域32a、第2の振動領域32bを各々点線で囲って示している。第1の振動領域32aの上面側には励振電極33aが形成されており、第2の振動領域32bの上面側には励振電極33bが形成されている。一方で第1の振動領域32aの下面側には励振電極34aが形成されており、第2の振動領域32bの下面側には励振電極34bが形成されている。これら励振電極33a、33b、34a,34bは水晶片31の厚さ、あるいは各振動領域32a、32bに設けられる励振電極33a,33b,34a,34bの質量をわずかに変えて形成され、第1の水晶振動子3A、第2の水晶振動子3Bからの主モードの発振周波数を異ならせている。
また第1の振動領域32aに設けられた励振電極33aの表面には感知対象物である抗原と選択的に結合する抗体により構成された、図示しない吸着膜が設けられている。一方第2の振動領域32bの励振電極33bの表面には抗原と励振電極33bとの結合を阻害する図示しない阻害膜が設けられている。
In FIG. 7 and FIG. 8, the first vibration region 32a and the second vibration region 32b are respectively surrounded by dotted lines. An excitation electrode 33a is formed on the upper surface side of the first vibration region 32a, and an excitation electrode 33b is formed on the upper surface side of the second vibration region 32b. On the other hand, an excitation electrode 34a is formed on the lower surface side of the first vibration region 32a, and an excitation electrode 34b is formed on the lower surface side of the second vibration region 32b. These excitation electrodes 33a, 33b, 34a, 34b are formed by slightly changing the thickness of the quartz piece 31 or the mass of the excitation electrodes 33a, 33b, 34a, 34b provided in the respective vibration regions 32a, 32b. The oscillation frequency of the main mode from the crystal unit 3A and the second crystal unit 3B is made different.
In addition, an adsorption film (not shown) made of an antibody that selectively binds to an antigen as a sensing object is provided on the surface of the excitation electrode 33a provided in the first vibration region 32a. On the other hand, an inhibition film (not shown) that inhibits the binding between the antigen and the excitation electrode 33b is provided on the surface of the excitation electrode 33b in the second vibration region 32b.

上面側の励振電極33a、33bは一端が互いに接続されており、当該接続部から水晶片31の周縁の方向に向かって、引き出し電極35が伸ばされている。引き出し電極35は、水晶片31の側面を介して水晶片31の下面の周縁部へと引き回されている。水晶片31の下面側の励振電極34a,34bからは、水晶片31の長さ方向に、外側方向に向かって引き出し電極36a、36bが引き出されている。   The excitation electrodes 33a and 33b on the upper surface side are connected to each other, and the extraction electrode 35 is extended from the connection portion toward the periphery of the crystal piece 31. The extraction electrode 35 is routed to the peripheral edge of the lower surface of the crystal piece 31 through the side surface of the crystal piece 31. From the excitation electrodes 34 a and 34 b on the lower surface side of the crystal piece 31, extraction electrodes 36 a and 36 b are drawn out in the length direction of the crystal piece 31 toward the outer side.

水晶振動子3は、凹部23に設けられた、段差24に載置されると、水晶振動子3の下面に設けられた励振電極34a、34bが、凹部23の底面部及び撥水剤30とおよそ20μmの隙間を介して対向するように配置される。凹部23の段差24へと引き回された端子部26b、27bと、水晶片31の下面側の励振電極34a,34bからの引き出し電極36a、36bと、が夫々接続され、また凹部23の段差24に引き回された端子部25bと、水晶片31の上面側の励振電極33a,33bから引き回された引き出し電極35とが接続される。   When the crystal unit 3 is placed on the step 24 provided in the recess 23, the excitation electrodes 34 a and 34 b provided on the lower surface of the crystal unit 3 are connected to the bottom surface of the recess 23 and the water repellent 30. It arrange | positions so that it may oppose through the clearance gap of about 20 micrometers. The terminal portions 26b and 27b routed to the step 24 of the recess 23 are connected to the extraction electrodes 36a and 36b from the excitation electrodes 34a and 34b on the lower surface side of the crystal piece 31, respectively. Are connected to the terminal portion 25b routed to the lead electrode 35 routed from the excitation electrodes 33a and 33b on the upper surface side of the crystal piece 31.

水晶振動子3は、段差24に載置されると、上面の高さ位置が、配線基板2の上面の高さ位置から、上下に0.05mmの範囲に位置する。後述するように感知センサー20が本体部13と接続されると、配線基板2上を伸ばされた端子部25a,26a,27aが本体部13と接続され、端子部26a、27aは夫々第1の発振回路と第2の発振回路と接続され、端子部25aは接地される。第1の発振回路は、抗原の質量検出用の周波数を出力し、第2の発振回路は、参照用の周波数を出力するのに用いられる。すなわち凹部23に対向する励振電極34a及び34bは夫々検出用電極34a、参照用電極34bとなり、水晶振動子3の上面側の励振電極33aと33bとは、夫々接地側電極33a,33bとなる。   When the crystal resonator 3 is placed on the step 24, the height position of the upper surface is located within a range of 0.05 mm vertically from the height position of the upper surface of the wiring board 2. As will be described later, when the detection sensor 20 is connected to the main body 13, the terminal portions 25a, 26a, 27a extended on the wiring board 2 are connected to the main body 13, and each of the terminal portions 26a, 27a is the first one. The oscillation circuit and the second oscillation circuit are connected, and the terminal portion 25a is grounded. The first oscillation circuit outputs a frequency for detecting the mass of the antigen, and the second oscillation circuit is used for outputting a reference frequency. That is, the excitation electrodes 34a and 34b facing the recess 23 become a detection electrode 34a and a reference electrode 34b, respectively, and the excitation electrodes 33a and 33b on the upper surface side of the crystal resonator 3 become ground-side electrodes 33a and 33b, respectively.

続いて流路形成部材4について、横断平面図である図9も参照しながら説明する。この流路形成部材4は角板状に形成され、前記配線基板2の先端部21の表面に積層される。配線基板2の接続端子部22が設けられる方向を後方側、前記先端部21を前方側とすると、流路形成部材4の前方側には、試料溶液の注入口41が円形に開口しており、流路形成部材4を厚さ方向に貫通している。注入口41の後方には、検出後の試料溶液の貯留及び排出のための廃液口42が開口しており、注入口41と同様に流路形成部材4を厚さ方向に貫通するように構成されている。注入口41及び廃液口42は、共に水晶振動子3の投影領域から外れる位置に構成されており、さらに廃液口42は、注入口41と比較して大きな容積を持つように構成されている。   Next, the flow path forming member 4 will be described with reference to FIG. 9 which is a cross-sectional plan view. The flow path forming member 4 is formed in a square plate shape, and is laminated on the surface of the distal end portion 21 of the wiring board 2. When the direction in which the connection terminal portion 22 of the wiring board 2 is provided is the rear side and the tip end portion 21 is the front side, a sample solution injection port 41 is opened in a circle on the front side of the flow path forming member 4. The flow path forming member 4 is penetrated in the thickness direction. A waste liquid port 42 for storing and discharging the sample solution after detection is opened behind the injection port 41 and is configured to penetrate the flow path forming member 4 in the thickness direction in the same manner as the injection port 41. Has been. Both the inlet 41 and the waste liquid port 42 are configured to be out of the projection area of the crystal unit 3, and the waste liquid port 42 is configured to have a larger volume than the injection port 41.

流路形成部材4の裏面の構成について説明すると、この裏面には、廃液口42よりもさらに後方側に拡大流路部43が、流路形成部材4と配線基板2を積層した際に、配線基板2に設けた凹部23と水晶振動子3とを臨む位置に形成される。前記注入口41と拡大流路部43との間には互いに接続する第1の線状流路44が形成されており、同様に拡大流路部43と廃液口42とを互いに接続する第2の線状流路45が形成される。   The configuration of the back surface of the flow path forming member 4 will be described. On this back surface, the enlarged flow path portion 43 is further rearward than the waste liquid port 42 and the wiring is formed when the flow path forming member 4 and the wiring board 2 are laminated. It is formed at a position facing the concave portion 23 provided on the substrate 2 and the crystal unit 3. A first linear channel 44 is formed between the injection port 41 and the enlarged channel part 43 so as to be connected to each other. Similarly, a second linear channel 44 that connects the enlarged channel part 43 and the waste liquid port 42 to each other is formed. The linear flow path 45 is formed.

流路形成部材4は、例えば自己吸着性が高いPDMS(ポリジメチルシロキサン)により構成されている。流路形成部材4はプラズマ洗浄されて、その表面が活性化されると共に表面の有機物が除去されている。そのため第1、第2の線状流路44,45及び供給流路43の供給液との親和性が高められており、供給液の流通が容易になると共に、流路形成部材4と配線基板2との密着性を高められており、これらの隙間からの供給液の漏れ出しを防ぐ。なお、流路形成部材4としてはPDMSの他に例えばアクリル樹脂や水晶などにより構成することができる。   The flow path forming member 4 is made of, for example, PDMS (polydimethylsiloxane) having a high self-adsorption property. The flow path forming member 4 is plasma-cleaned to activate its surface and remove organic substances on the surface. Therefore, the affinity with the supply liquid of the first and second linear flow paths 44 and 45 and the supply flow path 43 is enhanced, the flow of the supply liquid is facilitated, and the flow path forming member 4 and the wiring board are provided. Adhesion with 2 is enhanced, and leakage of the supply liquid from these gaps is prevented. The flow path forming member 4 can be made of, for example, acrylic resin or quartz other than PDMS.

流路形成部材4に設けられた注入口41には、円柱状のフィルタ46が着脱自在に設けられる。このフィルタ46は多孔質体であり、例えばセルロースからなるストロー状の化学繊維を束ねて構成されており、ストローの側壁にも多数の小孔が形成されている。このフィルタ46は、供給液中に含まれる異物を孔内に捕捉することで流路が詰まることを防ぐ役割を有する。一方供給液に含まれる抗原の通過を妨げないように、供給液を保持しながら、微細粒子を十分に通過させる大きさとなっている。なお、フィルタ46の材質としてはセルロースに限られないが、速やかに供給液を通過させるために、当該供給液と親和性の高い材質を選択することが好ましい。   A cylindrical filter 46 is detachably provided at the inlet 41 provided in the flow path forming member 4. The filter 46 is a porous body, and is configured by bundling straw-shaped chemical fibers made of, for example, cellulose, and a plurality of small holes are also formed on the side wall of the straw. The filter 46 has a role of preventing clogging of the flow path by capturing foreign substances contained in the supply liquid in the holes. On the other hand, the size is such that the fine particles are sufficiently passed while holding the supply liquid so as not to prevent the passage of the antigen contained in the supply liquid. The material of the filter 46 is not limited to cellulose, but it is preferable to select a material having a high affinity with the supply liquid in order to allow the supply liquid to pass through quickly.

流路形成部材4は、注入口41にフィルタ46を挿入されて水晶振動子3を装填された配線基板2の先端部21に積層される。流路形成部材4が配線基板2及び水晶振動子3を密着することで、第1の線状流路44、第2の線状流路45及び拡大流路部43の下方側が閉じられ、注入口41から、第1の線状流路44、供給流路40、第2の線状流路45を介して廃液口42へと繋がる流路が形成される。   The flow path forming member 4 is laminated on the distal end portion 21 of the wiring board 2 in which the filter 46 is inserted into the injection port 41 and the crystal resonator 3 is loaded. When the flow path forming member 4 closely contacts the wiring substrate 2 and the crystal unit 3, the lower side of the first linear flow path 44, the second linear flow path 45, and the enlarged flow path portion 43 is closed. A flow path is formed that connects from the inlet 41 to the waste liquid port 42 via the first linear flow path 44, the supply flow path 40, and the second linear flow path 45.

上述の感知センサー20の接続端子部22が、発振回路ユニット12に差し込まれると、接続端子部22の端子部25a、26a、27aが、発振回路ユニット12においてこれら端子部25a、26a、27aに対応して形成された接続端子部に電気的に接続されて、図1に示した感知装置1を構成する。図10は感知装置1の概略構成図であり、発振回路ユニット12には第1の発振回路64及び第2の発振回路65が設けられており、第1の発振回路64は第1の水晶振動子3Aを、第2の発振回路65が第2の水晶振動子3Bを夫々発振させる。   When the connection terminal portion 22 of the sensing sensor 20 is inserted into the oscillation circuit unit 12, the terminal portions 25a, 26a, and 27a of the connection terminal portion 22 correspond to the terminal portions 25a, 26a, and 27a in the oscillation circuit unit 12. The sensing device 1 shown in FIG. 1 is configured by being electrically connected to the connection terminal portion formed as described above. FIG. 10 is a schematic configuration diagram of the sensing device 1, and the oscillation circuit unit 12 is provided with a first oscillation circuit 64 and a second oscillation circuit 65. The first oscillation circuit 64 is a first crystal oscillation. The second oscillation circuit 65 causes the second crystal resonator 3B to oscillate the child 3A.

続いて感知装置を構成する本体部13に設けられる各部について説明する。前記発振回路64、65の後段にはスイッチ部66が設けられており、このスイッチ部66によって2つの発振回路64、65からの周波数信号がデータ処理部67に取り込まれる。データ処理部67は入力信号である周波数信号をディジタル処理して、第1の発振回路64により発振される、発振周波数「F1」の時系列データ及び第2の発振回路64からの発振周波数「F2」の時系列データを取得する。更に各時系列データの差分「F1−F2」を夫々演算し、当該差分データの時系列データを取得すると共に、この「F1−F2」のグラフを表示部15に表示する。   Next, each unit provided in the main body unit 13 constituting the sensing device will be described. A switch unit 66 is provided following the oscillation circuits 64 and 65, and the frequency signal from the two oscillation circuits 64 and 65 is taken into the data processing unit 67 by the switch unit 66. The data processing unit 67 digitally processes a frequency signal as an input signal, and oscillates by the first oscillation circuit 64. The time series data of the oscillation frequency “F1” and the oscillation frequency “F2” from the second oscillation circuit 64 are obtained. ”Is acquired. Further, the difference “F1−F2” of each time series data is calculated, the time series data of the difference data is acquired, and the graph of “F1−F2” is displayed on the display unit 15.

本発明の実施の形態に係る感知センサー20を用いた感知装置1の作用について説明する。なお供給液において、感知対象物を含まずに水晶振動子3の周囲を液体雰囲気にするための液を参照液と記載し、感知対象物を含むか否か判定を行うために感知センサー20に供給する液を試料液と記載する。この例では参照液は生理食塩水とし、試料液は人間の鼻腔拭い液を生理食塩水で希釈したものを用いる。   The operation of the sensing device 1 using the sensing sensor 20 according to the embodiment of the present invention will be described. In addition, in the supply liquid, a liquid for making the surroundings of the crystal unit 3 into a liquid atmosphere without including the sensing object is referred to as a reference liquid, and the sensing sensor 20 is used to determine whether or not the sensing object is included. The liquid to be supplied is referred to as a sample liquid. In this example, the reference solution is physiological saline, and the sample solution is obtained by diluting a human nasal wiping solution with physiological saline.

まず測定器11を起動し、感知センサー20を発振回路ユニット12に差し込むと、各水晶振動子3A、3Bが発振し、夫々の周波数に対応する周波数信号F1、F2が取り出される。そして、これら周波数信号は時分割されて、データ処理部57に取り込まれ、A/D変換された後、各ディジタル値が信号処理される。そして2つのチャンネルの周波数信号から、前記周波数「F1、F2」が取り出されて図示しないメモリに記憶され、さらに記憶された「F1、F2」に基づいて「F1−F2」が演算されてメモリに記憶される動作が継続される。また、表示部15に既述のグラフが表示され、周波数差「F1−F2」の変化がリアルタイムで表示される。   First, when the measuring instrument 11 is activated and the sensing sensor 20 is inserted into the oscillation circuit unit 12, the crystal resonators 3A and 3B oscillate, and the frequency signals F1 and F2 corresponding to the respective frequencies are taken out. These frequency signals are time-divided and taken into the data processing unit 57 and A / D converted, and then each digital value is subjected to signal processing. The frequencies “F1, F2” are extracted from the frequency signals of the two channels and stored in a memory (not shown), and “F1-F2” is calculated based on the stored “F1, F2” and stored in the memory. The stored operation is continued. Further, the above-described graph is displayed on the display unit 15, and the change in the frequency difference “F1-F2” is displayed in real time.

次いで、ユーザが感知センサー20の注入口41にスポイトにより参照液、例えば生理食塩水を滴下する。注入口41に供給された参照液は、フィルタ46に吸収され、フィルタ43内を重力により下方へと降り、第1の線状流路44へと供給される。供給液は毛細管現象により、第1の線状流路44を流れて供給流路40へと供給される。供給流路40を参照液が流れると、供給流路40に設けられた水晶振動子3の第1及び第2の振動領域32a、32bの環境雰囲気が気相から液相に変わり、液体の粘性に基づく抵抗の増加により各チャンネルの出力周波数F1、F2が低下する。   Next, the user drops a reference solution, for example, physiological saline, into the injection port 41 of the sensing sensor 20 with a dropper. The reference liquid supplied to the inlet 41 is absorbed by the filter 46, descends downward in the filter 43 due to gravity, and is supplied to the first linear channel 44. The supply liquid flows through the first linear channel 44 and is supplied to the supply channel 40 by capillary action. When the reference liquid flows through the supply flow path 40, the environmental atmosphere of the first and second vibration regions 32a and 32b of the crystal unit 3 provided in the supply flow path 40 changes from the gas phase to the liquid phase, and the viscosity of the liquid The output frequency F1, F2 of each channel decreases due to the increase in resistance based on.

ここで供給流路40を供給液が流れるときに、供給流路40の起伏によって供給液が均一に拡がらない場合がある。本発明の実施の形態に係る感知センサー20においては、配線基板2に凹部23を設けて水晶振動子3を嵌挿しており、水晶振動子3の上面側の高さ位置は、配線基板2の上面の高さ位置から上下に0.05mmの範囲になるように構成している。そのため、供給流路40の凹凸が少なく接地電極32a、32b上に供給液を安定して供給することができる。また供給流路40が供給液で満たされると、水晶片31の周囲から供給液が回り込み、供給液によって、水晶振動子3の下面側に設けられた検出電極34aと参照用電極34bとが互いに導通してしまう。本発明の実施の形態に係る感知センサー20では、凹部23の底面部に撥水剤30が塗布され、撥水領域が形成されている。そのため図11に示すように供給液が水晶振動子3と凹部23の隙間から浸入した場合にも、撥水剤30の作用により、供給液は、水晶片31の縁で留まる。検出電極34aと参照用電極34bとが供給液によって導通することがないため、出力される周波数は安定している。
参照液は、供給流路40を拡がると、第2の線状流路45を流れこみ、第1の線状流路44と同様に毛細管現象によって第2の線状流路45を流れていく。参照液は第2の線状流路45を通過すると、廃液口42へと流出して、当該廃液口42に貯留される。
Here, when the supply liquid flows through the supply flow path 40, the supply liquid may not spread uniformly due to the undulation of the supply flow path 40. In the detection sensor 20 according to the embodiment of the present invention, the wiring board 2 is provided with a recess 23 and the crystal resonator 3 is inserted, and the height position on the upper surface side of the crystal resonator 3 is It is configured to be in the range of 0.05 mm vertically from the height position of the upper surface. Therefore, the supply liquid can be stably supplied onto the ground electrodes 32a and 32b with less unevenness in the supply flow path 40. Further, when the supply channel 40 is filled with the supply liquid, the supply liquid flows from the periphery of the crystal piece 31, and the detection electrode 34a and the reference electrode 34b provided on the lower surface side of the crystal resonator 3 are mutually connected by the supply liquid. It becomes conductive. In the sensing sensor 20 according to the embodiment of the present invention, the water repellent 30 is applied to the bottom surface of the recess 23 to form a water repellent region. Therefore, as shown in FIG. 11, even when the supply liquid enters from the gap between the crystal resonator 3 and the recess 23, the supply liquid stays at the edge of the crystal piece 31 due to the action of the water repellent 30. Since the detection electrode 34a and the reference electrode 34b are not conducted by the supply liquid, the output frequency is stable.
When the reference liquid expands the supply flow path 40, the reference liquid flows through the second linear flow path 45 and flows through the second linear flow path 45 by capillary action as in the first linear flow path 44. . When the reference liquid passes through the second linear flow channel 45, it flows out to the waste liquid port 42 and is stored in the waste liquid port 42.

続いて、試料液を注入口41に滴下する。試料液は、参照液と同様にフィルタ46に吸収され、重力によってフィルタ46を下方に向かい、それによってフィルタ46に残留していた参照液が下流方向へと押し流され、当該参照液がすべて供給流路40を流れ、廃液口42へと向かう。
そして、試料液は参照液と同様にフィルタ46の毛細管現象により供給流路40へと進入し、供給流路40の外縁に沿って広がるように流れ、供給流路40内の液相は参照液から試料液に置換される。試料液中に感知対象物が含まれる場合には、第1の水晶振動子3Aは抗原抗体反応により抗原を吸着させるため、質量の負荷がかかり、発振周波数が変化する。一方で第2の水晶振動子3Bでは、抗原の吸着による質量の負荷が起こらない。試料液に抗原が含まれる場合、第1の水晶振動子3Aでは試料液の温度や粘性により周波数が変化することに加えて、当該抗原が抗原抗体反応により吸着膜に吸着され、質量負荷効果により周波数「F1」の値がさらに低下する。その一方で、第2の水晶振動子3B側のチャンネル2からは、試料液の温度や粘性に応じて変化する周波数「F2」が出力される。このような周波数変化の結果、周波数「F1−F2」が低下する。試料液は、供給流路40から廃液口42へと流れて貯留される。廃液口42内の液量が上昇し、水圧が高くなると、注入口41から試料液の移動が停止する。
Subsequently, the sample solution is dropped into the injection port 41. The sample liquid is absorbed by the filter 46 in the same manner as the reference liquid, and moves downward through the filter 46 due to gravity, whereby the reference liquid remaining on the filter 46 is pushed downstream, and all of the reference liquid is supplied. It flows through the path 40 and heads toward the waste liquid port 42.
Then, the sample solution enters the supply channel 40 by the capillary phenomenon of the filter 46 in the same manner as the reference solution, flows so as to spread along the outer edge of the supply channel 40, and the liquid phase in the supply channel 40 is the reference solution. Is replaced with the sample solution. When the sample object contains a sensing object, the first crystal resonator 3A adsorbs the antigen by the antigen-antibody reaction, so that a mass load is applied and the oscillation frequency changes. On the other hand, in the second crystal unit 3B, no mass load is caused by the adsorption of the antigen. When the sample liquid contains an antigen, in the first crystal resonator 3A, in addition to the frequency changing due to the temperature and viscosity of the sample liquid, the antigen is adsorbed to the adsorption film by the antigen-antibody reaction, and due to the mass load effect The value of the frequency “F1” further decreases. On the other hand, a frequency “F2” that changes in accordance with the temperature and viscosity of the sample solution is output from the channel 2 on the second crystal resonator 3B side. As a result of such a frequency change, the frequency “F1-F2” decreases. The sample liquid flows from the supply channel 40 to the waste liquid port 42 and is stored. When the amount of liquid in the waste liquid port 42 increases and the water pressure increases, the movement of the sample liquid from the injection port 41 stops.

試料液が抗原を含まない場合も、抗原を含む場合と同様に流通するが、第1の水晶振動子3Aでは上記の抗原抗体反応が起こらず、チャンネル1およびチャンネル2からは試料液の温度や粘性に応じて変化する周波数「F1」、「F2」が取り出されるので、周波数差はほとんど変化しない。そしてある時刻t1からt2までの「F1−F2」の値aと時刻t2以降の「F1−F2」の値bとの差分値a−bを計算し、この差分値a−bが所定の許容値に収まっていれば、試料液中に抗原はないものと判定し、差分値a−bが許容値を超えていれば試料液中に抗原が存在するものと判定する。   When the sample solution does not contain the antigen, it flows in the same way as when it contains the antigen. However, the above-described antigen-antibody reaction does not occur in the first crystal unit 3A, and the temperature of the sample solution is increased from channel 1 and channel 2. Since the frequencies “F1” and “F2” that change according to the viscosity are extracted, the frequency difference hardly changes. Then, a difference value a−b between the value “a” of “F1−F2” from a certain time t1 to t2 and the value “b” of “F1−F2” after time t2 is calculated, and this difference value ab is a predetermined allowable value. If it falls within the value, it is determined that there is no antigen in the sample solution, and if the difference value a−b exceeds the allowable value, it is determined that the antigen is present in the sample solution.

上述の感知センサー20によれば、配線基板2上に、凹部23を形成し水晶振動子3をはめ込むように構成することで、供給流路40の起伏を小さくして、水晶振動子3の上面側に供給液が安定して供給されるようにする。さらに凹部23に撥水作用を付することで、凹部23の底面部と対向する水晶振動子3の下面側に供給液が回り込まないようにする。水晶振動子3の下面側に設けられた検出用電極34aと参照用電極34bとが供給液により、互いに導通することを防ぐため安定した測定ができる。   According to the above-described sensing sensor 20, the concave portion 23 is formed on the wiring substrate 2 and the crystal resonator 3 is fitted, whereby the undulation of the supply flow path 40 is reduced, and the upper surface of the crystal resonator 3. The supply liquid is stably supplied to the side. Further, by applying a water repellency to the recess 23, the supply liquid is prevented from flowing into the lower surface side of the crystal unit 3 facing the bottom surface of the recess 23. Since the detection electrode 34a and the reference electrode 34b provided on the lower surface side of the crystal resonator 3 are prevented from being electrically connected to each other by the supply liquid, stable measurement can be performed.

共通の圧電片に形成された第1の圧電振動子3A及び第2の圧電振動子3Bの一方に試料液中の感知対象物を吸着する吸着膜を形成し、配線基板2に形成された凹部23を塞ぐように前記圧電片31を配置した感知センサー20において、凹部23内に撥水剤30を付着させているので、凹部23内に浸入しようとする液体が弾かれ、このため圧電片31の裏面側への液体の回り込みを抑えることができる。従って圧電片31の裏面側の電極に液体が付着することの不具合を防止できる。   A recess formed in the wiring board 2 is formed by forming an adsorption film that adsorbs a sensing object in the sample liquid on one of the first piezoelectric vibrator 3A and the second piezoelectric vibrator 3B formed on the common piezoelectric piece. In the sensing sensor 20 in which the piezoelectric piece 31 is arranged so as to close the 23, the water repellent 30 is adhered in the recess 23, so that the liquid that is going to enter the recess 23 is repelled. It is possible to suppress the sneak in of the liquid to the back side. Accordingly, it is possible to prevent a problem that the liquid adheres to the electrode on the back surface side of the piezoelectric piece 31.

また本発明の実施の形態に係る感知センサー1は、供給液が水晶振動子3上に供給され、水晶振動子3上から排出される構成あっても良い。図12に示すように、上側流路形成部材61と、下側流路形成部材62と、を配線基板2上に積層するように構成する。下側流路形成部材62と配線基板2を積層した際に、配線基板2に設けた凹部23と水晶振動子3を臨む位置に拡大流路部63を設けて、水晶振動子3を嵌挿した配線基板2上に積層することで供給流路64が構成される。配線基板2に設けた凹部23の底面部には、撥水剤30を塗布して、凹部23と対向する励振電極34a、34bに供給液が這い回らないように構成する。水晶片31の前端の上方の位置に下側流路形成部材62を厚さ方向に貫通する注入口65が設けられ、水晶片31の前端の上方の位置に下側流路形成部材62を厚さ方向に貫通する廃液口66が設けられる。注入口65と廃液口66には、多孔質体で構成された円柱状のフィルタ67、68が設けられる。   The sensing sensor 1 according to the embodiment of the present invention may have a configuration in which a supply liquid is supplied onto the crystal unit 3 and discharged from the crystal unit 3. As shown in FIG. 12, the upper flow path forming member 61 and the lower flow path forming member 62 are configured to be stacked on the wiring board 2. When the lower flow path forming member 62 and the wiring board 2 are stacked, the enlarged flow path portion 63 is provided at a position facing the concave portion 23 and the crystal vibrator 3 provided in the wiring board 2 and the crystal vibrator 3 is inserted. The supply flow path 64 is configured by stacking on the wiring board 2. A water repellent 30 is applied to the bottom surface of the recess 23 provided on the wiring board 2 so that the supply liquid does not crawl around the excitation electrodes 34 a and 34 b facing the recess 23. An injection port 65 penetrating the lower flow path forming member 62 in the thickness direction is provided at a position above the front end of the crystal piece 31, and the lower flow path forming member 62 is thickened at a position above the front end of the crystal piece 31. A waste liquid port 66 penetrating in the vertical direction is provided. The injection port 65 and the waste liquid port 66 are provided with columnar filters 67 and 68 made of a porous material.

上側流路形成部材61の上面側には、すり鉢状のインジェクト口69が設けられる。インジェクト口69の底部は、注入口65と接続されており、フィルタ67の上部が露出している。上側流路形成部材61の下面側には、前述のインジェクト口69より低い位置に、廃液だまり70が設けられており、廃液口66と接続される。インジェクト口69に供給された供給液は、注入口65のフィルタ67に吸収され、フィルタ67の毛細管現象と重力により供給流路64へ供給される。供給流路64に供給された供給液は、供給流路64を拡がるように流れて供給流路64を満たす。供給液は供給流路64を満たすと、廃液口66に設けられたフィルタ68により吸収される。廃液だまり70は、インジェクト口69より低い位置にある。そのため、供給液は、フィルタ67、68による毛細管現象と、サイホン効果により供給流路64から廃液だまり70へと流通される。このような構成の感知センサー20の場合にも、供給液の回り込みによる検出電極34aと参照用電極34bとの導通を防ぐことができるため安定した検出ができる。
また撥水剤30を凹部23の壁面部と水晶片31との隙間に塗布して、供給液の浸入を防ぐようにしてもよい。
A mortar-shaped injection port 69 is provided on the upper surface side of the upper flow path forming member 61. The bottom of the injection port 69 is connected to the injection port 65 and the upper part of the filter 67 is exposed. A waste liquid reservoir 70 is provided on a lower surface side of the upper flow path forming member 61 at a position lower than the above-described injection port 69, and is connected to the waste liquid port 66. The supply liquid supplied to the injection port 69 is absorbed by the filter 67 of the injection port 65, and is supplied to the supply channel 64 by the capillary phenomenon of the filter 67 and gravity. The supply liquid supplied to the supply flow path 64 flows so as to expand the supply flow path 64 and fills the supply flow path 64. When the supply liquid fills the supply flow path 64, the supply liquid is absorbed by the filter 68 provided at the waste liquid port 66. The waste liquid pool 70 is located at a position lower than the injection port 69. Therefore, the supply liquid is circulated from the supply flow path 64 to the waste liquid pool 70 by the capillary phenomenon caused by the filters 67 and 68 and the siphon effect. Even in the case of the sensing sensor 20 having such a configuration, since the conduction between the detection electrode 34a and the reference electrode 34b due to the wraparound of the supply liquid can be prevented, stable detection can be performed.
Alternatively, the water repellent 30 may be applied to the gap between the wall surface of the recess 23 and the crystal piece 31 to prevent the supply liquid from entering.

[第2の実施の形態]
第2の実施の形態として、撥水剤30を塗布することで、供給液により裏面側の検出電極34aと参照用電極34bとが互いに導通しないようにするのではなく、シーリング剤8により水晶片の周囲の隙間を塞ぎ、下面側に供給液が回らないように構成してもよい。シーリング剤8は、例えばシリコン樹脂などの非導電性の材料を用いる。
[Second Embodiment]
As a second embodiment, the water repellent 30 is applied so that the back surface side detection electrode 34a and the reference electrode 34b are not electrically connected to each other by the supplied liquid, but the crystal piece is formed by the sealing agent 8. It is also possible to configure so that the supply liquid does not turn to the lower surface side by closing the gap around the bottom surface. For the sealing agent 8, for example, a non-conductive material such as silicon resin is used.

例えば図13、図14に示すように配線基板2に形成する凹部23に段差24を設けず、配線基板2上を引き回される配線25、26、27は凹部23の側壁まで引き回し、端子部25b、26b、27bとする。一方で接地電極33a、33b、検出電極34a及び参照用電極34bから引き回される引き出し電極35、36a、36bは水晶片31の側面まで引き回す。配線基板2の凹部23の側壁に設けられた端子部25b、26b、27bと、水晶片31の側面に引き回された引き出し電極35、36a、36bに導電性接着剤81を塗布し、水晶片31を凹部23に嵌挿する。端子部25b、26b、27bと引き出し電極35、36a、36bの接合部に導電性接着剤81を再度塗布した後、硬化させて、水晶片31の高さ位置が、配線基板2表面の高さ位置から、上下に0.05mmの間に位置するように固定する。   For example, as shown in FIGS. 13 and 14, the step 23 is not provided in the recess 23 formed in the wiring substrate 2, and the wirings 25, 26, 27 routed on the wiring substrate 2 are routed to the side wall of the recess 23, 25b, 26b, 27b. On the other hand, the lead electrodes 35, 36 a, and 36 b led from the ground electrodes 33 a and 33 b, the detection electrode 34 a, and the reference electrode 34 b are routed to the side surface of the crystal piece 31. A conductive adhesive 81 is applied to the terminal portions 25b, 26b, 27b provided on the side wall of the recess 23 of the wiring board 2 and the lead electrodes 35, 36a, 36b drawn around the side surface of the crystal piece 31, and the crystal piece 31 is inserted into the recess 23. The conductive adhesive 81 is applied again to the joint between the terminal portions 25b, 26b, and 27b and the lead electrodes 35, 36a, and 36b, and then cured, so that the height position of the crystal piece 31 is the height of the surface of the wiring board 2. From the position, it is fixed so that it is located between 0.05 mm up and down.

導電性接着剤81の硬化後、夫々の端子部25b、26b、27b及び引き出し電極35、36a、36bと導電性接着剤81との厚さによって生じている水晶片31の周囲の隙間から、シーリング剤8をディスペンサーにより充填する。なお図14は、平面図であるが、図中のシーリング剤8には、ハッチングを施した。この際には、水晶振動子3のCI値の上昇を防ぐために、シーリング剤8は水晶片31に設けられた検出電極34aと参照用電極34bとには、接触させないように充填する。水晶片31の周縁部のシーリング剤8を均した後、電極端と導電性接着剤81で接続した部位をシーリング剤8により塞ぐ。このような構成にした場合にも、供給液によって、検出電極34a及び参照用電極34bが導通することを防ぐことができるため、同様の効果が得られる。また水晶振動子3は、矩形状の水晶片でなくともよく図15に平面図で示すような円板状の水晶片9を用いた構成でもあってもよい。   After the conductive adhesive 81 is cured, sealing is performed from the gaps around the crystal piece 31 caused by the thicknesses of the respective terminal portions 25b, 26b, 27b and the lead electrodes 35, 36a, 36b and the conductive adhesive 81. Agent 8 is filled with a dispenser. In addition, although FIG. 14 is a top view, the sealing agent 8 in the figure was hatched. At this time, in order to prevent the CI value of the crystal resonator 3 from increasing, the sealing agent 8 is filled so as not to contact the detection electrode 34 a and the reference electrode 34 b provided on the crystal piece 31. After leveling the sealing agent 8 on the peripheral edge of the crystal piece 31, the portion connected to the electrode end by the conductive adhesive 81 is closed with the sealing agent 8. Even in such a configuration, it is possible to prevent the detection electrode 34a and the reference electrode 34b from being conducted by the supply liquid, and thus the same effect can be obtained. Further, the crystal unit 3 may not be a rectangular crystal piece but may be configured using a disk-like crystal piece 9 as shown in a plan view in FIG.

1 感知装置
2 配線基板
3 水晶振動子
4 流路形成部材
11 測定器
12 発振回路ユニット
20 感知センサー
22 接続端子部
31 水晶片
33a,33b 接地電極
34a 検出用電極
34b 参照用電極
40 供給流路
41 注入口
42 廃液口
DESCRIPTION OF SYMBOLS 1 Sensing apparatus 2 Wiring board 3 Crystal oscillator 4 Channel formation member 11 Measuring device 12 Oscillation circuit unit 20 Sensing sensor 22 Connection terminal part 31 Crystal piece 33a, 33b Ground electrode 34a Detection electrode 34b Reference electrode 40 Supply channel 41 Inlet 42 Waste liquid port

Claims (5)

発振周波数を測定するための測定器に接続される接続端子部を備えると共に一面側に凹部が形成された配線基板と、
前記凹部を塞ぐように配線基板に配置された共通の圧電片に各振動領域が凹部と対向するように励振電極を設けて構成され、各励振電極が前記接続端子部に電気的に接続される第1の圧電振動子及び第2の圧電振動子と、
前記第1の圧電振動子及び第2の圧電振動子を含む前記配線基板の一面側の領域を覆うように設けられ、当該領域との間に試料液を供給する流路を形成する流路形成部材と
前記第1の圧電振動子及び第2の圧電振動子のうち一方のみに前記流路に面して設けられ、試料液中の感知対象物を吸着する吸着膜と、
前記凹部内への液体の回り込みを抑えるために、当該凹部内に付着され、当該凹部を形成する材質よりも撥水性の大きい撥水剤と、を備え、
前記撥水領域によって、前記検出用電極と、前記参照用電極とが試料液により互いに導通することを防ぐことと、を特徴とする感知センサー。
A wiring board having a connection terminal portion connected to a measuring instrument for measuring an oscillation frequency and having a recess formed on one surface side;
An excitation electrode is provided on a common piezoelectric piece arranged on the wiring board so as to close the recess so that each vibration region faces the recess, and each excitation electrode is electrically connected to the connection terminal portion. A first piezoelectric vibrator and a second piezoelectric vibrator;
Forming a flow path that is provided so as to cover a region on one surface side of the wiring substrate including the first piezoelectric vibrator and the second piezoelectric vibrator and that supplies a sample liquid to the area. An adsorbing film that is provided on only one of the member and the first piezoelectric vibrator and the second piezoelectric vibrator so as to face the flow path and adsorbs a sensing object in the sample liquid;
A water repellent that is attached to the recess and has a greater water repellency than the material that forms the recess, in order to prevent the liquid from entering the recess.
A sensing sensor, wherein the water repellent region prevents the detection electrode and the reference electrode from being electrically connected to each other by a sample solution.
前記第1の圧電振動子及び第2の圧電振動子の各励振電極は、前記流路に面した側の励振電極が接地電極であって、前記凹部と対向する側の励振電極が検出用電極及び参照用電極であることを特徴とする請求項1記載の感知センサー。   In each excitation electrode of the first piezoelectric vibrator and the second piezoelectric vibrator, the excitation electrode on the side facing the flow path is a ground electrode, and the excitation electrode on the side facing the recess is a detection electrode The sensing sensor according to claim 1, wherein the sensing sensor is a reference electrode. 前記撥水領域は、凹部の底面部に設けられたことを特徴とする請求項1または2記載の感知センサー。   The sensor according to claim 1, wherein the water repellent region is provided on a bottom surface of the recess. 発振周波数を測定するための測定器に接続される接続端子部を備えると共に一面側に凹部が形成された配線基板と、
前記凹部を塞ぐように配線基板に配置された共通の圧電片に各振動領域が凹部と対向するように励振電極を設けて構成され、各励振電極が前記接続端子部に電気的に接続される第1の圧電振動子及び第2の圧電振動子と、
前記第1の圧電振動子及び第2の圧電振動子を含む前記配線基板の一面側の領域を覆うように設けられ、当該領域との間に試料液を供給する流路を形成する流路形成部材と、
前記第1の圧電振動子及び第2の圧電振動子のうち一方のみに前記流路に面して設けられ、試料液中の感知対象物を吸着する吸着膜と、
前記凹部の周壁面と、第1の圧電振動子及び第2の圧電振動子と、の間を塞ぐように設けられた非導電性のシール剤と、を備えることを特徴とする感知センサー。
A wiring board having a connection terminal portion connected to a measuring instrument for measuring an oscillation frequency and having a recess formed on one surface side;
An excitation electrode is provided on a common piezoelectric piece arranged on the wiring board so as to close the recess so that each vibration region faces the recess, and each excitation electrode is electrically connected to the connection terminal portion. A first piezoelectric vibrator and a second piezoelectric vibrator;
Forming a flow path that is provided so as to cover a region on one surface side of the wiring substrate including the first piezoelectric vibrator and the second piezoelectric vibrator and that supplies a sample liquid to the area. Members,
An adsorbing film that is provided on only one of the first piezoelectric vibrator and the second piezoelectric vibrator so as to face the flow path and adsorbs a sensing object in a sample liquid;
A sensing sensor comprising: a peripheral wall surface of the recess; and a non-conductive sealing agent provided so as to block between the first piezoelectric vibrator and the second piezoelectric vibrator.
前記第1の圧電振動子及び第2の圧電振動子の各励振電極は、前記流路に面した側の励振電極が接地電極であって、前記凹部と対向する側の励振電極が検出用電極及び参照用電極であることを特徴とする請求項4記載の感知センサー。   In each excitation electrode of the first piezoelectric vibrator and the second piezoelectric vibrator, the excitation electrode on the side facing the flow path is a ground electrode, and the excitation electrode on the side facing the recess is a detection electrode The sensing sensor according to claim 4, wherein the sensing sensor is a reference electrode.
JP2012154597A 2012-07-10 2012-07-10 Detection sensor Pending JP2014016272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012154597A JP2014016272A (en) 2012-07-10 2012-07-10 Detection sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012154597A JP2014016272A (en) 2012-07-10 2012-07-10 Detection sensor

Publications (1)

Publication Number Publication Date
JP2014016272A true JP2014016272A (en) 2014-01-30

Family

ID=50111078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012154597A Pending JP2014016272A (en) 2012-07-10 2012-07-10 Detection sensor

Country Status (1)

Country Link
JP (1) JP2014016272A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116183434A (en) * 2023-05-05 2023-05-30 苏州市纤维检验院 Automatic weighing method for water evaporation rate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116183434A (en) * 2023-05-05 2023-05-30 苏州市纤维检验院 Automatic weighing method for water evaporation rate
CN116183434B (en) * 2023-05-05 2023-08-08 苏州市纤维检验院 Automatic weighing method for water evaporation rate

Similar Documents

Publication Publication Date Title
US7677087B2 (en) Quartz sensor and sensing device
US8601860B2 (en) Sensing device and sensing method
JP5160584B2 (en) Sensing device
JP6088857B2 (en) Sensing sensor
JP6227219B2 (en) Sensing sensor and sensing device
JP4256871B2 (en) Quartz sensor and sensing device
JP6492376B2 (en) Surface acoustic wave sensor
JP4616123B2 (en) Microsensor for analysis
JP2014016272A (en) Detection sensor
JP5102334B2 (en) Sensing device
JP5240794B2 (en) Sensing device
US10620199B2 (en) Sensing sensor and sensing method
JP6180198B2 (en) Sensing sensor
JP2006208284A (en) Trace quantity mass sensor mounted chip and trace quantity mass analyzing system, and analyzing method of the trace quantity mass sensor mounted chip
JP6471084B2 (en) Sensing sensor
JP6966266B2 (en) Manufacturing method of sensing sensor
JP2013130563A (en) Sensing sensor
JP6966283B2 (en) Sensing sensor and sensing device
JP2007057291A (en) Microreactor, microreactor system and analyzing method using microreactor system
JP6267447B2 (en) Sensing device and piezoelectric sensor
US20160209367A1 (en) Apparatus Made by Combining a Quartz Tuning Fork and a Microfluidic Channel for Low Dose Detection of Specific Specimens in a Liquid or Gas Media
JP2019168284A (en) Sensing sensor
JP6106446B2 (en) Sensing sensor and sensing device
JP2013221896A (en) Sensitive sensor and sensitive instrument
JP2020094970A (en) Sensing device and sensing method